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Introduction: Snoring is a common symptom of Obstructive Sleep Apnea
(OSA) and has also been associated with an elevated risk of cerebrovascular
disease. However, existing snoring detection studies predominantly focus on
individuals with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), with
limited attention given to the specific acoustic characteristics of patients with
concomitant cerebrovascular diseases. To address this gap, this paper proposes
a snoring classification method integrating dynamic convolution and attention
mechanisms, and explores the acoustic feature differences between patients
with cerebrovascular stenosis and those without stenosis.

Methods: First, we collected nocturnal snoring sounds from 31 patients
diagnosed with OSAHS, including 16 patients with cerebrovascular stenosis,
and extracted four types of acoustic features: Mel spectrogram, Mel-frequency
cepstral coefficients (MFCCs), Constant Q Transform (CQT) spectrogram, and
Chroma Energy Normalized Statistics (CENS). Then, based on the ConvNeXt
backbone, we enhanced the network by incorporating the Alterable Kernel
Convolution (AKConv) module, the Convolutional Block Attention Module
(CBAM), and the Conv2Former module. We conducted experiments on snoring
versus non-snoring classification and stenotic versus non-stenotic snoring
classification, and validated the role of each module through ablation studies.
Finally, the Mann-Whitney U test was applied to compare intergroup differences
in low-frequency energy ratio, snoring frequency, and snoring event duration.
Results: This method achieves the best performance on the Mel spectrogram,
with a snoring classification accuracy of 90.24%, compared to 88.16% for the
ConvNeXt baseline model. It also maintains superiority in classifying stenotic
versus non-stenotic snoring. Ablation analysis indicates that all three modules
contribute to performance improvements. Moreover, the Mann-Whitney U
test revealed significant differences (p < 0.05) between the stenotic and non-
stenotic groups in terms of low-frequency energy ratio and nocturnal snoring
frequency, whereas snoring event duration showed no significant difference.
Discussion: The proposed method demonstrates excellent performance in
snoring classification and provides preliminary evidence for exploring acoustic
features associated with cerebrovascular stenosis.

snoring sound classification, cerebrovascular stenosis, acoustic features, ConvNeXt,
dynamic convolution, attention mechanisms
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1 Introduction
1.1 Research background

Snoring is a breathing sound generated by the vibration of
upper airway tissues that partially collapse during inhalation.
It is common, occurring in approximately 50% of adults and
3.2%-12.1% of children (Ersu et al., 2004; Duckitt et al., 2006),
and is widely regarded as an early clinical sign of obstructive
sleep apnea-hypopnea syndrome (OSAHS) (Jiang et al., 2020),
which causes damage to multiple systems throughout the body
through intermittent hypoxia and sleep fragmentation. Research
has established strong associations between OSAHS and various
health conditions, including cardiovascular and cerebrovascular
diseases (Zhu et al., 2024; Hong et al, 2022; Raptis et al,
2021), metabolic syndrome (Kargar et al, 2021), and cognitive
impairment (Leng et al., 2016; Yld-Herttuala et al., 2021). Notably,
individuals with moderate to severe OSAHS face a stroke risk
up to four times higher than that of the general population
(Javaheri et al., 2022; Sanchez et al., 2022).

Studies have shown that the prevalence of OSAHS is significantly
higher among patients with cerebrovascular diseases, such as
stroke, than in the general population (Bassetti et al., 2006).
Such patients may simultaneously exhibit upper airway obstruction
and central respiratory regulation abnormalities (Tanayapong and
Kuna, 2021), and their snoring sounds may present unique
acoustic features. Clinical studies have demonstrated a positive
correlation between snoring energy in the 652-1,500 Hz frequency
band and the common carotid artery intima-media thickness
(CCA-IMT) (Lee et al, 2016). Early epidemiological research
also suggests a significant association between heavy snoring and
carotid atherosclerosis (Lee et al., 2008). Therefore, exploring
the acoustic differences between snoring sounds in patients
with concomitant cerebrovascular stenosis and those without
stenosis may provide new clues about the underlying pathological
mechanisms. This highlights the importance of further integrating
artificial intelligence (AI) methods into such research.

1.2 Related work

In recent years, deep learning (DL) has been extensively
applied in snoring detection and recognition, primarily along two
directions: multimodal fusion and lightweight portable detection.
Regarding multimodal approaches, Li et al. (2025) employed
the end-to-end audio classification framework DFNet to fuse
patient medical history with physiological information using a
multi-branch convolutional architecture, achieving an accuracy
of 84.1% in a four-class OSAHS classification task. Qiu et al.
(2026) proposed the Multimodal Integration and Missing Audio
Reconstruction (MIMAR-OSA) model, which uses multimodal data
fusion and missing modality reconstruction strategies to maintain
high diagnostic accuracy even when certain signals are unavailable.
Gu et al. (Bing, 2025) proposed a hierarchical Transformer model
that integrates electroencephalogram (EEG) signals with semantic
features of English listening comprehension, significantly enhancing
the screening performance for obstructive sleep apnea (OSA) in
noisy environments. Hu et al. (2025) proposed the information
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bottleneck-based parallel CNN-Transformer network (IPCT-Net),
which achieves parallel fusion of local and global features,
outperforming traditional methods on home sleep test data.

In the realm of lightweight and portable solutions, Zhang R. etal.
(2024) developed a lightweight model based on long short-
term memory spiking neural networks (LSTM-SNN), optimized
through threshold coding and an alternative gradient method,
reaching an accuracy of 93.4%. The MinSnore model proposed
by Dinh et al. (2025) combines an advanced lightweight network
architecture with self-supervised learning pre-training to deliver
outstanding performance in practical applications. Sillaparaya et al.
(2025) proposed a transfer learning framework that combines
MobileNetV3-Large with a modified SENet module, achieving
favorable performance on Mel-spectrogram and MFCC inputs
under a 10-fold cross-validation, and showing potential for
portable sleep apnea monitoring. Hong et al. (2025) achieved
high sensitivity and specificity in home settings by combining
smartphone recordings with a Vision Transformer model, providing
a viable solution for wearable and portable sleep apnea detection.

Although these approaches have contributed substantially to
OSAHS diagnosis and snoring classification, two major limitations
remain. First, most studies are conducted in controlled laboratory
or home environments and lack validation in the complex
acoustic environment of real hospital wards. Second, prior work
has primarily focused on determining the presence or severity
of OSAHS, and few have specifically analyzed patients with
concomitant cerebrovascular stenosis as a distinct clinical subgroup.

In this study, we prospectively collected overnight snoring audio
from patients diagnosed with OSAHS in a real hospital ward
environment. Patients were grouped according to the presence
or absence of concomitant cerebrovascular stenosis. The research
objectives were as follows: (1) to construct a snoring and non-
snoring classification model based on an improved ConvNeXt
architecture, (2) to achieve classification between stenotic and non-
stenotic snoring, and (3) to explore the acoustic feature differences
between these two clinical subgroups and their clinical implications
through statistical analysis.

2 Materials and methods

2.1 The overall framework of the proposed
method

The proposed snoring classification method, incorporating
dynamic convolution and attention mechanisms, consists of
three main components: data annotation, feature extraction, and
classification. As illustrated in Figure 1, snoring segments are labeled
as 1, and non-snoring segments as 0. In the feature extraction phase,
labeled audio segments are converted into four types of acoustic
features: Mel spectrogram, Mel-frequency cepstral coefficients
(MFCCs), Constant Q Transform (CQT) spectrogram, and Chroma
Energy Normalized Statistics (CENS). After partitioning the
extracted feature dataset into training and validation sets, the
data was fed into an enhanced ConvNeXt model to perform the
classification task of distinguishing snoring from non-snoring
sounds. Furthermore, this framework was extended to classify
snoring sounds between patients with cerebrovascular stenosis and
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FIGURE 1

Overall framework of the proposed method. (a) Data annotation, including endpoint detection, denoising, normalization, and labeling of snoring (1) and
non-snoring (0) episodes. (b) Feature extraction, where each labeled audio episode is transformed into four acoustic representations (Mel spectrogram,
MFCCs, CQT spectrogram, and CENS), followed by feature enhancement. (c) Classification, including data partitioning into training and validation sets,
implementation of the modified ConvNeXt model, and evaluation using sensitivity, specificity, positive predictive value (PPV), accuracy, and F1-score.

those without stenosis, exploring differences in snoring acoustic
features across these distinct patient groups.

2.2 Data collection

This study collected snoring data from 31 patients at the
Traditional Chinese Medicine Department, Zigong First People’s
Hospital, using a professional voice recorder and high-sensitivity
microphone. Among them, 16 patients had cerebrovascular stenosis
(6 mild, 5 moderate, 5 severe), while 15 patients had no stenosis.
All patients were diagnosed with OSAHS through polysomnography
(PSG). During hospitalization, each patient underwent continuous
collection of 8-h nocturnal snoring data covering a full sleep
cycle. To ensure data quality and diversity, microphones were
positioned 2-3 ¢cm from the patients’ mouths, with signal collection
conducted across various hospital environments. All patients
underwent clinical evaluation and imaging examinations to confirm
the presence or absence of cerebrovascular stenosis, and were
subsequently categorized into “stenotic group” and “non-stenotic
group” for analysis in follow-up studies.
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2.3 Data annotation

All raw sleep sound signals were processed using endpoint
detection to isolate valid acoustic segments, followed by noise
reduction and normalization. Under the guidance of medical
professionals, the segments were manually annotated in Audacity.
The primary objective of this experiment was to identify snoring
segments; thus, the signals were labeled into two categories:
“snoring” and “non-snoring” Snoring segments were annotated
based on a complete snoring cycle, ensuring each segment contained
a full cycle. Non-snoring segments were selected from periods
without snoring events, encompassing various sounds such as
breathing, footsteps, coughing, and conversation. To reduce
patient-dependent bias in model training and validation, the
dataset was organized strictly at the patient level: 25 patients
were assigned to the training set and 6 to the validation set. All
segments from a given patient were included exclusively in one set,
ensuring no segment-level mixing across training and validation.
The overall training-to-validation ratio was maintained at 8:2,
and this subject-independent strategy was applied consistently
to both the “snoring versus non-snoring” classification and
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TABLE 1 Dataset distribution.

10.3389/fphys.2025.1661258

Dataset Snoring Non-snoring Overall total
Stenotic Non-stenotic Stenotic Non-stenotic

Training (25 patients) 16,150 7900 24,050 15,850 9200 25,050 49,100

Validation (6 patients) 4018 1977 5995 4004 2336 6340 12,335

Total (31 patients) 20,168 9877 30,045 19,854 11,536 31,390 61,435

the “stenotic versus non-stenotic” snoring classification tasks.
The distribution of audio segments across categories is shown
in Table 1.

2.4 Feature extraction

Previous studies (Hou et al., 2024) have demonstrated that audio
spectrograms containing frequency and amplitude information
that change over time can distinguish between different types
of sounds. Building on this foundation, feature extraction was
performed on manually annotated audio segments. Each clip was
divided into 20-millisecond (ms) frames using a Hamming window
with a 10-m frame shift, and all audio was uniformly resampled
to 22.05kHz using the Python library librosa. After zero-mean
normalization, four types of feature maps were generated, with all
images standardized to 224 x 224 pixels. Since the snoring event
duration in this patient cohort generally lasted less than 3 s, audio
was uniformly segmented into 3-s clips before conversion into
images. Segments shorter than 3 s were padded with zeros to ensure
consistent input length for the model.

2.4.1 Mel spectrogram

The Mel spectrogram extracts time-frequency features by
simulating the auditory characteristics of the human ear. First,
the audio is pre-emphasis, framing, and windowing. Pre-emphasis
is the process of enhancing the high-frequency components of
an audio signal using a high-pass filter. The signal is then
segmented into short-time frames, and each frame is processed
with a Hamming window to reduce spectral discontinuities at
the boundaries. Next, the short-time Fourier transform (STFT) is
computed for each frame to convert the time-domain signal into
a frequency-domain representation (ZhangR. et al, 2024). The
formula is shown in Equation 1:

N-1
X(K)=Y x(m)-w(n)-e™ N, k=01, ,N-1 (1)
n=0

In the formula: x(n) represents the signal value of the n-th
sampling point; w(n) is the window function, which is the Hamming
window here; N is the number of sampling points in each frame.

Finally, a Mel-scale triangular filter bank that converts linear
frequencies to logarithmic frequencies is applied to the power
spectrum to obtain the Mel spectrogram. This is achieved using the
formula in Equation 2:

N-1
s(m)=1n<z|X(k)2Hm(k)|>,0£m§M )
k=0
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In the formula: H(k) is the frequency response of the triangular
filter, m denotes the m-th filter, and M is the number of Mel-scale
triangular filter banks.

2.4.2 MFCCs

MFCCs further extract cepstral features based on the Mel
spectrogram. After calculating the Mel spectrogram, the first 13
cepstral coeflicients are obtained through discrete cosine transform
(DCT) (ZhangR. et al, 2024), and the filter coeflicients are
decoupled. This process separates glottal excitation from vocal tract
response, highlighting the static characteristics of the spectrum. The
calculation formula is provided in Equation 3:

M

C(l)=25(m)cos<w>, I=1,2,...,L (3)

m=0

Where L represents the dimension of MFCCs, M denotes
the number of Mel-scale triangular filter banks, identical
to that in Equation 2.

2.4.3 CQT spectrogram

CQT applies a logarithmic frequency scale to enable
multi-resolution time-frequency analysis. The audio signal is
first preprocessed through steps such as pre-emphasis and
normalization. Subsequently, the CQT is computed to generate
a time-frequency feature representation, where Q represents the
Q factor, i.e., the ratio of the center frequency to the bandwidth
(Xie et al., 2021). The Q factor is equal for all frequency intervals.
The calculation of the Q factor is based on the two formulas in
Equations 4, 5:

_Je
Afy

fi=f27 5)

In the formulas: A f; is the bandwidth; f, is the center frequency

Q 4

of the k-th bin; f is the center frequency of the lowest frequency bin;
B represents the number of bins within each octave frequency.

This method analyzes signals using a set of filters with
logarithmic frequency distribution and constant Q values to
generate complex spectrograms with high-frequency resolution.

244 CENS

CENS shows that chroma changes are more robust to temporal
and timbre variations (Abraham et al., 2023). To extract CENS
features, the audio signal is first processed through pre-emphasis,
framing, windowing, and STFT. Then, the chroma information of
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each frame is extracted through a 12-dimensional chroma filter
bank. Finally, temporal smoothing and normalization are performed
to generate the CENS feature representation.

2.5 Feature enhancement

The critical information in snoring sounds is often concentrated
within specific frequency bands or short-term local regions.
However, this information can be easily obscured by background
noise or irrelevant components in the original feature maps, thereby
reducing the model’s ability to detect abnormal patterns. To address
this issue, this paper draws on the enhanced spectrogram technique
proposed by Wang et al. (2024) and proposes an adaptive filter
bank enhancement method. Unlike methods that rely on fixed
frequency band settings, the proposed method selects enhancement
channels based on energy distribution, making it compatible with
all four types of feature maps used in this study. Specifically, it
evaluates the energy within each frame and dynamically adjusts
filter response weights to emphasize high-energy regions. When
the energy output of a filter exceeds the 80th percentile of that
frame’s energy distribution, an enhancement factor of f is applied;
otherwise, the filter response remains unchanged. The f8 value was
determined via grid search on the validation set of the baseline
model in this paper (f€{1.1,1.2,...,2.0}, step size 0.1), with f3
= 1.5 yielding the best performance on the validation set (see
Supplementary Table S1). The enhanced filter bank is expressed in
Equations 6-8:

H! (f.t) = a,t) - H,(f) (6)
where,
and
(8)

Ei(Pt) :ZHi(f)'Pt(f)
f

In the formulas: H;(f) represents the response of filter i at
frequency f; a;(f) represents the enhancement factor of frame f; 8
is the enhancement multiple; -P,(f) represents the power spectrum
of audio at frame t and frequency f; E;(P,) is the response value of
filter i to P,.

Figure 2 shows examples of visual comparisons of different
feature maps before and after enhancement. The original feature
maps are shown on the left, and the enhanced feature maps are
shown on the right. The high-energy regions in the enhanced feature
map are clearer and more prominent.

2.6 Classification

This paper proposes a snoring sound classification method that
is based on an improved ConvNeXt model integrating dynamic
convolution and attention mechanisms. The method consists of
four components: the ConvNeXt network, the Alterable Kernel
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Mel Spectrogram

MFCCs
CQT Spectrogram
CENS
EE i
Original Features Enhanced Features
FIGURE 2

Example of feature map enhancement before and after comparison.

Convolution (AKConv) module, the Convolutional Block Attention
Module (CBAM), and the Conv2Former module. ConvNeXt serves
as the backbone network, extracting multi-scale acoustic features.
The AKConv module enhances adaptability to the irregular spectral
features of snoring by dynamically adjusting the convolutional
kernel shapes. CBAM utilizes a channel-spatial attention mechanism
to emphasize key frequency bands while suppressing background
noise. Finally, the Conv2Former module combines local and global
feature interactions to effectively model the periodic dependencies
of snoring events. This integrated design addresses snoring
signals’ characteristics of short-time non-stationarity, cross-band
distribution, and periodicity. It enables the model to simultaneously
capture both local spatiotemporal features and global periodic
structures while enhancing robustness against noise interference,
achieving superior feature representation capabilities compared to
standalone modules or traditional ConvNeXt architectures. The
overall model architecture is illustrated in Figure 3.

2.6.1 ConvNeXt

ConvNeXt (Liu et al.,, 2022), developed by Facebook AI Research
in 2022, is a high-performance convolutional neural network that
integrates key design ideas from Transformer architectures. By
introducing large convolutional kernels, streamlining convolutional
operations, and optimizing the overall network structure, ConvNeXt
achieves substantial gains in both performance and computational
efficiency. It is available in four variants: ConvNeXt-Tiny (T), Small
(S), Base (B), and Large (L). In this study, the ConvNeXt-T model
is adopted as the backbone network. The detailed structure is
presented in Figure 4.
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The input to the network is a feature map of size 224 x 224 x
3. It first passes through an initial convolutional layer with a
4x four convolutional kernel and a stride of four, generating a
feature map of 56 x 56 x 96, followed by layer normalization (LN)
processing. This output then enters Stage 1, where it undergoes feature
transformation through three ConvNeXt Blocks, each employing the
standard structure of depthwise separable convolutions combined with
multilayer perceptron (MLP). After downsampling with a stride of 2,
a feature representation with a spatial size of 28 x 28 and 192 channels
is obtained, which is then fed into Stage 2 comprising three ConvNeXt
blocks. The Stage 2 output is downsampled to 14 x 14 x 384 and input
into Stage 3. After another downsampling step, Stage 3 generates a 7 x
7 x 768 feature map, which is then fed into Stage 4. The resulting 7 x
7 x 768 feature map is compressed by global average poolingintoa 1 x
1 x 768 vector, followed by LN. Finally, this vector is fed into a linear
layer (also called fully connected layer) with an output dimension of 2
(where two represents the number of classification categories), yielding
the classification results.

2.6.2 AKConv

In snoring sound classification tasks, traditional convolution
operations struggle to effectively capture irregular snoring feature
patterns in spectrograms. To address this, this study introduces the
AKConv module (Zhang et al., 2023) into Stage 2 of ConvNeXt. Its
core advantage lies in dynamically adjusting the shape and number
of parameters of convolutional kernels to adaptively match the
diverse morphological features of the snoring spectrum. In this
study, the number of core parameters (num_param) was set to three
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to balance model complexity and representational capacity, while the
convolution stride was fixed at one to preserve spatial resolution.
As illustrated in Figure 5, the AKConv module takes a spectrogram
with dimensions (C, H, W) as input. It first determines the initial
sampling position of the convolutional kernel through a coordinate
generation algorithm. Specifically, the origin is fixed at the upper-left
corner (0,0) as the common reference point for all kernel samples.
The grid range is obtained by dynamically computing a base size
(base_int) and handling the remainder: a regular grid region is first
constructed, then the remaining points are added, resulting in an
initial sampling layout that adapts to any number of parameters.
Subsequently, a Conv2d layer is employed to learn spatial offsets
of shape (B, 2N, H, W). The weights of this offset prediction
layer are initialized to zero and undergo learning rate decay of 0.1
during backpropagation to ensure training stability. Subsequently,
feature resampling is performed on the adjusted sampling points
to precisely capture the deformed feature regions. Finally, the
resampled features undergo dimension reshaping, convolution
operations, and normalization processing. The optimized feature
representations are then output via the SiLU activation function.
It is worth noting that AKConv is an early variant of dynamic
convolution. Its successor, LDConv (Zhang X. et al., 2024), further
improves computational efficiency. However, AKConv was used in
all experiments conducted in this paper.

2.6.3 CBAM

In this classification task, key frequency bands in the
spectrogram (such as snoring harmonics) are often intermingled
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with background noise in both the spatial and channel dimensions.
To address this specificity, this paper introduces the CBAM
(Woo et al., 2018), which combines the Channel Attention Module
(CAM) and the Spatial Attention Module (SAM). Its core function
is to highlight important features through dual-path weighting,
as shown in Figure 6.

The CAM performs max pooling and average pooling on the
input feature map F (output size 1x 1), respectively, passing
through a shared two-layer MLP (with a reduction ratio of 16)
to obtain feature maps A and B. The sum of these two feature
maps is passed through a sigmoid function to generate the channel
attention weight M(F), which enhances key frequency bands
associated with snoring sounds. The calculation formulas are given
in Equations 9, 10:

Mc(F) = a(W, (W, (FSg)) + Wy (Wo (o)) 9)
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F, =M (F)oF (10)

In the formulas: M~(F) is the output weight of channel attention;
o is the sigmoid activation function; W, and W, are the weights
of the first and second fully connected layers, respectively; F{fvg and
FS , represent average pooling and max pooling at the channel level,
respectively; F; denotes the channel attention feature map obtained
by weighting the original feature map F; and ® denotes element-wise
multiplication.

The SAM performs max pooling and average pooling on the
feature map F,, then concatenates and fuses the results. It undergoes
a 7 x 7 convolution with 3-stride padding to reduce the dimension
to a single channel. Following this, a sigmoid function generates
the spatial attention weights Mg(F,), focusing on regions with
concentrated energy in the spectrum. The calculation formulas are
presented in Equations 11, 12:
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AKConv network structure.
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Ms(Fy) = o (77 ([Fougi Fonax])) (11)
F, = M(F,)oF, (12)

In the formulas: M¢(F,) is the output weight of spatial attention;

77 1isa7x 7 convolution kernel; Fng and 5,

and max pooling at the spatial level, respectively; F, denotes the final

are average pooling

output feature map of the CBAM module after spatial attention; and
© denotes element-wise multiplication.

2.6.4 Conv2Former

For the modeling requirements of long-range dependencies
in snoring signals, traditional self-attention mechanisms are often
employed. However, these methods typically incur high computational
costs, which limit their practical application. To solve this problem,
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this paper introduces the Conv2Former module (Hou et al., 2024)
in Stage 4, whose structure is shown in Figure 7. This module is
divided into four stages, each with different image resolutions, channel
counts, and numbers of convolutional modulation blocks (Conv
blocks). Adjacent stages reduce image resolution while increasing
the number of channels through a patch embedding block (patch
embed), employing a pyramid-like structure to extract features of
different granularities. The Conv block replaces the self-attention
layer in the Transformer with a convolutional modulation (ConvMod)
layer. The key parameters of the ConvMod used in this study are as
follows: the input and output dimensions are set to 768, matching the
channel number of Stage 4; internally, an 11 x 11 depthwise separable
convolution with padding of 5 is applied to preserve resolution,
allowing the large convolutional kernel to encode spatial features and
enhance global information modeling.
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2.7 Statistical methods and 5-fold
cross-validation

Statistical analyses were performed using SPSS version 26.0.
Continuous variables were first tested for normality. Normally
distributed data are expressed as mean + standard deviation (SD)
and compared between groups using the independent-samples
t-test, whereas non-normally distributed data are expressed as
median (interquartile range, IQR) and compared using the Mann-
Whitney U test. Categorical variables were presented as counts
and percentages, and group comparisons were conducted using the
Chi-square (y*) test or Fisher’s exact test when appropriate.

In ablation experiments, models were evaluated using 5-fold
cross-validation based on patient grouping. Data from 31 patients
were divided into five folds at the patient level, with each fold
containing complete data from distinct patients (detailed statistics
are provided in Supplementary Table S2). This ensured strict subject
independence between folds and guaranteed that no segment-level
information from the same patient appeared in both training and
validation sets. In each iteration, one fold was used for validation
and the remaining four for training. After repeating this process five
times, each fold had been used as the validation set once. Results are
presented as mean + SD for each fold. Differences between the model
in this study and models with added modules were compared using
the Wilcoxon signed-rank test. The significance level was set at p <

«  »

0.05, with significant differences marked with “*” in the tables.

3 Results
3.1 Experiment setup

This experiment was conducted in the following software and
hardware environment: the processor is an Intel® Xeon® Silver
4210R (2.40 GHz), equipped with an NVIDIA RTX 3080 (10 GB)
graphics card, and the operating system is Ubuntu 20.04.6. The deep
learning framework used is PyTorch 2.4.1 (CUDA 11.8), running
in a Python 3.8.20 environment. During training, the batch size
was set to 32, the AdamW optimizer was used for parameter
updates, the initial learning rate was 2 x 104, and the weight decay
coefficient was 0.05. The model was trained for 100 epochs, using
the cross-entropy loss function to supervise the optimization process
of the binary classification task.
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3.2 Evaluation criteria

This paper uses five metrics to evaluate model performance,
including accuracy, sensitivity, specificity, positive predictive value
(PPV), and Fl-score. Accuracy represents the overall proportion
of correctly classified samples and serves as a basic indicator of
classification performance. Sensitivity measures the model’s ability
to correctly identify actual snoring events, while specificity reflects
its capacity to correctly recognize non-snoring samples. PPV refers
to the proportion of true snoring samples among those predicted
as snoring. Fl-score provides a comprehensive assessment of the
model’s robustness under imbalanced category conditions.

The calculation formulas are shown in Equations 13-17:

Accuracy = __ TP+TN (13)
TP+ TN+ FP+ FN
TP
S itivity = ——— 14
ensitivity TP+ N (14)
TN
S ificity = ———— 15
pecificity TN+ FP (15)
TP
PPV = 16
TP+ FP (16)
2PPV e Sensitivity
F1 - score = ————~ (17)
PPV + Sensitivity

Where TP, TN, FP, and FN represent true positive, true negative,
false positive, and false negative, respectively.

3.3 Performance evaluation of feature
enhancement

To verify the applicability and effectiveness of the feature
enhancement method proposed in this paper on different feature
maps, a comparison experiment was conducted between the Mel
spectrogram and CQT spectrogram before and after enhancement
using the method proposed in this paper. The comparison results
are shown in Table 2. The experimental results show that the
two enhanced spectrograms are superior to the unenhanced
ones in all evaluation metrics, indicating that the adaptive filter
bank enhancement method proposed in this paper can effectively
improve the representation ability of key information in the
feature map.
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TABLE 2 Comparison of results before and after feature enhancement (Unit: %).

Feature map Accuracy Sensitivity Specificity Fl-score
Mel Spectrogram 89.10 88.55 89.73 89.05 89.08
Enhanced Mel Spectrogram 90.24 89.67 90.88 90.25 90.24
CQT Spectrogram 87.46 87.37 87.67 87.59 87.51
Enhanced CQT Spectrogram 88.35 88.32 88.72 88.35 88.37

PPV, positive predictive value.

3.4 Comparative experiment

3.4.1 Snoring versus non-snoring classification

To validate the effectiveness of the proposed method, we
conducted comparative experiments between snoring and non-
snoring sounds using the four enhanced acoustic feature maps
against the following eight classical classification networks. The
experimental results are shown in Table 3.

For statistical robustness, classification accuracy was further
reported with 95% confidence intervals (CIs) estimated by patient-
level bootstrap (B = 1,000 resamples, seed = 42), where each patient
was treated as the sampling unit to avoid segment-level leakage. As
shown in Table 3, the proposed method significantly outperformed
the comparison models in all evaluation metrics for the four acoustic
feature maps. Among them, the Mel spectrogram achieved the
highest classification accuracy at 90.24% (95% CI: 85.31%-94.67%),
followed by MFCCs, CQT spectrogram, and CENS. The overall
performance of the lightweight models MobileNetV3 and DFNet
was lower than that of medium-sized models such as ResNet50
and DenseNet121. The ConvNeXt baseline model outperformed
the traditional CNN architectures DenseNet121 and ResNet50,
with accuracy gains of 1.71% and 2.29%, respectively, on the Mel
spectrogram. Compared to the ConvNeXt baseline model, our
method achieved approximately 2% improvements in accuracy,
sensitivity, specificity, PPV, and F1-score on the Mel spectrogram.
Accuracy gains on MFCCs, CQT spectrogram, and CENS also
ranged from 2% to 4%. Overall, our method maintained a consistent
advantage across models of different scales, and its F1-score and
accuracy remained closely aligned, supporting its robustness. We
also evaluated performance at the patient level through majority
voting across segments (Supplementary Table S3). In the validation
set (n = 6 patients), the proposed model correctly classified
all patients (100.00% accuracy), whereas the ConvNeXt baseline
reached 83.33% (5/6). This indicates that the improvement observed
at the segment level is preserved at the clinically relevant per-
patient level.

Figure 8 shows the comparison of model accuracy between
the Mel spectrogram and CQT spectrogram on the validation
set. With the exception of the Vision Transformer network,
which exhibited performance instability, all other models achieved
accuracy above 80%. This paper’s method demonstrates optimal
convergence stability on different feature maps. In summary, the
effective fusion of dynamic convolution and attention mechanisms
enhances the model’s ability to discriminate the time-frequency
features of snoring.
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3.4.2 Stenotic versus non-stenotic snoring
classification

To investigate the characteristic differences between snoring
sounds from patients with cerebrovascular stenosis and those
without stenosis, we selected one representative model from each
scale (small, medium, and large) for classification experiments
and comparisons. Similarly, accuracy was reported with 95% Cls
estimated using patient-level bootstrap (B = 1,000 resamples, seed =
42) to ensure subject independence. As summarized in Table 4, all
metric values of the proposed model outperformed other baseline
models, with an accuracy of 84.68% (95% CI: 76.03%-89.62%)
on the Mel spectrogram. These findings indicate that the
proposed method demonstrates potential in distinguishing
between stenotic and non-stenotic snoring sounds; however, these
results should be regarded as preliminary due to the limited
cohort size.

To further validate the robustness of these findings at a
clinically relevant scale, we conducted patient-level analysis, as
summarized in Supplementary Table S4. When predictions were
aggregated per patient in the validation set (n = 6), the proposed
model achieved 83.33% accuracy (5/6 patients correctly classified)
and identified all stenotic patients with 100.00% sensitivity (4/4),
compared with 66.67% accuracy (4/6) for the ConvNeXt baseline.
This suggests that the method may prioritize stenotic patients with
high sensitivity, even with a small cohort.

3.5 Ablation experiment

To evaluate the impact of each proposed module on the
performance of the ConvNeXt baseline, ablation experiments
were conducted by incorporating different modules onto the four
enhanced feature maps for snoring versus non-snoring classification.
The results are summarized in Table 5. Performance varies by
module and feature map. On the Mel spectrogram, the AKConv
module demonstrates the most significant performance, achieving
an accuracy of 89.62%, which represents a 1.46 percentage point
improvement over the baseline ConvNeXt model, while also
increasing specificity to 90.05%. This suggests that dynamically
adjusting the shape of convolutional kernels enhances adaptability to
irregular snoring spectra. Similarly, the AKConv module performs
best on the MFCCs, improving specificity by 1.9%. The CBAM
module excels on the CQT spectrogram, increasing sensitivity by
2.04%. The Conv2Former module contributes most significantly to

frontiersin.org


https://doi.org/10.3389/fphys.2025.1661258
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Hua et al.

TABLE 3 Comparison of classification performance for snoring and non-snoring sounds (Unit: %).

10.3389/fphys.2025.1661258

Feature map Accuracy (95% Cl) Sensitivity Specificity PPV F1-score
ViT-B (Dosovitskiy et al., 2021) 76.43 (65.37-82.91) 77.36 78.21 78.52 78.03
MobileNetV3-L (Sillaparaya et al., 2025) 82.51 (73.23-89.57) 81.88 83.02 82.24 82.37
DFNet (Li et al., 2025) 84.32 (77.11-90.07) 83.57 84.80 84.15 84.16
Swin-T (Liu et al,, 2021) 84.26 (76.48-90.81) 83.31 85.17 84.39 84.60
Mel Spectrogram XCIT-T (El-Nouby et al., 2021) 83.09 (74.02-89.96) 83.13 83.76 83.21 83.20
ResNet50 (He et al., 2016) 85.87 (79.36-91.79) 84.79 86.78 86.73 85.85
DenseNet121 (Huang et al., 2017) 86.45 (80.47-91.63) 82.37 86.69 86.25 86.11
ConvNeXt-T (Liu et al., 2022) 88.16 (82.97-92.54) 87.85 88.24 88.19 88.07
This paper 90.24 (85.31-94.67) 89.67 90.88 90.25 90.24
ViT-B (Dosovitskiy et al., 2021) 69.45 (58.92-78.33) 68.76 69.88 70.12 69.50
MobileNetV3-L (Sillaparaya et al., 2025) 79.00 (70.12-86.41) 78.31 79.52 79.03 78.87
DFNet (Li et al., 2025) 81.31 (74.05-87.29) 80.85 81.66 81.25 81.30
Swin-T (Liu et al,, 2021) 82.31(75.19-88.77) 82.77 81.73 82.27 82.34
MFCCs XCIT-T (El-Nouby et al., 2021) 79.58 (71.47-86.97) 79.67 78.81 79.79 79.82
ResNet50 (He et al., 2016) 83.57 (77.41-89.21) 83.50 83.32 83.61 83.62
DenseNet121 (Huang et al., 2017) 84.15 (78.33-89.62) 84.57 84.06 84.25 84.27
ConvNeXt-T (Liu et al., 2022) 86.84 (81.40-91.27) 87.49 86.32 86.89 86.89
This paper 89.11 (83.77-93.52) 89.44 88.67 89.12 89.21
ViT-B (Dosovitskiy et al., 2021) 77.38 (67.90-85.73) 76.82 78.43 78.25 77.64
MobileNetV3-L (Sillaparaya et al., 2025) 80.55 (72.30-87.92) 79.68 81.23 80.46 79.94
DFNet (Li et al., 2025) 82.03 (75.12-87.86) 81.55 82.67 82.14 82.00
Swin-T (Liu et al.,, 2021) 83.05 (76.05-89.40) 82.14 84.11 83.30 83.22
CQT Spectrogram | XGiT-T (El-Nouby et al., 2021) 82.33 (74.50-88.98) 82.42 82.69 82.37 82.38
ResNet50 (He et al., 2016) 84.05 (78.10-89.65) 83.97 84.81 84.52 84.12
DenseNet121 (Huang et al., 2017) 84.52 (79.12-89.48) 84.70 84.38 84.52 84.53
ConvNeXt-T (Liu et al., 2022) 86.14 (81.02-90.76) 85.61 86.65 86.13 86.15
This paper 88.35 (83.77-92.80) 88.32 88.72 88.35 88.37
ViT-B (Dosovitskiy et al., 2021) 66.89 (55.97-76.52) 74.63 59.14 64.57 69.23
MobileNetV3-L (Sillaparaya et al., 2025) 73.59 (63.84-81.97) 74.00 72.80 73.12 73.25
CENS
DENet (Li et al., 2025) 76.16 (68.10-83.94) 76.30 75.52 76.07 76.13
Swin-T (Liu et al,, 2021) 77.20 (69.02-83.98) 79.43 75.11 77.24 77.25
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TABLE 3 (Continued) Comparison of classification performance for snoring and non-snoring sounds (Unit: %).

Feature map Accuracy (95% Cl) Sensitivity Specificity ‘ ‘ F1-score
XCIT-T (El-Nouby et al., 2021) 77.15 (69.05-83.84) 76.67 76.70 76.71 76.68
ResNet50 (He et al., 2016) 82.87 (77.10-88.24) 82.24 83.55 83.78 82.91
DenseNet121 (Huang et al., 2017) 81.66 (75.98-87.32) 80.62 82.45 82.59 81.63
ConvNeXt-T (Liu et al., 2022) 84.37 (79.01-89.40) 84.19 84.58 84.44 84.40
"This paper 87.94 (82.83-92.45) 87.05 88.94 87.88 87.96

The MobileNetV3-L results in this table refer only to the backbone, without the modified SENet, module used in (Sillaparaya et al., 2025). In this study, only the backbone was reproduced to
ensure consistency in the comparative experiments. CI: confidence interval.
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FIGURE 8
Comparison of validation set accuracy across different feature representations. (a) Mel Spectrogram. (b) CQT Spectrogram.

TABLE 4 Comparison of classification performance for stenotic and non-stenotic snoring sounds (Unit: %).

Feature map Model Accuracy (95% Cl) Sensitivity Specificity F1-score
ViT-B 69.58 (57.12-79.24) 69.30 69.92 69.55 69.35
MobileNetV3-L 77.34 (66.20-85.92) 77.65 77.05 77.21 77.43
Mel Spectrogram ResNet50 81.92 (73.05-88.48) 81.40 82.18 81.85 81.70
ConvNeXt-T 82.41 (74.22-88.95) 81.76 83.05 82.49 82.28
This paper 84.68 (76.03-89.62) 84.12 84.35 84.92 84.97
the CENS map, improving accuracy by 1.97% and demonstrating its We further validated module performance using 5-fold cross-
strength in global feature modeling. validation on the Mel spectrogram and assessed significance with

To further validate the effectiveness of the proposed method, we ~ the Wilcoxon test (Table 6). The ConvNeXt-T model achieved an
plotted the loss curves of the baseline model and our model on both ~ average accuracy of 88.24%. Introducing different modules on
the training and validation sets. As shown in Figure 9, our method  this foundation yielded performance improvements, with AKConv
converges faster during training and achieves alower finalloss value, ~ demonstrating the most prominent enhancement. CBAM and
indicating that the introduced module enhances feature extraction ~ Conv2Former also delivered gains, but the differences compared
capabilities and improves the model’s classification performance. to our proposed model were statistically significant (p < 0.05).
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TABLE 5 Ablation experiment results (Unit: %).

Feature map Accuracy Sensitivity Specificity F1-score
ConvNeXt-T 88.16 87.85 88.24 88.19 88.07
AKConv 89.62 89.10 90.05 89.58 89.62
Mel Spectrogram CBAM 89.11 88.65 89.45 89.06 89.08
Conv2Former 88.75 88.40 88.98 88.80 88.77
This paper 90.24 89.67 90.88 90.25 90.24
ConvNeXt-T 86.84 87.49 86.32 86.89 86.89
AKConv 88.45 88.83 88.22 88.41 88.46
MEFCCs CBAM 88.14 88.40 87.85 88.05 88.12
Conv2Former 87.95 88.12 87.72 87.90 87.96
This paper 89.11 89.44 88.67 89.12 89.21
ConvNeXt-T 86.14 85.61 86.65 86.13 86.15
AKConv 87.10 86.95 87.24 87.06 87.00
CQT Spectrogram CBAM 87.92 87.65 88.20 87.90 87.88
Conv2Former 87.35 87.40 87.28 87.34 87.33
This paper 88.35 88.32 88.72 88.35 88.37
ConvNeXt-T 84.37 84.19 84.58 84.44 84.40
AKConv 85.18 84.68 85.52 85.08 85.14
CENS CBAM 85.75 85.23 86.25 85.74 85.72
Conv2Former 86.34 86.02 86.23 86.33 86.34
This paper 87.94 87.05 88.94 87.88 87.96
a b
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FIGURE 9
Comparison of training and validation loss curves between the baseline and proposed models. (a) Baseline model. (b) Proposed model.
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TABLE 6 Comparison of 5-fold cross-validation performance for ablation experiments on the Mel spectrogram (Unit: %).

Model variant Accuracy Sensitivity Specificity F1-score
ConvNeXt-T 88.24 + 0.88" 87.91+0.95° 88.32 % 0.90° 88.27 £ 0.93" 88.19 +0.91°
+AKConv 89.57 +0.93 89.12 + 1.01* 90.03 + 0.88" 89.51 + 1.06" 89.59 +0.92"
+CBAM 89.18 + 0.95° 88.69 = 1.03* 89.56 = 0.91* 88.87 = 1.08" 89.11 + 0.94*
+Conv2Former 88.76 + 0.97* 88.33 + 1.05" 88.01 +0.93* 88.42 + 1.11* 88.78 + 0.96*
This paper 90.31 + 0.82 89.74 + 0.95 90.88 + 0.91 90.28 + 0.97 90.34 + 0.89

Results are reported as mean + SD over 5-fold cross-validation. Values marked with * indicate significant differences compared with the proposed model, based on the Wilcoxon signed-rank
test (p < 0.05).

TABLE 7 Computational efficiency comparison of different models.

Model Params (M)  FLOPs (G) GPU Latency GPU CPU Latency CPU
(ms) Throughput (ms) Throughput
(Img/s) (Img/s)
ResNet50 2351 413 12.05 82.98 4043 025
MobileNetV3 420 0.23 13.08 76.40 2900 034
Swin-T 27.52 313 39.41 25.37 2139 047
ConvNeXt-T 27.82 449 15.03 65.20 2200 0.45
'This paper 32.05 5.20 16.12 61.80 2398 042

Params: number of parameters. FLOPs: floating-point operations per second. img/s: images processed per second.

This indicates that while each module contributes to feature 3.7 NoOise robustness experiment
enhancement, our model achieves the best overall performance.

To evaluate the generalization ability of the proposed method
in real-world environments, noise robustness experiments were
3.6 Computational ef—ﬁciency compa rison conducted. Background noise was selected from the publicly
analysis available MUSAN dataset (Snyder et al., 2015), which contains
speech, music, and various environmental sounds, to simulate
To evaluate the computational efficiency, several representative interference in hospital and daily settings. For the snoring versus
models were compared on the dataset in this paper, Don-snoring classification validation set, each audio segment was
as shown in Table 7. It can be observed that ResNet50 achieves  linearly mixed with MUSAN noise at different signal-to-noise ratios

the lowest latency of 12.05 m and the highest throughput of 82.98 ~ (SNR=+20, +10, 0, =5 dB), with noise energy scaled to achieve the
images per second (img/s) on the GPU, but its latency increases  target SNR. The mixed audio segments were preprocessed following
significantly during CPU inference. MobileNetV3, as a lightweight ~ the same procedures as in the model training phase and converted
model with minimal parameters and floating-point operations  into Mel spectrograms for model input.

per second (FLOPs), performs relatively fast on the GPU but Table 8 summarizes the performance of our method and the
underperforms compared to ConvNeXt-T on the CPU. Although ~ ConvNeXt-T baseline model under different noise conditions.
Swin-T has a large number of parameters, it exhibits the highest Under mild noise (+20 dB), both models exhibit only a slight decline
GPU latency and lowest throughput. ConvNeXt-T demonstrates a ~ compared to the noise-free condition. As the noise level increases,
good balance on both GPU and CPU, with relatively stable latency ~ our method shows a significantly slower performance degradation,
and throughput. In comparison, the proposed model in this paper  reflecting its stronger resistance to interference. At 0 dB SNR, our
increases both parameters and computational cost, resulting in ~ model maintains an F1-score of 83.36%, significantly outperforming
slightly lower inference latency and throughput than ConvNeXt-T.  the baseline model. Even under extreme noise conditions (-5 dB),
Nevertheless, it still significantly outperforms Swin-T and other it still achieves an F1-score of 78.62%, exceeding the baseline model
lightweight models. It achieves the highest recognition accuracy by over 8 percentage points. These results conclusively demonstrate
while maintaining good computational efficiency, offering the best  that the introduced module enhances the model’s feature extraction
overall performance. and discrimination capabilities in complex acoustic environments,
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TABLE 8 Performance comparison of proposed model and ConvNeXt-T under different SNR conditions.

SNR (dB) Performance (%)
Accuracy Sensitivity Specificity Fl-score
0 90.24 89.67 90.88 90.25 90.24
+20 89.12 88.75 89.53 88.87 88.82
This paper +10 86.65 85.20 87.25 85.59 85.87
0 83.58 82.11 83.79 83.26 83.36
-5 78.32 77.05 78.16 77.97 78.62
© 88.16 87.75 88.24 88.19 88.07
+20 86.20 85.89 86.95 86.13 85.94
ConvNeXt-T +10 82.67 81.52 82.89 81.92 82.05
0 77.58 76.33 78.05 77.43 77.14
-5 70.96 69.74 71.35 70.30 70.58

SNR: signal-to-noise ratio.

thereby improving its robustness and practicality in real-world  descriptive statistics were performed for these two medical histories.
scenarios. Overall, the two groups were comparable in primary demographic
and vascular risk factors, providing a reliable foundation for
analyzing snoring-related characteristics.
3.8 Visualization experiment
3.9.2 Analysis of differences in snoring acoustic
In order to assess the feature extraction capability of the features
proposed model, Grad-CAM (Selvaraju et al., 2017) was employed We used the Mann-Whitney U test to analyze differences
to visualize the feature maps from the final layer of the feature  between the stenotic group and the non-stenotic group in three
extraction network. Four types of acoustic representations from  aspects: low-frequency energy ratio (<650 Hz energy proportion),
a randomly selected snoring segment were used as input. Then,  snoring frequency, and snoring event duration. Snoring event
ViT-B, Swin-T, ResNet50, DenseNet121, and ConvNeXt networks  duration was calculated by statistically determining the start and
were chosen for feature map visualization experiments. The results ~ end points of each independent snoring event and measuring its
are shown in Figure 10. Taking the Mel spectrogram and CQT  duration; the median duration of all events per patient was used
spectrogram as examples, our method demonstrates greater focus  as the representative value. The low-frequency energy ratio was
on the key frequency bands of snoring compared to the other five  calculated based on the power spectral density (PSD) of each snoring
networks, whose focus appears more dispersed. This confirms that ~ segment. Specifically, the ratio of energy in the <650 Hz band to total
our approach captures more discriminative acoustic features. energy was used as the low-frequency energy ratio for that segment.
The median value across all segments for each patient was then
taken as the individual indicator. The 650 Hz threshold referenced

3.9 Comparative analysis of stenotic and the 652 Hz threshold proposed by Lee et al. (Lee et al., 2016) and
non-stenotic patients was rounded for computational simplicity.

Results shown in Table 10 indicate that the “low-frequency
3.9.1 Demographic characteristics energy ratio” was significantly lower in the stenotic group than

Beyond algorithmic research, we also conducted an in-depth  in the non-stenotic group (p = 0.025). This suggests that snoring
analysis of the clinical characteristics of the study subjects. Table 9 energy distribution in stenotic patients tends toward high-frequency
summarizes the baseline demographic characteristics and  components, consistent with previous findings showing a positive
comorbidities of patients in the stenotic and non-stenotic groups.  correlation between snoring energy in the 652-1,500 Hz band
No significant differences were observed between the two groups  and CCA-IMT (Lee et al., 2016). Regarding snoring frequency,
in terms of age, gender distribution, hypertension, diabetes,  the stenotic group exhibited significantly more nocturnal snoring
atherosclerosis, dyslipidemia, or apnea-hypopnea index (AHI)  events per 8-h sleep period compared to the non-stenotic group
(p>0.05). Given that cerebral infarction and cerebral ischemia  (p = 0.031). This likely reflects more frequent upper airway
are common clinical consequences of cerebrovascular stenosis, only ~ obstruction or turbulence, aligning with Lee etal’s (Lee et al,
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FIGURE 10
Comparative Grad-CAM visualizations of feature attention among different models.

TABLE 9 Baseline characteristics of patients in stenotic and non-stenotic groups.

Stenotic group (n = 16) Non-stenotic group (n = 15) = F

Age (years) 71.44+7.70 67.53£9.12 1.284 0.210
Sex 0.819 0.366
Female 7 (43.8) 9 (60.0)
Male 9 (56.2) 6 (40.0)
Hypertension 11 (68.8) 9 (60.0) 0.259 0.611
Diabetes 8 (50.0) 6 (40.0) 0.313 0.576
Atherosclerosis 7 (43.8) 6 (40.0) 0.045 0.833
Dyslipidemia 6(37.5) 5(33.3) 0.000 1.000
AHI (events/h) 16.05 £ 5.90 13.75 + 3.80 1.283 0.210
Cerebral infarction 4(25.0) 0(0.0) — —
Cerebral ischemia 3(18.8) 0(0.0) — —

Data are expressed as mean + SD or number (%). “Continuous variables were compared using independent-samples t-test, and categorical variables were compared using the y test, as
appropriate. AHI: apnea-hypopnea index.

2008) conclusion that “heavy snoring is significantly associated with  or substantial individual variability. In summary, while this study
carotid atherosclerosis” In contrast, snoring event duration was  did not identify significant intergroup differences in snoring event
slightly longer in the stenotic group but did not reach statistical ~ duration, the variations in low-frequency energy ratio and snoring
significance (p = 0.185), likely due to the limited sample size  frequency provide preliminary acoustic evidence for assessing
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TABLE 10 Comparison of snoring characteristics between stenotic and non-stenotic groups.

Low-frequency energy ratio

Snoring frequency (events/8 h)

10.3389/fphys.2025.1661258

Snoring event duration (s)

Stenosis group (n = 16)

0.52 (0.46-0.59)

835.50 (667.50-1,341.50)

1.60 (1.48-1.82)

Non-Stenosis group (n = 15)

0.69 (0.58-0.77)

649.00 (434.00-764.50)

1.51 (1.37-1.65)

Z

-2.253

2.174

1.344

p-value

0.025

0.031

0.185

Data are expressed as median (IQR). p values are reported to three decimal places. Statistical comparisons were performed using the Mann-Whitney U test. Significance level: p < 0.05.

TABLE 11 Sensitivity analysis of snoring characteristics after excluding cerebral infarction/ischemia cases.

Snoring frequency (events/8 h)

Snoring event duration (s)

Stenosis group (n = 12)

Low-frequency energy ratio

0.52 (0.46-0.57)

835.50 (697.75-1,341.50)

1.59 (1.48-1.82)

Non-Stenosis group (n = 15)

0.69 (0.58-0.77)

649.00 (434.00-764.50)

1.51 (1.37-1.65)

Z

—2.098

2.390

1.073

0.018

0.294

p-value 0.038

Data are expressed as median (IQR). p values are reported to three decimal places. Statistical comparisons were performed using the Mann-Whitney U test. Significance level: p < 0.05.

cerebrovascular stenosis risk through snoring acoustic features,
offering potential clinical implications. Future research should
incorporate larger samples and quantitative respiratory parameters
from PSG for in-depth validation.

To control for potential confounding effects of a history of
cerebral infarction or cerebral ischemia, a sensitivity analysis was
conducted after excluding these patients. As shown in Table 11,
the Mann-Whitney U test revealed that the low-frequency energy
ratio in the stenotic group remained significantly lower than that
in the non-stenotic group (p = 0.038), and the snoring frequency
was significantly higher (p = 0.018); while the difference in snoring
event duration between the two groups remained statistically
insignificant (p = 0.294). These findings indicate that even after
controlling for the confounding effects of cerebral complications,
the characteristics of high-frequency shift in snoring energy
distribution and increased snoring frequency in stenotic patients
persist stably, further validating the reliability of the aforementioned
analysis.

4 Discussion

The ConvNeXt model proposed in this study, which integrates
dynamic convolution and attention mechanisms, outperformed
baseline networks in snoring sound classification and maintained
stable performance under noisy conditions. Statistical analysis
revealed significant differences in specific acoustic features (low-
frequency energy ratio and nocturnal snoring frequency) between
the cerebrovascular stenosis and non-stenosis groups. These findings
provide preliminary evidence that snoring acoustics may serve
as potential indicators of cerebrovascular risk, although further
validation in larger cohorts is required.
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4.1 Clinical significance and application
scenarios

Based on the current findings, the proposed method
demonstrates potential clinical application value in three aspects.
First, in community or outpatient screening settings, automated
snoring analysis can serve as a low-cost, non-invasive auxiliary
tool for the preliminary identification of suspected cases. For
example, patients exhibiting a markedly elevated nocturnal snoring
frequency (=800 events during an 8-h sleep period) and a clearly
reduced low-frequency energy ratio could be prioritized for carotid
ultrasound or other vascular assessments. Second, the model
maintained stable performance under noisy conditions, indicating
its applicability in hospital wards and home sleep monitoring
scenarios. This adaptability expands the potential for continuous and
long-term observation of high-risk individuals outside laboratory
environments. Third, the observed acoustic differences between the
stenosis and non-stenosis groups suggest that snoring features may
serve as early warning indicators of cerebrovascular abnormalities
in patients with OSAHS and help clinicians identify which patients
require further vascular evaluation.

Future studies should establish quantitative criteria for referral
or further evaluation, such as defining what level of nocturnal
snoring frequency or range of low-frequency energy ratios should be
considered clinically significant. These criteria should be validated
through larger, prospective cohort studies.

4.2 Limitations and future work
Despite the advantages demonstrated by the proposed method,

several limitations remain. First, the sample size is limited to
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only 31 patients, leading to insufficient representativeness that
may compromise the generalizability of the findings. Future
studies should expand into multicenter settings and include
participants across different age groups. Second, the method
relies on two-dimensional spectrograms and convolutional neural
networks, which, although effective in capturing time-frequency
features, entail relatively high computational costs. Previous studies
have proposed snoring classification methods based on one-
dimensional features, such as amplitude spectrum trend features
(Sun et al,, 2020) or representation learning based on auditory
receptive fields (Hu et al, 2023). These approaches generally
offer higher computational efficiency and deployment convenience
but remain inadequate for modeling complex time-frequency
patterns. Future research could explore integrating two-dimensional
spectral analysis with one-dimensional feature extraction to balance
discriminative power and computational efficiency. Finally, the
acoustic differences identified in this study are based solely on
cross-sectional statistical analysis, making it difficult to directly infer
the underlying pathological mechanisms. Larger-scale longitudinal
studies are needed to validate their clinical significance.

5 Conclusion

This paper proposes a snoring classification method integrating
dynamic convolution with attention mechanisms, with a particular
emphasis on exploring the acoustic differences between patients
with and without cerebrovascular stenosis. The main conclusions
and contributions are as follows: (1) Methodological improvements:
Among four acoustic features and multiple baseline models, this
paper proposes integrating AKConv, CBAM, and Conv2Former
modules into the ConvNeXt backbone. On the Mel spectrogram,
the method achieves 90.24% accuracy in classifying snoring versus
non-snoring sounds, representing an improvement of approximately
2 percentage points over the ConvNeXt baseline. It also achieves
84.68% accuracy in classifying stenotic versus non-stenotic snoring
sounds, which should be regarded as preliminary. (2) Robustness
and ablation validation: Through noise robustness experiments, the
proposed method was shown to maintain stable performance under
varying noise conditions. Furthermore, ablation studies confirm
that each added module contributes incrementally to the observed
improvements, underscoring the reliability and interpretability of
the proposed architecture. (3) Preliminary clinical insights: Clinical
analyses identified significant differences between stenotic and
non-stenotic patients in low-frequency energy ratio (p = 0.025)
and nocturnal snoring frequency (p = 0.031). Sensitivity analyses
excluding patients with cerebral infarction and cerebral ischemia
yielded consistent results (p = 0.038 and p = 0.018, respectively).
Snoring event duration did not differ significantly. These clinical-
statistical findings are promising but remain preliminary and require
validation in larger-scale, longitudinal studies before any clinical
application.
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