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As plans for deep space and long-duration missions advance, research in
space and space-analog environments is becoming an urgent scientific priority.
However, this type of fieldwork poses a unique set of challenges. The
development of research methodologies and designs cannot rely on broad
evidence base and thus requires scientific judgment and multidisciplinary
psychophysiological expertise. Most studies comprise small samples, often lack
control groups, sex differences have seldom been directly tested in this area
and inter-individual variability is prevalent in this population. Moreover, this
research domain is characterized by several exceptional factors that must be
addressed. The target population is highly trained and not representative of
the general population, demanding adapted study designs and highly sensitive
and operationally relevant research tools. To avoid overburdening the already
heavy operational schedules of this population, a careful and feasible balance
must be established between scientific data quality and acceptable monitoring
load. Furthermore, several issues of location, timing, and type of baseline
measures must be explicitly considered, while long-term follow-up designs are
necessary to assess both recovery and persistent post-mission effects. Major
space agencies have indeed identified methodological issues as a knowledge
gap in this area. In this review, we provide an overview of these methodological
challenges unique to space life sciences and offer solutions where possible. We
argue that space research remains feasible despite these constraints, but only
when itis approached with the understanding that such fieldwork often requires
fundamentally different methods than traditional laboratory science.
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Introduction

Humanity is increasingly aiming for a long-term presence
in space. To support this goal, space life sciences encompass
multiple research domains, each contributing to our understanding
of human adaptation. As recently summarized (Berliner et al.,
2024), three major areas intersect here. First, technological
innovations to support space travel; second, environmental research
on potentially sustaining future life; and third, studies on the
physiological and psychological effects of spaceflight—covering
the so-called “human factor”. In the context of the current article,
the human factor refers to the adaptability of the atypical, highly
trained operator who typically performs above average across all
performance domains (Strangman et al., 2014).

The major space agencies have each defined research
roadmaps providing a comprehensive overview of knowledge
gaps (e.g., European Space Agency, 2016). The current review
aims at identifying the unique methodological challenges posed
by the space environment which need to be addressed to close
those knowledge gaps. These challenges may affect every phase of
research—from design over field data collection to final statistical
analysis and interpretation. This methodological perspective thus
identifies recurring pitfalls and highlights proposed solutions.
Hence, this is not an exhaustive review, but a summary of
key methodological patterns and constraints observed in space
(-analog) studies.

Sampling challenges in space research:
small samples, sex differences,
inter-individual variability and the absence
of control groups

Small sample sizes

The NASA Apollo Biomedical Results Report (1974) stated:
“..because of the small number of individuals who flew in
space and because of the variability of their responses, it was
impossible to distinguish between space-related physiological
changes and individual physiological variations (Johnston and
Dietlein, 1974, p.43).

To date, little has changed. The literature on space-related
research remains saturated with concerns regarding small sample
sizes that are statistically underpowered, inter-individual variability
that hinders distinction between environmental- and individual-
related factors and the absence of control groups (e.g., Clément,
2025; Desai et al., 2022; Mairesse et al., 2019; Pattyn et al., 2009;
Stavnichuk et al., 2020; Strangman et al., 2014). This raises the
question as to how to address the problem.

A possible solution is to promote international cooperation
by standardizing protocols across space agencies, facilitating
data sharing, and enabling joint analyses across missions
(Desai et al., 2022; Roberts et al., 2020; Stavnichuk et al., 2020;
Van Ombergen et al,, 2022). Similarly, some authors pooled blood
sample data (e.g., Bisserier et al., 2021; Brojakowska et al., 2022)
or densitometry results (Sibonga et al, 2015) across ISS and
MIR missions.

Molecular biology seemed like a way around the small number
of individuals. This includes cross-species cell analyses, development
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of predictive models, real-time monitoring, and standardization of
crew dose and risk metrics related to cosmic radiation (Slaba et al.,
2025; Willis et al., 2024). For instance, Galc¢enko et al. (2025) used
transcriptomic data from human cell lines exposed to microgravity
and Michaletti et al. (2017) examined osteoblasts from three healthy
hip-replacement donors. However, even here, Stavnichuk et al.
(2020) reported high variability in bone formation markers and
emphasized that more data are needed to determine to what extent
individual covariates (e.g., age, physical activity, nutrition) may
influence outcomes.

Sex differences

Regarding sex-differences, space research data are even scarcer.
Earth-based evidence shows differences in sleep, activity, and
cognition—domains critical for mission success. Women generally
sleep longer but experience more wake after sleep onset (WASO)
and insomnia (Jonasdottir et al., 2021). In a hypoxic bedrest
space analog, the return of WASO-deviations to baseline was
absent in females (Van Cutsem et al., 2022). During Antarctic
overwintering, only men showed activity decline, but women
reported more sleep and psychosocial disturbances (Steinach et al.,
2016). Cognitively, women prioritize accuracy over speed and
men vice versa—indicating complementary strengths (Hughes-
Fulford et al., 2024; Mark et al., 2014). Though more prone to motion
sickness, women may outperform men in vestibular tasks, albeit with
higher variability (Zhang et al., 2024).

In space, female astronauts showed higher rates of immediate
post-flight orthostatic intolerance—the inability to remain upright
without fainting—and greater plasma volume loss (Mark et al.,
2014). Some authors suggest that radiation exposure limits are
lower for women (e.g., Mark et al., 2014; Parihar et al., 2020).
Likewise, rodent studies indicated that radiation may threaten
cognition through neuroinflammation and hippocampal damage
(Krukowski et al., 2018). On the other hand, Hughes-Fulford, 2023a
emphasized that there is no clear evidence that women are at
higher risk of radiation-related effects during the mission, only that
postflight cancer risk may reduce their lifespan by 3%. Nevertheless,
one fundamental difference between men and women is that women
“carry” all their gametes at all times, potentially increasing the risk
of radiation-related effects on future offspring.

To address these problems, researchers propose to increase
female participation in spaceflights, in order to improve our
understanding and move beyond the default male model
(Dsouza et al.,, 2022; Mark et al, 2014). For instance, when
it concerns countermeasures, an increased sex-disaggregated
approach could lead to more adjusted female space health and
security measures for women in space.

Statistical and methodological considerations
When studying small populations, researchers face profound
statistical challenges that demand tailored approaches different
from conventional inferential methods. In such contexts, classical
hypothesis testing becomes underpowered, p-values unstable, and
models may fail to converge, while the power and generalizability of
findings remain limited (Pattyn et al., 2009). Moreover, traditional
techniques such as repeated-measures ANOVA can exacerbate the
problem by applying listwise deletion, thereby further reducing
statistical power. Corrections for multiple comparisons, such as
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Bonferroni adjustments, are also overly conservative in this context,
increasing the risk of Type II errors (i.e., not finding a true effect).

Therefore, tailored analytical approaches are needed. A key
distinction must be made between studies that describe the entire
astronaut population and those that collect a sample from a wider
reference population. In the first case, when all individuals in the
target group are observed (e.g., all active astronauts on a certain
mission), statistical inference is unnecessary—here, descriptive
statistics, individual-level analyses, and visualizations suffice.
However, if the goal is to generalize to a broader population
(e.g., astronauts across agencies or future crews) statistical
inference becomes necessary and must be adapted to small-sample
limitations.

In this context, researchers are encouraged to focus on effect
sizes, and the uncertainty of parameter estimates via confidence
intervals. Effect sizes quantify the magnitude of observed effects. For
example, effect sizes can reflect the strength of physiological changes
in response to spaceflight. Confidence intervals indicate estimate
precision with wider intervals signalizing greater uncertainty.

A helpful analytical approach in small sample studies might
be using Bayesian methods. They allow the incorporation of prior
knowledge (e.g., from analog populations or historical missions)
to stabilize estimates and improve inference (Gelman and Shalizi,
2013; McElreath, 2020). Also, hierarchical (multilevel) models can
be considered useful, as they can borrow strength across repeated
measures or related individuals (e.g., astronauts in the same space
shuttle) to enhance power and account for nested data structures.
These models naturally accommodate missing data under more
realistic assumptions (e.g., missing at random), making them more
appropriate than techniques like repeated-measures ANOVA. They
also allow researchers to model individual differences explicitly.
This is particularly useful because intra-individual variability
often exceeds between-group differences (e.g., sex-differences) in
astronaut research (Robin et al., 2023).

Lastly, to eliminate the effect of confounding variables in the
context of limited power, Pattyn et al. (2009) suggested comparing
data from individual astronauts to carefully matched control groups
(matching based on gender, background variables and other relevant
features).

Absence of control groups

Control groups have only become common in recent studies.
Yet, without control groups, distinguishing environmental from
individual factors remains difficult. Matching for the multiple
stressors faced in space is not evident (Desai et al.,, 2022), but
some innovative approaches have been suggested. Pattyn et al.
(2009) matched astronauts with similar control groups to apply
neuropsychological analyses of cognition in flight. To study
radiation effects, Boice (2019) proposed examining cognitive
performance in nuclear workers with high radionuclide exposure
with astronaut-standardized tasks. The NASA Twins Study (Garrett-
Bakelman et al., 2019) compared an astronaut in space with
his identical twin on Earth and Moore et al. (2019) used a
matched ground-control group and a sleep-restricted cohort.
Bosch-Bruguera et al. (2021) also used a matched control-
group in a longitudinal design to account for maturation
effects of their investigation of skill decay over time during an
Antarctic overwintering. Moreover, as will be discussed below,
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the use of control groups has already yielded new insights
into cognitive impairment in space that were previously not
available (e.g., Kuldavletova et al, 2023; Moore et al, 2019;
Pattyn et al, 2009; Stahn et al, 2019). Therefore, authors are
encouraged to invest time and resources in research designs
implementing control groups.

Measurement validity under operational
constraints: from test batteries to
wearables under controlled conditions

Sensitivity and accuracy of a standardized
cognitive test battery adapted to space
operationality: how to measure a rigorously
trained population

Given the exceptional cognitive profile of astronauts, current
test batteries may lack the sensitivity to detect subtle impairments
(Fowler and Manzey, 2000; Pattyn et al., 2009; Strangman et al., 2014;
Van Puyvelde et al., 2022a) as well as tasks capturing the operational
relevance critical for mission success (Moore et al., 2019; Petit et al.,
2019; Wenzel, 2021). Although many studies reported no cognitive
decline or even improvement during missions (e.g., Dev et al., 2024;
Garrett-Bakelman et al., 2019; Slack et al., 2016; Paul et al., 2010),
other findings—including both anecdotal descriptions such as self-
reports and interviews (e.g., Bluth, 1984; Johnston and Dietlein,
1974; Burgess, 2000; Manzey et al., 1995; Van Puyvelde et al.,
2022b) and studies using operational tasks, control groups and brain
references—found impairments that persisted, even after return to
Earth (e.g., Clement, 2025; Kuldavletova et al., 2023; Moore et al.,
2019; Pattyn et al., 2009; Jones et al, 2022; Petit et al., 2019;
Stahn et al., 2019). Therefore, the observed improvements in certain
studies might reflect learning or observer effects (e.g., Clément,
2025; Desai et al., 2022; Strangman et al., 2014) rather than true
enhancement. Indeed, Benke et al. (1993) used 30 habituation
sessions over 8 months pre-flight to avoid learning effects in-flight.
However, aiming for maximal stabilization of performance also
means losing sensitivity to environmental or situation influences,
trade-off performance scientists are well aware of (Pattyn et al.,
2024). Accordingly, Wenzel (2021) emphasized the need to define
clear thresholds for acceptable versus unacceptable performance.
This implies that both baselines and normative criteria must be
tailored to specific tasks to determine when performance has
significantly declined.

Sensitivity and accuracy of wearables: how to
balance monitoring load and scientific data
quality

Survey fatigue and monitoring burden remain key challenges
in every type of fieldwork including space (-analog) research
(Ghafourifard, 2024; Andreassi, 2007; Kelly et al., 2005), especially
when workload, sleep loss, and frustration start to accumulate
(Pattyn et al.,, 2018; Van Puyvelde et al., 2022a). Therefore, finding
a balance between data-collection quality and practical feasibility
in terms of crew’s preference and environmental constraints
is critical. Wearables are gaining popularity as practical, user-
friendly alternatives (Fonseca et al., 2017) despite the lack of a
robust multistage validation (Doherty et al., 2024; Giurgiu et al.,
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2023); hence, blurring lines between commercial and scientific use
(Baron et al., 2018; Lee and Finkelstein, 2015).

This search for balance between the scientific ideal and
environmental realities may explain why Jones et al. (2024) used
the Apple Watch Series 6 to assess heart rate variability—despite
previous studies showing its limited accuracy even in resting
position (e.g., Bonneval et al., 2025; O'Grady et al, 2024),
let alone in dynamic operational settings. Similarly, the choice
to use 1-h HRV windows rather than the 3-5 min guidelines
(non-stationarity, Berntson et al., 1997) and omitting raw signal
quality checks draws the attention to the importance of ensuring
that practicality does not come at the expense of scientific and
physiological expertise.

Baseline? the importance of longitudinal
investigations

Multiple stressors may elicit distinct physiological or cognitive
responses (Wenzel, 2021). The timing, location, and type of baseline
measures must therefore be chosen carefully. Longitudinal time-
points can robustly build a reference framework for each participant.
For instance, physiological stress research distinguishes between
phasic (acute) and tonic (anticipatory) stress responses—such as
pre-mission logistical or personal concerns—which can confound
both baseline and subsequent in-flight measures (Pattyn et al.,
2009; Van Puyvelde et al., 2020). Such baseline distortions may
help explain reported in-flight cognitive improvements. Indeed, a
closer look at the TWIN Study (Garrett-Bakelman et al., 2019)
results reveals conspicuously low baseline levels compared to the
early in-flight performance. Besides timing, baseline locations must
also be consistent or contextually meaningful (Bialeschki et al.,
2012). Overall, based on psychophysiological research, three types of
baselines are recommended: (1) a resting baseline to compare with
resting in-flight measures, (2) a “vanilla” baseline (i.e., a neutral task
matched in sensory/motor load to the experimental task), to isolate
metabolic effects inherent to the imposed task (Tininenko et al.,
2012), and (3) a task-specific physiological baseline to compare with
in-flight measures across conditions.

Careful timing is also crucial for in-flight measures, as most
adaptation timelines for basic physiological processes still need
to be defined. Entering space was described as a “traumatic
experience of habituative adaptation,” sometimes reducing workload
capacity (Johnston and Dietlein, 1974, p. 850). Despite decades
of technological evolution, this description from the heroic age
still stands. Similar habituation periods have since been observed
in space (-analog) research (Pattyn et al, 2018; Clément et al.,
2020). For instance, polar studies suggest a three-week adaptation
period—challenging Jones et al. (2024) assumption that cognitive
space-induced effects are fully observable on day 1 rather than day 4.

Finally, post-flight measures are important for assessing
recovery and long-term effects. Several studies have documented
persistent post-flight impairments (e.g., Garrett-Bakelman et al,,
2019; Manzey et al., 1995; Moore et al.,, 2019), including altered
gene expression, DNA damage, telomere shortening, and cognitive
deficits. Autonomic regulation changes are even shown to last
longer in the post-flight recording than the actual in-flight exposure
(Migeotte et al., 2003). At the skeletal level, bone density recovery
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often remained incomplete, even 2 years postflight (Sibonga et al.,
2020; Vico et al,, 2017). These findings—along with interviews from
analog environments (Van Puyvelde et al., 2022b)—highlight the
need for protective strategies; not only during but also after missions.
One proposed solution is to continuously measure until recovery
has occurred (Roberts et al., 2020; Wenzel, 2021).

Time-in-space or time-on-station

Long-duration space research remains limited, despite its
growing relevance. The scarcity of such missions blurs the
definition of what is “long-duration”, which may lead to the
classification of relatively short flights as “long-duration. To
illustrate, in a space context, Strangman et al. (2014) considered
space missions over 21 days as “long-duration,” reflecting this
lack of longer flights. In contrast, in a space-analog context,
Van Puyvelde et al. (2022b) defined missions over 12 months as
“long-duration”. Today, aside from the Apollo notebooks, only
two major long-duration studies have been published: the 340-day
ISS Twin Study (Garrett-Bakelman et al,, 2019) and the 438-day
MIR mission (Manzey et al., 1998).

Anyhow, prolonged missions expose astronauts to sustained
cumulative stressors—gravity shifts, radiation, sleep loss, fatigue
and workload variations—all of which may, at some point, override
psychophysiological compensation mechanisms. Several effects are
time-dependent. For instance, bone resorption markers (bone
loss) peaked within 11 days, while formation markers responded
too slowly and weakly to reverse damage. After longer stays,
breakdown decelerated faster, but the damage was greater and
recovery remained incomplete after 3-5 months (Stavnichuk et al.,
2020). Sibonga et al. (2024) similarly reported greater bone loss
after longer missions, with models estimating that 62% of astronauts
would return from a Mars mission with osteoporosis-level T-
scores (Axpe et al., 2020).

Long-duration space (-analog) missions also affect hippocampal
regions involved in memory, emotion, and spatial cognition
(Stahn et al, 2019; Stahn and Kiithn, 2021). Brain imaging
shows structural changes, including brain shift, cerebrospinal fluid
redistribution, ventricular expansion, and gray matter loss (e.g.,
McGregor et al.,, 2023; Van Ombergen et al., 2018; 2019). Ventricle
expansion also increases with mission length, with the greatest
changes in the first 6 months and up to 3 years before full recovery
(McGregor et al., 2023). Petit et al. (2019) observed attention
lapses, reflected in theta oscillations during electroencephalographic
recordings, along with impaired visuomotor performance during
docking tasks in an ISS crew after 2 months in space.

According to Clement (2025), the accumulation of stressors
over time may underlie the often reported “space fog”
Jones et al. (2022) supported this view, noting, however, that
sleep quantity was a defining factor in the multi-stressor
dynamics of neurobehavioral responses and perceived workload
over time. Moreover, radiation-induced cognitive deficits are
shown to worsen under high workload—even at low exposure
levels (Hanbury et al., 2016). Hence, the combined burden of
time-in-space and workload variations may deplete cognitive
reserves and/or increase the risk of relying on pharmacological
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support (Johnston and Dietlein, 1974; Strangman et al.,, 2014;
Van Puyvelde et al., 2022a; Van Puyvelde et al., 2022b).

Opverall, time-in-space must be systematically included in multi-
stressor research, as its cumulative burden on cognitive, skeletal,
and neural health is critical for future long-duration missions. This
means that gathering meta-data about the multiple dynamics of
the context and their stressors (unexpected events and logbooks
included) is essential in order to better understand and interpret
study results.

Anonymization

In qualitative research, the trade-off between providing
sufficient detail to address research questions and protecting
participant anonymity has long been acknowledged (e.g., Kaiser,
2009). Similar ethical and methodological challenges arise in
space (-analog) research. Due to the small number of crew
members and the public and media attention generated by such
missions, full anonymization is often unfeasible. As a result,
logbook reports describing impactful events that are—as described
above—potentially critical for interpreting unexpected outcomes,
may be excluded from analysis. This limitation has already
been cited as a reason why certain data remained inaccessible
or unavailable for desired long-term follow-up analyses (e.g.,
Bisserier et al., 2021; Jones et al., 2024).

Low earth orbit (LEO) and beyond LEO
missions: location-specific variation in the
impact of gravity and ionizing radiation (IR)

Except for the Apollo notebooks, most of the studies are
limited to low Earth orbit (LEO) missions. Yet, both gravitational
and radiation exposure effects vary with the trajectory and
destination. For instance, a Mars mission involves a transition
from Earth’s gravity (9.807 m/s®), through microgravity in transit,
to Mars’ reduced gravity (3.711 m/s®), illustrating location-specific
gravitational shifts (Bettiol et al., 2018).

Similarly, Moon IR-levels can double those on the ISS and reach
200-1000 times Earth-levels (Asrar, 2025; Zhang et al., 2020). ESA
estimated that a Mars mission could expose astronautsin 1 day to the
equivalent of a full year’s radiation on Earth—and this repeatedly for
months (Asrar, 2025). Astronauts face both acute bursts (e.g., EVAs
or solar storms) and prolonged exposure (Tavakol et al., 2024). IR
thus remains a key risk, and both journey and destination must be
included in estimation models (Willis et al., 2024).

Discussion

Space (-analog) research faces several unique methodological
challenges including small and heterogeneous samples, inconsistent
baselines and lack of tools tailored to highly trained astronauts
(Desai et al.,, 2022; Strangman et al, 2014). These limitations
worsen when sex differences are ignored (Hughes-Fulford, 2023a).
Although advances like omics modeling, biosample analyses,
and cross-agency data harmonization (Abdelfattah et al., 2024;
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Galcenko et al., 2025; Roberts et al., 2020) are promising, their
ecological validity remains limited. Nonetheless, limited data is
already guiding policy. For instance, a recent model indicated an
85.2% chance for female vs 22.8% for male astronauts to meet anxiety
criteria during Mars missions (Desai et al., 2022)—an aspect that the
authors indicated as a comorbidity factor in sleep problems. Such
interpretations, while well-intended, risk overgeneralization.

Earth-based matched control groups remain underused, likely
due to logistical and financial constraints (e.g., Boice, 2019;
Kuldavletova et al., 2023). Yet funding should account for these
essential but costly designs. Data repositories of major space
agencies have been in the making for decades but are still
not enforced. Moreover, inconsistent baselines, follow-up, and
recovery measurements risk distorting data (Migeotte et al., 2003;
Sibonga et al., 2020; Vico et al., 2017). Long-duration missions are
particularly hazardous due to cumulative stressors like microgravity,
radiation, sleep loss and workload variations (Hanbury et al.,
2016; Moore et al.,, 2019; Van den Berg et al., 2023). Therefore,
extended follow-up studies to monitor post-mission recovery and
long-term health outcomes are warranted (Roberts et al., 2020;
Sibonga et al., 2020; Vico et al., 2017).

Fieldwork
requires methodological deviations from traditional lab-based

is demanding, time-consuming, and often
research. To gather statistically powered field samples remains
difficult—especially for sex-specific comparisons. For instance,
our team needed 14 years and seven Antarctic overwintering data
collection campaigns to collect an acceptable database of 30 female
winter-over sojourners in sleep studies using polysomnography.
Such timelines are unsustainable for most research units considering
the pace of research funding and required publishing.

Hence, more resources and innovative statistical approaches
are needed. Considering the methodological realities discussed,
relying solely on traditional statistical metrics such as p-values
remains insufficient, especially given the small sample sizes and
pronounced individual variability characteristic of space (-analog)
research. Enhanced reporting practices, including effect sizes,
comprehensive visualizations, and precise parameter estimations
via confidence intervals, should thus be prioritized. Advanced
statistical methods, notably multilevel and mixed-effects models,
further align methodological rigor with the inherent complexity of
space-based research.

We therefore strongly encourage authors to explicitly
their that
extreme environments—demands

state in publications fieldwork—especially  in

different
methodological approach than traditional laboratory studies. Only

a fundamentally

by acknowledging these realities, can we ensure that field studies are
evaluated fairly, appreciating their unique contextual, logistical, and
scientific contributions rather than penalizing inherent constraints.
This would avoid the “dormant data” that currently plagues the field
of space life sciences, where relevant measurements are sometimes
never published due to their anecdotal nature, which is not familiar
to reviewers not specialized in this area of expertise.
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