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Gastroenterolgy & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, China

Exercise-induced fatigue is closely associated with mitochondrial dysfunction, 
and mitophagy plays a critical role in maintaining mitochondrial homeostasis 
by clearing damaged mitochondria and reducing oxidative stress. This review 
systematically summarizes current evidence on the regulatory mechanisms 
of mitophagy in exercise-induced fatigue, particularly through pathways such 
as PINK1/Parkin, BNIP3/Nix, FUNDC1, and AMPK, and examines how natural 
compounds including sulforaphane, Rhodiola crenulata, ginseng, modulate 
these pathways to alleviate fatigue. These findings suggest the presence 
of mitophagy threshold in different models and highlight its potential as a 
therapeutic target for fatigue management. Ultimately, this review proposes 
novel strategies for developing natural anti-fatigue agents based on mitophagy 
regulation, while underscoring the need for further mechanistic studies in 
diverse physiological and pathological settings.
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 1 Pathophysiological characteristics of 
exercise-induced fatigue

Exercise-induced fatigue, defined as the inability to maintain a specific level or intensity 
of physical activity (Rosenthal et al., 2008; O'Sullivan et al., 2018), represents a physiological 
warning signal following excessive exertion rather than a pathological condition (Li et al., 
2022a). Its research scope has expanded from athletic performance to broader health 
management.

Studies classify fatigue mechanisms into three categories, depletion of activity-required 
substrates, accumulation of metabolic byproducts such as lactic acid, and oxidative stress 
caused by free radicals (Jin and Zheng, 2008). Substrate depletion triggers the conversion 
of fats and proteins into energy substrates, which must be transformed into ATP and 
creatine phosphate for effective utilization. Excessive lactic acid accumulation impairs
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muscular contraction and relaxation by inhibiting fructose-1,6-
bisphosphate aldolase, thereby impeding ATP synthesis (Li and 
Zhao, 2017; Melvin, 1998). During exercise, overproduction of 
free radical damages proteins and DNA, impairs organelles, 
decreases cell membrane fluidity, disrupts the tricarboxylic acid 
cycle, and ultimately induces fatigue (Yakes and Van Houten, 1997; 
Davies et al., 1982; Jackson and Farrell, 1993). Furthermore, reactive 
oxygen species (ROS) accumulation after high-intensity exercise can 
cause myocardial lipid peroxidation, threatening long-term health 
(Mu, 2023; You et al., 2011).

For athletes, fatigue is a core factor limiting competitive 
performance, as excessive fatigue may lead to muscle damage, 
metabolic dysregulation, and impaired organ dysfunction (Yang, 
2016). Understanding fatigue mechanisms can help optimize 
athletic training programs, such as targeting mitophagy to remove 
damaged mitochondria, and provide strategies for scientific anti-
fatigue research. Effectively management of exercise-induced fatigue 
requires enhancing the body’s antioxidant capacity.

Current anti-fatigue products aim to rapidly restore physical 
strength through direct ATP precursor supplementation, reduce 
oxidative stress by neutralizing free radicals, and delay subjective 
fatigue via central nervous system stimulation. However, these 
approaches fail to address root causes such as low mitochondrial 
oxidative phosphorylation efficiency. Long-term use may disrupt 
endogenous antioxidant system balance and mask true physiological 
strain, increasing the risk of exercise-related injuries. 

2 Mitophagy: a central mechanism in 
cellular homeostasis and disease

Mitophagy, a selective form of autophagy responsible for 
removing damaged mitochondria, is essential for maintaining 
cellular energy homeostasis and viability (Onishi et al., 2021). This 
process is a key component of the mitochondrial quality control 
system, which also includes biogenesis, fusion, and fission (Yoo 
and Jung, 2018). Autophagy participates in multiple physiological 
processes, including organismal development, adaptive immune 
system function, and cellular energy homeostasis maintenance.

Research indicates that mitophagy is closely linked to numerous 
diseases, playing a crucial role in neurodegenerative disorders 
(Li et al., 2023), cardiovascular conditions (Ajoolabady et al., 2022), 
bone diseases (Zeng et al., 2022), and cancer (Panigrahi et al., 2020).

Neurodegenerative diseases-characterized by misfolded protein 
accumulation and mitochondrial dysfunction (Ma et al., 2021)-
include prion diseases (Gao et al., 2020), Alzheimer’s disease 
(Li et al., 2022b), Parkinson’s disease (Jiang et al., 2022), and 
Huntington’s disease (Zilocchi et al., 2018; Khalil et al., 2015; Franco-
Iborra et al., 2021), all associated with impaired mitophagy.

Cardiovascular conditions such as hypertension (Ding et al., 
2022), atherosclerosis (Xi et al., 2022), ischemic heart disease 
(Siddall et al., 2013), and heart failure (Feng et al., 2018)is 
caused by mitochondrial dysfunction. Notably, exercise can mitigate 
heart failure-a severe condition with high mortality. Further 
investigation into exercise-induced mitophagy mechanisms and 
optimal intensity regulation for safe, effective induction may 
yield valuable insights for cardiovascular disease treatment and 
intervention (Zhang et al., 2022).

Abnormal mitophagy may also contribute to bone diseases 
including osteoporosis, osteoarthritis, and osteosarcoma. As a 
therapeutic target for such conditions, mitochondrial dynamics 
informs bone disease treatment research (Gao et al., 2021; 
Yao et al., 2019; Gorska-Ponikowska et al., 2021).

Mitophagy further correlates with cancer development. In 
gastric carcinogenesis, progressive autophagy downregulation 
coupled with increasing glycolysis during the transition from 
benign gastric disease to malignancy ultimately facilitates cancer 
occurrence (Giatromanolaki et al., 2013).

To maintain cellular function and homeostasis, dysfunctional 
mitochondria require timely clearance. Unrepaired damaged 
mitochondria cause energy deficits that impair physiological 
activities. Through sophisticated autophagic mechanisms, cells 
identify and eliminate these organelles, preserving energy 
production efficiency and cellular vitality. Exercise-induced 
mitophagy represents a current research focus, with ongoing 
discoveries of mitophagy receptors and proteins regulating these 
processes. 

3 Key mitophagy pathways implicated 
in exercise fatigue regulation

3.1 PINK1/Parkin: dual roles in exercise 
contexts

The PINK1/Parkin pathway plays a crucial role in mitochondrial 
quality control. PINK1, a serine/threonine kinase, accumulates 
on damaged mitochondrial membranes and recruits the E3 
ubiquitin ligase Parkin to initiate mitophagy (Tian et al., 
2015; Tatsuta and Langer, 2008; Park et al., 2006; Clark et al., 
2006). In exercise contexts, high-intensity activity inhibits 
proteasomal degradation of PINK1, leading to its accumulation 
and subsequent pathway activation, which peaks around 12 h 
post-exercise—coinciding with maximal mitochondrial damage 
(Botella et al., 2018) (Shang et al., 2018). 

3.1.1 Natural compounds inhibiting PINK1/Parkin 
in exercise-induced fatigue

Multiple studies demonstrate that natural compounds and 
drugs modulate the PINK1/Parkin-mediated mitophagy pathway. 
Sulforaphane (SFN)-exhibiting antioxidant (Ma et al., 2023), 
anticancer (Kamal et al., 2020), anti-aging (Santín-Márquez et al., 
2019), and antiviral (Ordonez et al., 2022) properties. Rhodiola 
crenulata, a Tibetan Crassulaceae plant, contains the primary active 
compound kaempferol with anti-inflammatory (Pu et al., 2020), 
neuroprotective (Zhang et al., 2019), radioprotective (Arora et al., 
2005), and anticancer effects (Ravi et al., 2025). Guo et al., (2022) 
and Hou et al. (2020) investigated SFN and Rhodiola crenulata
oral liquid effects on PINK1/Parkin signaling, exercise-induced 
mitophagy, and skeletal muscle fatigue. Despite different exercise 
models-treadmill vs. and weighted swimming, both studies reported 
reduced skeletal muscle damage, enhanced antioxidant capacity. 
Hou et al. additionally measured total antioxidant capacity and Na+-
K+-ATPase activity, and attenuated fatigue through PINK1/Parkin-
mediated mitophagy inhibition. Wang et al. (2023) subsequently 
found that a ginseng compound formula similarly inhibits 
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FIGURE 1
Natural compounds act on the key nodes of the PINK1/Parkin signalling pathway. Sulforaphane: Inhibition of mRNA and protein expression of PINK1 
and Parkin; inhibition of PINK1/Parkin-dependent mitochondrial ubiquitination; downregulation of p62 protein levels. Rhodiola crenulate oral liquid: 
Inhibition of mRNA and protein expression of PINK1 and Parkin; inhibition of PINK1/Parkin-dependent mitochondrial ubiquitination; downregulation of 
LC3-II/LC3-I ratio and p62 protein levels. Ginseng compound formula: Inhibit the mRNA expression of PINK1 and Parkin. Astragalus Shengmai 
Decoction: Inhibit the protein expression of PINK1 and Parkin. Maitake polysaccharides:Promote the protein expression of PINK1 and Parkin. This figure 
was created by Figdraw (www.figdraw.com).

PINK1/Parkin-mediated mitophagy to influence fatigue. Unlike 
prior studies, Wang et al. observed dose-dependent effects on loaded 
swimming time, 4.16 and 16.66 mL/kg doses significantly prolonged 
swimming versus controls, while 8.33 mL/kg showed no statistical 
difference-warranting further investigation into this anomalous 
result. Yuan et al. (2022) employed a fatigue-with-myocardial-
injury model investigated Astragalus Shengmai Decoction-derived 
from Shengmai Powder and containing Astragalus, Codonopsis, 
Ophiopogon, Schisandra, and Southern Schisandra-which tonifies 
Qi, restores pulse rhythm, nourishes Yin, and promotes fluid 
production, enhancing myocardial hypoxia tolerance while 
reducing oxygen consumption (Qu and Hao, 2017; Jiang et al., 
2021), confirmed Astragalus Shengmai Decoction’s inhibitory effect 
on PINK1/Parkin expression. 

3.1.2 Divergent roles of the PINK1/Parkin 
pathway in chemotherapy-induced fatigue

Lei et al. (2019) employed a chemotherapy-induced fatigue 
(CIF) model,. Lei et al. utilized Maitake polysaccharides extracted 
from fruiting bodies, possessing immunomodulatory, antitumor, 
anti-HIV, antihypertensive, anti-fatigue, antioxidant, and pro-
apoptotic properties in hepatocellular carcinoma (Xiao et al., 
2022; Zhao et al., 2023). Demonstrated impaired mitophagy 
via PINK1/Parkin downregulation in CIF, which Maitake 

polysaccharides ameliorated by upregulating these proteins. This 
discrepancy may stem from model differences (Figure 1).

In summary, natural compounds such as SFN, ginseng, 
astragalus, and RC alleviate exercise-induced fatigue by inhibiting 
PINK1/Parkin-mediated mitophagy. However, the mechanism 
of Maitake polysaccharides is fundamentally different: it 
upregulates suppressed PINK1/Parkin expression to restore 
autophagic homeostasis in chronic fatigue models. This 
seemingly contradictory phenomenon highlights the specificity 
of mitophagy under different stressors. To thoroughly investigate 
this phenomenon, we must extend beyond PINK1/Parkin itself 
and consider upstream/downstream targets for deeper exploration 
of natural product mechanisms. SFN and RC may neutralize 
excess ROS generated during early exercise through their potent 
antioxidant properties, thereby reducing mitochondrial damage 
signals upstream and preventing excessive activation of the 
PINK1/Parkin pathway. The cardiomyopathy-enhancing effects of 
Astragalus Shengmai Decoction, such as improving myocardial 
hypoxia tolerance and reducing oxygen consumption may 
collectively lower relative hypoxia levels during exercise, indirectly 
mitigating mitochondrial damage. Maitake polysaccharides 
might regulate upstream signals of the PINK1/Parkin pathway, 
functionally restoring mitochondrial self-renewal capacity. In the 
future, research should be devoted to revealing whether these 
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natural products are multi-target synergistic in mitophagy or 
whether there is an initial and core target, further analyze the 
mitophagy threshold in different models, and explore the precise 
intervention strategy of PINK1/Parkin pathway. 

3.2 Nix/BNIP3: bidirectional regulatory 
factor in exercise stress

Nix (BNIP3L), a pro-apoptotic mitochondrial outer membrane 
protein (Liu et al., 2019), shares 56% cDNA homology with 
BNIP3 (Ashrafi and Schwarz, 2013). Both are Bcl-2 family 
members involved in mitophagy. Nix-mediated mitophagy 
occurs during erythrocyte maturation (Sandoval et al., 2008), 
while hypoxia upregulates Nix and BNIP3 to induce mitophagy 
(Zhang et al., 2008). BNIP3 also regulates alternative mitophagy 
pathways by preventing PINK1 degradation, leading to 
PINK1 accumulation and subsequent PINK1/Parkin-mediated 
mitophagy (Zhang et al., 2016). 

3.2.1 Positive activation of mitophagy
Jamart et al. (2013) and Bo et al. (2014) respectively 

demonstrated that fasted endurance training and hypoxic 
exercise significantly increase Bnip3 and Nix mRNA expression, 
indicating enhanced mitophagy. Similarly, Liao et al. (2020) 
found high-intensity interval training (HIIT) activates myocardial 
BNIP3 signaling in middle-aged mice, elevating Bnip3/Nix 
expression, increasing mitochondrial quantity, and improving 
respiratory function. 

3.2.2 Inhibition of excessive mitophagy
Ma et al. (2011) observed reduced Bnip3/Nix expression, 

improved mitochondrial function, and decreased mitophagy 
following endurance training in mice with alcohol-induced liver 
injury, suggesting enhanced hepatic oxygen supply. Wu et al. (2022a) 
studied Yifei-Sanjie pill-a Qi-tonifying, phlegm-resolving formula 
containing Uncaria rhynchophylla, Bombyx mori pupae, Arisaema 
heterophyllum, Lilium brownii, Fritillaria thunbergii, Pinellia ternata, 
Ganoderma lucidum, and Panax quinquefolius Wu et al. (2023) 
showing it inhibits BNIP3 pathway-mediated skeletal muscle 
mitophagy in exhausted tumor-bearing mice (Figure 2).

Collectively, these findings indicate that combining endurance 
training with Traditional Chinese Medicine (TCM) may effectively 
regulate mitophagy and enhance functional outcomes. Regarding 
adaptive activation, fasting-induced endurance training, hypoxic 
exercise, or HIIT as physiological hypoxia stimuli can upregulate 
Bnip3/Nix expression. In terms of inhibiting hyperactivation, 
within the pathological context of alcoholic liver injury, endurance 
training improves hepatic oxygen supply and systematically reduces 
oxidative stress, thereby decreasing excessive demand on the 
Bnip3/Nix pathway. Yifei-Sanjie Pill inhibits BNIP3-mediated 
hyperautophagy, where multiple herbal components may act 
as multi-target regulators to stabilize metabolic homeostasis, 
indirectly modulating BNIP3 expression. Future research should 
focus on analyzing potential synergistic effects among Yifei-Sanjie 
Pill’s components and identifying which key ingredients play 
dominant roles. 

3.3 FUNDC1: a hypoxia-sensing mitophagy 
receptor

FUNDC1, a mitochondrial outer membrane receptor, senses 
hypoxia and initiates mitophagy through dephosphorylation and 
subsequent binding to LC3 (Mao et al., 2020; Shi, 2018; Wu et al., 
2016). This mechanismis essential for the selective removal of 
damaged mitochondria under low-oxygen conditions.

Electrical pulse stimulation, a non-invasive neuromuscular 
technique, modulates muscle tone, strength, endurance, circulation, 
and recovery (Neumann et al., 1982). Gao. (2019) demonstrated 
its induction of FUNDC1-mediated mitophagy, post-stimulation 
increases in PGC-1α, COX-I, LC3, and FUNDC1 coincided 
with p62 reduction. This process activates the AMPK-ULK1 
pathway to initiate mitophagy. Separately, Yan et al. (2022) 
identified Fenugreek Seed extract, which contains galactomannan, 
steroidal saponins, flavonoids, alkaloids, terpenes, and coumarins 
(Toshiyuki et al., 2000; Masayuki et al., 1997),as an anti-fatigue agent 
acting through FUNDC1/LC3B pathway inhibition, independent 
of PINK1/PARKIN signaling, thereby enhancing rat exercise 
performance.

These studies clarify FUNDC1’s role and mechanisms in 
mitophagy, revealing new insights into autophagy regulation. 
Physical stimuli including electrical pulses (Neumann et al., 
1982) activate this pathway to clear damaged mitochondria, while 
chemical interventions like Fenugreek Seed balance autophagy 
intensity by modulating pathway activity to alleviate fatigue. Future, 
research should be committed to identifying specific intervention 
targets for FUNDC1 regulation, verifying whether fenugreek seed 
directly acts on FUNDC1 itself or its upstream regulatory factors, 
and precisely regulating FUNDC1 through the intersection of 
physical intervention and natural pharmacological chemistry. 

3.4 AMPK: the cellular energy sensor 
governing mitophagy

AMPK, an AMP-dependent protein kinase and primary cellular 
energy sensor, is regulated by AMP levels altered during ATP 
hydrolysis (Steinberg and Hardie, 2022). It monitors cellular 
energy and nutrient status (Hardie, 2014) and is activated by 
natural compounds including curcumin (Wong et al., 2009; 
Zhan et al., 2015). Exercise excess, hypoxia, oxidative stress, 
and ischemia activate the AMPK-mediated autophagy pathway, 
phosphorylating key metabolic and transcriptional regulators 
while affecting all cellular metabolism branches (Khan et al., 
2021). Exercise elevates muscular energy metabolism, modifying 
AMP levels and consequently AMPK activity (Hancock et al., 
2006). AMPK enhances autophagy through TSC2 and Raptor 
phosphorylation (Inoki et al., 2006). Phosphorylation sites act 
as molecular switches that precisely regulate the initiation, 
amplification, and termination of mitophagy by altering protein 
conformation, activity, or intermolecular interactions. This 
process involves the coordinated action of multiple signaling 
pathways, ultimately ensuring the selective clearance of damaged 
mitochondria and the maintenance of energy homeostasis under 
stress conditions. Targeting these phosphorylation sites may 
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FIGURE 2
Natural compounds and movement modes act on key nodes of the Nix/BNIP3 signalling pathway. Yifei-Sanjie Pill: Inhibit the expression of BNIP3. 
Fasted endurance training, Hypoxic exercise, High-intensity interval training: Promote BNIP3 expression. This figure was created by Figdraw 
(www.figdraw.com).

constitute a promising strategy for managing exercise-induced 
fatigue in future research.

Current research investigates AMPK-mediated mitophagy using 
aerobic exercise combined with natural compounds. Yan. (2023) 
and Dun et al. (2017) demonstrated that curcumin and RC increase 
AMPK expression, activate mitophagy, and enhance skeletal muscle 
mitochondrial quality control. Dun et al. further identified RC’s 
synergistic cardioprotective effect on congenital myocardial injury 
and myocardial mitochondrial quality. Wang. (2021) compared 
HIIT and moderate-intensity continuous training (MICT) in high-
fat-diet mice, finding both elevated AMPK expression. MICT more 
effectively enhanced mitophagy, restoring mitochondrial function 
and maintaining skeletal muscle mitochondrial content. Wang et al. 
(2021) observed that chronic stress inhibits AMPK signaling, 
blocking mitophagy and causing gastrocnemius mitochondrial 
dysfunction. Collectively, aerobic exercise and natural compounds 
regulate AMPK-mediated mitophagy to improve mitochondrial 
quality control.

These studies advance understanding of the AMPK-mediated 
mitophagy pathway, demonstrating the potential of aerobic exercise 
and natural compounds to enhance mitochondrial quality control. 
They specifically reveal the superior efficacy of MICT for skeletal 
muscle mitochondrial function. This advantage may arise because 
MICT producessustained, mild energy stress that enables AMPK 
to activate autophagy flux in a more sustainable and non-
destructive manner; whereas HIIT may trigger excessive stress 
that activates more antagonistic or complex signalling, thereby 
diminishing the net benefit of AMPK-mediated mitochondrial 
quality control. Curcumin and RC may activate AMPK, thereby 

driving a series of mitophagy-promoting processes. Future research 
should focus on identifying the critical thresholds where AMPK and 
its key downstream targets facilitate adaptive responses and trigger 
metabolic depletion under different exercise modes. Additionally, it 
is crucial to determine whether curcumin and RC directly act on 
AMPK itself or function as upstream kinases. 

3.5 Additional mediators of mitophagy in 
exercise fatigue

Gong. (2021) compared mitophagy responses across exercise 
regimens-moderate-intensity continuous, resistance, and HIIT 
versus exhaustive exercise alone. All protocols significantly 
increased LC3II expression versus controls, with the exhaustive-
only group showing the highest LC3II levels. This group also 
exhibited elevated FKBP8 protein expression relative to other 
exercise modalities.

Fix et al. (2018) demonstrated that skeletal muscle gp130 
receptor absence does not impair exercise-induced Beclin-
1 expression but mediates mitophagosome formation during 
oxidative stress.

Huang et al. (2016) further established an inverse correlation 
between endurance and muscle malondialdehyde levels, confirming 
astragalus polysaccharides enhance exercise capacity in oxidative 
stress models by boosting antioxidant enzyme activity and 
ameliorating mitochondrial dysfunction.

Weichmann et al. (2021) reported Robinia pseudoacacia 
extract alleviates physical fatigue; its primary component quercetin 
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TABLE 1  Analysis of exercise fatigue and mitochondrial autophagy.

Document number Medicines/natural 
ingredients

Research model Main conclusion Signaling pathway

Clark et al. (2006) Sulforaphane (SFN) Running mouse model SFN reduces skeletal muscle 
injury and fatigue by inhibiting 

the PINK1/Parkin pathway

PINK1/Parkin

Botella et al. (2018) Hongjingtian oral solution 
(RCOL)

Weight-bearing swimming 
mouse model

RCOL alleviates fatigue by 
inhibiting the PINK1/Parkin 

pathway

PINK1/Parkin

Wang et al. (2022) Ginseng compound beverage Weight-bearing swimming 
mouse model

The herbal drink alleviates 
fatigue by inhibiting the 

PINK1/Parkin pathway, but 
the dose effect needs to be 

further studied

PINK1/Parkin

Shang et al. (2018) Astragalus seedling drink Fatigue combined myocardial 
injury rat model

Astragalus membranaceus 
improved myocardial injury by 

inhibiting PINK1/Parkin 
pathway

PINK1/Parkin

Ma et al. (2023) Grifolan Chemotherapy-induced 
fatigue (CIF) mouse model

Arbutinan promotes 
PINK1/Parkin expression to 

restore mitochondrial 
autophagy homeostasis

PINK1/Parkin

Lei et al. (2019) Yi Fei San Jie Wan Swimming exhaustion cancer 
mouse model

Yi Fei San Jie Pills relieve 
excessive mitochondrial 

autophagy in skeletal muscle 
by inhibiting BNIP3/Nix 

pathway

BNIP3/Nix

Wu et al. (2023a) Huangba extract Exhausted exercise rat model Huquba improves exercise 
performance by inhibiting 
FUNDC1/LC3B pathway

FUNDC1/LC3B

Toshiyuki et al. (2000) Curcumin T2DM rat model Curcumin promotes 
mitochondrial autophagy by 
activating AMPK pathway

AMPK

Masayuki et al. (1997) Herba Rhodiolae (RC) Exhaustion motion model By promoting the AMPK 
pathway, Red Jing Tian 

improves mitochondrial 
function and protects 

myocardial injury

AMPK

Dun et al. (2017) Astragalan Oxidative stress mouse model Astragalus polysaccharide 
increased the activity of 

antioxidant enzymes and 
improved mitochondrial 

dysfunction

oxidative stress

Wang (2021) Allyl tannin Motion fatigue model Aloe tannin improves fatigue 
by increasing mitochondrial 
autophagy and antioxidant 

capacity

oxidative stress

elevates mitophagy, promotes mitochondrial biogenesis, enhances 
antioxidant capacity, and improves exercise performance.

However, the reported associations between exercise and induced 
mitophagy warrant further investigation. Mitophagy stability is 
essential for metabolic homeostasis, as its dysregulation contributes 
to various pathologies. Certain factors and natural components 
enhance autophagy-related protein expression, promoting mitophagy 

to restore aerobic adaptation and mitochondrial regeneration. In 
the future, the research should be committed to deeply analyzing 
the direct molecular targets of natural products such as astragalus 
polysaccharides and Robinia pseudoacacia extract in regulating 
mitophagy, exploring the interaction between multiple pathways, 
and whether other pathways will be activated compensatorily 
after a certain pathway is decreased under specific conditions.
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Current anti-fatigue products face significant efficacy 
limitations. Energy supplements and antioxidants provide 
symptomatic relief without fundamental correction, as their 
mechanisms lack deep regulation of core fatigue factors like 
mitochondrial dysfunction and oxidative balance. Mitophagy-
targeting products offer distinct advantages, by enabling cells to 
eliminate damaged mitochondria, they maintain mitochondrial 
quality control at its source, reduce oxidative stress accumulation, 
and restore energy homeostasis. Compared to conventional 
products, these novel interventions demonstrate enhanced 
specificity, achieving true “repair and regeneration” effects
(Table 1). 

4 Conclusion and future perspectives

This review synthesizes evidence supporting the critical role of 
mitophagy’s in exercise-induced fatigue and discusses how natural 
compounds and pharmacological agents regulate this process. 
Mitophagy enhances antioxidant capacity while alleviating exercise 
fatigue through clearance of damaged mitochondria and oxidative 
stress reduction. Several interventions—including sulforaphane, 
Rhodiola-based formulations, and ginseng extracts—have 
demonstrated anti-fatigue effects through modulation of mitophagic 
pathways. These findings advance molecular understanding 
of exercise fatigue and establish a foundation for novel 
anti-fatigue therapeutics. Nevertheless, mechanistic aspects 
of mitophagy’s impact on exercise fatigue require further
elucidation.

Animal models are fundamental for studying the mechanisms 
of exercise-induced fatigue and developing interventions. 
Rodents, such as SD/Wistar rats and ICR/BALB/c mice, 
are the most commonly used subjects. Classical approaches 
simulate physiological exhaustion through forced exercise, 
primarily using treadmill running or weight-loaded swimming 
protocols. However, these models have considerable limitations. 
Future directions include using gene-editing technologies to 
create models with specific genetic modifications and applying 
optogenetics or chemogenetics to precisely advance molecular-level
insights.

Although existing research has addressed fatigue in specific 
diseases, such as mitochondrial dysfunction in Sjögren’s syndrome 
(Kurien et al., 2024), or focused on particular populations, 
such as those with chronic fatigue syndrome (Si et al., 
2023), direct clinical studies involving healthy individuals or 
exercise-related fatigue remain scarce. Subsequent research 
should include targeted interventions, including examining 
how different exercise types or nutritional supplements affect 
autophagy and incorporate clinical trials to verify their
effectiveness.

Future studies should prioritize multidisciplinary approaches 
that integrate cellular, molecular, and systemic perspectives to 
clarify context-specific mitophagy mechanisms. Well-controlled 
investigations are needed to determine how different exercise 
modalities and natural compounds precisely influence mitophagic 
activity, and to identify their direct molecular targets. Such 

efforts will help translate these findings into targeted anti-fatigue 
interventions.
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