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As plans for deep space and long-duration missions advance, research in 
space and space-analog environments is becoming an urgent scientific priority. 
However, this type of fieldwork poses a unique set of challenges. The 
development of research methodologies and designs cannot rely on broad 
evidence base and thus requires scientific judgment and multidisciplinary 
psychophysiological expertise. Most studies comprise small samples, often lack 
control groups, sex differences have seldom been directly tested in this area 
and inter-individual variability is prevalent in this population. Moreover, this 
research domain is characterized by several exceptional factors that must be 
addressed. The target population is highly trained and not representative of 
the general population, demanding adapted study designs and highly sensitive 
and operationally relevant research tools. To avoid overburdening the already 
heavy operational schedules of this population, a careful and feasible balance 
must be established between scientific data quality and acceptable monitoring 
load. Furthermore, several issues of location, timing, and type of baseline 
measures must be explicitly considered, while long-term follow-up designs are 
necessary to assess both recovery and persistent post-mission effects. Major 
space agencies have indeed identified methodological issues as a knowledge 
gap in this area. In this review, we provide an overview of these methodological 
challenges unique to space life sciences and offer solutions where possible. We 
argue that space research remains feasible despite these constraints, but only 
when it is approached with the understanding that such fieldwork often requires 
fundamentally different methods than traditional laboratory science.
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Introduction

Humanity is increasingly aiming for a long-term presence 
in space. To support this goal, space life sciences encompass 
multiple research domains, each contributing to our understanding 
of human adaptation. As recently summarized (Berliner et al., 
2024), three major areas intersect here. First, technological 
innovations to support space travel; second, environmental research 
on potentially sustaining future life; and third, studies on the 
physiological and psychological effects of spaceflight—covering 
the so-called “human factor”. In the context of the current article, 
the human factor refers to the adaptability of the atypical, highly 
trained operator who typically performs above average across all 
performance domains (Strangman et al., 2014).

The major space agencies have each defined research 
roadmaps providing a comprehensive overview of knowledge 
gaps (e.g., European Space Agency, 2016). The current review 
aims at identifying the unique methodological challenges posed 
by the space environment which need to be addressed to close 
those knowledge gaps. These challenges may affect every phase of 
research—from design over field data collection to final statistical 
analysis and interpretation. This methodological perspective thus 
identifies recurring pitfalls and highlights proposed solutions. 
Hence, this is not an exhaustive review, but a summary of 
key methodological patterns and constraints observed in space 
(-analog) studies. 

Sampling challenges in space research: 
small samples, sex differences, 
inter-individual variability and the absence 
of control groups

Small sample sizes
The NASA Apollo Biomedical Results Report (1974) stated: 

‘…because of the small number of individuals who flew in 
space and because of the variability of their responses, it was 
impossible to distinguish between space-related physiological 
changes and individual physiological variations (Johnston and 
Dietlein, 1974, p.43)’.

To date, little has changed. The literature on space-related 
research remains saturated with concerns regarding small sample 
sizes that are statistically underpowered, inter-individual variability 
that hinders distinction between environmental- and individual-
related factors and the absence of control groups (e.g., Clément, 
2025; Desai et al., 2022; Mairesse et al., 2019; Pattyn et al., 2009; 
Stavnichuk et al., 2020; Strangman et al., 2014). This raises the 
question as to how to address the problem.

A possible solution is to promote international cooperation 
by standardizing protocols across space agencies, facilitating 
data sharing, and enabling joint analyses across missions 
(Desai et al., 2022; Roberts et al., 2020; Stavnichuk et al., 2020; 
Van Ombergen et al., 2022). Similarly, some authors pooled blood 
sample data (e.g., Bisserier et al., 2021; Brojakowska et al., 2022) 
or densitometry results (Sibonga et al., 2015) across ISS and 
MIR missions.

Molecular biology seemed like a way around the small number 
of individuals. This includes cross-species cell analyses, development 

of predictive models, real-time monitoring, and standardization of 
crew dose and risk metrics related to cosmic radiation (Slaba et al., 
2025; Willis et al., 2024). For instance, Galčenko et al. (2025) used 
transcriptomic data from human cell lines exposed to microgravity 
and Michaletti et al. (2017) examined osteoblasts from three healthy 
hip-replacement donors. However, even here, Stavnichuk et al. 
(2020) reported high variability in bone formation markers and 
emphasized that more data are needed to determine to what extent 
individual covariates (e.g., age, physical activity, nutrition) may 
influence outcomes. 

Sex differences
Regarding sex-differences, space research data are even scarcer. 

Earth-based evidence shows differences in sleep, activity, and 
cognition—domains critical for mission success. Women generally 
sleep longer but experience more wake after sleep onset (WASO) 
and insomnia (Jonasdottir et al., 2021). In a hypoxic bedrest 
space analog, the return of WASO-deviations to baseline was 
absent in females (Van Cutsem et al., 2022). During Antarctic 
overwintering, only men showed activity decline, but women 
reported more sleep and psychosocial disturbances (Steinach et al., 
2016). Cognitively, women prioritize accuracy over speed and 
men vice versa—indicating complementary strengths (Hughes-
Fulford et al., 2024; Mark et al., 2014). Though more prone to motion 
sickness, women may outperform men in vestibular tasks, albeit with 
higher variability (Zhang et al., 2024).

In space, female astronauts showed higher rates of immediate 
post-flight orthostatic intolerance—the inability to remain upright 
without fainting—and greater plasma volume loss (Mark et al., 
2014). Some authors suggest that radiation exposure limits are 
lower for women (e.g., Mark et al., 2014; Parihar et al., 2020). 
Likewise, rodent studies indicated that radiation may threaten 
cognition through neuroinflammation and hippocampal damage 
(Krukowski et al., 2018). On the other hand, Hughes-Fulford, 2023a 
emphasized that there is no clear evidence that women are at 
higher risk of radiation-related effects during the mission, only that 
postflight cancer risk may reduce their lifespan by 3%. Nevertheless, 
one fundamental difference between men and women is that women 
“carry” all their gametes at all times, potentially increasing the risk 
of radiation-related effects on future offspring.

To address these problems, researchers propose to increase 
female participation in spaceflights, in order to improve our 
understanding and move beyond the default male model 
(D’souza et al., 2022; Mark et al., 2014). For instance, when 
it concerns countermeasures, an increased sex-disaggregated 
approach could lead to more adjusted female space health and 
security measures for women in space. 

Statistical and methodological considerations
When studying small populations, researchers face profound 

statistical challenges that demand tailored approaches different 
from conventional inferential methods. In such contexts, classical 
hypothesis testing becomes underpowered, p-values unstable, and 
models may fail to converge, while the power and generalizability of 
findings remain limited (Pattyn et al., 2009). Moreover, traditional 
techniques such as repeated-measures ANOVA can exacerbate the 
problem by applying listwise deletion, thereby further reducing 
statistical power. Corrections for multiple comparisons, such as 
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Bonferroni adjustments, are also overly conservative in this context, 
increasing the risk of Type II errors (i.e., not finding a true effect).

Therefore, tailored analytical approaches are needed. A key 
distinction must be made between studies that describe the entire 
astronaut population and those that collect a sample from a wider 
reference population. In the first case, when all individuals in the 
target group are observed (e.g., all active astronauts on a certain 
mission), statistical inference is unnecessary—here, descriptive 
statistics, individual-level analyses, and visualizations suffice. 
However, if the goal is to generalize to a broader population 
(e.g., astronauts across agencies or future crews) statistical 
inference becomes necessary and must be adapted to small-sample
limitations.

In this context, researchers are encouraged to focus on effect 
sizes, and the uncertainty of parameter estimates via confidence 
intervals. Effect sizes quantify the magnitude of observed effects. For 
example, effect sizes can reflect the strength of physiological changes 
in response to spaceflight. Confidence intervals indicate estimate 
precision with wider intervals signalizing greater uncertainty.

A helpful analytical approach in small sample studies might 
be using Bayesian methods. They allow the incorporation of prior 
knowledge (e.g., from analog populations or historical missions) 
to stabilize estimates and improve inference (Gelman and Shalizi, 
2013; McElreath, 2020). Also, hierarchical (multilevel) models can 
be considered useful, as they can borrow strength across repeated 
measures or related individuals (e.g., astronauts in the same space 
shuttle) to enhance power and account for nested data structures. 
These models naturally accommodate missing data under more 
realistic assumptions (e.g., missing at random), making them more 
appropriate than techniques like repeated-measures ANOVA. They 
also allow researchers to model individual differences explicitly. 
This is particularly useful because intra-individual variability 
often exceeds between-group differences (e.g., sex-differences) in 
astronaut research (Robin et al., 2023).

Lastly, to eliminate the effect of confounding variables in the 
context of limited power, Pattyn et al. (2009) suggested comparing 
data from individual astronauts to carefully matched control groups 
(matching based on gender, background variables and other relevant 
features). 

Absence of control groups
Control groups have only become common in recent studies. 

Yet, without control groups, distinguishing environmental from 
individual factors remains difficult. Matching for the multiple 
stressors faced in space is not evident (Desai et al., 2022), but 
some innovative approaches have been suggested. Pattyn et al. 
(2009) matched astronauts with similar control groups to apply 
neuropsychological analyses of cognition in flight. To study 
radiation effects, Boice (2019) proposed examining cognitive 
performance in nuclear workers with high radionuclide exposure 
with astronaut-standardized tasks. The NASA Twins Study (Garrett-
Bakelman et al., 2019) compared an astronaut in space with 
his identical twin on Earth and Moore et al. (2019) used a 
matched ground-control group and a sleep-restricted cohort. 
Bosch-Bruguera et al. (2021) also used a matched control-
group in a longitudinal design to account for maturation 
effects of their investigation of skill decay over time during an 
Antarctic overwintering. Moreover, as will be discussed below, 

the use of control groups has already yielded new insights 
into cognitive impairment in space that were previously not 
available (e.g., Kuldavletova et al., 2023; Moore et al., 2019; 
Pattyn et al., 2009; Stahn et al., 2019). Therefore, authors are 
encouraged to invest time and resources in research designs 
implementing control groups. 

Measurement validity under operational 
constraints: from test batteries to 
wearables under controlled conditions

Sensitivity and accuracy of a standardized 
cognitive test battery adapted to space 
operationality: how to measure a rigorously 
trained population

Given the exceptional cognitive profile of astronauts, current 
test batteries may lack the sensitivity to detect subtle impairments 
(Fowler and Manzey, 2000; Pattyn et al., 2009; Strangman et al., 2014; 
Van Puyvelde et al., 2022a) as well as tasks capturing the operational 
relevance critical for mission success (Moore et al., 2019; Petit et al., 
2019; Wenzel, 2021). Although many studies reported no cognitive 
decline or even improvement during missions (e.g., Dev et al., 2024; 
Garrett-Bakelman et al., 2019; Slack et al., 2016; Paul et al., 2010), 
other findings—including both anecdotal descriptions such as self-
reports and interviews (e.g., Bluth, 1984; Johnston and Dietlein, 
1974; Burgess, 2000; Manzey et al., 1995; Van Puyvelde et al., 
2022b) and studies using operational tasks, control groups and brain 
references—found impairments that persisted, even after return to 
Earth (e.g., Clement, 2025; Kuldavletova et al., 2023; Moore et al., 
2019; Pattyn et al., 2009; Jones et al., 2022; Petit et al., 2019; 
Stahn et al., 2019). Therefore, the observed improvements in certain 
studies might reflect learning or observer effects (e.g., Clément, 
2025; Desai et al., 2022; Strangman et al., 2014) rather than true 
enhancement. Indeed, Benke et al. (1993) used 30 habituation 
sessions over 8 months pre-flight to avoid learning effects in-flight. 
However, aiming for maximal stabilization of performance also 
means losing sensitivity to environmental or situation influences, 
trade-off performance scientists are well aware of (Pattyn et al., 
2024). Accordingly, Wenzel (2021) emphasized the need to define 
clear thresholds for acceptable versus unacceptable performance. 
This implies that both baselines and normative criteria must be 
tailored to specific tasks to determine when performance has 
significantly declined. 

Sensitivity and accuracy of wearables: how to 
balance monitoring load and scientific data 
quality

Survey fatigue and monitoring burden remain key challenges 
in every type of fieldwork including space (-analog) research 
(Ghafourifard, 2024; Andreassi, 2007; Kelly et al., 2005), especially 
when workload, sleep loss, and frustration start to accumulate 
(Pattyn et al., 2018; Van Puyvelde et al., 2022a). Therefore, finding 
a balance between data-collection quality and practical feasibility 
in terms of crew’s preference and environmental constraints 
is critical. Wearables are gaining popularity as practical, user-
friendly alternatives (Fonseca et al., 2017) despite the lack of a 
robust multistage validation (Doherty et al., 2024; Giurgiu et al., 
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2023); hence, blurring lines between commercial and scientific use 
(Baron et al., 2018; Lee and Finkelstein, 2015).

This search for balance between the scientific ideal and 
environmental realities may explain why Jones et al. (2024) used 
the Apple Watch Series 6 to assess heart rate variability—despite 
previous studies showing its limited accuracy even in resting 
position (e.g., Bonneval et al., 2025; O’Grady et al., 2024), 
let alone in dynamic operational settings. Similarly, the choice 
to use 1-h HRV windows rather than the 3–5 min guidelines 
(non-stationarity, Berntson et al., 1997) and omitting raw signal 
quality checks draws the attention to the importance of ensuring 
that practicality does not come at the expense of scientific and 
physiological expertise. 

Baseline? the importance of longitudinal 
investigations

Multiple stressors may elicit distinct physiological or cognitive 
responses (Wenzel, 2021). The timing, location, and type of baseline 
measures must therefore be chosen carefully. Longitudinal time-
points can robustly build a reference framework for each participant. 
For instance, physiological stress research distinguishes between 
phasic (acute) and tonic (anticipatory) stress responses—such as 
pre-mission logistical or personal concerns—which can confound 
both baseline and subsequent in-flight measures (Pattyn et al., 
2009; Van Puyvelde et al., 2020). Such baseline distortions may 
help explain reported in-flight cognitive improvements. Indeed, a 
closer look at the TWIN Study (Garrett-Bakelman et al., 2019) 
results reveals conspicuously low baseline levels compared to the 
early in-flight performance. Besides timing, baseline locations must 
also be consistent or contextually meaningful (Bialeschki et al., 
2012). Overall, based on psychophysiological research, three types of 
baselines are recommended: (1) a resting baseline to compare with 
resting in-flight measures, (2) a “vanilla” baseline (i.e., a neutral task 
matched in sensory/motor load to the experimental task), to isolate 
metabolic effects inherent to the imposed task (Tininenko et al., 
2012), and (3) a task-specific physiological baseline to compare with 
in-flight measures across conditions.

Careful timing is also crucial for in-flight measures, as most 
adaptation timelines for basic physiological processes still need 
to be defined. Entering space was described as a “traumatic 
experience of habituative adaptation,” sometimes reducing workload 
capacity (Johnston and Dietlein, 1974, p. 850). Despite decades 
of technological evolution, this description from the heroic age 
still stands. Similar habituation periods have since been observed 
in space (-analog) research (Pattyn et al., 2018; Clément et al., 
2020). For instance, polar studies suggest a three-week adaptation 
period—challenging Jones et al. (2024) assumption that cognitive 
space-induced effects are fully observable on day 1 rather than day 4.

Finally, post-flight measures are important for assessing 
recovery and long-term effects. Several studies have documented 
persistent post-flight impairments (e.g., Garrett-Bakelman et al., 
2019; Manzey et al., 1995; Moore et al., 2019), including altered 
gene expression, DNA damage, telomere shortening, and cognitive 
deficits. Autonomic regulation changes are even shown to last 
longer in the post-flight recording than the actual in-flight exposure 
(Migeotte et al., 2003). At the skeletal level, bone density recovery 

often remained incomplete, even 2 years postflight (Sibonga et al., 
2020; Vico et al., 2017). These findings—along with interviews from 
analog environments (Van Puyvelde et al., 2022b)—highlight the 
need for protective strategies; not only during but also after missions. 
One proposed solution is to continuously measure until recovery 
has occurred (Roberts et al., 2020; Wenzel, 2021). 

Time-in-space or time-on-station

Long-duration space research remains limited, despite its 
growing relevance. The scarcity of such missions blurs the 
definition of what is “long-duration”, which may lead to the 
classification of relatively short flights as “long-duration. To 
illustrate, in a space context, Strangman et al. (2014) considered 
space missions over 21 days as “long-duration,” reflecting this 
lack of longer flights. In contrast, in a space-analog context, 
Van Puyvelde et al. (2022b) defined missions over 12 months as 
“long-duration”. Today, aside from the Apollo notebooks, only 
two major long-duration studies have been published: the 340-day 
ISS Twin Study (Garrett-Bakelman et al., 2019) and the 438-day 
MIR mission (Manzey et al., 1998).

Anyhow, prolonged missions expose astronauts to sustained 
cumulative stressors—gravity shifts, radiation, sleep loss, fatigue 
and workload variations—all of which may, at some point, override 
psychophysiological compensation mechanisms. Several effects are 
time-dependent. For instance, bone resorption markers (bone 
loss) peaked within 11 days, while formation markers responded 
too slowly and weakly to reverse damage. After longer stays, 
breakdown decelerated faster, but the damage was greater and 
recovery remained incomplete after 3–5 months (Stavnichuk et al., 
2020). Sibonga et al. (2024) similarly reported greater bone loss 
after longer missions, with models estimating that 62% of astronauts 
would return from a Mars mission with osteoporosis-level T-
scores (Axpe et al., 2020).

Long-duration space (-analog) missions also affect hippocampal 
regions involved in memory, emotion, and spatial cognition 
(Stahn et al., 2019; Stahn and Kühn, 2021). Brain imaging 
shows structural changes, including brain shift, cerebrospinal fluid 
redistribution, ventricular expansion, and gray matter loss (e.g., 
McGregor et al., 2023; Van Ombergen et al., 2018; 2019). Ventricle 
expansion also increases with mission length, with the greatest 
changes in the first 6 months and up to 3 years before full recovery 
(McGregor et al., 2023). Petit et al. (2019) observed attention 
lapses, reflected in theta oscillations during electroencephalographic 
recordings, along with impaired visuomotor performance during 
docking tasks in an ISS crew after 2 months in space.

According to Clement (2025), the accumulation of stressors 
over time may underlie the often reported “space fog”. 
Jones et al. (2022) supported this view, noting, however, that 
sleep quantity was a defining factor in the multi-stressor 
dynamics of neurobehavioral responses and perceived workload 
over time. Moreover, radiation-induced cognitive deficits are 
shown to worsen under high workload—even at low exposure 
levels (Hanbury et al., 2016). Hence, the combined burden of 
time-in-space and workload variations may deplete cognitive 
reserves and/or increase the risk of relying on pharmacological 
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support (Johnston and Dietlein, 1974; Strangman et al., 2014; 
Van Puyvelde et al., 2022a; Van Puyvelde et al., 2022b).

Overall, time-in-space must be systematically included in multi-
stressor research, as its cumulative burden on cognitive, skeletal, 
and neural health is critical for future long-duration missions. This 
means that gathering meta-data about the multiple dynamics of 
the context and their stressors (unexpected events and logbooks 
included) is essential in order to better understand and interpret 
study results. 

Anonymization

In qualitative research, the trade-off between providing 
sufficient detail to address research questions and protecting 
participant anonymity has long been acknowledged (e.g., Kaiser, 
2009). Similar ethical and methodological challenges arise in 
space (-analog) research. Due to the small number of crew 
members and the public and media attention generated by such 
missions, full anonymization is often unfeasible. As a result, 
logbook reports describing impactful events that are—as described 
above—potentially critical for interpreting unexpected outcomes, 
may be excluded from analysis. This limitation has already 
been cited as a reason why certain data remained inaccessible 
or unavailable for desired long-term follow-up analyses (e.g., 
Bisserier et al., 2021; Jones et al., 2024). 

Low earth orbit (LEO) and beyond LEO 
missions: location-specific variation in the 
impact of gravity and ionizing radiation (IR)

Except for the Apollo notebooks, most of the studies are 
limited to low Earth orbit (LEO) missions. Yet, both gravitational 
and radiation exposure effects vary with the trajectory and 
destination. For instance, a Mars mission involves a transition 
from Earth’s gravity (9.807 m/s2), through microgravity in transit, 
to Mars’ reduced gravity (3.711 m/s2), illustrating location-specific 
gravitational shifts (Bettiol et al., 2018).

Similarly, Moon IR-levels can double those on the ISS and reach 
200–1000 times Earth-levels (Asrar, 2025; Zhang et al., 2020). ESA 
estimated that a Mars mission could expose astronauts in 1 day to the 
equivalent of a full year’s radiation on Earth—and this repeatedly for 
months (Asrar, 2025). Astronauts face both acute bursts (e.g., EVAs 
or solar storms) and prolonged exposure (Tavakol et al., 2024). IR 
thus remains a key risk, and both journey and destination must be 
included in estimation models (Willis et al., 2024).

Discussion

Space (-analog) research faces several unique methodological 
challenges including small and heterogeneous samples, inconsistent 
baselines and lack of tools tailored to highly trained astronauts 
(Desai et al., 2022; Strangman et al., 2014). These limitations 
worsen when sex differences are ignored (Hughes-Fulford, 2023a). 
Although advances like omics modeling, biosample analyses, 
and cross-agency data harmonization (Abdelfattah et al., 2024; 

Galčenko et al., 2025; Roberts et al., 2020) are promising, their 
ecological validity remains limited. Nonetheless, limited data is 
already guiding policy. For instance, a recent model indicated an 
85.2% chance for female vs 22.8% for male astronauts to meet anxiety 
criteria during Mars missions (Desai et al., 2022)—an aspect that the 
authors indicated as a comorbidity factor in sleep problems. Such 
interpretations, while well-intended, risk overgeneralization.

Earth-based matched control groups remain underused, likely 
due to logistical and financial constraints (e.g., Boice, 2019; 
Kuldavletova et al., 2023). Yet funding should account for these 
essential but costly designs. Data repositories of major space 
agencies have been in the making for decades but are still 
not enforced. Moreover, inconsistent baselines, follow-up, and 
recovery measurements risk distorting data (Migeotte et al., 2003; 
Sibonga et al., 2020; Vico et al., 2017). Long-duration missions are 
particularly hazardous due to cumulative stressors like microgravity, 
radiation, sleep loss and workload variations (Hanbury et al., 
2016; Moore et al., 2019; Van den Berg et al., 2023). Therefore, 
extended follow-up studies to monitor post-mission recovery and 
long-term health outcomes are warranted (Roberts et al., 2020; 
Sibonga et al., 2020; Vico et al., 2017).

Fieldwork is demanding, time-consuming, and often 
requires methodological deviations from traditional lab-based 
research. To gather statistically powered field samples remains 
difficult—especially for sex-specific comparisons. For instance, 
our team needed 14 years and seven Antarctic overwintering data 
collection campaigns to collect an acceptable database of 30 female 
winter-over sojourners in sleep studies using polysomnography. 
Such timelines are unsustainable for most research units considering 
the pace of research funding and required publishing.

Hence, more resources and innovative statistical approaches 
are needed. Considering the methodological realities discussed, 
relying solely on traditional statistical metrics such as p-values 
remains insufficient, especially given the small sample sizes and 
pronounced individual variability characteristic of space (-analog) 
research. Enhanced reporting practices, including effect sizes, 
comprehensive visualizations, and precise parameter estimations 
via confidence intervals, should thus be prioritized. Advanced 
statistical methods, notably multilevel and mixed-effects models, 
further align methodological rigor with the inherent complexity of 
space-based research.

We therefore strongly encourage authors to explicitly 
state in their publications that fieldwork—especially in 
extreme environments—demands a fundamentally different 
methodological approach than traditional laboratory studies. Only 
by acknowledging these realities, can we ensure that field studies are 
evaluated fairly, appreciating their unique contextual, logistical, and 
scientific contributions rather than penalizing inherent constraints. 
This would avoid the “dormant data” that currently plagues the field 
of space life sciences, where relevant measurements are sometimes 
never published due to their anecdotal nature, which is not familiar 
to reviewers not specialized in this area of expertise.
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