
 

TYPE Technology and Code
PUBLISHED 26 November 2025
DOI 10.3389/fphys.2025.1661258

OPEN ACCESS

EDITED BY

Ahsan H. Khandoker,
Khalifa University, United Arab Emirates

REVIEWED BY

Xihe Qiu,
Shanghai University of Engineering 
Sciences, China
Yuttapong Jiraraksopakun,
King Mongkut’s University of Technology 
Thonburi, Thailand

*CORRESPONDENCE

Liuying Li,
 arenally@sina.com

Xia Zhou,
 zhoux1823@163.com

†These authors have contributed equally to 

this work and share first authorship

RECEIVED 10 July 2025
REVISED 29 October 2025
ACCEPTED 31 October 2025
PUBLISHED 26 November 2025

CITATION

Hua C, Liu Z, Li L, Zhou X and Xiang C (2025) 
Snoring sound classification in patients with 
cerebrovascular stenosis based on an 
improved ConvNeXt model.
Front. Physiol. 16:1661258.
doi: 10.3389/fphys.2025.1661258

COPYRIGHT

© 2025 Hua, Liu, Li, Zhou and Xiang. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with 
these terms.

Snoring sound classification in 
patients with cerebrovascular 
stenosis based on an improved 
ConvNeXt model

Caijian Hua1†, Zhihui Liu1†, Liuying Li2*, Xia Zhou2* and 
Caorong Xiang1

1School of Computer Science and Engineering, Sichuan University of Science and Engineering, Yibin, 
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Introduction: Snoring is a common symptom of Obstructive Sleep Apnea 
(OSA) and has also been associated with an elevated risk of cerebrovascular 
disease. However, existing snoring detection studies predominantly focus on 
individuals with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), with 
limited attention given to the specific acoustic characteristics of patients with 
concomitant cerebrovascular diseases. To address this gap, this paper proposes 
a snoring classification method integrating dynamic convolution and attention 
mechanisms, and explores the acoustic feature differences between patients 
with cerebrovascular stenosis and those without stenosis.
Methods: First, we collected nocturnal snoring sounds from 31 patients 
diagnosed with OSAHS, including 16 patients with cerebrovascular stenosis, 
and extracted four types of acoustic features: Mel spectrogram, Mel-frequency 
cepstral coefficients (MFCCs), Constant Q Transform (CQT) spectrogram, and 
Chroma Energy Normalized Statistics (CENS). Then, based on the ConvNeXt 
backbone, we enhanced the network by incorporating the Alterable Kernel 
Convolution (AKConv) module, the Convolutional Block Attention Module 
(CBAM), and the Conv2Former module. We conducted experiments on snoring
versus non-snoring classification and stenotic versus non-stenotic snoring 
classification, and validated the role of each module through ablation studies. 
Finally, the Mann-Whitney U test was applied to compare intergroup differences 
in low-frequency energy ratio, snoring frequency, and snoring event duration.
Results: This method achieves the best performance on the Mel spectrogram, 
with a snoring classification accuracy of 90.24%, compared to 88.16% for the 
ConvNeXt baseline model. It also maintains superiority in classifying stenotic
versus non-stenotic snoring. Ablation analysis indicates that all three modules 
contribute to performance improvements. Moreover, the Mann–Whitney U 
test revealed significant differences (p < 0.05) between the stenotic and non-
stenotic groups in terms of low-frequency energy ratio and nocturnal snoring 
frequency, whereas snoring event duration showed no significant difference.
Discussion: The proposed method demonstrates excellent performance in 
snoring classification and provides preliminary evidence for exploring acoustic 
features associated with cerebrovascular stenosis.
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snoring sound classification, cerebrovascular stenosis, acoustic features, ConvNeXt, 
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1 Introduction

1.1 Research background

Snoring is a breathing sound generated by the vibration of 
upper airway tissues that partially collapse during inhalation. 
It is common, occurring in approximately 50% of adults and 
3.2%–12.1% of children (Ersu et al., 2004; Duckitt et al., 2006), 
and is widely regarded as an early clinical sign of obstructive 
sleep apnea-hypopnea syndrome (OSAHS) (Jiang et al., 2020), 
which causes damage to multiple systems throughout the body 
through intermittent hypoxia and sleep fragmentation. Research 
has established strong associations between OSAHS and various 
health conditions, including cardiovascular and cerebrovascular 
diseases (Zhu et al., 2024; Hong et al., 2022; Raptis et al., 
2021), metabolic syndrome (Kargar et al., 2021), and cognitive 
impairment (Leng et al., 2016; Ylä-Herttuala et al., 2021). Notably, 
individuals with moderate to severe OSAHS face a stroke risk 
up to four times higher than that of the general population 
(Javaheri et al., 2022; Sanchez et al., 2022).

Studies have shown that the prevalence of OSAHS is significantly 
higher among patients with cerebrovascular diseases, such as 
stroke, than in the general population (Bassetti et al., 2006). 
Such patients may simultaneously exhibit upper airway obstruction 
and central respiratory regulation abnormalities (Tanayapong and 
Kuna, 2021), and their snoring sounds may present unique 
acoustic features. Clinical studies have demonstrated a positive 
correlation between snoring energy in the 652–1,500 Hz frequency 
band and the common carotid artery intima-media thickness 
(CCA-IMT) (Lee et al., 2016). Early epidemiological research 
also suggests a significant association between heavy snoring and 
carotid atherosclerosis (Lee et al., 2008). Therefore, exploring 
the acoustic differences between snoring sounds in patients 
with concomitant cerebrovascular stenosis and those without 
stenosis may provide new clues about the underlying pathological 
mechanisms. This highlights the importance of further integrating 
artificial intelligence (AI) methods into such research. 

1.2 Related work

In recent years, deep learning (DL) has been extensively 
applied in snoring detection and recognition, primarily along two 
directions: multimodal fusion and lightweight portable detection. 
Regarding multimodal approaches, Li et al. (2025) employed 
the end-to-end audio classification framework DFNet to fuse 
patient medical history with physiological information using a 
multi-branch convolutional architecture, achieving an accuracy 
of 84.1% in a four-class OSAHS classification task. Qiu et al. 
(2026) proposed the Multimodal Integration and Missing Audio 
Reconstruction (MIMAR-OSA) model, which uses multimodal data 
fusion and missing modality reconstruction strategies to maintain 
high diagnostic accuracy even when certain signals are unavailable. 
Gu et al. (Bing, 2025) proposed a hierarchical Transformer model 
that integrates electroencephalogram (EEG) signals with semantic 
features of English listening comprehension, significantly enhancing 
the screening performance for obstructive sleep apnea (OSA) in 
noisy environments. Hu et al. (2025) proposed the information 

bottleneck-based parallel CNN-Transformer network (IPCT-Net), 
which achieves parallel fusion of local and global features, 
outperforming traditional methods on home sleep test data.

In the realm of lightweight and portable solutions, Zhang R. et al. 
(2024) developed a lightweight model based on long short-
term memory spiking neural networks (LSTM-SNN), optimized 
through threshold coding and an alternative gradient method, 
reaching an accuracy of 93.4%. The MinSnore model proposed 
by Dinh et al. (2025) combines an advanced lightweight network 
architecture with self-supervised learning pre-training to deliver 
outstanding performance in practical applications. Sillaparaya et al. 
(2025) proposed a transfer learning framework that combines 
MobileNetV3-Large with a modified SENet module, achieving 
favorable performance on Mel-spectrogram and MFCC inputs 
under a 10-fold cross-validation, and showing potential for 
portable sleep apnea monitoring. Hong et al. (2025) achieved 
high sensitivity and specificity in home settings by combining 
smartphone recordings with a Vision Transformer model, providing 
a viable solution for wearable and portable sleep apnea detection.

Although these approaches have contributed substantially to 
OSAHS diagnosis and snoring classification, two major limitations 
remain. First, most studies are conducted in controlled laboratory 
or home environments and lack validation in the complex 
acoustic environment of real hospital wards. Second, prior work 
has primarily focused on determining the presence or severity 
of OSAHS, and few have specifically analyzed patients with 
concomitant cerebrovascular stenosis as a distinct clinical subgroup.

In this study, we prospectively collected overnight snoring audio 
from patients diagnosed with OSAHS in a real hospital ward 
environment. Patients were grouped according to the presence 
or absence of concomitant cerebrovascular stenosis. The research 
objectives were as follows: (1) to construct a snoring and non-
snoring classification model based on an improved ConvNeXt 
architecture, (2) to achieve classification between stenotic and non-
stenotic snoring, and (3) to explore the acoustic feature differences 
between these two clinical subgroups and their clinical implications 
through statistical analysis. 

2 Materials and methods

2.1 The overall framework of the proposed 
method

The proposed snoring classification method, incorporating 
dynamic convolution and attention mechanisms, consists of 
three main components: data annotation, feature extraction, and 
classification. As illustrated in Figure 1, snoring segments are labeled 
as 1, and non-snoring segments as 0. In the feature extraction phase, 
labeled audio segments are converted into four types of acoustic 
features: Mel spectrogram, Mel-frequency cepstral coefficients 
(MFCCs), Constant Q Transform (CQT) spectrogram, and Chroma 
Energy Normalized Statistics (CENS). After partitioning the 
extracted feature dataset into training and validation sets, the 
data was fed into an enhanced ConvNeXt model to perform the 
classification task of distinguishing snoring from non-snoring 
sounds. Furthermore, this framework was extended to classify 
snoring sounds between patients with cerebrovascular stenosis and 
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FIGURE 1
Overall framework of the proposed method. (a) Data annotation, including endpoint detection, denoising, normalization, and labeling of snoring (1) and 
non-snoring (0) episodes. (b) Feature extraction, where each labeled audio episode is transformed into four acoustic representations (Mel spectrogram, 
MFCCs, CQT spectrogram, and CENS), followed by feature enhancement. (c) Classification, including data partitioning into training and validation sets, 
implementation of the modified ConvNeXt model, and evaluation using sensitivity, specificity, positive predictive value (PPV), accuracy, and F1-score.

those without stenosis, exploring differences in snoring acoustic 
features across these distinct patient groups.

2.2 Data collection

This study collected snoring data from 31 patients at the 
Traditional Chinese Medicine Department, Zigong First People’s 
Hospital, using a professional voice recorder and high-sensitivity 
microphone. Among them, 16 patients had cerebrovascular stenosis 
(6 mild, 5 moderate, 5 severe), while 15 patients had no stenosis. 
All patients were diagnosed with OSAHS through polysomnography 
(PSG). During hospitalization, each patient underwent continuous 
collection of 8-h nocturnal snoring data covering a full sleep 
cycle. To ensure data quality and diversity, microphones were 
positioned 2–3 cm from the patients’ mouths, with signal collection 
conducted across various hospital environments. All patients 
underwent clinical evaluation and imaging examinations to confirm 
the presence or absence of cerebrovascular stenosis, and were 
subsequently categorized into “stenotic group” and “non-stenotic 
group” for analysis in follow-up studies. 

2.3 Data annotation

All raw sleep sound signals were processed using endpoint 
detection to isolate valid acoustic segments, followed by noise 
reduction and normalization. Under the guidance of medical 
professionals, the segments were manually annotated in Audacity. 
The primary objective of this experiment was to identify snoring 
segments; thus, the signals were labeled into two categories: 
“snoring” and “non-snoring.” Snoring segments were annotated 
based on a complete snoring cycle, ensuring each segment contained 
a full cycle. Non-snoring segments were selected from periods 
without snoring events, encompassing various sounds such as 
breathing, footsteps, coughing, and conversation. To reduce 
patient-dependent bias in model training and validation, the 
dataset was organized strictly at the patient level: 25 patients 
were assigned to the training set and 6 to the validation set. All 
segments from a given patient were included exclusively in one set, 
ensuring no segment-level mixing across training and validation. 
The overall training-to-validation ratio was maintained at 8:2, 
and this subject-independent strategy was applied consistently 
to both the “snoring versus non-snoring” classification and 
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TABLE 1  Dataset distribution.

Dataset Snoring Non-snoring Overall total

Stenotic Non-stenotic Total Stenotic Non-stenotic Total

Training (25 patients) 16,150 7900 24,050 15,850 9200 25,050 49,100

Validation (6 patients) 4018 1977 5995 4004 2336 6340 12,335

Total (31 patients) 20,168 9877 30,045 19,854 11,536 31,390 61,435

the “stenotic versus non-stenotic” snoring classification tasks. 
The distribution of audio segments across categories is shown
in Table 1.

2.4 Feature extraction

Previous studies (Hou et al., 2024) have demonstrated that audio 
spectrograms containing frequency and amplitude information 
that change over time can distinguish between different types 
of sounds. Building on this foundation, feature extraction was 
performed on manually annotated audio segments. Each clip was 
divided into 20-millisecond (ms) frames using a Hamming window 
with a 10-m frame shift, and all audio was uniformly resampled 
to 22.05 kHz using the Python library librosa. After zero-mean 
normalization, four types of feature maps were generated, with all 
images standardized to 224×  224 pixels. Since the snoring event 
duration in this patient cohort generally lasted less than 3 s, audio 
was uniformly segmented into 3-s clips before conversion into 
images. Segments shorter than 3 s were padded with zeros to ensure 
consistent input length for the model. 

2.4.1 Mel spectrogram
The Mel spectrogram extracts time-frequency features by 

simulating the auditory characteristics of the human ear. First, 
the audio is pre-emphasis, framing, and windowing. Pre-emphasis 
is the process of enhancing the high-frequency components of 
an audio signal using a high-pass filter. The signal is then 
segmented into short-time frames, and each frame is processed 
with a Hamming window to reduce spectral discontinuities at 
the boundaries. Next, the short-time Fourier transform (STFT) is 
computed for each frame to convert the time-domain signal into 
a frequency-domain representation (Zhang R. et al., 2024). The 
formula is shown in Equation 1:

X (k) =
N−1

∑
n=0

x (n) ⋅w (n) ⋅ e−j2πkn/N, k = 0,1,…,N− 1 (1)

In the formula: x(n) represents the signal value of the n-th 
sampling point; w(n) is the window function, which is the Hamming 
window here; N is the number of sampling points in each frame.

Finally, a Mel-scale triangular filter bank that converts linear 
frequencies to logarithmic frequencies is applied to the power 
spectrum to obtain the Mel spectrogram. This is achieved using the 
formula in Equation 2:

s (m) = ln(
N−1

∑
k=0
|X(k)2Hm (k)|),0 ≤m ≤M (2)

In the formula: H(k) is the frequency response of the triangular 
filter, m denotes the m-th filter, and M is the number of Mel-scale 
triangular filter banks. 

2.4.2 MFCCs
MFCCs further extract cepstral features based on the Mel 

spectrogram. After calculating the Mel spectrogram, the first 13 
cepstral coefficients are obtained through discrete cosine transform 
(DCT) (Zhang R. et al., 2024), and the filter coefficients are 
decoupled. This process separates glottal excitation from vocal tract 
response, highlighting the static characteristics of the spectrum. The 
calculation formula is provided in Equation 3:

C (l) =
M

∑
m=0

s (m)cos(
πl (m− 0.5)

M
), l = 1,2,…,L (3)

Where L represents the dimension of MFCCs, M denotes 
the number of Mel-scale triangular filter banks, identical 
to that in Equation 2. 

2.4.3 CQT spectrogram
CQT applies a logarithmic frequency scale to enable 

multi-resolution time-frequency analysis. The audio signal is 
first preprocessed through steps such as pre-emphasis and 
normalization. Subsequently, the CQT is computed to generate 
a time-frequency feature representation, where Q represents the 
Q factor, i.e., the ratio of the center frequency to the bandwidth 
(Xie et al., 2021). The Q factor is equal for all frequency intervals. 
The calculation of the Q factor is based on the two formulas in 
Equations 4, 5:

Q =
fk

Δ fk
(4)

fk = f12
k−1

B (5)

In the formulas: Δ fk is the bandwidth; fk is the center frequency 
of the k-th bin; f1 is the center frequency of the lowest frequency bin; 
B represents the number of bins within each octave frequency.

This method analyzes signals using a set of filters with 
logarithmic frequency distribution and constant Q values to 
generate complex spectrograms with high-frequency resolution. 

2.4.4 CENS
CENS shows that chroma changes are more robust to temporal 

and timbre variations (Abraham et al., 2023). To extract CENS 
features, the audio signal is first processed through pre-emphasis, 
framing, windowing, and STFT. Then, the chroma information of 
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each frame is extracted through a 12-dimensional chroma filter 
bank. Finally, temporal smoothing and normalization are performed 
to generate the CENS feature representation. 

2.5 Feature enhancement

The critical information in snoring sounds is often concentrated 
within specific frequency bands or short-term local regions. 
However, this information can be easily obscured by background 
noise or irrelevant components in the original feature maps, thereby 
reducing the model’s ability to detect abnormal patterns. To address 
this issue, this paper draws on the enhanced spectrogram technique 
proposed by Wang et al. (2024) and proposes an adaptive filter 
bank enhancement method. Unlike methods that rely on fixed 
frequency band settings, the proposed method selects enhancement 
channels based on energy distribution, making it compatible with 
all four types of feature maps used in this study. Specifically, it 
evaluates the energy within each frame and dynamically adjusts 
filter response weights to emphasize high-energy regions. When 
the energy output of a filter exceeds the 80th percentile of that 
frame’s energy distribution, an enhancement factor of β is applied; 
otherwise, the filter response remains unchanged. The β value was 
determined via grid search on the validation set of the baseline 
model in this paper (β ∈ {1.1,1.2,…,2.0}, step size 0.1), with β
= 1.5 yielding the best performance on the validation set (see 
Supplementary Table S1). The enhanced filter bank is expressed in 
Equations 6–8:

H′i ( f, t) = ai (t) ⋅Hi ( f) (6)

where,

ai (t) =
{
{
{

β,Ei (Pt) > percentile80 (Pt)

1,otherwise
(7)

and

Ei (Pt) =∑
f

Hi ( f) ⋅ Pt ( f) (8)

In the formulas: Hi( f) represents the response of filter i at 
frequency f; ai(t) represents the enhancement factor of frame t; β
is the enhancement multiple; ⋅Pt( f) represents the power spectrum 
of audio at frame t and frequency f; Ei(Pt) is the response value of 
filter i to Pt.

Figure 2 shows examples of visual comparisons of different 
feature maps before and after enhancement. The original feature 
maps are shown on the left, and the enhanced feature maps are 
shown on the right. The high-energy regions in the enhanced feature 
map are clearer and more prominent.

2.6 Classification

This paper proposes a snoring sound classification method that 
is based on an improved ConvNeXt model integrating dynamic 
convolution and attention mechanisms. The method consists of 
four components: the ConvNeXt network, the Alterable Kernel 

FIGURE 2
Example of feature map enhancement before and after comparison.

Convolution (AKConv) module, the Convolutional Block Attention 
Module (CBAM), and the Conv2Former module. ConvNeXt serves 
as the backbone network, extracting multi-scale acoustic features. 
The AKConv module enhances adaptability to the irregular spectral 
features of snoring by dynamically adjusting the convolutional 
kernel shapes. CBAM utilizes a channel-spatial attention mechanism 
to emphasize key frequency bands while suppressing background 
noise. Finally, the Conv2Former module combines local and global 
feature interactions to effectively model the periodic dependencies 
of snoring events. This integrated design addresses snoring 
signals’ characteristics of short-time non-stationarity, cross-band 
distribution, and periodicity. It enables the model to simultaneously 
capture both local spatiotemporal features and global periodic 
structures while enhancing robustness against noise interference, 
achieving superior feature representation capabilities compared to 
standalone modules or traditional ConvNeXt architectures. The 
overall model architecture is illustrated in Figure 3.

2.6.1 ConvNeXt
ConvNeXt (Liu et al., 2022), developed by Facebook AI Research 

in 2022, is a high-performance convolutional neural network that 
integrates key design ideas from Transformer architectures. By 
introducing large convolutional kernels, streamlining convolutional 
operations, and optimizing the overall network structure, ConvNeXt 
achieves substantial gains in both performance and computational 
efficiency. It is available in four variants: ConvNeXt-Tiny (T), Small 
(S), Base (B), and Large (L). In this study, the ConvNeXt-T model 
is adopted as the backbone network. The detailed structure is 
presented in Figure 4.
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FIGURE 3
Overall architecture of the model.

The input to the network is a feature map of size 224×  224×
 3. It first passes through an initial convolutional layer with a 
4×  four convolutional kernel and a stride of four, generating a 
feature map of 56×  56×  96, followed by layer normalization (LN) 
processing. This output then enters Stage 1, where it undergoes feature 
transformation through three ConvNeXt Blocks, each employing the 
standard structure of depthwise separable convolutions combined with 
multilayer perceptron (MLP). After downsampling with a stride of 2, 
a feature representation with a spatial size of 28×  28 and 192 channels 
is obtained, which is then fed into Stage 2 comprising three ConvNeXt 
blocks. The Stage 2 output is downsampled to 14×  14×  384 and input 
into Stage 3. After another downsampling step, Stage 3 generates a 7×
 7×  768 feature map, which is then fed into Stage 4. The resulting 7×
7×  768 feature map is compressed by global average pooling into a 1×
 1×  768 vector, followed by LN. Finally, this vector is fed into a linear 
layer (also called fully connected layer) with an output dimension of 2 
(where two represents the number of classification categories), yielding 
the classification results. 

2.6.2 AKConv
In snoring sound classification tasks, traditional convolution 

operations struggle to effectively capture irregular snoring feature 
patterns in spectrograms. To address this, this study introduces the 
AKConv module (Zhang et al., 2023) into Stage 2 of ConvNeXt. Its 
core advantage lies in dynamically adjusting the shape and number 
of parameters of convolutional kernels to adaptively match the 
diverse morphological features of the snoring spectrum. In this 
study, the number of core parameters (num_param) was set to three 

to balance model complexity and representational capacity, while the 
convolution stride was fixed at one to preserve spatial resolution. 
As illustrated in Figure 5, the AKConv module takes a spectrogram 
with dimensions (C, H, W) as input. It first determines the initial 
sampling position of the convolutional kernel through a coordinate 
generation algorithm. Specifically, the origin is fixed at the upper-left 
corner (0,0) as the common reference point for all kernel samples. 
The grid range is obtained by dynamically computing a base size 
(base_int) and handling the remainder: a regular grid region is first 
constructed, then the remaining points are added, resulting in an 
initial sampling layout that adapts to any number of parameters. 
Subsequently, a Conv2d layer is employed to learn spatial offsets 
of shape (B, 2N, H, W). The weights of this offset prediction 
layer are initialized to zero and undergo learning rate decay of 0.1 
during backpropagation to ensure training stability. Subsequently, 
feature resampling is performed on the adjusted sampling points 
to precisely capture the deformed feature regions. Finally, the 
resampled features undergo dimension reshaping, convolution 
operations, and normalization processing. The optimized feature 
representations are then output via the SiLU activation function. 
It is worth noting that AKConv is an early variant of dynamic 
convolution. Its successor, LDConv (Zhang X. et al., 2024), further 
improves computational efficiency. However, AKConv was used in 
all experiments conducted in this paper.

2.6.3 CBAM
In this classification task, key frequency bands in the 

spectrogram (such as snoring harmonics) are often intermingled 
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FIGURE 4
ConvNeXt-T network structure.

with background noise in both the spatial and channel dimensions. 
To address this specificity, this paper introduces the CBAM 
(Woo et al., 2018), which combines the Channel Attention Module 
(CAM) and the Spatial Attention Module (SAM). Its core function 
is to highlight important features through dual-path weighting, 
as shown in Figure 6.

The CAM performs max pooling and average pooling on the 
input feature map F (output size 1×  1), respectively, passing 
through a shared two-layer MLP (with a reduction ratio of 16) 
to obtain feature maps A and B. The sum of these two feature 
maps is passed through a sigmoid function to generate the channel 
attention weight MC(F), which enhances key frequency bands 
associated with snoring sounds. The calculation formulas are given 
in Equations 9, 10:

MC (F) = σ(W1 (W0 (FC
avg)) +W1 (W0 (FC

max))) (9)

F1 =MC (F) ⊙ F (10)

In the formulas: MC(F) is the output weight of channel attention; 
σ is the sigmoid activation function; W0 and W1 are the weights 
of the first and second fully connected layers, respectively; FC

avg and 
FC

max represent average pooling and max pooling at the channel level, 
respectively; F1 denotes the channel attention feature map obtained 
by weighting the original feature map F; and ⊙ denotes element-wise 
multiplication.

The SAM performs max pooling and average pooling on the 
feature map F1, then concatenates and fuses the results. It undergoes 
a 7×  7 convolution with 3-stride padding to reduce the dimension 
to a single channel. Following this, a sigmoid function generates 
the spatial attention weights MS(F1), focusing on regions with 
concentrated energy in the spectrum. The calculation formulas are 
presented in Equations 11, 12:
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FIGURE 5
AKConv network structure.

FIGURE 6
CBAM network structure.

MS (F1) = σ( f7×7 ([FS
avg;FS

max])) (11)

F2 =MS (F1) ⊙ F1 (12)

In the formulas: MS(F1) is the output weight of spatial attention; 
f7×7 is a 7×  7 convolution kernel; FS

avg and FS
max are average pooling 

and max pooling at the spatial level, respectively; F2 denotes the final 
output feature map of the CBAM module after spatial attention; and 
⊙ denotes element-wise multiplication. 

2.6.4 Conv2Former
For the modeling requirements of long-range dependencies 

in snoring signals, traditional self-attention mechanisms are often 
employed. However, these methods typically incur high computational 
costs, which limit their practical application. To solve this problem, 

this paper introduces the Conv2Former module (Hou et al., 2024) 
in Stage 4, whose structure is shown in Figure 7. This module is 
divided into four stages, each with different image resolutions, channel 
counts, and numbers of convolutional modulation blocks (Conv 
blocks). Adjacent stages reduce image resolution while increasing 
the number of channels through a patch embedding block (patch 
embed), employing a pyramid-like structure to extract features of 
different granularities. The Conv block replaces the self-attention 
layer in the Transformer with a convolutional modulation (ConvMod) 
layer. The key parameters of the ConvMod used in this study are as 
follows: the input and output dimensions are set to 768, matching the 
channel number of Stage 4; internally, an 11×  11 depthwise separable 
convolution with padding of 5 is applied to preserve resolution, 
allowing the large convolutional kernel to encode spatial features and 
enhance global information modeling. 
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FIGURE 7
Conv2Former network structure.

2.7 Statistical methods and 5-fold 
cross-validation

Statistical analyses were performed using SPSS version 26.0. 
Continuous variables were first tested for normality. Normally 
distributed data are expressed as mean ± standard deviation (SD) 
and compared between groups using the independent-samples 
t-test, whereas non-normally distributed data are expressed as 
median (interquartile range, IQR) and compared using the Mann-
Whitney U test. Categorical variables were presented as counts 
and percentages, and group comparisons were conducted using the 
Chi-square (χ2) test or Fisher’s exact test when appropriate.

In ablation experiments, models were evaluated using 5-fold 
cross-validation based on patient grouping. Data from 31 patients 
were divided into five folds at the patient level, with each fold 
containing complete data from distinct patients (detailed statistics 
are provided in Supplementary Table S2). This ensured strict subject 
independence between folds and guaranteed that no segment-level 
information from the same patient appeared in both training and 
validation sets. In each iteration, one fold was used for validation 
and the remaining four for training. After repeating this process five 
times, each fold had been used as the validation set once. Results are 
presented as mean ± SD for each fold. Differences between the model 
in this study and models with added modules were compared using 
the Wilcoxon signed-rank test. The significance level was set at p <
0.05, with significant differences marked with “∗” in the tables. 

3 Results

3.1 Experiment setup

This experiment was conducted in the following software and 
hardware environment: the processor is an Intel® Xeon® Silver 
4210R (2.40 GHz), equipped with an NVIDIA RTX 3080 (10 GB) 
graphics card, and the operating system is Ubuntu 20.04.6. The deep 
learning framework used is PyTorch 2.4.1 (CUDA 11.8), running 
in a Python 3.8.20 environment. During training, the batch size 
was set to 32, the AdamW optimizer was used for parameter 
updates, the initial learning rate was 2× 10−4, and the weight decay 
coefficient was 0.05. The model was trained for 100 epochs, using 
the cross-entropy loss function to supervise the optimization process 
of the binary classification task. 

3.2 Evaluation criteria

This paper uses five metrics to evaluate model performance, 
including accuracy, sensitivity, specificity, positive predictive value 
(PPV), and F1-score. Accuracy represents the overall proportion 
of correctly classified samples and serves as a basic indicator of 
classification performance. Sensitivity measures the model’s ability 
to correctly identify actual snoring events, while specificity reflects 
its capacity to correctly recognize non-snoring samples. PPV refers 
to the proportion of true snoring samples among those predicted 
as snoring. F1-score provides a comprehensive assessment of the 
model’s robustness under imbalanced category conditions.

The calculation formulas are shown in Equations 13–17:

Accuracy = TP+TN
TP+TN+ FP+ FN

(13)

Sensitivity = TP
TP+ FN

(14)

Specificity = TN
TN+ FP

(15)

PPV = TP
TP+ FP

(16)

F1− score =
2PPV • Sensitivity
PPV+ Sensitivity

(17)

Where TP, TN, FP, and FN represent true positive, true negative, 
false positive, and false negative, respectively. 

3.3 Performance evaluation of feature 
enhancement

To verify the applicability and effectiveness of the feature 
enhancement method proposed in this paper on different feature 
maps, a comparison experiment was conducted between the Mel 
spectrogram and CQT spectrogram before and after enhancement 
using the method proposed in this paper. The comparison results 
are shown in Table 2. The experimental results show that the 
two enhanced spectrograms are superior to the unenhanced 
ones in all evaluation metrics, indicating that the adaptive filter 
bank enhancement method proposed in this paper can effectively 
improve the representation ability of key information in the
feature map.
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TABLE 2  Comparison of results before and after feature enhancement (Unit: %).

Feature map Accuracy Sensitivity Specificity PPV F1-score

Mel Spectrogram 89.10 88.55 89.73 89.05 89.08

Enhanced Mel Spectrogram 90.24 89.67 90.88 90.25 90.24

CQT Spectrogram 87.46 87.37 87.67 87.59 87.51

Enhanced CQT Spectrogram 88.35 88.32 88.72 88.35 88.37

PPV, positive predictive value.

3.4 Comparative experiment

3.4.1 Snoring versus non-snoring classification
To validate the effectiveness of the proposed method, we 

conducted comparative experiments between snoring and non-
snoring sounds using the four enhanced acoustic feature maps 
against the following eight classical classification networks. The 
experimental results are shown in Table 3.

For statistical robustness, classification accuracy was further 
reported with 95% confidence intervals (CIs) estimated by patient-
level bootstrap (B = 1,000 resamples, seed = 42), where each patient 
was treated as the sampling unit to avoid segment-level leakage. As 
shown in Table 3, the proposed method significantly outperformed 
the comparison models in all evaluation metrics for the four acoustic 
feature maps. Among them, the Mel spectrogram achieved the 
highest classification accuracy at 90.24% (95% CI: 85.31%–94.67%), 
followed by MFCCs, CQT spectrogram, and CENS. The overall 
performance of the lightweight models MobileNetV3 and DFNet 
was lower than that of medium-sized models such as ResNet50 
and DenseNet121. The ConvNeXt baseline model outperformed 
the traditional CNN architectures DenseNet121 and ResNet50, 
with accuracy gains of 1.71% and 2.29%, respectively, on the Mel 
spectrogram. Compared to the ConvNeXt baseline model, our 
method achieved approximately 2% improvements in accuracy, 
sensitivity, specificity, PPV, and F1-score on the Mel spectrogram. 
Accuracy gains on MFCCs, CQT spectrogram, and CENS also 
ranged from 2% to 4%. Overall, our method maintained a consistent 
advantage across models of different scales, and its F1-score and 
accuracy remained closely aligned, supporting its robustness. We 
also evaluated performance at the patient level through majority 
voting across segments (Supplementary Table S3). In the validation 
set (n = 6 patients), the proposed model correctly classified 
all patients (100.00% accuracy), whereas the ConvNeXt baseline 
reached 83.33% (5/6). This indicates that the improvement observed 
at the segment level is preserved at the clinically relevant per-
patient level.

Figure 8 shows the comparison of model accuracy between 
the Mel spectrogram and CQT spectrogram on the validation 
set. With the exception of the Vision Transformer network, 
which exhibited performance instability, all other models achieved 
accuracy above 80%. This paper’s method demonstrates optimal 
convergence stability on different feature maps. In summary, the 
effective fusion of dynamic convolution and attention mechanisms 
enhances the model’s ability to discriminate the time-frequency 
features of snoring.

3.4.2 Stenotic versus non-stenotic snoring 
classification

To investigate the characteristic differences between snoring 
sounds from patients with cerebrovascular stenosis and those 
without stenosis, we selected one representative model from each 
scale (small, medium, and large) for classification experiments 
and comparisons. Similarly, accuracy was reported with 95% CIs 
estimated using patient-level bootstrap (B = 1,000 resamples, seed = 
42) to ensure subject independence. As summarized in Table 4, all 
metric values of the proposed model outperformed other baseline 
models, with an accuracy of 84.68% (95% CI: 76.03%–89.62%) 
on the Mel spectrogram. These findings indicate that the 
proposed method demonstrates potential in distinguishing 
between stenotic and non-stenotic snoring sounds; however, these 
results should be regarded as preliminary due to the limited 
cohort size.

To further validate the robustness of these findings at a 
clinically relevant scale, we conducted patient-level analysis, as 
summarized in Supplementary Table S4. When predictions were 
aggregated per patient in the validation set (n = 6), the proposed 
model achieved 83.33% accuracy (5/6 patients correctly classified) 
and identified all stenotic patients with 100.00% sensitivity (4/4), 
compared with 66.67% accuracy (4/6) for the ConvNeXt baseline. 
This suggests that the method may prioritize stenotic patients with 
high sensitivity, even with a small cohort. 

3.5 Ablation experiment

To evaluate the impact of each proposed module on the 
performance of the ConvNeXt baseline, ablation experiments 
were conducted by incorporating different modules onto the four 
enhanced feature maps for snoring versus non-snoring classification. 
The results are summarized in Table 5. Performance varies by 
module and feature map. On the Mel spectrogram, the AKConv 
module demonstrates the most significant performance, achieving 
an accuracy of 89.62%, which represents a 1.46 percentage point 
improvement over the baseline ConvNeXt model, while also 
increasing specificity to 90.05%. This suggests that dynamically 
adjusting the shape of convolutional kernels enhances adaptability to 
irregular snoring spectra. Similarly, the AKConv module performs 
best on the MFCCs, improving specificity by 1.9%. The CBAM 
module excels on the CQT spectrogram, increasing sensitivity by 
2.04%. The Conv2Former module contributes most significantly to 
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TABLE 3  Comparison of classification performance for snoring and non-snoring sounds (Unit: %).

Feature map Model Accuracy (95% CI) Sensitivity Specificity PPV F1-score

Mel Spectrogram

ViT-B (Dosovitskiy et al., 2021) 76.43 (65.37–82.91) 77.36 78.21 78.52 78.03

MobileNetV3-L (Sillaparaya et al., 2025) 82.51 (73.23–89.57) 81.88 83.02 82.24 82.37

DFNet (Li et al., 2025) 84.32 (77.11–90.07) 83.57 84.80 84.15 84.16

Swin-T (Liu et al., 2021) 84.26 (76.48–90.81) 83.31 85.17 84.39 84.60

XCiT-T (El-Nouby et al., 2021) 83.09 (74.02–89.96) 83.13 83.76 83.21 83.20

ResNet50 (He et al., 2016) 85.87 (79.36–91.79) 84.79 86.78 86.73 85.85

DenseNet121 (Huang et al., 2017) 86.45 (80.47–91.63) 82.37 86.69 86.25 86.11

ConvNeXt-T (Liu et al., 2022) 88.16 (82.97–92.54) 87.85 88.24 88.19 88.07

This paper 90.24 (85.31–94.67) 89.67 90.88 90.25 90.24

MFCCs

ViT-B (Dosovitskiy et al., 2021) 69.45 (58.92–78.33) 68.76 69.88 70.12 69.50

MobileNetV3-L (Sillaparaya et al., 2025) 79.00 (70.12–86.41) 78.31 79.52 79.03 78.87

DFNet (Li et al., 2025) 81.31 (74.05–87.29) 80.85 81.66 81.25 81.30

Swin-T (Liu et al., 2021) 82.31 (75.19–88.77) 82.77 81.73 82.27 82.34

XCiT-T (El-Nouby et al., 2021) 79.58 (71.47–86.97) 79.67 78.81 79.79 79.82

ResNet50 (He et al., 2016) 83.57 (77.41–89.21) 83.50 83.32 83.61 83.62

DenseNet121 (Huang et al., 2017) 84.15 (78.33–89.62) 84.57 84.06 84.25 84.27

ConvNeXt-T (Liu et al., 2022) 86.84 (81.40–91.27) 87.49 86.32 86.89 86.89

This paper 89.11 (83.77–93.52) 89.44 88.67 89.12 89.21

CQT Spectrogram

ViT-B (Dosovitskiy et al., 2021) 77.38 (67.90–85.73) 76.82 78.43 78.25 77.64

MobileNetV3-L (Sillaparaya et al., 2025) 80.55 (72.30–87.92) 79.68 81.23 80.46 79.94

DFNet (Li et al., 2025) 82.03 (75.12–87.86) 81.55 82.67 82.14 82.00

Swin-T (Liu et al., 2021) 83.05 (76.05–89.40) 82.14 84.11 83.30 83.22

XCiT-T (El-Nouby et al., 2021) 82.33 (74.50–88.98) 82.42 82.69 82.37 82.38

ResNet50 (He et al., 2016) 84.05 (78.10–89.65) 83.97 84.81 84.52 84.12

DenseNet121 (Huang et al., 2017) 84.52 (79.12–89.48) 84.70 84.38 84.52 84.53

ConvNeXt-T (Liu et al., 2022) 86.14 (81.02–90.76) 85.61 86.65 86.13 86.15

This paper 88.35 (83.77–92.80) 88.32 88.72 88.35 88.37

CENS

ViT-B (Dosovitskiy et al., 2021) 66.89 (55.97–76.52) 74.63 59.14 64.57 69.23

MobileNetV3-L (Sillaparaya et al., 2025) 73.59 (63.84–81.97) 74.00 72.80 73.12 73.25

DFNet (Li et al., 2025) 76.16 (68.10–83.94) 76.30 75.52 76.07 76.13

Swin-T (Liu et al., 2021) 77.20 (69.02–83.98) 79.43 75.11 77.24 77.25

(Continued on the following page)
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TABLE 3  (Continued) Comparison of classification performance for snoring and non-snoring sounds (Unit: %).

Feature map Model Accuracy (95% CI) Sensitivity Specificity PPV F1-score

XCiT-T (El-Nouby et al., 2021) 77.15 (69.05–83.84) 76.67 76.70 76.71 76.68

ResNet50 (He et al., 2016) 82.87 (77.10–88.24) 82.24 83.55 83.78 82.91

DenseNet121 (Huang et al., 2017) 81.66 (75.98–87.32) 80.62 82.45 82.59 81.63

ConvNeXt-T (Liu et al., 2022) 84.37 (79.01–89.40) 84.19 84.58 84.44 84.40

This paper 87.94 (82.83–92.45) 87.05 88.94 87.88 87.96

The MobileNetV3-L results in this table refer only to the backbone, without the modified SENet, module used in (Sillaparaya et al., 2025). In this study, only the backbone was reproduced to 
ensure consistency in the comparative experiments. CI: confidence interval.

FIGURE 8
Comparison of validation set accuracy across different feature representations. (a) Mel Spectrogram. (b) CQT Spectrogram.

TABLE 4  Comparison of classification performance for stenotic and non-stenotic snoring sounds (Unit: %).

Feature map Model Accuracy (95% CI) Sensitivity Specificity PPV F1-score

Mel Spectrogram

ViT-B 69.58 (57.12–79.24) 69.30 69.92 69.55 69.35

MobileNetV3-L 77.34 (66.20–85.92) 77.65 77.05 77.21 77.43

ResNet50 81.92 (73.05–88.48) 81.40 82.18 81.85 81.70

ConvNeXt-T 82.41 (74.22–88.95) 81.76 83.05 82.49 82.28

This paper 84.68 (76.03–89.62) 84.12 84.35 84.92 84.97

the CENS map, improving accuracy by 1.97% and demonstrating its 
strength in global feature modeling.

To further validate the effectiveness of the proposed method, we 
plotted the loss curves of the baseline model and our model on both 
the training and validation sets. As shown in Figure 9, our method 
converges faster during training and achieves a lower final loss value, 
indicating that the introduced module enhances feature extraction 
capabilities and improves the model’s classification performance.

We further validated module performance using 5-fold cross-
validation on the Mel spectrogram and assessed significance with 
the Wilcoxon test (Table 6). The ConvNeXt-T model achieved an 
average accuracy of 88.24%. Introducing different modules on 
this foundation yielded performance improvements, with AKConv 
demonstrating the most prominent enhancement. CBAM and 
Conv2Former also delivered gains, but the differences compared 
to our proposed model were statistically significant (p < 0.05). 
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TABLE 5  Ablation experiment results (Unit: %).

Feature map Model Accuracy Sensitivity Specificity PPV F1-score

Mel Spectrogram

ConvNeXt-T 88.16 87.85 88.24 88.19 88.07

AKConv 89.62 89.10 90.05 89.58 89.62

CBAM 89.11 88.65 89.45 89.06 89.08

Conv2Former 88.75 88.40 88.98 88.80 88.77

This paper 90.24 89.67 90.88 90.25 90.24

MFCCs

ConvNeXt-T 86.84 87.49 86.32 86.89 86.89

AKConv 88.45 88.83 88.22 88.41 88.46

CBAM 88.14 88.40 87.85 88.05 88.12

Conv2Former 87.95 88.12 87.72 87.90 87.96

This paper 89.11 89.44 88.67 89.12 89.21

CQT Spectrogram

ConvNeXt-T 86.14 85.61 86.65 86.13 86.15

AKConv 87.10 86.95 87.24 87.06 87.00

CBAM 87.92 87.65 88.20 87.90 87.88

Conv2Former 87.35 87.40 87.28 87.34 87.33

This paper 88.35 88.32 88.72 88.35 88.37

CENS

ConvNeXt-T 84.37 84.19 84.58 84.44 84.40

AKConv 85.18 84.68 85.52 85.08 85.14

CBAM 85.75 85.23 86.25 85.74 85.72

Conv2Former 86.34 86.02 86.23 86.33 86.34

This paper 87.94 87.05 88.94 87.88 87.96

FIGURE 9
Comparison of training and validation loss curves between the baseline and proposed models. (a) Baseline model. (b) Proposed model.
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TABLE 6  Comparison of 5-fold cross-validation performance for ablation experiments on the Mel spectrogram (Unit: %).

Model variant Accuracy Sensitivity Specificity PPV F1-score

ConvNeXt-T 88.24 ± 0.88∗ 87.91 ± 0.95∗ 88.32 ± 0.90∗ 88.27 ± 0.93∗ 88.19 ± 0.91∗

+AKConv 89.57 ± 0.93∗ 89.12 ± 1.01∗ 90.03 ± 0.88∗ 89.51 ± 1.06∗ 89.59 ± 0.92∗

+CBAM 89.18 ± 0.95∗ 88.69 ± 1.03∗ 89.56 ± 0.91∗ 88.87 ± 1.08∗ 89.11 ± 0.94∗

+Conv2Former 88.76 ± 0.97∗ 88.33 ± 1.05∗ 88.01 ± 0.93∗ 88.42 ± 1.11∗ 88.78 ± 0.96∗

This paper 90.31 ± 0.82 89.74 ± 0.95 90.88 ± 0.91 90.28 ± 0.97 90.34 ± 0.89

Results are reported as mean ± SD over 5-fold cross-validation. Values marked with ∗ indicate significant differences compared with the proposed model, based on the Wilcoxon signed-rank 
test (p < 0.05).

TABLE 7  Computational efficiency comparison of different models.

Model Params (M) FLOPs (G) GPU Latency
(ms)

GPU 
Throughput

(Img/s)

CPU Latency
(ms)

CPU 
Throughput

(Img/s)

ResNet50 23.51 4.13 12.05 82.98 4043 0.25

MobileNetV3 4.20 0.23 13.08 76.40 2900 0.34

Swin-T 27.52 3.13 39.41 25.37 2139 0.47

ConvNeXt-T 27.82 4.49 15.03 65.20 2200 0.45

This paper 32.05 5.20 16.12 61.80 2398 0.42

Params: number of parameters. FLOPs: floating-point operations per second. img/s: images processed per second.

This indicates that while each module contributes to feature 
enhancement, our model achieves the best overall performance.

3.6 Computational efficiency comparison 
analysis

To evaluate the computational efficiency, several representative 
models were compared on the dataset in this paper, 
as shown in Table 7. It can be observed that ResNet50 achieves 
the lowest latency of 12.05 m and the highest throughput of 82.98 
images per second (img/s) on the GPU, but its latency increases 
significantly during CPU inference. MobileNetV3, as a lightweight 
model with minimal parameters and floating-point operations 
per second (FLOPs), performs relatively fast on the GPU but 
underperforms compared to ConvNeXt-T on the CPU. Although 
Swin-T has a large number of parameters, it exhibits the highest 
GPU latency and lowest throughput. ConvNeXt-T demonstrates a 
good balance on both GPU and CPU, with relatively stable latency 
and throughput. In comparison, the proposed model in this paper 
increases both parameters and computational cost, resulting in 
slightly lower inference latency and throughput than ConvNeXt-T. 
Nevertheless, it still significantly outperforms Swin-T and other 
lightweight models. It achieves the highest recognition accuracy 
while maintaining good computational efficiency, offering the best 
overall performance.

3.7 Noise robustness experiment

To evaluate the generalization ability of the proposed method 
in real-world environments, noise robustness experiments were 
conducted. Background noise was selected from the publicly 
available MUSAN dataset (Snyder et al., 2015), which contains 
speech, music, and various environmental sounds, to simulate 
interference in hospital and daily settings. For the snoring versus
non-snoring classification validation set, each audio segment was 
linearly mixed with MUSAN noise at different signal-to-noise ratios 
(SNR = +20, +10, 0, −5 dB), with noise energy scaled to achieve the 
target SNR. The mixed audio segments were preprocessed following 
the same procedures as in the model training phase and converted 
into Mel spectrograms for model input.

Table 8 summarizes the performance of our method and the 
ConvNeXt-T baseline model under different noise conditions. 
Under mild noise (+20 dB), both models exhibit only a slight decline 
compared to the noise-free condition. As the noise level increases, 
our method shows a significantly slower performance degradation, 
reflecting its stronger resistance to interference. At 0 dB SNR, our 
model maintains an F1-score of 83.36%, significantly outperforming 
the baseline model. Even under extreme noise conditions (−5 dB), 
it still achieves an F1-score of 78.62%, exceeding the baseline model 
by over 8 percentage points. These results conclusively demonstrate 
that the introduced module enhances the model’s feature extraction 
and discrimination capabilities in complex acoustic environments, 
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TABLE 8  Performance comparison of proposed model and ConvNeXt-T under different SNR conditions.

Model SNR (dB) Performance (%)

Accuracy Sensitivity Specificity PPV F1-score

This paper

∞ 90.24 89.67 90.88 90.25 90.24

+20 89.12 88.75 89.53 88.87 88.82

+10 86.65 85.20 87.25 85.59 85.87

0 83.58 82.11 83.79 83.26 83.36

−5 78.32 77.05 78.16 77.97 78.62

ConvNeXt-T

∞ 88.16 87.75 88.24 88.19 88.07

+20 86.20 85.89 86.95 86.13 85.94

+10 82.67 81.52 82.89 81.92 82.05

0 77.58 76.33 78.05 77.43 77.14

−5 70.96 69.74 71.35 70.30 70.58

SNR: signal-to-noise ratio.

thereby improving its robustness and practicality in real-world 
scenarios.

3.8 Visualization experiment

In order to assess the feature extraction capability of the 
proposed model, Grad-CAM (Selvaraju et al., 2017) was employed 
to visualize the feature maps from the final layer of the feature 
extraction network. Four types of acoustic representations from 
a randomly selected snoring segment were used as input. Then, 
ViT-B, Swin-T, ResNet50, DenseNet121, and ConvNeXt networks 
were chosen for feature map visualization experiments. The results 
are shown in Figure 10. Taking the Mel spectrogram and CQT 
spectrogram as examples, our method demonstrates greater focus 
on the key frequency bands of snoring compared to the other five 
networks, whose focus appears more dispersed. This confirms that 
our approach captures more discriminative acoustic features.

3.9 Comparative analysis of stenotic and 
non-stenotic patients

3.9.1 Demographic characteristics
Beyond algorithmic research, we also conducted an in-depth 

analysis of the clinical characteristics of the study subjects. Table 9 
summarizes the baseline demographic characteristics and 
comorbidities of patients in the stenotic and non-stenotic groups. 
No significant differences were observed between the two groups 
in terms of age, gender distribution, hypertension, diabetes, 
atherosclerosis, dyslipidemia, or apnea-hypopnea index (AHI) 
(p > 0.05). Given that cerebral infarction and cerebral ischemia 
are common clinical consequences of cerebrovascular stenosis, only 

descriptive statistics were performed for these two medical histories. 
Overall, the two groups were comparable in primary demographic 
and vascular risk factors, providing a reliable foundation for 
analyzing snoring-related characteristics.

3.9.2 Analysis of differences in snoring acoustic 
features

We used the Mann-Whitney U test to analyze differences 
between the stenotic group and the non-stenotic group in three 
aspects: low-frequency energy ratio (<650 Hz energy proportion), 
snoring frequency, and snoring event duration. Snoring event 
duration was calculated by statistically determining the start and 
end points of each independent snoring event and measuring its 
duration; the median duration of all events per patient was used 
as the representative value. The low-frequency energy ratio was 
calculated based on the power spectral density (PSD) of each snoring 
segment. Specifically, the ratio of energy in the <650 Hz band to total 
energy was used as the low-frequency energy ratio for that segment. 
The median value across all segments for each patient was then 
taken as the individual indicator. The 650 Hz threshold referenced 
the 652 Hz threshold proposed by Lee et al. (Lee et al., 2016) and 
was rounded for computational simplicity.

Results shown in Table 10 indicate that the “low-frequency 
energy ratio” was significantly lower in the stenotic group than 
in the non-stenotic group (p = 0.025). This suggests that snoring 
energy distribution in stenotic patients tends toward high-frequency 
components, consistent with previous findings showing a positive 
correlation between snoring energy in the 652–1,500 Hz band 
and CCA-IMT (Lee et al., 2016). Regarding snoring frequency, 
the stenotic group exhibited significantly more nocturnal snoring 
events per 8-h sleep period compared to the non-stenotic group 
(p = 0.031). This likely reflects more frequent upper airway 
obstruction or turbulence, aligning with Lee et al.’s (Lee et al., 
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FIGURE 10
Comparative Grad-CAM visualizations of feature attention among different models.

TABLE 9  Baseline characteristics of patients in stenotic and non-stenotic groups.

Item Stenotic group (n = 16) Non-stenotic group (n = 15) t/χ2 p-valuea

Age (years) 71.44 ± 7.70 67.53 ± 9.12 1.284 0.210

Sex 0.819 0.366

Female 7 (43.8) 9 (60.0)

Male 9 (56.2) 6 (40.0)

Hypertension 11 (68.8) 9 (60.0) 0.259 0.611

Diabetes 8 (50.0) 6 (40.0) 0.313 0.576

Atherosclerosis 7 (43.8) 6 (40.0) 0.045 0.833

Dyslipidemia 6 (37.5) 5 (33.3) 0.000 1.000

AHI (events/h) 16.05 ± 5.90 13.75 ± 3.80 1.283 0.210

Cerebral infarction 4 (25.0) 0 (0.0) — —

Cerebral ischemia 3 (18.8) 0 (0.0) — —

Data are expressed as mean ± SD or number (%). aContinuous variables were compared using independent-samples t-test, and categorical variables were compared using the χ2 test, as 
appropriate. AHI: apnea-hypopnea index.

2008) conclusion that “heavy snoring is significantly associated with 
carotid atherosclerosis.” In contrast, snoring event duration was 
slightly longer in the stenotic group but did not reach statistical 
significance (p = 0.185), likely due to the limited sample size 

or substantial individual variability. In summary, while this study 
did not identify significant intergroup differences in snoring event 
duration, the variations in low-frequency energy ratio and snoring 
frequency provide preliminary acoustic evidence for assessing 
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TABLE 10  Comparison of snoring characteristics between stenotic and non-stenotic groups.

Group Low-frequency energy ratio Snoring frequency (events/8 h) Snoring event duration (s)

Stenosis group (n = 16) 0.52 (0.46–0.59) 835.50 (667.50–1,341.50) 1.60 (1.48–1.82)

Non-Stenosis group (n = 15) 0.69 (0.58–0.77) 649.00 (434.00–764.50) 1.51 (1.37–1.65)

Z −2.253 2.174 1.344

p-value 0.025 0.031 0.185

Data are expressed as median (IQR). p values are reported to three decimal places. Statistical comparisons were performed using the Mann-Whitney U test. Significance level: p < 0.05.

TABLE 11  Sensitivity analysis of snoring characteristics after excluding cerebral infarction/ischemia cases.

Group Low-frequency energy ratio Snoring frequency (events/8 h) Snoring event duration (s)

Stenosis group (n = 12) 0.52 (0.46–0.57) 835.50 (697.75–1,341.50) 1.59 (1.48–1.82)

Non-Stenosis group (n = 15) 0.69 (0.58–0.77) 649.00 (434.00–764.50) 1.51 (1.37–1.65)

Z −2.098 2.390 1.073

p-value 0.038 0.018 0.294

Data are expressed as median (IQR). p values are reported to three decimal places. Statistical comparisons were performed using the Mann-Whitney U test. Significance level: p < 0.05.

cerebrovascular stenosis risk through snoring acoustic features, 
offering potential clinical implications. Future research should 
incorporate larger samples and quantitative respiratory parameters 
from PSG for in-depth validation.

To control for potential confounding effects of a history of 
cerebral infarction or cerebral ischemia, a sensitivity analysis was 
conducted after excluding these patients. As shown in Table 11, 
the Mann-Whitney U test revealed that the low-frequency energy 
ratio in the stenotic group remained significantly lower than that 
in the non-stenotic group (p = 0.038), and the snoring frequency 
was significantly higher (p = 0.018); while the difference in snoring 
event duration between the two groups remained statistically 
insignificant (p = 0.294). These findings indicate that even after 
controlling for the confounding effects of cerebral complications, 
the characteristics of high-frequency shift in snoring energy 
distribution and increased snoring frequency in stenotic patients 
persist stably, further validating the reliability of the aforementioned
analysis.

4 Discussion

The ConvNeXt model proposed in this study, which integrates 
dynamic convolution and attention mechanisms, outperformed 
baseline networks in snoring sound classification and maintained 
stable performance under noisy conditions. Statistical analysis 
revealed significant differences in specific acoustic features (low-
frequency energy ratio and nocturnal snoring frequency) between 
the cerebrovascular stenosis and non-stenosis groups. These findings 
provide preliminary evidence that snoring acoustics may serve 
as potential indicators of cerebrovascular risk, although further 
validation in larger cohorts is required. 

4.1 Clinical significance and application 
scenarios

Based on the current findings, the proposed method 
demonstrates potential clinical application value in three aspects. 
First, in community or outpatient screening settings, automated 
snoring analysis can serve as a low-cost, non-invasive auxiliary 
tool for the preliminary identification of suspected cases. For 
example, patients exhibiting a markedly elevated nocturnal snoring 
frequency (≥800 events during an 8-h sleep period) and a clearly 
reduced low-frequency energy ratio could be prioritized for carotid 
ultrasound or other vascular assessments. Second, the model 
maintained stable performance under noisy conditions, indicating 
its applicability in hospital wards and home sleep monitoring 
scenarios. This adaptability expands the potential for continuous and 
long-term observation of high-risk individuals outside laboratory 
environments. Third, the observed acoustic differences between the 
stenosis and non-stenosis groups suggest that snoring features may 
serve as early warning indicators of cerebrovascular abnormalities 
in patients with OSAHS and help clinicians identify which patients 
require further vascular evaluation.

Future studies should establish quantitative criteria for referral 
or further evaluation, such as defining what level of nocturnal 
snoring frequency or range of low-frequency energy ratios should be 
considered clinically significant. These criteria should be validated 
through larger, prospective cohort studies. 

4.2 Limitations and future work

Despite the advantages demonstrated by the proposed method, 
several limitations remain. First, the sample size is limited to 
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only 31 patients, leading to insufficient representativeness that 
may compromise the generalizability of the findings. Future 
studies should expand into multicenter settings and include 
participants across different age groups. Second, the method 
relies on two-dimensional spectrograms and convolutional neural 
networks, which, although effective in capturing time-frequency 
features, entail relatively high computational costs. Previous studies 
have proposed snoring classification methods based on one-
dimensional features, such as amplitude spectrum trend features 
(Sun et al., 2020) or representation learning based on auditory 
receptive fields (Hu et al., 2023). These approaches generally 
offer higher computational efficiency and deployment convenience 
but remain inadequate for modeling complex time-frequency 
patterns. Future research could explore integrating two-dimensional 
spectral analysis with one-dimensional feature extraction to balance 
discriminative power and computational efficiency. Finally, the 
acoustic differences identified in this study are based solely on 
cross-sectional statistical analysis, making it difficult to directly infer 
the underlying pathological mechanisms. Larger-scale longitudinal 
studies are needed to validate their clinical significance. 

5 Conclusion

This paper proposes a snoring classification method integrating 
dynamic convolution with attention mechanisms, with a particular 
emphasis on exploring the acoustic differences between patients 
with and without cerebrovascular stenosis. The main conclusions 
and contributions are as follows: (1) Methodological improvements: 
Among four acoustic features and multiple baseline models, this 
paper proposes integrating AKConv, CBAM, and Conv2Former 
modules into the ConvNeXt backbone. On the Mel spectrogram, 
the method achieves 90.24% accuracy in classifying snoring versus
non-snoring sounds, representing an improvement of approximately 
2 percentage points over the ConvNeXt baseline. It also achieves 
84.68% accuracy in classifying stenotic versus non-stenotic snoring 
sounds, which should be regarded as preliminary. (2) Robustness 
and ablation validation: Through noise robustness experiments, the 
proposed method was shown to maintain stable performance under 
varying noise conditions. Furthermore, ablation studies confirm 
that each added module contributes incrementally to the observed 
improvements, underscoring the reliability and interpretability of 
the proposed architecture. (3) Preliminary clinical insights: Clinical 
analyses identified significant differences between stenotic and 
non-stenotic patients in low-frequency energy ratio (p = 0.025) 
and nocturnal snoring frequency (p = 0.031). Sensitivity analyses 
excluding patients with cerebral infarction and cerebral ischemia 
yielded consistent results (p = 0.038 and p = 0.018, respectively). 
Snoring event duration did not differ significantly. These clinical-
statistical findings are promising but remain preliminary and require 
validation in larger-scale, longitudinal studies before any clinical 
application.
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