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Exercise-induced fatigue is closely associated with mitochondrial dysfunction,
and mitophagy plays a critical role in maintaining mitochondrial homeostasis
by clearing damaged mitochondria and reducing oxidative stress. This review
systematically summarizes current evidence on the regulatory mechanisms
of mitophagy in exercise-induced fatigue, particularly through pathways such
as PINK1/Parkin, BNIP3/Nix, FUNDC1, and AMPK, and examines how natural
compounds including sulforaphane, Rhodiola crenulata, ginseng, modulate
these pathways to alleviate fatigue. These findings suggest the presence
of mitophagy threshold in different models and highlight its potential as a
therapeutic target for fatigue management. Ultimately, this review proposes
novel strategies for developing natural anti-fatigue agents based on mitophagy
regulation, while underscoring the need for further mechanistic studies in
diverse physiological and pathological settings.

KEYWORDS

mitophagy, exercise-induced fatigue, natural compounds, therapeutic targets,
mitophagy pathways

1 Pathophysiological characteristics of
exercise-induced fatigue

Exercise-induced fatigue, defined as the inability to maintain a specific level or intensity
of physical activity (Rosenthal et al., 2008; O'Sullivan et al., 2018), represents a physiological
warning signal following excessive exertion rather than a pathological condition (Li et al.,
2022a). Its research scope has expanded from athletic performance to broader health
management.

Studies classify fatigue mechanisms into three categories, depletion of activity-required
substrates, accumulation of metabolic byproducts such as lactic acid, and oxidative stress
caused by free radicals (Jin and Zheng, 2008). Substrate depletion triggers the conversion
of fats and proteins into energy substrates, which must be transformed into ATP and
creatine phosphate for effective utilization. Excessive lactic acid accumulation impairs
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muscular contraction and relaxation by inhibiting fructose-1,6-
bisphosphate aldolase, thereby impeding ATP synthesis (Li and
Zhao, 2017; Melvin, 1998). During exercise, overproduction of
free radical damages proteins and DNA, impairs organelles,
decreases cell membrane fluidity, disrupts the tricarboxylic acid
cycle, and ultimately induces fatigue (Yakes and Van Houten, 1997;
Davies et al., 1982; Jackson and Farrell, 1993). Furthermore, reactive
oxygen species (ROS) accumulation after high-intensity exercise can
cause myocardial lipid peroxidation, threatening long-term health
(Mu, 2023; You et al., 2011).

For athletes, fatigue is a core factor limiting competitive
performance, as excessive fatigue may lead to muscle damage,
metabolic dysregulation, and impaired organ dysfunction (Yang,
2016). Understanding fatigue mechanisms can help optimize
athletic training programs, such as targeting mitophagy to remove
damaged mitochondria, and provide strategies for scientific anti-
fatigue research. Effectively management of exercise-induced fatigue
requires enhancing the body’s antioxidant capacity.

Current anti-fatigue products aim to rapidly restore physical
strength through direct ATP precursor supplementation, reduce
oxidative stress by neutralizing free radicals, and delay subjective
fatigue via central nervous system stimulation. However, these
approaches fail to address root causes such as low mitochondrial
oxidative phosphorylation efficiency. Long-term use may disrupt
endogenous antioxidant system balance and mask true physiological
strain, increasing the risk of exercise-related injuries.

2 Mitophagy: a central mechanism in
cellular homeostasis and disease

Mitophagy, a selective form of autophagy responsible for
removing damaged mitochondria, is essential for maintaining
cellular energy homeostasis and viability (Onishi et al., 2021). This
process is a key component of the mitochondrial quality control
system, which also includes biogenesis, fusion, and fission (Yoo
and Jung, 2018). Autophagy participates in multiple physiological
processes, including organismal development, adaptive immune
system function, and cellular energy homeostasis maintenance.

Research indicates that mitophagy is closely linked to numerous
diseases, playing a crucial role in neurodegenerative disorders
(Li et al., 2023), cardiovascular conditions (Ajoolabady et al., 2022),
bone diseases (Zeng et al., 2022), and cancer (Panigrahi et al., 2020).

Neurodegenerative diseases-characterized by misfolded protein
accumulation and mitochondrial dysfunction (Ma et al., 2021)-
include prion diseases (Gao et al., 2020), Alzheimer’s disease
(Li et al., 2022b), Parkinson’s disease (Jiang et al., 2022), and
Huntington’s disease (Zilocchi et al., 2018; Khalil et al., 2015; Franco-
Iborra et al., 2021), all associated with impaired mitophagy.

Cardiovascular conditions such as hypertension (Ding et al,,
2022), atherosclerosis (Xi et al., 2022), ischemic heart disease
(Siddall et al, 2013), and heart failure (Feng et al., 2018)is
caused by mitochondrial dysfunction. Notably, exercise can mitigate
heart failure-a severe condition with high mortality. Further
investigation into exercise-induced mitophagy mechanisms and
optimal intensity regulation for safe, effective induction may
yield valuable insights for cardiovascular disease treatment and
intervention (Zhang et al., 2022).
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Abnormal mitophagy may also contribute to bone diseases
including osteoporosis, osteoarthritis, and osteosarcoma. As a
therapeutic target for such conditions, mitochondrial dynamics
informs bone disease treatment research (Gao et al, 2021;
Yao et al., 2019; Gorska-Ponikowska et al., 2021).

Mitophagy further correlates with cancer development. In
gastric carcinogenesis, progressive autophagy downregulation
coupled with increasing glycolysis during the transition from
benign gastric disease to malignancy ultimately facilitates cancer
occurrence (Giatromanolaki et al., 2013).

To maintain cellular function and homeostasis, dysfunctional
mitochondria require timely clearance. Unrepaired damaged
mitochondria cause energy deficits that impair physiological
activities. Through sophisticated autophagic mechanisms, cells
identify and eliminate these organelles, preserving energy
production efficiency and cellular vitality. Exercise-induced
mitophagy represents a current research focus, with ongoing
discoveries of mitophagy receptors and proteins regulating these
processes.

3 Key mitophagy pathways implicated
in exercise fatigue regulation

3.1 PINK1/Parkin: dual roles in exercise
contexts

The PINK1/Parkin pathway plays a crucial role in mitochondrial
quality control. PINKI1, a serine/threonine kinase, accumulates
on damaged mitochondrial membranes and recruits the E3
ubiquitin ligase Parkin to initiate mitophagy (Tian et al,
2015; Tatsuta and Langer, 2008; Park et al,, 2006; Clark et al.,
2006). In exercise contexts, high-intensity activity inhibits
proteasomal degradation of PINKI, leading to its accumulation
and subsequent pathway activation, which peaks around 12h
post-exercise—coinciding with maximal mitochondrial damage
(Botella et al., 2018) (Shang et al., 2018).

3.1.1 Natural compounds inhibiting PINK1/Parkin
in exercise-induced fatigue

Multiple studies demonstrate that natural compounds and
drugs modulate the PINK1/Parkin-mediated mitophagy pathway.
Sulforaphane (SFN)-exhibiting antioxidant (Ma et al, 2023),
anticancer (Kamal et al., 2020), anti-aging (Santin-Marquez et al.,
2019), and antiviral (Ordonez et al., 2022) properties. Rhodiola
crenulata, a Tibetan Crassulaceae plant, contains the primary active
compound kaempferol with anti-inflammatory (Pu et al., 2020),
neuroprotective (Zhang et al., 2019), radioprotective (Arora et al.,
2005), and anticancer effects (Ravi et al., 2025). Guo et al., (2022)
and Hou et al. (2020) investigated SFN and Rhodiola crenulata
oral liquid effects on PINK1/Parkin signaling, exercise-induced
mitophagy, and skeletal muscle fatigue. Despite different exercise
models-treadmill vs. and weighted swimming, both studies reported
reduced skeletal muscle damage, enhanced antioxidant capacity.
Hou et al. additionally measured total antioxidant capacity and Na*-
K*-ATPase activity, and attenuated fatigue through PINK1/Parkin-
mediated mitophagy inhibition. Wang et al. (2023) subsequently
found that a ginseng compound formula similarly inhibits
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Natural compounds act on the key nodes of the PINK1/Parkin signalling pathway. Sulforaphane: Inhibition of mMRNA and protein expression of PINK1
and Parkin; inhibition of PINK1/Parkin-dependent mitochondrial ubiquitination; downregulation of p62 protein levels. Rhodiola crenulate oral liquid:
Inhibition of MRNA and protein expression of PINK1 and Parkin; inhibition of PINK1/Parkin-dependent mitochondrial ubiquitination; downregulation of
LC3-1I/LC3-I ratio and p62 protein levels. Ginseng compound formula: Inhibit the mRNA expression of PINK1 and Parkin. Astragalus Shengmai

was created by Figdraw (www.figdraw.com).

Decoction: Inhibit the protein expression of PINK1 and Parkin. Maitake polysaccharides:Promote the protein expression of PINK1 and Parkin. This figure

PINK1/Parkin-mediated mitophagy to influence fatigue. Unlike
prior studies, Wang et al. observed dose-dependent effects on loaded
swimming time, 4.16 and 16.66 mL/kg doses significantly prolonged
swimming versus controls, while 8.33 mL/kg showed no statistical
difference-warranting further investigation into this anomalous

polysaccharides ameliorated by upregulating these proteins. This
discrepancy may stem from model differences (Figure 1).

In summary, natural compounds such as SFN, ginseng,
astragalus, and RC alleviate exercise-induced fatigue by inhibiting
PINK1/Parkin-mediated mitophagy. However, the mechanism

result. Yuan et al. (2022) employed a fatigue-with-myocardial-  of Maitake polysaccharides is fundamentally different: it
injury model investigated Astragalus Shengmai Decoction-derived  upregulates suppressed PINK1/Parkin expression to restore
from Shengmai Powder and containing Astragalus, Codonopsis,  autophagic homeostasis in chronic fatigue models. This

Ophiopogon, Schisandra, and Southern Schisandra-which tonifies
Qi, restores pulse rhythm, nourishes Yin, and promotes fluid
production, enhancing myocardial hypoxia tolerance while
reducing oxygen consumption (Qu and Hao, 2017; Jiang et al.,
2021), confirmed Astragalus Shengmai Decoction’s inhibitory effect
on PINK1/Parkin expression.

3.1.2 Divergent roles of the PINK1/Parkin
pathway in chemotherapy-induced fatigue

Lei et al. (2019) employed a chemotherapy-induced fatigue
(CIF) model,. Lei et al. utilized Maitake polysaccharides extracted
from fruiting bodies, possessing immunomodulatory, antitumor,
anti-HIV, antihypertensive, anti-fatigue, antioxidant, and pro-
apoptotic properties in hepatocellular carcinoma (Xiao et al,
2022; Zhao et al, 2023). Demonstrated impaired mitophagy
via PINKI/Parkin downregulation in CIF, which Maitake
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seemingly contradictory phenomenon highlights the specificity
of mitophagy under different stressors. To thoroughly investigate
this phenomenon, we must extend beyond PINK1/Parkin itself
and consider upstream/downstream targets for deeper exploration
of natural product mechanisms. SFN and RC may neutralize
excess ROS generated during early exercise through their potent
antioxidant properties, thereby reducing mitochondrial damage
signals upstream and preventing excessive activation of the
PINK1/Parkin pathway. The cardiomyopathy-enhancing effects of
Astragalus Shengmai Decoction, such as improving myocardial
hypoxia tolerance and reducing oxygen consumption may
collectively lower relative hypoxia levels during exercise, indirectly
Maitake
might regulate upstream signals of the PINKI1/Parkin pathway,

mitigating mitochondrial damage. polysaccharides

functionally restoring mitochondrial self-renewal capacity. In the
future, research should be devoted to revealing whether these
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natural products are multi-target synergistic in mitophagy or
whether there is an initial and core target, further analyze the
mitophagy threshold in different models, and explore the precise
intervention strategy of PINK1/Parkin pathway.

3.2 Nix/BNIP3: bidirectional regulatory
factor in exercise stress

Nix (BNIP3L), a pro-apoptotic mitochondrial outer membrane
protein (Liu et al, 2019), shares 56% cDNA homology with
BNIP3 (Ashrafi and Schwarz, 2013). Both are Bcl-2 family
members involved in mitophagy. Nix-mediated mitophagy
occurs during erythrocyte maturation (Sandoval et al, 2008),
while hypoxia upregulates Nix and BNIP3 to induce mitophagy
(Zhang et al., 2008). BNIP3 also regulates alternative mitophagy
pathways by preventing PINKI degradation, leading to
PINK1 accumulation and subsequent PINKI/Parkin-mediated
mitophagy (Zhang et al., 2016).

3.2.1 Positive activation of mitophagy

Jamart et al. (2013) and Bo et al. (2014) respectively
demonstrated that fasted endurance training and hypoxic
exercise significantly increase Bnip3 and Nix mRNA expression,
indicating enhanced mitophagy. Similarly, Liao et al. (2020)
found high-intensity interval training (HIIT) activates myocardial
BNIP3 signaling in middle-aged mice, elevating Bnip3/Nix
expression, increasing mitochondrial quantity, and improving
respiratory function.

3.2.2 Inhibition of excessive mitophagy

Ma et al. (2011) observed reduced Bnip3/Nix expression,
improved mitochondrial function, and decreased mitophagy
following endurance training in mice with alcohol-induced liver
injury, suggesting enhanced hepatic oxygen supply. Wu et al. (2022a)
studied Yifei-Sanjie pill-a Qi-tonifying, phlegm-resolving formula
containing Uncaria rhynchophylla, Bombyx mori pupae, Arisaema
heterophyllum, Lilium brownii, Fritillaria thunbergii, Pinellia ternata,
Ganoderma lucidum, and Panax quinquefolius Wu et al. (2023)
showing it inhibits BNIP3 pathway-mediated skeletal muscle
mitophagy in exhausted tumor-bearing mice (Figure 2).

Collectively, these findings indicate that combining endurance
training with Traditional Chinese Medicine (TCM) may effectively
regulate mitophagy and enhance functional outcomes. Regarding
adaptive activation, fasting-induced endurance training, hypoxic
exercise, or HIIT as physiological hypoxia stimuli can upregulate
Bnip3/Nix expression. In terms of inhibiting hyperactivation,
within the pathological context of alcoholic liver injury, endurance
training improves hepatic oxygen supply and systematically reduces
oxidative stress, thereby decreasing excessive demand on the
Bnip3/Nix pathway. Yifei-Sanjie Pill inhibits BNIP3-mediated
hyperautophagy, where multiple herbal components may act
as multi-target regulators to stabilize metabolic homeostasis,
indirectly modulating BNIP3 expression. Future research should
focus on analyzing potential synergistic effects among Yifei-Sanjie
Pill's components and identifying which key ingredients play
dominant roles.
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3.3 FUNDCL1: a hypoxia-sensing mitophagy
receptor

FUNDCI, a mitochondrial outer membrane receptor, senses
hypoxia and initiates mitophagy through dephosphorylation and
subsequent binding to LC3 (Mao et al., 2020; Shi, 2018; Wu et al.,
2016). This mechanismis essential for the selective removal of
damaged mitochondria under low-oxygen conditions.

Electrical pulse stimulation, a non-invasive neuromuscular
technique, modulates muscle tone, strength, endurance, circulation,
and recovery (Neumann et al., 1982). Gao. (2019) demonstrated
its induction of FUNDCI-mediated mitophagy, post-stimulation
increases in PGC-la, COX-I, LC3, and FUNDCI coincided
with p62 reduction. This process activates the AMPK-ULKI1
pathway to initiate mitophagy. Separately, Yan et al. (2022)
identified Fenugreek Seed extract, which contains galactomannan,
steroidal saponins, flavonoids, alkaloids, terpenes, and coumarins
(Toshiyuki et al., 2000; Masayuki et al., 1997),as an anti-fatigue agent
acting through FUNDC1/LC3B pathway inhibition, independent
of PINKI1/PARKIN signaling, thereby enhancing rat exercise
performance.

These studies clarify FUNDCI’s role and mechanisms in
mitophagy, revealing new insights into autophagy regulation.
Physical stimuli including electrical pulses (Neumann et al,
1982) activate this pathway to clear damaged mitochondria, while
chemical interventions like Fenugreek Seed balance autophagy
intensity by modulating pathway activity to alleviate fatigue. Future,
research should be committed to identifying specific intervention
targets for FUNDCI regulation, verifying whether fenugreek seed
directly acts on FUNDCI itself or its upstream regulatory factors,
and precisely regulating FUNDCI1 through the intersection of
physical intervention and natural pharmacological chemistry.

3.4 AMPK: the cellular energy sensor
governing mitophagy

AMPK, an AMP-dependent protein kinase and primary cellular
energy sensor, is regulated by AMP levels altered during ATP
hydrolysis (Steinberg and Hardie, 2022). It monitors cellular
energy and nutrient status (Hardie, 2014) and is activated by
natural compounds including curcumin (Wong et al, 2009;
Zhan et al, 2015). Exercise excess, hypoxia, oxidative stress,
and ischemia activate the AMPK-mediated autophagy pathway,
phosphorylating key metabolic and transcriptional regulators
while affecting all cellular metabolism branches (Khan et al,
2021). Exercise elevates muscular energy metabolism, modifying
AMP levels and consequently AMPK activity (Hancock et al.,
2006). AMPK enhances autophagy through TSC2 and Raptor
phosphorylation (Inoki et al., 2006). Phosphorylation sites act
as molecular switches that precisely regulate the initiation,
amplification, and termination of mitophagy by altering protein
activity, or This
process involves the coordinated action of multiple signaling

conformation, intermolecular interactions.
pathways, ultimately ensuring the selective clearance of damaged
mitochondria and the maintenance of energy homeostasis under

stress conditions. Targeting these phosphorylation sites may
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FIGURE 2
Natural compounds and movement modes act on key nodes of the Nix/BNIP3 signalling pathway. Yifei-Sanjie Pill: Inhibit the expression of BNIP3.
Fasted endurance training, Hypoxic exercise, High-intensity interval training: Promote BNIP3 expression. This figure was created by Figdraw
(www.figdraw.com).

constitute a promising strategy for managing exercise-induced
fatigue in future research.

Current research investigates AMPK-mediated mitophagy using
aerobic exercise combined with natural compounds. Yan. (2023)
and Dun et al. (2017) demonstrated that curcumin and RC increase
AMPK expression, activate mitophagy, and enhance skeletal muscle
mitochondrial quality control. Dun et al. further identified RC’s
synergistic cardioprotective effect on congenital myocardial injury
and myocardial mitochondrial quality. Wang. (2021) compared
HIIT and moderate-intensity continuous training (MICT) in high-
fat-diet mice, finding both elevated AMPK expression. MICT more
effectively enhanced mitophagy, restoring mitochondrial function
and maintaining skeletal muscle mitochondrial content. Wang et al.
(2021) observed that chronic stress inhibits AMPK signaling,
blocking mitophagy and causing gastrocnemius mitochondrial
dysfunction. Collectively, aerobic exercise and natural compounds
regulate AMPK-mediated mitophagy to improve mitochondrial
quality control.

These studies advance understanding of the AMPK-mediated
mitophagy pathway, demonstrating the potential of aerobic exercise
and natural compounds to enhance mitochondrial quality control.
They specifically reveal the superior efficacy of MICT for skeletal
muscle mitochondrial function. This advantage may arise because
MICT producessustained, mild energy stress that enables AMPK
to activate autophagy flux in a more sustainable and non-
destructive manner; whereas HIIT may trigger excessive stress
that activates more antagonistic or complex signalling, thereby
diminishing the net benefit of AMPK-mediated mitochondrial
quality control. Curcumin and RC may activate AMPK, thereby
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driving a series of mitophagy-promoting processes. Future research
should focus on identifying the critical thresholds where AMPK and
its key downstream targets facilitate adaptive responses and trigger
metabolic depletion under different exercise modes. Additionally, it
is crucial to determine whether curcumin and RC directly act on
AMPK itself or function as upstream kinases.

3.5 Additional mediators of mitophagy in
exercise fatigue

Gong. (2021) compared mitophagy responses across exercise
regimens-moderate-intensity continuous, resistance, and HIIT
versus exhaustive exercise alone. All protocols significantly
increased LC3II expression versus controls, with the exhaustive-
only group showing the highest LC3II levels. This group also
exhibited elevated FKBP8 protein expression relative to other
exercise modalities.

Fix et al. (2018) demonstrated that skeletal muscle gp130
receptor absence does not impair exercise-induced Beclin-
1 expression but mediates mitophagosome formation during
oxidative stress.

Huang et al. (2016) further established an inverse correlation
between endurance and muscle malondialdehyde levels, confirming
astragalus polysaccharides enhance exercise capacity in oxidative
stress models by boosting antioxidant enzyme activity and
ameliorating mitochondrial dysfunction.

Weichmann et al. (2021) reported Robinia pseudoacacia
extract alleviates physical fatigue; its primary component quercetin
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TABLE 1 Analysis of exercise fatigue and mitochondrial autophagy.

Document number

Medicines/natural

ingredients

Research model

Main conclusion

10.3389/fphys.2025.1664909

Signaling pathway

Clark et al. (2006)

Sulforaphane (SFN)

Running mouse model

SEN reduces skeletal muscle
injury and fatigue by inhibiting
the PINK1/Parkin pathway

PINK1/Parkin

Botella et al. (2018)

Hongjingtian oral solution
(RCOL)

Weight-bearing swimming
mouse model

RCOL alleviates fatigue by
inhibiting the PINK1/Parkin
pathway

PINK1/Parkin

Wang et al. (2022)

Ginseng compound beverage

Weight-bearing swimming
mouse model

The herbal drink alleviates
fatigue by inhibiting the
PINK1/Parkin pathway, but
the dose effect needs to be
further studied

PINK1/Parkin

Shang et al. (2018)

Astragalus seedling drink

Fatigue combined myocardial
injury rat model

Astragalus membranaceus
improved myocardial injury by
inhibiting PINK1/Parkin
pathway

PINK1/Parkin

Ma et al. (2023)

Grifolan

Chemotherapy-induced
fatigue (CIF) mouse model

Arbutinan promotes
PINK1/Parkin expression to
restore mitochondrial
autophagy homeostasis

PINK1/Parkin

Lei et al. (2019)

Yi Fei San Jie Wan

Swimming exhaustion cancer
mouse model

Yi Fei San Jie Pills relieve
excessive mitochondrial
autophagy in skeletal muscle
by inhibiting BNIP3/Nix
pathway

BNIP3/Nix

Wau et al. (2023a)

Huangba extract

Exhausted exercise rat model

Huquba improves exercise
performance by inhibiting
FUNDCI1/LC3B pathway

FUNDCI1/LC3B

Toshiyuki et al. (2000)

Curcumin

T2DM rat model

Curcumin promotes
mitochondrial autophagy by
activating AMPK pathway

AMPK

Masayuki et al. (1997)

Herba Rhodiolae (RC)

Exhaustion motion model

By promoting the AMPK
pathway, Red Jing Tian
improves mitochondrial
function and protects
myocardial injury

AMPK

Dun et al. (2017)

Astragalan

Oxidative stress mouse model

Astragalus polysaccharide
increased the activity of
antioxidant enzymes and
improved mitochondrial
dysfunction

oxidative stress

Wang (2021)

Allyl tannin

Motion fatigue model

Aloe tannin improves fatigue
by increasing mitochondrial
autophagy and antioxidant
capacity

oxidative stress

elevates mitophagy, promotes mitochondrial biogenesis, enhances
antioxidant capacity, and improves exercise performance.

However, the reported associations between exercise and induced
mitophagy warrant further investigation. Mitophagy stability is
essential for metabolic homeostasis, as its dysregulation contributes
to various pathologies. Certain factors and natural components
enhance autophagy-related protein expression, promoting mitophagy

Frontiers in Physiology

to restore aerobic adaptation and mitochondrial regeneration. In
the future, the research should be committed to deeply analyzing
the direct molecular targets of natural products such as astragalus
polysaccharides and Robinia pseudoacacia extract in regulating
mitophagy, exploring the interaction between multiple pathways,
and whether other pathways will be activated compensatorily
after a certain pathway is decreased under specific conditions.
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Current anti-fatigue products face significant efficacy
limitations. Energy supplements and antioxidants provide

symptomatic relief without fundamental correction, as their
mechanisms lack deep regulation of core fatigue factors like
mitochondrial dysfunction and oxidative balance. Mitophagy-
targeting products offer distinct advantages, by enabling cells to
eliminate damaged mitochondria, they maintain mitochondrial
quality control at its source, reduce oxidative stress accumulation,
and restore energy homeostasis. Compared to conventional
products,
specificity, achieving true “repair and regeneration” effects
(Table 1).

these novel interventions demonstrate enhanced

4 Conclusion and future perspectives

This review synthesizes evidence supporting the critical role of
mitophagy’s in exercise-induced fatigue and discusses how natural
compounds and pharmacological agents regulate this process.
Mitophagy enhances antioxidant capacity while alleviating exercise
fatigue through clearance of damaged mitochondria and oxidative
stress reduction. Several interventions—including sulforaphane,
Rhodiola-based formulations, and ginseng extracts—have
demonstrated anti-fatigue effects through modulation of mitophagic
pathways. These findings advance molecular understanding
of exercise fatigue and establish a foundation for novel
anti-fatigue therapeutics. Nevertheless, mechanistic aspects
of mitophagy’s impact on exercise fatigue require further
elucidation.

Animal models are fundamental for studying the mechanisms
of exercise-induced fatigue and developing interventions.
Rodents, SD/Wistar rats and ICR/BALB/c mice,

are the most commonly used subjects. Classical approaches

such as
simulate physiological exhaustion through forced exercise,
primarily using treadmill running or weight-loaded swimming
protocols. However, these models have considerable limitations.
Future directions include using gene-editing technologies to
create models with specific genetic modifications and applying
optogenetics or chemogenetics to precisely advance molecular-level
insights.

Although existing research has addressed fatigue in specific
diseases, such as mitochondrial dysfunction in Sjogren’s syndrome
(Kurien et al, 2024), or focused on particular populations,
such as those with chronic fatigue syndrome (Si et al,
2023), direct clinical studies involving healthy individuals or
exercise-related fatigue remain scarce. Subsequent research
should include targeted interventions, including examining
how different exercise types or nutritional supplements affect
autophagy and incorporate clinical trials to verify their
effectiveness.

Future studies should prioritize multidisciplinary approaches
that integrate cellular, molecular, and systemic perspectives to
clarify context-specific mitophagy mechanisms. Well-controlled
investigations are needed to determine how different exercise
modalities and natural compounds precisely influence mitophagic
activity, and to identify their direct molecular targets. Such
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efforts will help translate these findings into targeted anti-fatigue
interventions.
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