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Eye movement analysis provides critical insights across domains such
as perception, cognition, neurological diagnostics, and human-computer
interaction. However, reliable quantification of oculomotor remains challenging
due to the lack of clear boundaries between fixations, saccades, and
smooth pursuits, or variability across individuals and contexts. This article
reviews methods for segmenting oculometry data into canonical oculomotor
events, and the computational tools that can be used to characterize
them. Binary segmentation employs mostly threshold-based algorithms and
learning-based algorithms to distinguish fixations from saccades. Ternary
segmentation additionally considers smooth pursuits using primarily threshold-
based approaches and deep learning techniques. The common challenges in
the practical application of segmentation algorithms are highlighted, namely,
parameter sensitivity, noise, and head movement artifacts in mobile eye
trackers, and emphasize the need for standardized benchmarks. The usual
oculomotor metrics that can be inferred from the canonical movements are
described, encompassing temporal, spatial, and kinematic features. The critical
insights they provide for cognitive and clinical research in fields such as
reading comprehension, neurological disorder diagnostics, and sensorimotor
development, are outlined. Finally, relatively underexplored methods from
signal processing, including spectral, stochastic, and topological methods,
are presented. Their potential in revealing oscillatory patterns and structural
complexities in gaze dynamics is detailed. Together, these approaches enhance
our understanding of eye movement behavior, with significant implications for
psychology, neuroscience, and human-computer interaction.

KEYWORDS

segmentation algorithm, oculomotor dynamics, fixations, saccades, smooth-pursuits,
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1 Introduction

Eye movement research has a rich history, beginning with foundational work by Dodge
and Cline (1901) in the early 20" century. Technological advancements have since
enhanced the measurement, storage, and analysis of eye movements, enabling significant
progress in understanding their underlying mechanisms. The growing accessibility
of eye-tracking tools has expanded their use across global research laboratories,
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fostering specialized subfields like neuroscience, psychology,
marketing, and medicine. Each discipline has provided critical
insights, collectively shaping modern eye movement research.

A primary goal in eye movement research is to extract metrics
that characterize the oculomotor system. Due to their close link
with visual attention, eye movements analysis is a powerful tool
for studying cognitive and behavioral processes. Recent studies
have integrated eye movement analysis into cognitive psychology,
exploring areas like language processing, reading, and problem-
solving (Rayner, 1998). Research has also investigated connections
between eye movements, visual attention, and perception (Collins
and Doré-Mazars, 2006; Schiitz et al., 2011). Additionally, individual
differences in oculomotor patterns have paved the way for eye
movement biometrics (Rigas and Komogortsev, 2016).

Clinical research increasingly employs eye movement analysis
as a non-invasive method to identify neural irregularities linked
to neurodegenerative and neurological disorders (MacAskill and
Anderson, 2016). Distinct oculomotor patterns have been observed
in individuals with early-stage Alzheimer’s disease (Fernandez et al.,
2013) and Parkinson’s disease (Wetzel et al., 2011), highlighting
their potential as biomarkers for early diagnosis and disease
monitoring. Furthermore, a growing body of evidence explores
oculomotor features in behavioral disorders such as attention deficit
hyperactivity disorder (ADHD) (Fried et al,, 2014) and autism
spectrum disorder (ASD) (Klin et al., 2002; Shirama et al., 2016),
offering valuable insights into the neurocognitive mechanisms
underlying these conditions.

The rapid growth of eye movement research has also brought
significant challenges. The increasing volume of publications
can obscure critical insights, while fragmentation across sub-
disciplines hinders effective knowledge integration. As the different
research communities pursue distinct objectives, definitions and
methodologies often become highly specialized, which limits their
generalizability. This has contributed to a fragmented conceptual
framework within the field. Notably, a recent study highlights that
even fundamental terms such as fixation and saccade are defined
inconsistently, resulting in conceptual confusion (Hessels etal., 2018).
These definitions vary considerably depending on whether the
perspective is functional, oculomotor, or computational, with little
consensus even within individual subfields.

Beyond conceptual and terminological inconsistencies, the
field lacks standardized methods for defining and extracting eye
movement features. Most studies emphasize feature subsets tailored
to specific research questions, and the methodological variability
in segmenting raw gaze data into canonical movements—such
and

as saccades,

reproducibility. The growing availability of portable, cost-effective

fixations, smooth pursuits—undermines
eye-tracking devices has facilitated the study of naturalistic
behavior in both laboratory and real-world settings (Hayhoe and
Ballard, 2005; Land, 2009). However, the absence of standardized
analysis protocols limits comparability between studies and hinders
the integration of knowledge. This work aims to address these
challenges by proposing a unified methodological framework to
improve interoperability across research communities and improve
comparison across experimental contexts.

This review focuses on methods for segmenting, extracting
and analyzing fixations, saccades, and smooth pursuits, building
on prior comprehensive reviews of fixation and saccade features
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(Sharafi et al., 2015; Rigas et al, 2018; Brunyé et al, 2019
Skaramagkas et al., 2021; Mahanama et al., 2022a; Spering, 2022) and
pursuit-based features (Skaramagkas et al., 2021; Mahanama et al.,
2022a; Spering, 2022). Some reviews target speciﬁc domains,
such as emotional and cognitive processes (Skaramagkas et al.,
2021) or decision-making (Spering, 2022). Additionally, several
studies, including Komogortsev et al. (2010b); Birawo and
Kasprowski (2022); (2023),
segmentation algorithms, often comparing their performance on

Startsev and Zemblys evaluate
open-source datasets and proposing quality metrics. This work
aligns with these efforts by reviewing segmentation methods and
their associated oculomotor features.

Specifically, this review surveys methodologies for quantifying
oculomotor system activity and explores their diverse applications.
While not exhaustive due to the breadth and specialization of
some methods, it provides a concise overview of key approaches
for characterizing canonical eye movements and their oculometric
signals. The following sections are organized as follows. Section 2
introduces segmentation algorithms for classifying fixations,
saccades, and smooth pursuits. Two primary analytical approaches
are then explored: physiological analysis—Section 3 — which
extracts meaningful features like shape, dynamics, and kinematics
from segmented sequences, and signal-based analysis—Section 4
— which applies time-series descriptors to examine eye movement
behavior from a global dynamic perspective. Although a detailed
discussion of metrics is beyond the scope of this review, we aim to
provide a unified framework for oculometric signal analysis.

This article is part of a series of four reviews dedicated to
methods for analyzing oculomotor signals and gaze trajectories.
The overarching goals of the series are to evaluate the application
of eye movement and gaze analysis techniques across diverse
scientific disciplines and to work toward a unified methodological
framework by defining standardized representations and concepts
for quantifying eye-tracking data. The first article in the series,
already published in Frontiers in Physiology (Laborde et al., 2025),
provided an overview of current knowledge on canonical eye
movements, with particular emphasis on distinguishing findings
obtained in controlled laboratory settings from those observed in
more natural, head-free conditions.

2 Segmentation algorithms

Three archetypal gaze patterns can typically be observed in eye-
tracking data: periods of relative stability, rapid eye shifts, and slower
shifts corresponding to the tracking of moving objects. These are
commonly assumed to reflect the three main canonical oculomotor
events that direct gaze movements, namely, fixations, saccades
and smooth pursuits. Thus, a necessary preliminary step in eye-
movement analysis is often to identify these canonical events from
a continuous stream of gaze data using segmentation algorithms.
Segmentation algorithms employ a number of predefined criteria,
based on the underlying characteristics of the oculomotor
events, in order to distinguish them. Such a process aligns with
the traditional neurophysiological view, which postulates that
distinct neural mechanisms govern specific movement types,
such as the superior colliculus for saccades or the cerebellum for
smooth pursuits.
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However, the organization of the oculomotor system as a
discrete set of events has been questioned, notably in the context of
natural viewing conditions (Steinman et al., 1990). Under ecological
conditions, a richer repertoire of ocular behavior can be observed.
This results in potential overlap between the characteristics of
the oculomotor events, which makes the segmentation task more
challenging. Therefore, it seems more appropriate to refer to
segmentation algorithms as event classification rather than event
detection, since they merely assign a discrete event type to each
data period based on some computationally inferred features—e.g.,
velocity thresholds for saccades or duration thresholds for
fixations. This distinction is critical, as misclassification can distort
interpretations of visual attention in fields such as psychology,
neuroscience, and human-computer interaction.

A major challenge in eye movement segmentation is the
dependence on user-defined parameters, such as velocity thresholds
for saccades or minimum fixation durations. Although these
events are grounded in physiological phenomena, no theoretical
consensus exists on parameter values that definitively distinguish
movement types. For instance, the transition from slow movements,
such as smooth pursuits or drifts, to rapid saccades lacks a
clear, physiologically validated threshold. Studies investigating
optimal parameterization for specific algorithms (Blignaut, 2009;
Shic et al.,, 2008) indicate that variations in parameter settings
significantly influence classification outcomes (Komogortsev et al.,
2010b; Salvucci and Goldberg, 2000). This sensitivity hampers
reproducibility and can distort findings in fields requiring precise
event classification, such as psychology or human-computer
interaction. In psychology, for example, precision in detecting
fixations is crucial for analyzing attention strategies, such as in
studies on reading or visual information processing (Rayner, 1998).
For instance, in experimental paradigms measuring cognitive load,
accurate identification of fixations enables reliable quantification
of the time spent on specific stimuli, thereby revealing underlying
attentional processes (Duchowski and Duchowski, 2017). In human-
computer interaction (HCI), precise classification of eye movement
events is equally important for evaluating the usability of user
interfaces (Jacob and Karn, 2003). Correct detection of saccades
and fixations, for example, allows for the identification of interface
areas that attract users’ attention or pose accessibility issues, directly
influencing the design of more intuitive interfaces.

Conversely, errors in the detection of fixations or saccades
can have significant repercussions on the interpretation of data in
studies in cognitive psychology and human-computer interaction
(HCI). As shown by Duchowski and Duchowski (2017) and
Nystrom and Holmgqvist (2010), erroneous classification of eye
movement events can bias the analysis of attentional processes or
user behaviors. For example, a fixation incorrectly identified as
a saccade can distort measures of cognitive load in experimental
paradigms, leading to erroneous conclusions about underlying
cognitive mechanisms (Rayner, 1998). Similarly, in HCI, imprecise
detection of eye movement events can result in an incorrect
evaluation of an interface’s usability, affecting recommendations for
its optimization (Jacob and Karn, 2003). As such, threshold-based
methods, including velocity or dispersion thresholding, provide
computational interpretations of oculomotor events, but their
criteria often vary across studies and implementations, leading to
inconsistent classifications of identical gaze data due to insufficient
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standardization, which compromises the reproducibility of results in
contexts requiring high precision (Holmgqvist et al., 2011).

Finally, researchers must consider the coordinate system used
when analyzing eye-tracking data, particularly with mobile eye
trackers that permit free head movement. Unlike stationary trackers,
which use a head-referenced coordinate system, mobile trackers
record gaze in a world-referenced system, where head movements
can complicate event classification. To avoid such conceptual
confusion, researchers should ensure proper head movement
compensation and clearly report their coordinate system. For a
detailed discussion of challenges in defining oculomotor events,
see the review by Hessels et al. (2018). Note that considerations
regarding the utilization and transformation of these coordinates in
relation to a moving observer’s visual field are addressed in the first
part of this review series (Laborde et al., 2025)

Although some authors have called for the standardization
of eye movement classification algorithms and evaluation tools
(Komogortsev et al., 2010a), Startsev and Zemblys (2023), there is
currently no clear consensus on how to benchmark these methods.
This lack of agreement poses challenges to the development
and comparison of new segmentation approaches. To address
this gap, several concrete proposals have been suggested in the
literature. First, minimal reporting standards could be established,
requiring authors to clearly specify algorithm parameters, eye-
tracker sampling rates, stimulus types, and data preprocessing steps.
Second, the use of shared, openly available datasets would enable
reproducible evaluation across diverse conditions, including static,
dynamic, and naturalistic stimuli. Third, benchmark competitions
or challenges could be organized, similar to practices in computer
vision and machine learning, where algorithms are tested on
identical datasets using standardized metrics such as precision,
recall, F1-score, Cohens Kappa, and RMSD. By adopting these
practices, the field could facilitate more transparent, reproducible,
and comparable assessments of eye movement segmentation
algorithms, ultimately accelerating methodological improvements.

In this review, we focus on fixations, saccades, and smooth
pursuit eye movements, as these are the most commonly studied
and well-characterized oculomotor events in the literature. Other
canonical eye movement events, such as vergence, optokinetic
reflexes, and vestibulo-ocular reflex (VOR), are not included. These
events are less frequently analyzed in eye-tracking studies, and
their detection often requires specialized experimental setups or
instrumentation beyond conventional gaze-tracking paradigms. By
concentrating on fixations, saccades, and pursuits, we ensure that
the discussion is grounded in well-supported empirical evidence
while acknowledging that additional eye movement types remain
an important direction for future work. Despite these challenges,
the following sections provide an overview of widely used
segmentation methods (Salvucci and Goldberg, 2000; Komogortsev
and Karpov, 2013; Andersson et al., 2016).

2.1 Separating saccades from fixations

Numerous algorithms have been developed to address the
challenge of distinguishing saccades from fixations, a process known
as binary segmentation. This is illustrated in Figure 1, which depicts
alternating periods of relative gaze stability—fixations, marked in
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purple—and rapid gaze reorientations—saccadic eye movements.
The recording shown in Figure 1 is of exceptionally high quality,
with minimal noise or signal loss. In contrast, real-world eye-
tracking data often exhibit lower quality due to several factors. For
instance, blinks or partial eyelid closures interrupt the signal, while
head movements or poor participant stabilization can introduce
spatial jitter. Changes in lighting conditions or reflections on glasses
can reduce the accuracy of gaze detection, and low sampling
rates or occasional data dropouts may cause missing or irregular
samples. Additionally, physiological variability, such as micro-
saccades or pupil size fluctuations, can further complicate event
classification. These factors collectively increase the difficulty of
distinguishing fixations from saccades, emphasizing the need for
robust segmentation algorithms that can tolerate noise and handle
incomplete or variable-quality data.

Binary segmentation algorithms are broadly categorized into
threshold-based and learning-based approaches. Threshold-based
methods rely on predefined computational criteria, such as velocity
or spatial dispersion, to classify fixations and saccades, ensuring
transparent, rule-based classification. In contrast, learning-based
methods, encompassing machine learning and deep learning
techniques, infer patterns from annotated training data, which
reflect expert or task-specific interpretations of fixations and
saccades. These annotations may reduce the transparency of
classification criteria compared to threshold-based methods due to
their reliance on subjective or context-dependent definitions.

2.1.1 Threshold-based algorithms

The velocity-threshold identification (I-VT) algorithm (Salvucci
and Goldberg, 2000) is a widely adopted method for distinguishing
fixations from saccades in eye movement data. It leverages
the distinct velocity profiles of eye movements: low velocities
characterize fixations, while high velocities indicate saccades.
The I-VT algorithm calculates the absolute velocity between
consecutive gaze samples and classifies each sample as a fixation or
saccade based on a user-defined velocity threshold. To address the
subjectivity of manual threshold selection, Nystrom and Holmqvist
(2010) proposed an adaptive I-VT variant that dynamically
computes thresholds for peak velocities and saccade onset/offset
detection based on statistical properties of the data. This method
incorporates constraints derived from the physical characteristics
of eye movements—such as minimum and maximum velocities,
accelerations, and event durations—to filter noise and enhance
classification accuracy.

In contrast to velocity-based methods, the dispersion-threshold
identification (I-DiT) algorithm offers an alternative approach
by leveraging the tendency of fixation points—characterized by
relatively low velocity—to cluster spatially (Salvucci and Goldberg,
2000; Komogortsev et al., 2010a; Andersson et al., 2016). The I-DiT
algorithm distinguishes fixations from saccades based on the spatial
dispersion of consecutive gaze points within a defined temporal
window. Dispersion is quantified by summing the ranges—i.e., the
differences between the maximum and minimum values—of the
gaze coordinates in both the horizontal and vertical dimensions. If
the resulting dispersion value falls below a predefined threshold, the
corresponding gaze points are classified as a fixation. Otherwise,
if the dispersion exceeds the threshold, the sequence is identified
as a saccade.
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FIGURE 1

Binary Segmentation. This example illustrates an oculomotor
recording containing both fixations and saccades. Panel (a) depicts the
two-dimensional gaze trajectory, with alternating periods of

stability —fixations shown in purple—and rapid ballistic
reorientations—saccades shown in gray. Panels (b,c) present the
horizontal and vertical gaze positions over time, respectively, using the
same color scheme. These characteristic patterns form the basis of
binary segmentation algorithms, which aim to distinguish fixation
sequences from saccadic sequences.

Another notable approach is the minimum spanning tree
(MST)-based method (Goldberg and Schryver, 1995; Salvucci and
Goldberg, 2000; Komogortsev et al., 2010a; Andersson et al., 2016),
which also employs a dispersion-based strategy to evaluate local gaze
dispersion within a temporal window of eye position data. Unlike
traditional methods, MST-based algorithms model gaze points as
nodes in a graph, with edges weighted by the Euclidean distance
between corresponding positions. A minimum spanning tree is
constructed—typically using Prim’s algorithm (Camerini et al,
1988) — to connect all nodes while minimizing total edge length.
The identification by minimum spanning tree (I-MST) algorithm
classifies gaze points by applying edge-distance thresholds: points
connected by edges shorter than the threshold are grouped as
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Ternary Segmentation. This example illustrates an oculomotor
recording comprising fixations, saccades, and smooth pursuits. Panel
(a)shows the two-dimensional gaze trajectory, where fixations are
marked in purple, saccades in gray, and smooth pursuits in blue.
Panels (b,c)display the corresponding horizontal and vertical gaze
positions over time, highlighting the gradual directional displacements
characteristic of smooth pursuit movements. These distinguishing
features are the focus of ternary segmentation algorithms, which aim
to isolate pursuit sequences from other phases.

fixation components, while those separated by longer edges are
classified as saccadic components. Thresholds may be applied
globally across the graph (Komogortsev et al., 2010a) or adapted
locally based on vertex density (Goldberg and Schryver, 1995). The
MST-based approach offers flexibility, adapts to local data structures,
and demonstrates robustness in handling missing or noisy data,
making it suitable for complex eye-tracking datasets.

The Density-Threshold Identification (I-DeT) algorithm is an
adaptation of the DBSCAN clustering method (Ester et al., 1996).
I-DeT extends DBSCAN by incorporating the temporal dimension
of gaze data, ensuring that segmented events reflect the sequential
nature of eye movements. As introduced by Li et al. (2016), a gaze
point is classified as a core point if: (i) at least a minimum number
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of gaze points lie within a specified spatial radius of the reference
point, forming a local neighborhood; and (ii) these neighboring
points form a temporally contiguous sequence in the gaze dataset.
Fixations are identified as clusters comprising core points and their
associated neighborhoods, while non-core, non-neighbor points
are classified as saccades or noise. This integration of spatial and
temporal constraints makes I-DeT robust for segmenting gaze data,
though its performance depends on careful parameter tuning to
avoid over—or under—segmentation.

Building on classical signal processing, Kalman filter-based
algorithms (I-KF) model eye movements as a dynamic system.
The two-state Kalman filter, as proposed by Komogortsev and
Khan (2007), represents eye movements using position and velocity
states, assuming linear dynamics and Gaussian noise. The algorithm
operates recursively in two phases: (i) the predict phase, which
forecasts the next state based on the system model, and (ii) the
update phase, which refines the prediction using observed data to
produce a more accurate state estimate. Saccade detection employs
a Chi-square test (Sauter et al., 1991) to assess discrepancies between
predicted and observed gaze velocities, with a threshold determining
whether a sample is classified as a saccade—high velocity—or
fixation—low velocity. This approach excels in handling noisy data
by combining predictive modeling with statistical testing, offering
a robust framework for eye movement classification applicable in
fields such as human-computer interaction and clinical research.

2.1.2 Learning-based algorithms

The Hidden Markov Model Identification (I-HMM) algorithm,
introduced by Salvucci and Goldberg (2000), extends the
velocity-threshold identification (I-VT) approach by employing
a probabilistic framework to segment eye movements into fixations
and saccades. I-HMM models eye movements as a sequence
of two latent states—fixation and saccade—each characterized
by a Gaussian velocity distribution. Fixations typically exhibit
low mean velocity, while saccades are defined by high mean
velocity—e.g., >200 degrees per second. Transitions between these
states are modeled as a first-order Markov process, capturing
the temporal dependencies inherent in gaze data. The approach
leverages the Baum-Welch algorithm (Bilmes et al., 1998) to
estimate model parameters, including state transition probabilities
and emission distribution parameters—e.g., mean and variance of
velocity distributions—from training data. Subsequently, the Viterbi
algorithm infers the optimal sequence of states for a given gaze
dataset. Unlike deterministic threshold-based methods like I-VT, I-
HMM accounts for noise and sequential patterns, providing robust
segmentation that is particularly effective for noisy or complex
eye-tracking datasets.

The Two-Means Clustering Identification (I2MC) algorithm,
introduced by Hessels et al. (2017), is designed to extract fixations
from gaze data with high noise levels, such as those recorded from
infants. The algorithm employs two-means clustering—k-means
with k = 2 — on a fixed-length temporal window—typically 200-400
milliseconds—to partition gaze samples into stable—fixation—and
rapid—saccade—clusters based on their spatial coordinates. For
each window, the number of transitions between clusters is
calculated, and each gaze sample is assigned a weight inversely
proportional to the number of transitions, reflecting the stability
of the cluster assignment. To enhance robustness to noise, this
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process is applied across multiple down-sampled versions of the
gaze signal. The clustering weights for each gaze sample are
aggregated and averaged to generate a weight signal, which is then
thresholded using an empirically determined cut-off to identify
fixation periods, effectively distinguishing fixations from ballistic
saccades. I2MC demonstrates robustness to data loss—e.g., due to
blinks or tracker errors—and was shown to outperform seven state-
of-the-art algorithms on noisy infant data, making it well-suited
for applications in developmental psychology, clinical research, and
longitudinal studies with variable data quality (Hessels et al., 2017).

Building upon established machine learning techniques,
Zemblys et al. (2018) introduced the Random Forest Classifier (I-
RF) algorithm to distinguish fixations, saccades, and potentially
other eye movement events from raw gaze data. The I-RF model is
trained on a set of 14 features, including spatial measures—e.g.,
root mean square of sample-to-sample displacement, standard
deviation of gaze positions, bivariate contour ellipse area—and
statistical measures—e.g., sample dispersion, kurtosis. The random
forest classifier leverages these features to model complex, non-
linear relationships, achieving high classification accuracy. However,
a key limitation is the reliance on hand-tagged training data,
which is labor-intensive and hinders scalability. Reproducibility
is also challenging, as model performance depends on the quality
and representativeness of training datasets. Additional limitations
include the computational cost of feature extraction and the risk of
overfitting to specific datasets. Nevertheless, I-RF is particularly
valuable in eye-tracking research for applications in cognitive
psychology, human-computer interaction, and clinical diagnostics,
offering robustness to noise and the potential to detect diverse eye
movement types when trained appropriately.

The evaluation of binary segmentation algorithms, which aim to
distinguish fixations from saccades, has been reported in benchmark
studies comparing algorithm outputs to human coders using high-
frequency datasets that include static images, text, moving dots,
and videos (Andersson et al., 2016). These studies provide a
valuable baseline for assessing segmentation quality. Performances
are generally summarized using metrics such as Cohen’s Kappa,
which captures agreement with human annotations, or RMSD
for event durations, which reflects temporal precision. However,
reported values vary considerably depending on the dataset, the type
of stimulus, and the specific evaluation protocol, making it difficult
to directly compare results across studies.

Among threshold-based methods, the velocity-threshold
approach (I-VT) typically reaches Kappa values around 0.65 — —0.75
for static image datasets but drops markedly in dynamic conditions,
particularly for fixations (Andersson et al., 2016). The dispersion-
based algorithm (I-DiT) rarely exceeds 0.45 and shows high
sensitivity to noise, while I-MST adapts better to missing data
but yields modest agreement overall, usually between 0.3 and 0.5
(Andersson et al., 2016). Kalman filter approaches (I-KF) report
reasonable performance for saccades—up to 0.6 — but poor fixation
detection. More recently, density-based methods such as I-DeT,
inspired by clustering techniques, have been proposed as more
robust under noise and data loss, though systematic benchmarks
remain scarce (Li et al., 2016).

Learning-based approaches tend to report more robust and
generalizable performance, particularly in challenging or noisy
datasets. Hidden Markov models (I-HMM) achieve balanced results
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across stimulus types, with Kappa values close to 0.7 for saccades
(Andersson et al., 2016). The two-means clustering method (I2MC),
developed specifically for noisy infant recordings, reports an average
Fl-score of 0.83 across seven independent datasets, consistently
outperforming several threshold-based methods (Hessels et al.,
2017). Random forest classifiers (I-RF) have achieved state-of-the-
art sample-level results, with F1-scores near 0.97 and Kappa values
around 0.85 in validation data, though performance decreases to
about 0.70 on independent test sets (Zemblys et al., 2018).

In summary, threshold-based methods are attractive for their
simplicity and efficiency and remain effective under controlled
static conditions, but they degrade substantially in noisy or
dynamic environments. Learning-based methods demonstrate
greater resilience, adaptability, and the ability to model complex
data patterns, although they require annotated training datasets and
greater computational resources. It is important to emphasize that
these are reported performances drawn from heterogeneous studies,
and differences in dataset characteristics, sampling frequency, and
evaluation protocols likely account for a substantial part of the
observed variability across algorithms.

2.2 Separating smooth pursuits from
fixations and saccades

The detection of smooth pursuit events, characterized by low-
velocity, consistent-directionality eye movements that track moving
targets, has received less attention compared to saccade and fixation
classification. This task, known as ternary segmentation—classifying
fixations, saccades, and smooth pursuits—is illustrated in Figure 2,
which depicts smooth pursuits—marked in purple—alongside
fixations and saccades in high-quality eye-tracking data. Methods
for identifying smooth pursuits are broadly categorized into
threshold-based and learning-based approaches. Both approaches
encounter the same limitations outlined in Section 2.1, including
sensitivity to predefined thresholds in threshold-based methods
and reliance on annotated training datasets in learning-based
methods, which can be labor-intensive and specific to the dataset.
Smooth pursuit detection is particularly challenging in noisy or
low-quality data—e.g., from low-frequency eye trackers or studies
involving infants—often necessitating preprocessing steps such as
noise filtering or blink removal to improve accuracy.

2.2.1 Threshold-based algorithms

Typically, a simple velocity threshold is first applied to isolate
saccadic events, followed by a second step to distinguish between
the remaining movements, namely, fixation and pursuit events. A
straightforward but effective method for this task, known as the I-
VVT approach, was proposed by Komogortsev and Karpov (2013).
This method builds upon the I-VT algorithm by introducing a
second velocity threshold to specifically isolate fixation events. Any
remaining data points are then classified as pursuit events. However,
a potential limitation of this approach is that eye movement
velocities can vary between individuals and even within the same
individual depending on the specific task being performed. As
such, establishing universally effective thresholds to differentiate
smooth pursuits from fixations—both of which are low-velocity
movements—presents a challenge. This variability can complicate
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the application of this algorithm in real-world scenarios, particularly
those involving dynamic scenes (Kasneci et al., 2015).

To reduce reliance on velocity thresholds, Komogortsev and
Karpov (2013) proposed to distinguish between pursuit and
fixation movements using a dispersion threshold combined with a
temporal window—an approach commonly referred to as I-VDT.
This method naturally extends the I-DiT approach by isolating
fixation samples based on their spatial proximity. Similarly, Lopez
(2009) proposed an alternative strategy where the standard
deviation of movement direction within a time window is used
to differentiate between fixation and pursuit events. This approach
provides an additional method for segmentation that focuses on
directional variability rather than relying solely on velocity-based
thresholds.

The Velocity and Movement Pattern Identification (I-VMP)
algorithm, proposed by Lopez (2009), provides an advanced
method for detecting smooth pursuits in eye-tracking data. I-
VMP employs a two-stage approach: it first applies a velocity
threshold to isolate saccades, then analyzes the angular displacement
between consecutive gaze points to identify smooth pursuits
among low-velocity movements. Specifically, the angle between the
horizontal axis and the line connecting successive gaze points is
projected onto a unit circle, and a Rayleigh score is computed to
quantify directional consistency within a defined temporal window.
High Rayleigh scores indicate stable directionality, characteristic
of smooth pursuits, distinguishing them from fixations, which
exhibit random or minimal directional changes. While this method
reduces dependence on velocity thresholds compared to traditional
approaches, it requires preprocessing steps, such as noise filtering
and blink removal, and knowledge of stimulus motion for optimal
performance.

Finally, Santini et al. (2016) introduced a Bayesian decision
theory-based approach (I-BDT), specifically designed for the
classification of smooth pursuit eye movements when viewing
dynamic stimuli. Unlike earlier methods that rely on a velocity-
based initial step to isolate non-saccadic sequences, this approach
directly separates smooth pursuits from saccades and fixations
without the need for an initial velocity threshold. Grounded
in physiological hypotheses, the I-BDT approach incorporates
explicit formulas to compute the likelihoods and priors for each
type of eye movement—fixation, saccade, and smooth pursuit.
These formulas enable the efficient classification of eye movement
events by applying Bayes theorem, offering a probabilistic
types of

framework for distinguishing between different

oculomotor behavior.

2.2.2 Learning-based algorithms

Fuhl et al. (2018) introduced the Histogram of Oriented
Velocities (I-HOV) method, which adapts a computer vision
technique to classify fixations, saccades, and smooth pursuits in eye-
tracking data. The I-HOV algorithm computes velocity-weighted
angles between a gaze point and its predecessors or successors
within a defined temporal window, generating a histogram that
serves as a meta-representation of local gaze behavior for each
sample. These histograms are used as feature vectors for machine
learning algorithms, such as random forests, k-nearest neighbors,
and support vector machines, to classify eye movement types.
Similar to the I-VMP algorithm (Lopez, 2009), I-HOV leverages the
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consistent directionality and low-velocity profiles of smooth pursuits
to distinguish them from fixations and saccades. While effective
for ternary segmentation, I-HOV relies on high-quality annotated
training data and is computationally intensive. Its performance is
also sensitive to noise and the limitations of low-frequency eye
trackers, which may reduce the accuracy of velocity and angle
calculations.

Recent advances in eye movement classification have leveraged
deep learning techniques to distinguish smooth pursuit sequences
from fixations and saccades. One such approach, proposed by
Hoppe and Bulling (2016), employs a convolutional neural network
(CNN) combined with data windowing. In this method, gaze points
within each temporal window are transformed into the frequency
domain using a Fourier transform and then input to the CNN,
which classifies the eye movement type. Similarly, Fuhl et al.
(2021) introduced a CNN-based method, termed I-CNN, that
operates directly on windowed raw eye data to isolate oculomotor
events. These deep learning approaches demonstrate significant
effectiveness, particularly when trained on datasets tailored
to specific experimental conditions and eye-tracking devices,
underscoring their potential for robust eye movement classification.
However, their performance remains heavily dependent on the
quality and annotation of training data, which can substantially
impact model accuracy and generalizability.

Ternary segmentation, tasked with classifying fixations,
saccades, and smooth pursuits, presents greater challenges than
binary segmentation due to the subtle low-velocity characteristics
of smooth pursuits. Insights from Komogortsev and Karpov
(2013), Santini et al. (2016), Fuhl et al. (2018), and Fuhl et al.
(2021), evaluated on varied datasets with dynamic stimuli,
provide a foundation for assessing performance, although
quantitative benchmarks remain less comprehensive than for binary
segmentation. Moreover, the different evaluations were conducted
on distinct datasets, making it challenging to provide a reliable
comparative analysis of the various segmentation methods. As such,
the following paragraphs will focus on qualitative considerations.

Among threshold-based approaches, extensions of velocity- and
dispersion-threshold methods—e.g., I-VV'T, I-VDT—have been
applied to pursuits, while variants such as I-VMP incorporate
directional information to reduce velocity ambiguities. Bayesian
decision theory (I-BDT) has been reported to outperform
dispersion-based methods (I-VDT) on several dynamic datasets at
30 Hz, leveraging priors to enhance pursuit detection (Santini et al.,
2016).
Histogram-based classification (I-HOV) and convolutional neural

Learning-based methods show greater adaptability.
networks (I-CNN) have been reported to provide robust detection
of pursuits in noisy or low-resolution dynamic data, outperforming
threshold-based methods in these contexts (Fuhl et al., 2018; 2021).

In summary, ternary segmentation highlights the intrinsic
difficulty of reliably detecting smooth pursuits, particularly at
low velocities where they overlap with fixations. Threshold-based
methods capture faster pursuits but remain sensitive to noise and
sampling rate. Bayesian and direction-based extensions have been
reported to reduce some of these ambiguities, though results vary
across datasets. Learning-based methods appear more promising for
handling complex or noisy recordings, especially with CNNs and
histogram-based approaches, yet their effectiveness still depends
on the availability of well-annotated training corpora. Reported
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TABLE 1 Fixation-based features.

Featur Description

10.3389/fphys.2025.1661026

References

Count Given a set of fixation sequences, computes the number of fixations Rigas et al. (2018)
Frequency Given a set of fixation sequences, computes the number of fixations occurring per second Rigas et al. (2018)
Duration Given a fixation sequence, computes the duration of the sequence Rigas et al. (2018)

First duration

Given a set of fixation sequences, computes the duration of the first fixation sequence identified

Inhoff et al. (2000)

Centroid Given a fixation sequence, computes centroid position by averaging coordinates of data samples Rigas et al. (2018)
Drift displacement Given a fixation sequence, computes the distance between the starting and ending points of the sequence Rigas et al. (2018)
Drift distance Given a fixation sequence, computes the sum of distances between each data sample within this sequence Rigas et al. (2018)

Mean velocity

Given a fixation sequence, computes the mean velocity of data sample within this sequence

Rigas et al. (2018)

Drift velocity

Given a fixation sequence, computes the drift displacement normalized by the fixation duration

Rigas et al. (2018)

BCEA

Given a fixation sequence, computes the bivariate contour ellipse area (BCEA) as the area of the elliptical contour that
encompasses a given percentage of sample points of the sequence

Crossland et al. (2004)

performances point to relative strengths of each family of methods,
but the absence of standardized benchmarks makes it difficult to
establish a consensus hierarchy of algorithms.

3 Physiological features

Applying the segmentation algorithms presented in Section 2
produces a sequence of fixations, saccades, and possibly smooth
pursuits from raw gaze data. The following sections will review the
most common metrics found in the literature to describe and analyze
these oculomotor events.

The fundamental features and metrics for fixations, saccades,
and smooth pursuits are summarized in Tables 1-3, respectively.
The tables provide a concise description of each feature and
references from the literature that offer guidance for their
implementation.

3.1 Fixation measures

A fixation is defined as a period during which the gaze
is stabilized on a specific spatial location, projecting visual
stimuli onto the fovea centralis, the retinal region with maximal
photoreceptor density and visual acuity. Despite attempts
to maintain steady fixation on a stationary target, the eyes
exhibit continuous, involuntary micromovements, including
microsaccades—rapid, small-amplitude saccades—drifts—slow,
deviations—and  tremors—high-frequency,
amplitude oscillations. This section examines the quantitative
features characterizing fixations, including temporal, positional

curvilinear low-

attributes, and dynamic characteristics. These properties are
typically analyzed under head-constrained conditions using high-
resolution eye-tracking systems to isolate oculomotor behavior.
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3.1.1 Temporal features

Fixation count is defined as the total number of fixations within
a defined time interval or stimulus region. Despite its simplicity,
the fixation count remains a cornerstone metric in eye-tracking
research due to its robustness and interpretability. It is frequently
employed in exploratory analyses before applying more advanced
techniques. Fixation count is widely utilized to assess visual attention
allocation to regions of interest (ROIs) in textual or pictorial
stimuli (Scheiter and Eitel, 2017), infer the depth and efficiency
of visual processing (Jacob and Karn, 2003; Park et al., 2015), and
investigate how expertise influences oculomotor behavior in visual
tasks (Schoonahd et al., 1973; Megaw and Richardson, 1979).

Pioneering work by Goldberg and Kotval (1999) highlighted that
a higher number of fixations directed at a stimulus often indicates
inefficiency in the search for relevant information. As such, fixation
count has been used in eye-tracking studies to identify visual regions
that attract more attention or to infer the amount of cognitive
effort required for a particular task. For example, in challenging
tasks such as source code reading, a higher fixation count could
signify increased visual effort and processing time (Binkley et al.,
2013; Sharif et al.,, 2012). The fixation count is often expressed
per unit of time or relative to a specific task or sub-task. For
example, in reading tasks, the fixation count can be normalized to
the length of the text by dividing the number of fixations by the
number of words (Sharafi et al., 2015).

Another critical metric, fixation duration, quantifies the
temporal dynamics of gaze behavior. Typical fixations last between
200 and 300 milliseconds; however, longer durations on a stimulus
may indicate greater processing complexity (Jacob and Karn, 2003;
Krejtz et al., 2016b; Liu and Chuang, 2011). This metric is frequently
employed in eye-tracking studies to examine complex cognitive
functions such as reading comprehension (Raney et al, 2014),
learning processes (Liu, 2014), and mental workload assessment
(Liu et al,, 2022). Furthermore, individual fixation durations may
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TABLE 2 Saccade-based features.

Feature name

Description

10.3389/fphys.2025.1661026

References

Duration Given a saccade sequence, computes the duration of the sequence Rigas et al. (2018)
Frequency Given a set of saccade sequences, computes the number of saccades occurring per second Rigas et al. (2018)
Amplitude Given a saccade sequence, computes the distance between the starting and ending points of the sequence | Rigas et al. (2018)

Travel distance

Given a saccade sequence, computes the sum of distances between each data sample of the sequence

Rigas et al. (2018)

Efficiency

Given a saccade sequence, computes the ratio of saccadic amplitude over the distance traveled

Rigas et al. (2018)

Direction

Given a saccade sequence, computes the deviation from the horizontal plane of the line connecting the
start and end points of the sequence

Foulsham et al. (2008)

Successive deviation

Given a set of saccade sequences, computes the angle formed by successive saccadic trajectories, where
each saccade is modeled as a vector connecting its start and end points

Foulsham et al. (2008)

Initial direction

Given a saccade sequence, computes the initial direction of the saccadic trajectory after a fixed number
of data measures

Ludwig and Gilchrist (2002)

Initial deviation

Given a saccade sequence, computes the angle between the overall direction determined at the endpoint
of the saccade, and the initial direction after a fixed number of data measures

Ludwig and Gilchrist (2002)

Maximum curvature

Given a saccade sequence, computes the maximum perpendicular distance from any point along the
saccadic trajectory to the straight line connecting the start and end points of the saccade

Ludwig and Gilchrist (2002)

Area curvature

Given a saccade sequence, computes the area under the curve of the sampled saccadic trajectory, relative
to the straight-line distance between the saccade starting and ending points

Ludwig and Gilchrist (2002)

Mean velocity

Given a saccade sequence, computes the mean velocity of data samples within the sequence

Rigas et al. (2018)

Peak velocity

Given a saccade sequence, computes the peak velocity of data samples belonging to the sequence

Rigas et al. (2018)

Acceleration profile

Given a saccade sequence, computes the mean acceleration of data sample within the sequence

Rigas et al. (2018)

Mean acceleration

Given a saccade sequence, computes the mean absolute acceleration during the acceleration phase of the
saccade, measured from the start point to the timestamp of peak acceleration

Rigas et al. (2018)

Skewness exponent

Given a saccade sequence, computes the shape parameter obtained by fitting a gamma function to the
sequence velocity profile

Chen et al. (2002)

Amplitude to duration ratio

Given a saccade sequence, computes the sequence amplitude over duration ratio

Rigas et al. (2018)

Peak velocity to amplitude ratio

Given a saccade sequence, computes the sequence peak velocity over amplitude ratio

Rigas et al. (2018)

Peak velocity to duration ratio

Given a saccade sequence, computes the sequence peak velocity over duration ratio

Rigas et al. (2018)

Peak velocity to velocity ratio

Given a saccade sequence, computes the sequence peak velocity over mean velocity ratio

Rigas et al. (2018)

Main sequence

Given a set of saccade sequences, computes slopes of the amplitude/duration curve and the log peak
velocity/log amplitude curve

Bahill et al. (1975)

Latency

Given a saccade sequence and a theoretical trajectory, computes the time difference between the onset of
the theoretical saccade and the start time of the corresponding saccade

Whelan (2008)

Latency quantiles

Given a set of saccade sequences and a theoretical trajectory, computes the set of saccade latencies,
before evaluating quantiles of the latency distribution

Vullings (2018)

Gain

Given a saccade sequence and a theoretical trajectory, computes the ratio between saccade and target
amplitudes

Holmgqvist et al. (2011)

be analyzed independently. A notable example is the first fixation
duration during reading, which is a commonly reported linguistic
measure used to assess initial processing of a word or phrase
(Inhoff et al., 2000; Underwood et al., 2000).
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The temporal characteristics of eye fixations are often analyzed
in relation to specific regions within the visual field that are visually
explored. These areas of interest (Aol), may represent regions
particularly relevant to the task at hand, or with semantical meaning.
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TABLE 3 Pursuit-based features.

Feature Description References

10.3389/fphys.2025.1661026

and end points of the sequence

Duration Given a pursuit sequence, computes the duration of the sequence Murray et al. (2020)
Frequency Given a set of pursuit sequences, computes the number of pursuits occurring per second Murray et al. (2020)
Amplitude Given a pursuit sequence, computes the distance between the starting and ending points of the sequence Mahanama et al. (2022a)
Direction Given a pursuit sequence, computes the deviation from the horizontal plane of the line connecting the start Rottach et al. (1996)

Mean velocity

Given a pursuit sequence, computes the mean velocity of data sample within the sequence

Mahanama et al. (2022b)

Peak velocity

Given a pursuit sequence, computes the peak velocity of data samples

Mahanama et al. (2022b)

Latency

Given a pursuit sequence and a theoretical trajectory, computes the time difference between the onset of the
theoretical smooth pursuit and the start time of the corresponding experimental pursuit

Carl and Gellman (1987)

Initial acceleration Given a pursuit sequence and a theoretical trajectory, computes the mean second-order position derivative of Kao and Morrow (1994)
the sequence in a time interval immediately following pursuit onset
Triangular overall gain | Given a pursuit sequence and a triangular theoretical trajectory, computes the ratio between pursuit sequence Rashbass (1961)

and target mean velocities

Sinusoidal overall gain
and target mean velocities

Given a pursuit sequence and a sinusoidal theoretical trajectory, computes the ratio between pursuit sequence

O’Driscoll and Callahan (2008)

Sinusoidal gain

Given a pursuit sequence and a theoretical trajectory, fits the eye velocity with a trigonometrical curve, before
computing the ratio between the peak velocity of the best fitting curve over the target’s peak velocity

Accardo et al. (1995)

Sinusoidal phase
best-fitting velocity curve and the target’s velocity profile

Given a pursuit sequence and a theoretical trajectory, computes the difference between the phases of the

Accardo et al. (1995)

Error entropy

approximate entropy of the velocity error series

Given a pursuit sequence and a theoretical trajectory, computes the pursuit velocity error series as the
difference between the experimental pursuit velocities and theoretical stimulus velocities, before evaluating the

Pincus et al. (1991)

Cross-correlation

Given a pursuit sequence and a theoretical trajectory, computes normalized cross-correlation between the
experimental pursuit velocity and theoretical stimulus velocity signals

Rabiner (1978)

Under this formalism, fixation duration metrics are also used, albeit
with slight variations. For instance, the dwell time is defined as the
cumulative duration of all fixations during a single visit to an Aol.
The total dwell time sums all dwell time within a specific Aol over the
entire experimental session. Additional AoI-specific metrics offer
further granularity, such as the fixation ratio, defined as the sum
of fixation durations within an Aol divided by the total fixation
duration across all Aols, or the average fixation duration within an
Aol, derived by normalizing the sum of fixation durations by the
number of fixations in that Aol. The concept of Aol as a symbolic
tool will be explored in greater detail in the Areas of Interest part of
this review series (Part 4).

3.1.2 Position and drift

The location of visual fixations is widely studied across various
contexts, as it is often assumed to reflect the allocation of visual
attention (Findlay and Gilchrist, 2003). A robust method for
modeling the central position of fixations is the fixation centroid,
calculated by averaging the coordinates of gaze points within
individual fixation sequences. Analyzing the spatial distribution
of these centroids provides valuable insights into the regions of
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a stimulus that are prioritized during task-specific processing,
offering direct evidence of underlying cognitive processes
(Henderson, 2003; Rayner, 1998).

For instance, in studies related to face processing, analyses
of fixation patterns have identified specific gaze patterns, such as
directing attention to a point just below the eyes (Hsiao and Cottrell,
2008; Peterson and Eckstein, 2012). Similarly, in reading tasks,
research has shown that both the likelihood of misidentifying a
word and the time required for identification decrease when the
eyes fixate near the center of the word (O’Regan and Jacobs, 1992;
Brysbaert et al., 1996). These phenomena, known as optimal viewing
position effects, are thought to stem from the rapid decline in visual
acuity as retinal eccentricity increases (Nazir et al., 1998).

While fixational sequences typically exhibit limited eye mobility,
the variability in the micro-movements can provide valuable
information related to oculomotor function. Consequently, several
additional features—many of which are illustrated in Figure 3 —
have been proposed in the literature to better characterize fixational
micro-movements.

As such, the drift displacement is calculated as the distance
between the starting and ending points of each fixation sequence.
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FIGURE 3

commonly used metric for fixation stability.
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Fixation Drift and Stability. An example of gaze data—black crosses—representing a fixation sequence is shown. Note that the raw data have been
largely downsampled for presentation clarity. In this illustration, the drift displacement between the starting and ending points of the fixation sequence
is denoted as dy. The cumulative drift distance is computed by summing the distances d, to d,4. Additionally, the figure displays the bivariate contour
ellipses for probabilities of 0.68 — blue dashed line—and 0.90 —blue dotted line. The areas enclosed by these ellipses are used to compute the BCEA, a
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Similarly, the cumulative drift distance, which reflects ocular stability
during fixation, is obtained by summing the distances between all
consecutive fixational data samples from a given fixation sequence.
Another feature, the drift mean velocity, is computed as the
average of the first-order position derivatives of the fixation data
samples and can be used to characterize the minor movements
occurring during fixation sequences. Together, these measures
can provide valuable insights into the stability of eye movements
during fixation, which may be particularly useful for detecting
pathological conditions, such as sight impairments and cerebellar
diseases (Leech et al., 1977; Schor and Westall, 1984).

Lastly, fixation stability can be quantified by computing the
area of the elliptical contour that encompasses a given percentage
of fixation points (Steinman, 1965; Crossland et al, 2004).
Assuming that the fixation positions follow a bivariate normal
distribution, the dispersion of these positions is represented
by an ellipse. The bivariate contour ellipse area (BCEA) thus
provides a measure of fixation stability, with smaller values
indicating more stable fixation. This metric is considered
the current gold standard to measure the stability of fixation
(Crossland et al., 2009) and has been widely used to examine
changes in fixational eye movements, particularly in clinical contexts
(Shaikh et al., 2016; Montesano et al., 2018; Leonard et al., 2021;
Ghasia and Wang, 2022).

3.2 Saccade measures

Saccades are rapid, ballistic eye movements that direct the fovea
toward objects of interest, enabling high-acuity vision. Since the
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inception of eye movement research, the kinematic properties—e.g.,
velocity, amplitude—and shape characteristics—e.g., trajectory,
curvature—of saccadic eye movements have been extensively
studied using diverse measurement techniques, which we will now
review and discuss.

In experimental settings, saccadic behavior is investigated using
paradigms involving both predictable and unpredictable target
conditions. The metrics presented in the following sections are
designed to quantify the dynamics of saccadic eye movements
in these two conditions, that is free-viewing scenarios and those
involving target-based stimuli. These metrics offer critical insights
into saccade dynamics and their modulation by experimental
manipulations.

3.2.1 Temporal features

Saccade duration is a commonly analyzed metric in eye
movement research, with typical values ranging from 30 to
70 milliseconds. While these values may vary slightly across
studies, various factors have been identified in the literature as
influencing saccade duration. For example, during coordinated
reaching movements, saccades that accompany hand motions tend
to have shorter durations (Donkelaar et al., 2004; Snyder et al.,
2002). Conversely, repeated saccades to the same visual stimulus
often result in longer durations (Golla et al., 2008; Chen-Harris et al.,
2008). The measurement of saccade duration typically involves
estimating the onset and offset of the saccade. Given the brief
nature of saccadic movements, the accuracy of this measurement
is highly sensitive to the thresholds applied to segment raw
gaze data—see Section 2.
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In addition to duration, saccade count and saccade rate—or
saccade frequency—are widely used metrics to characterize saccadic
sequences. Generally, saccade frequency tends to decrease with
increasing task difficulty (Nakayama et al, 2002) or under
conditions of fatigue (Van Orden et al., 2000). Like saccade duration,
saccade count is a simple and robust measure commonly employed
in studies that investigate cognitive processes such as reading
or scene perception (Inhoff and Radach, 1998). Furthermore,
deviations from typical saccadic temporal characteristics, such as
prolonged saccade duration, can serve as early indicators of neural
disorders (Ramat et al., 2007).

In experimental paradigms that involve target-directed
saccades, the temporal aspect of saccadic movements is frequently
examined using saccadic latency, which is the time delay between
stimulus onset and saccade initiation. For any given target, while
saccade duration, velocity, and amplitude tend to remain relatively
consistent, latency is notably variable across trials, ranging from
100 to 1,000 milliseconds (Liversedge et al., 2011). The distribution
of saccadic latency is generally skewed toward shorter latencies,
with a long tail representing longer latencies. Additionally, the
distribution is often unimodal, although a second peak—referred
to as express saccades—can sometimes appear, representing shorter
saccadic responses (Fischer and Weber, 1993).

The mean saccade latency is typically used to describe the
central tendency of reaction times, while the standard deviation
is used to assess variability (Whelan, 2008). However, since
the latency distribution is not Gaussian, these statistics may
not fully capture the nature of the distribution. As a result,
more robust statistical measures, such as the median or quantile
estimators, are increasingly adopted to describe saccadic latency
distributions more accurately (Vullings, 2018). In clinical contexts,
saccadic latency distributions have shown promise as biomarkers
for various neurological conditions. For instance, Michell et al.
(2006) demonstrated that saccadic latency could be used as
a diagnostic marker for Parkinson’s disease, highlighting its
potential utility in clinical assessments of cognitive and motor
dysfunctions.

3.2.2 Amplitude features

Describing saccade morphology is essential for a comprehensive
understanding of eye movement dynamics. Among the various
morphological features, saccade amplitude serves as a fundamental
and easily accessible descriptor that reflects the distance the eye
travels during a saccadic movement. It is typically calculated as
the spatial distance between the starting and ending points of
each identified saccade sequence. Alternatively, to model the non-
linearity of saccade trajectory, the traveled distance can be computed
by summing the distances between consecutive saccadic data
samples within a saccade sequence. Lastly, saccade efficiency, derived
as the ratio of saccadic amplitude to the total distance traveled,
is often used to quantify the complexity and non-linearity of the
saccadic trajectory. This metric provides insight into the degree
to which the eye movement follows a straight path versus a more
convoluted or inefficient trajectory.

Saccade amplitude is highly context-dependent, varying
according to the task and visual environment. For example, in
reading tasks, saccades are typically constrained to around 2
degrees of visual angle horizontally (Rayner et al, 2012). In
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contrast, during scene perception, the average saccade amplitude
increases with the size of the visual stimulus, reflecting the broader
spatial search required to process larger or more complex images
(von Wartburg et al., 2007). Cognitive factors also influence saccade
amplitude, with increases in task difficulty often leading to a
decrease in the amplitude of saccadic movements. Phillips and
Edelman (2008) demonstrated that variability in performance
during visual scanning tasks was related to oculomotor variables
such as amplitude, with smaller saccades indicating a reduced
perceptual span. Similarly, May et al. (1990) provided evidence
that this metric could serve as an indicator of cognitive workload,
with smaller amplitudes reflecting greater cognitive demands. It
should also be mentioned that saccade amplitude is closely related
to its duration and peak velocity through the main sequence
relationship—see Section 3.2.7 for further details. These oculomotor
characteristics—amplitude, duration, and peak velocity—are often
analyzed together as they provide complementary insights into the
saccadic process.

When viewers are instructed to follow a visual target, the
saccadic gain—the ratio between the amplitude of the saccade
performed and the amplitude of the target displacement—becomes
a critical measure. Saccadic gain is particularly useful in assessing
saccadic dysmetria, a condition characterized by errors in saccade
accuracy. In neurological studies, saccadic dysmetria is often
investigated to identify impairments in saccadic control. For
instance, in overshoot dysmetria, the saccade initially overshoots
the target, requiring a corrective saccade in the opposite direction.
While overshoots can occur in healthy individuals, they typically
reduce over time as the oculomotor system adjusts to the target
location. Persistent overshooting, however, is indicative of a
cerebellar lesion (Selhorst et al., 1976; Ritchie, 1976). Conversely,
undershoot dysmetria occurs when the initial saccade is too small,
and a corrective saccade is required to bring the eye to the target.
Significant undershooting is often associated with basal ganglia
disorders, such as Parkinson’s disease (MacAskill et al., 2002) or
progressive supranuclear palsy (Troost and Daroff, 1977).

More intriguingly, saccadic dysmetria—particularly hypometric
saccades—has been proposed as a potential objective biomarker
for neurodegenerative diseases. Abnormally hypometric saccades,
along with other eye movement deficits, have shown promise
as early indicators of conditions like Alzheimer’s disease,
making them valuable targets for early diagnosis (Fletcher and
Sharpe, 1986; Cerquera-Jaramillo et al., 2018). This highlights the
importance of saccade morphology not only for understanding
normal visual behavior but also as a potential tool for identifying
and monitoring the progression of neurological disorders.

3.2.3 Direction and curvature

The direction of a saccadic trajectory—or sequence of
saccades—provides a crucial descriptive measure of eye movements.
This direction is typically quantified as the angle, measured in
degrees or radians, between the horizontal axis and the line
connecting the starting and ending points of the saccade. For
instance, Walker et al. (2006) employed saccadic direction to examine
the effects of target predictability, while Foulsham et al. (2008)
explored the horizon bias during natural scene viewing, revealing a
prevalent tendency for horizontal saccades. More recently, studies
have employed saccadic direction to classify task-specific gaze
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patterns, offering valuable insights for designing effective learning
strategies (Mozaffari et al., 2020).

However, simple metrics such as amplitude, efficiency—as
discussed in Section 3.2.2 — and direction alone are insufficient
for fully capturing the complexity and non-linearity of saccadic
trajectories. To address this gap, several additional features have
been developed to better characterize the curvature of saccadic
movements (Ludwig and Gilchrist, 2002).

One such metric is initial deviation, which measures the angle
between the initial direction of the saccade—computed after a fixed
number of time samples, e.g., 20 milliseconds (Van Gisbergen et al.,
1987) — and the overall direction of the saccade at its endpoint. A
limitation of this method is that it assigns varying curvature values to
saccades with identical trajectories but different velocities, because it
relies on a fixed time interval. Another common metric is maximum
curvature, defined as the greatest perpendicular distance between a
point on the saccadic trajectory and the straight line connecting the
starting and ending points of the saccade (Smit and Van Gisbergen,
1990). Although widely used, this approach has limitations, as it
relies on a single point to represent the curvature of a trajectory. This
can be especially problematic for double-curved saccades, where the
trajectory may involve multiple directional changes (Ludwig and
Gilchrist, 2002).

To address these shortcomings, the area curvature metric has
emerged as a more robust and popular approach, as it incorporates
the entire trajectory of the saccadic eye movement (Walker et al.,
2006). This metric is typically calculated by evaluating the area
beneath the curve formed by the sampled trajectory, relative to
the direct distance between the starting and ending points of the
saccade. The curvature metrics discussed so far are illustrated
in Figure 4. Additionally, Ludwig and Gilchrist (2002) proposed
deriving saccade curvature directly from second- and third-order
polynomial fits. Like the area curvature approach, this method uses
the full set of samples from a given saccade, which enhances its
robustness by making it less sensitive to sampling noise.

To investigate the inherent tendency for curvature observed in
saccadic movements—particularly prominent in oblique saccades
(Viviani and Swensson, 1982) — early research primarily focused
on target location and the type of saccade being performed (Viviani,
1977; Smit and Van Gisbergen, 1990). More recent studies, however,
have shown that both the direction and magnitude of saccadic
curvature can be modulated by a variety of factors. Notably, strong
correlations have been observed between saccade curvature and
the modulation of eye movements by distractors. For example,
Doyle and Walker (2001) found that both reflexive and voluntary
saccades tended to curve away from irrelevant distractor stimuli
when a target was presented. Similarly, Sheliga et al. (1997),
Sheliga et al. (1995) demonstrated that saccades deviated from a
previously attended location. These variations in saccadic trajectory
have been attributed to antagonistic interactions between different
populations of neurons in the superior colliculus, which help resolve
conflicts caused by competing targets in the vicinity at the onset
of movement (McPeek et al., 2003).

3.2.4 Velocity features

The velocity waveform of a saccade is generally described
as symmetrical with comparable durations for the acceleration
and deceleration phases—Figure 5a. Peak saccadic velocity, the
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FIGURE 4
Saccade Direction and Curvature. Illustration of various metrics used

to describe saccade non-linearity in the literature. The line connecting
the starting point and the endpoint of the saccade, with amplitude d;,
defines the overall saccade direction, denoted as 6. The initial
direction of the saccade, denoted 0, is calculated after a fixed number
of data points. From these two directions, the initial deviation of the
saccade, denoted 65, can be derived. Additionally, the figure highlights
the maximum curvature, represented by d,, and the area of curvature,
indicated by the purple shaded region.

maximum speed attained during a saccade, typically coincides
with the cessation of the neural signal pulse and aligns with the
point of maximum firing rate of burst neurons within the pontine
reticular formation that project to oculomotor neurons (Galley,
1989; Leigh and Zee, 2015). It is noteworthy that average and
peak saccadic velocities are frequently analyzed together due to
their strong correlation. Their absolute values generally exhibit
a consistent ratio of approximately 1:2, a relationship commonly
referred to as the Q ratio. This ratio remains relatively stable
across various saccadic amplitudes, underscoring its reliability as a
metric for characterizing saccadic dynamics (Harwood et al., 1999;
Garbutt et al., 2003).

More specifically, saccade mean velocity is regarded as a reliable
metric for assessing the velocity of small saccades, particularly those
with symmetrical velocity waveforms. The properties of saccadic
velocity have been thoroughly investigated across numerous fields
and clinical applications (Di Stasi et al., 2013). Early research
observed that external factors such as alcohol, drugs, and fatigue lead
to reductions in saccadic velocity (Dodge and Benedict, 1915; Miles,
1929), a phenomenon attributed to diminished central nervous
system activation. More recently, studies have highlighted saccadic
velocity as a marker for fluctuations in sympathetic nervous system
activity (Di Stasi et al., 2013), variations in the intrinsic value of
visual stimuli (Xu-Wilson et al.,, 2009), and the effects of task
experience on oculomotor control (Xu-McGregor and Stern, 1996).
Clinically, abnormally low saccadic velocities—commonly termed
slow saccades—are symptomatic of midbrain disorders such as
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Saccade Velocity and Acceleration Profiles. Examples of saccade velocity and acceleration profiles for short — (a) — and long — (b) —- saccades,
illustrating differences in peak values and overall shapes. For both types of saccades, the peak velocity is denoted as v;, the peak acceleration as a;, and
the peak deceleration as a,. Additionally, the duration of the acceleration phase is represented by t;, while the duration of the deceleration phase is
denoted by t,.

progressive supranuclear palsy, spinocerebellar ataxia type 2, and  larger saccades, saccade peak velocity is typically preferred as
various cerebellar pathologies (Jensen et al., 2019). it reflects the highest firing rates of burst neurons driving the

While mean velocity provides a useful summary metric, movement (Galley, 1989). Unlike mean velocity, peak velocity
it becomes less effective for saccades larger than 10°, which  has computational advantages: it remains consistent regardless of
often exhibit asymmetric velocity profiles—Figure 5b. For such  segmentation thresholds—see Section 2 for further details—making
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it robust to variations in how sharply a saccade terminates during its
final phase.

Several methodological considerations are important when
calculating velocity features, particularly for saccades, though
these principles extend to other canonical gaze movements as
well. The simplest and most common method calculates velocity
by applying a two-point central difference algorithm to the eye
position signal (Schmidt et al., 1979). However, this straightforward
approach has significant drawbacks. First, the numerical derivative
is inherently highly sensitive to noise. Depending on the specific
eye-tracking device, characterizing and removing measurement
noise can be challenging or even infeasible. While filtering
techniques can mitigate noise, they may inadvertently alter
velocity estimates, particularly the crucial peak velocity. Second,
this method is strongly influenced by sampling frequency.
Since saccade peak velocity typically occurs between recorded
samples, devices with low sampling rates often underestimate this
key measure.

To address these limitations, more sophisticated and robust
methods have been developed. These include the eight-point central
difference derivative algorithm (Inchingolo and Spanio, 1985;
Federighi et al., 2011), which enhances noise resilience, as well as
velocity profile fitting using gamma functions (Smit et al., 1987),
and saccade trajectory curve fitting using sigmoid functions (Gibaldi
and Sabatini, 2021), both of which provide refined estimates by
leveraging model-based approaches. These advanced techniques
are robust against noise and sampling artifacts, enabling accurate
velocity estimation even when using low-cost, low-sampling-
rate eye trackers. This compatibility with accessible technologies
broadens the utility of such methods for a wide range of research
and practical applications.

3.2.5 Acceleration features

To effectively quantify saccade acceleration characteristics,
several metrics can be derived from the acceleration profile. As
such, saccade peak acceleration is defined as the maximum absolute
value of acceleration during the acceleration phase, which spans the
interval from saccade onset to saccade peak velocity. Conversely,
saccade peak deceleration represents the maximum absolute value
of acceleration during the deceleration phase, occurring from peak
velocity to saccade termination.

An additional metric of interest is the acceleration/deceleration
ratio, computed as the ratio of the duration of the acceleration phase
to that of the deceleration phase. This ratio reflects the skewness
of the velocity profile. As expected, it tends to approximate one
for small saccades but decreases as saccade amplitude increases.
Finally, saccade skewness can be directly quantified through curve
fitting, typically using a gamma function applied to the velocity
profile. The resulting shape parameter provides a reliable estimate
of skewness (Chen et al., 2002).

As Dbriefly discussed in Section 3.2.4, the acceleration and
deceleration characteristics of saccades vary markedly with saccade
amplitude. Specifically, larger saccades exhibit left-skewed velocity
profiles, where the acceleration phase constitutes roughly one-third
of the total saccade duration (Baloh et al., 1975; Lin et al., 2004).
This asymmetry correlates strongly with both saccade amplitude
and, even more so, its duration (Van Opstal and Van Gisbergen,
1987). While the duration of the deceleration phase increases with
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saccade amplitude and duration, the duration of the acceleration
phase remains relatively constant (Becker, 1991).

The asymmetry in saccade velocity profiles, as well as its
relationship with saccade duration, has been consistently observed
and documented over several decades. However, the physiological
significance and underlying mechanisms of this phenomenon
remain unclear, with no definitive hypothesis currently available
in the literature. Research suggests that saccade acceleration
characteristics may be subject to modification through motor
learning processes (Collins et al., 2008). Furthermore, these
characteristics have been linked to neurodevelopmental conditions,
such as autism spectrum disorder, where abnormal acceleration and
deceleration profiles have been observed (Schmitt et al., 2014). These
findings highlight the potential for saccade dynamics to serve as
biomarkers for both cognitive and neurological assessments.

3.2.6 Saccadic ratios

Various ratios derived from saccadic characteristics have
been extensively studied, into
the interconnections between oculomotor mechanisms. For
instance, Garbutt et al. (2003) identified abnormally high peak

velocity-to-mean velocity ratios in saccadic trajectories recorded

revealing valuable insights

from patients with progressive supranuclear palsy. This anomaly
suggested that these movements might not be purely saccadic but
rather comprise a sequence of small-amplitude saccades.

In healthy individuals, saccadic ratios have been shown to
reflect low-level idiosyncrasies. For example, these ratios have
been employed as biometric features for individual identification
among other eye-movement metrics (Rigas and Komogortsev,
2016). Extending this analysis to higher cognitive functions, Gupta
and Routray (2012) demonstrated a significant correlation between
the peak velocity-to-duration ratio and human alertness, suggesting
its utility for vigilance monitoring. These findings underscore the
potential of saccadic ratios as versatile markers, ranging from
physiological baselines to cognitive states.

Shifting focus to broader measures of eye movement
dynamics, the saccade-fixation ratio, introduced by Goldberg
and Kotval (1999), highlights the balance between exploratory
behavior—searching—and  cognitive  processing—information
extraction. A higher value for this ratio reflects increased searching
relative to processing. This metric has been used in comparative
studies of different layouts or visual representations. Both the total
fixation-to-saccade duration ratio and the average fixation-to-saccade
duration ratio per occurrence can be derived from this measure.
These simple yet powerful metrics have been employed in diverse
experimental contexts to assess attention and cognitive information
processing levels (Bhoir et al., 2015; Berges et al., 2023).

Finally, we mention the K coefficient introduced by
Krejtz et al. (2016a), Krejtz et al., (2017). This metric has emerged
as an extension of the saccade-fixation ratio and is inherently linked
to scanpath analysis. As such, it will be described in greater detail in
the corresponding article of this review series.

3.2.7 Main sequence

The term main sequence describes a consistent relationship
between three fundamental saccadic parameters: amplitude,
duration, and velocity (Bahill et al, 1975). Specifically, the
relationship between saccadic peak velocity and amplitude
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demonstrates three key trends: (i) a roughly linear increase for small
saccades—up to 5——10 degrees — (ii) an inflection point between
10 and 20°, and (iii) a plateau where peak velocity saturates for larger
saccades (Gibaldi and Sabatini, 2021). This stereotypical behavior is
thought to result from an optimization process that improves visual
performance amidst internal noise and peripheral visual uncertainty
(Harris and Wolpert, 2006; Saeb et al., 2011; van Opstal and
Goossens, 2008). Additionally, the main sequence exhibits a linear
relationship between saccade duration and amplitude for saccades
up to approximately 80° (Baloh et al., 1975), as shown in Figure 6A.
However, most naturally occurring saccades are confined to a range
of about 30° in the absence of head movement (Lebedev et al., 1996).

The main sequence is widely employed in clinical research
as a diagnostic tool to evaluate the integrity of the saccadic
system. Deviations from its expected patterns and abnormalities
in saccadic behavior are indicative of various neurological
and ocular conditions, including palsy of extraocular muscles
(Metz et al, 1970; Garbutt et al, 2003), myasthenia gravis
(Yee et al., 1976), cerebellar disorders (Selhorst et al., 1976), and
multiple sclerosis (Frohman et al., 2002; Bijvank et al, 2019).
Recent work by Guadron et al. (2023) further highlighted the
diagnostic relevance of the main sequence by examining patients
with central and peripheral retinal defects. Their findings revealed
that the characteristic relationships between saccadic parameters
were most disrupted when targets were located within the subjects’
blind fields. This disruption underscores the critical role of visual
input in planning saccadic kinematics, reinforcing the main sequence
as a valuable lens through which the interplay between sensory input
and motor control can be assessed.

Despite its widespread utility, there remains no universal
consensus on the best mathematical model to describe the main
sequence, particularly the non-linear relationship between peak
velocity and saccade amplitude. Early work adopted power-
law models to capture the non-linear growth of peak velocity
with amplitude (Yarbus and Yarbus, 1967; Baloh et al., 1975;
Lebedev et al., 1996). These models have proven useful for detecting
performance deficits in clinical settings (Garbutt et al., 2003).
For larger saccades, 15—-20 degrees and beyond, where the
maximum velocity saturates, exponential-based models have gained
traction. First proposed by Bahill et al. (1975), these models have
been extensively utilized in both research and clinical diagnostics
(Ramat et al., 2007; Federighi et al., 2017) and remain popular for
their accuracy and applicability in recent studies (Leigh and Zee,
2015). Alternatively, logarithmic transformations allow the main
sequence to be expressed as linear for saccades within the 1 —-15
degree range (Bahill et al., 1975; 1981), as illustrated in Figure 6b.
This approach simplifies analysis while preserving the relationship’s
fundamental trends.

In pursuit of greater robustness, alternative approaches have
explored simpler models. For example, square-root models have
been proposed to enhance the reliability of main sequence
estimation (Lebedev et al., 1996). These models demonstrate strong
generalization and repeatability, as highlighted in a recent review
by Gibaldi and Sabatini (2021). Despite their simplicity, square-
root models effectively capture the main sequence’s three primary
trends when applied to saccades larger than 1°—a threshold that
aligns with the typical amplitude range of microsaccades (Martinez-
Conde et al, 2009). In conclusion, while multiple modeling
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approaches exist, the main sequence remains a foundational tool for
understanding saccadic dynamics, with applications ranging from
clinical diagnostics to explorations of the fundamental mechanisms
underlying oculomotor control.

3.3 Smooth pursuit measures

Smooth pursuits represent another type of eye movement from
which valuable metrics can be extracted. In natural scene viewing
conditions, smooth pursuits occur alongside fixations and saccades
to track moving objects within the field of view. To isolate these
pursuit sequences, algorithms outlined in Section 2.2 must first be
applied. In real-world scenarios, targets often move unpredictably,
changing speed and direction rapidly. Such stimuli are rarely used in
laboratory settings, as the performance of the smooth pursuit system
is limited under these conditions, often resulting in interfering
saccades that complicate the analysis.

In controlled experimental conditions, smooth pursuit tasks
typically require the viewer to follow targets moving horizontally or
vertically at a fixed frequency, back and forth. Two common types of
stimuli used in these protocols are triangular and sinusoidal motion
profiles. Triangular stimuli move the target at a constant velocity
in one direction before abruptly reversing direction, forming a
triangle in position-time space. This constant-velocity motion allows
researchers to precisely measure the pursuit system’s ability to
maintain a steady eye velocity and to detect catch-up saccades
when the eye lags behind the target. In contrast, sinusoidal stimuli
move the target in a smooth, oscillating pattern where velocity
continuously varies, peaking at mid-path and slowing near the
reversal points. Sinusoidal motion more closely mimics naturalistic
motion and tests the pursuit systen’s ability to adapt to continuously
changing velocities. In these experimental setups, it is typically
assumed that the oculomotor signal reflects primarily smooth
pursuit eye movements, along with any catch-up saccades, without
the inclusion of fixation sequences. The pursuit system is expected to
generate smooth, coordinated eye movements that closely follow the
target’s trajectory, minimizing interruptions from fixational pauses.

3.3.1 Temporal and velocity features

The analysis of smooth pursuit eye movements typically starts
with the estimation of fundamental descriptors, such as pursuit
duration, pursuit count, and pursuit rate—or pursuit frequency.
However, interpreting these metrics is not as straightforward as it
might initially appear. This complexity arises primarily from the
influence of catch-up saccades, which are corrective eye movements
that compensate for discrepancies between the target’s position
and the smooth pursuit response. These saccades interrupt smooth
pursuit sequences, effectively shortening their duration while
increasing the overall pursuit frequency.

More specifically, catch-up saccades are rapid eye movements
that occur during smooth pursuit when the eye falls behind the
target. They help correct the eye’s position by quickly redirecting
the gaze to the moving target. These saccades occur when the
smooth pursuit mechanism, which is responsible for maintaining
the eye’s tracking of a moving object, is unable to keep up with
sudden changes in the target’s velocity or direction. Catch-up
saccades are particularly common when the target moves too fast
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Main Sequence. Main-sequence relationships for saccades, along with the respective linear regression fits, are shown for amplitude-duration (a) and
the logarithms of peak velocity-amplitude (b). Each colored dot represents a saccade from a set performed by the same individual during a reading
task. The data emphasize the linear relationship between the logarithms of amplitude and peak velocity for saccades of moderate amplitude. While the
amplitude-duration relationship is well-established in the literature, its experimental clarity appears to be less consistent.

for the smooth pursuit system to follow continuously or during
pursuit of targets with unexpected changes in velocity or direction
(Boman and Hotson, 1992). Instead of maintaining a smooth
motion, the eyes make these corrective jumps to catch up with
the target, thus ensuring the target stays within the central vision.
Additionally, their occurrence is modulated by factors such as target
properties (Heinen et al., 2016) and clinical conditions, including
schizophrenia and affective disorders (Abel et al., 1991).
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Characterizing the velocity profile of smooth pursuit typically
involves measurements of pursuit mean velocity and pursuit peak
velocity. Smooth pursuit velocities are generally modest, ranging
between 15 and 30° per second (Meyer et al., 1985; Zuber et al,,
1968; Ettinger et al., 2003; Klein and Ettinger, 2019), significantly
lower than saccadic velocities. However, trained observers or tasks
involving accelerating stimuli can elicit higher peak velocities. For
instance, Barmack (1970) reported peak pursuit velocities of up to
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100° per second during acceleration tasks. In humans, peak eye
velocity typically occurs between 200 and 300 milliseconds after
pursuit onset when following targets moving at velocities up to 30°
per second (Robinson et al., 1986).

Importantly, the velocity profile is closely linked to temporal
characteristics: as stimulus velocity increases, the frequency of
catch-up saccades also rises to correct for larger retinal offsets.
A valuable descriptor for exploring this relation between velocity
and compensation mechanisms is eye crossing time, defined as the
duration required for the eye to align with the target at constant
velocity. De Brouwer et al. (2002) demonstrated that catch-up
saccades are initiated when the eye crossing time reaches the saccade
zone, indicating that smooth acceleration alone is insufficient for
target capture.

However, simple spatio-temporal features such as pursuit mean
velocity and pursuit duration do not fully capture the complexity of
smooth pursuit dynamics. Smooth pursuit consists of two distinct
phases: open-loop and closed-loop. In the open-loop phase, the eye’s
movement is primarily driven by the initial target presentation,
with little to no influence from the retinal image changes caused
by the eye movement. In contrast, during the closed-loop phase,
the eye continuously adjusts to changes in the retinal image that
result from its own movements, maintaining the pursuit of the target.
In the following Sections 3.3.2, 3.3.3, we will introduce methods to
quantify the initiation and maintenance of pursuit, respectively.

3.3.2 Smooth pursuit latency and acceleration

In this section, we introduce two classes of features used to
characterize the pursuit initiation phase, namely, pursuit latency and
pursuit acceleration. In target pursuit paradigms, pursuit latency—or
pursuit onset—is commonly defined as the delay between the
initiation of target motion and the start of ocular pursuit. The onset
of smooth pursuit is typically calculated as the intersection point
between two regression lines (Carl and Gellman, 1987). The first
line represents the pre-response baseline, which fits the velocity signal
during a time window from 100 milliseconds before target motion
onset to 80 milliseconds after it begins. This baseline duration
may vary depending on the experimental setup, particularly when
anticipation of the target motion is expected (De Hemptinne et al.,
2006). The second regression line fits the pursuit initiation velocity
signal, typically recorded over a 50 milliseconds window after the
pre-response baseline. This duration may differ across studies, often
beginning at the first time point when eye velocity exceeds three to 4
standard deviations of the baseline velocity measures (Krauzlis and
Miles, 1996).

Pursuit typically exhibits much shorter latency than saccades,
with pursuit latency ranging from 100 to 125 milliseconds,
compared to 200-250 milliseconds for saccades (Krauzlis, 2004).
In experimental conditions involving anticipation, pursuit latency
can be reduced to zero or even become negative, especially when
pursuit begins before the target motion, such as when the direction
and velocity of the stimulus are highly predictable (Burke and
Barnes, 2006; De Hemptinne et al., 2006). Spering and Gegenfurtner
(2007) further demonstrated that pursuit latency is influenced by the
surrounding visual context, particularly by contrast and distracting
motion orientation. They found that latency decreases when the
context moves in the same direction as the target, while a rapidly
moving context in the opposite direction tends to pull the eyes
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back, delaying pursuit onset. Additionally, higher contrast enhances
the effect of co-linear drifting context motion, further reducing the
latency before the pursuit begins.

In addition to latency, pursuit initiation is often examined
through pursuit initial acceleration (Kao and Morrow, 1994). This is
typically calculated as the mean second-order position derivative of
the saccade-free component extracted from the tracking response
within the first 100 milliseconds following pursuit onset. During
this initial phase, acceleration continues until the eye velocity
matches that of the target. The pursuit initial peak acceleration can
also be assessed during this period. The first 20-30 milliseconds
of eye acceleration show a modest increase with target velocity
(Tychsen and Lisberger, 1986). However, between 60 and 80
milliseconds after pursuit onset, eye acceleration becomes much
more strongly modulated by target velocity, and is also influenced by
the eccentricity of the initial eye position (Fukushima et al., 2013).

Furthermore, like latency, the pursuit initial acceleration is
significantly influenced by expectations regarding the target’s
trajectory (Kao and Morrow, 1994). Prior knowledge of the
targets movement—not only from its motion history but also
from static visual cues—profoundly affects eye movements
during pursuit initiation (Kao and Morrow, 1994; Ladda et al.,
2007). Notably, Ladda et al. (2007) found that cue-induced
acceleration during smooth pursuit increases quadratically with
target velocity. This behavior aligns with the velocity scaling
predicted by the two-thirds power law, a natural principle of
biological motion (Lacquaniti et al., 1983).

3.3.3 Pursuit gain and accuracy

Smooth pursuit gain refers to the ratio of the eye’s mean
velocity to the targets mean velocity during a pursuit segment,
typically under constant target velocity conditions, often referred
to as triangular stimuli. This metric is generally assessed around
500-1,000 milliseconds after pursuit onset, during the pursuit
maintenance phase, and serves as a measure of pursuit performance.
During pursuit initiation, which occurs within the first 50-100
milliseconds after the target starts moving, pursuit gain is primarily
controlled by visual motion (Rashbass, 1961). However, in the
pursuit maintenance phase, the gain is influenced by a combination
of visual feedback regarding performance quality and internal
cues, such as anticipation and prediction of target velocity (Lencer
and Trillenberg, 2008). This stable regime facilitates a more
accurate assessment of performance compared to the more transient
initiation phase. Typically, smooth pursuit gain is lower than 1,
indicating that the eye lags behind the target, and it tends to decrease
as target velocity increases (Zackon and Sharpe, 1987).

In sinusoidal stimulation paradigms, the smooth pursuit
response is usually described by two key characteristics: pursuit
velocity phase and pursuit velocity gain (Accardo et al.,, 1995).
These values are derived by fitting the eye velocity data with a
trigonometric curve for each experimental pursuit sequence. The
pursuit velocity gain is then computed as the ratio of the peak
velocity of the best-fitting curve to the peak velocity of the target’s
trajectory. Similarly, the pursuit velocity phase is computed as
the phase difference between the best-fitting velocity curve and
the target’s velocity profile. Note that overall gain is also widely
used in the literature, calculated as the ratio of eye velocity to
target velocity (Churchland and Lisberger, 2002).
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Smooth pursuit is often conceptualized as a negative feedback
control system in which smooth eye acceleration works to eliminate
retinal motion by matching the eye velocity to the target velocity.
However, substantial evidence suggests that smooth pursuit gain is
modulated by an on-line gain control mechanism, which implies
distinct visual-motor gain processing during pursuit and fixation
(Robinson, 1965; Churchland and Lisberger, 2002). It is now
widely accepted that visual inputs are not the sole mediators of
smooth pursuit. Higher-order brain functions, such as attention,
have been shown to play a significant role in pursuit gain and
performance, though their effects have been debated (Bfezinova
and Kendell, 1977; Acker and Toone, 1978; Kathmann et al.,
1999; Van Gelder et al, 1995). Studies suggest that attention
is crucial for pursuit performance (Van Donkelaar and Drew,
2002), but Stubbs et al. (2018) demonstrated that while increased
attentional demands do not alter smooth pursuit gain, they do
improve its consistency, as long as attention remains focused on
the target.

Furthermore, smooth pursuit performance can be influenced by
atrade-off between perceptual discrimination and pursuit efficiency.
Specifically, when a perceptual discrimination task involves objects
moving at a different velocity from the pursuit target, the
ability to maintain smooth pursuit is compromised (Khurana
and Kowler, 1987). More recently, Kerzel et al. (2009) or Souto
and Kerzel (2014) have further confirmed this interdependence
between target selection for pursuit and perceptual processing. This
interaction is generally understood as reflecting a shared, limited
resource that is required for both steady-state smooth pursuit and
perceptual tasks (Stolte et al., 2023).

Finally, smooth pursuit gain has become a crucial measure in
neuro-pathological research. For example, a review by Franco et al.
(2014) highlighted studies showing that individuals diagnosed
with schizophrenia often exhibit lower smooth pursuit gain.
Smooth pursuit performance is also a valuable tool in assessing
sensorimotor development in preadolescence and adolescence.
Horizontal smooth pursuit typically matures by age 7 (Ingster-
Moati et al, 2009), while vertical smooth pursuit does not
reach maturity until late adolescence (Katsanis et al., 1998). This
asymmetry between horizontal and vertical pursuit is due to
the involvement of different brain structures in controlling these
movements (Collewijn and Tamminga, 1984; Gronqvist et al., 2006),
with significant clinical implications. For instance, Robert et al.
(2014) demonstrated that children with developmental coordination
disorder often exhibit impaired vertical pursuit performance,
in

indicating delayed maturation of the pursuit system

this population.

4 Signal analysis

In this section, we review time series analysis methods
for the study of ocular behavior. Compared to traditional
neurophysiological approaches, these methods are underexplored
but offer a robust framework for analyzing eye movements as
a cohesive, dynamic system. In contrast to neurophysiological
methods, which focus on specific neural circuits associated with
individual eye movement types, time series approaches capture
the temporal and structural patterns of eye behavior across
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contexts. Table 4 summarizes the metrics and algorithms discussed,
describes each method and the required input formats, and provides
key literature references to facilitate implementation.

4.1 Frequency variables

Section 3 described methods for characterizing eye movements,
focusing on spatial and temporal attributes such as fixation locations
and saccade kinematics. These approaches often neglect the dynamic
processes underlying these patterns. Spectral analysis provides an
alternative framework by examining the frequency content of eye
movement time series, revealing oscillatory patterns that reflect
underlying dynamics (Stoica and Moses, 2005).

The spectral content of gaze data is commonly analyzed using the
discrete Fourier transform (DFT), which converts the ocular signal
into a frequency-domain representation (McGillem and Cooper,
1991). The DFT decomposes the signal by correlating it with
sinusoids of varying frequencies, identifying dominant rhythmic
components. The power spectral density (PSD) complements this
by quantifying the amplitude of these rhythms as a function of
frequency, offering insights into the signals oscillatory structure.
Welchs method (Welch, 1967), a widely adopted PSD estimation
technique, segments the signal into overlapping windows, applies
a window function, and averages the squared DFT magnitudes
across segments. This approach balances frequency resolution
and statistical reliability, yielding robust PSD estimates with
reduced noise.

Spectral analysis also enables comparative studies of gaze data
through metrics such as cross-spectral density and signal coherence,
which are valuable for analyzing eye movement behavior across
experimental conditions, individuals, or species (Ko et al., 2016).
Cross-spectral density measures the frequency-specific covariance
between two signals, while signal coherence, derived from cross-
spectral density, quantifies the consistency of phase relationships,
revealing synchronized rhythmic activities. For instance, Nakayama
and Shimizu (2004) used cross-spectral density to demonstrate
task-related differences in the coordination of horizontal and
vertical eye movement components, highlighting the influence
of task difficulty. Additionally, spectral analysis has been applied
to compare real and synthetic gaze data, enabling evaluation of
generative models. Duchowski et al. (2016) utilized spectral analysis
to distinguish experimentally recorded gaze patterns from synthetic
ones, advancing insights into eye movement dynamics.

4.2 Stochastic variables

Directly comparing eye movement data is challenging due
to the stochastic, or inherently random, nature of gaze signals,
as discussed in Section 3. Modeling eye movements as random
variables provides an alternative approach, uncovering physiological
patterns through their statistical characteristics. A key tool, the
mean squared displacement (MSD), tracks how gaze positions shift
over time. In simple random walks, like Brownian motion with
independent steps, the spread grows steadily. In complex cases, such
as eye movements, the spread follows a power-law pattern, reflecting
diverse neural and behavioral dynamics.
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TABLE 4 Signal-based features.

Feature name

Description

10.3389/fphys.2025.1661026

References

Periodogram Given a raw gaze signal, estimates power spectral McGillem and Cooper (1991)
density
Welch periodogram Given a raw gaze signal, estimates power spectral Welch (1967)

density, using a Welch windowed periodogram

Cross spectral density

Given a set of raw gaze signals, estimates the cross
power spectral density between pairs of signals

McGillem and Cooper (1991)

Welch cross spectral density

Given a set of raw gaze signals, estimates the cross
power spectral density between pairs of signals,
according to Welch’s method

McGillem and Cooper (1991)

Coherency

Given a set of raw gaze signals, estimates how strongly
pairs of signals are related at specific frequencies

Bendat and Piersol (1986)

Mean squared displacement

Given a raw gaze signal, estimates the average squared
deviation of the eye-gaze position from a reference
position over time

Herrmann et al. (2017)

Displacement auto-correlation function

Given a raw gaze signal, estimates the degree of
similarity between the gaze signal and a lagged version
of itself over successive time intervals

Herrmann et al. (2017)

Detrended fluctuation analysis

Given a raw gaze signal, estimates long-range
correlations and scaling behavior by analyzing signal
fluctuations over different time scales

Wang and Cong (2015)

Persistence size

Given a raw gaze signal, estimates the entropy of the
size of the holes in the persistence diagram obtained
from gaze signal

Chung et al. (2021)

Persistence robustness

Given a raw gaze signal, estimates the entropy of the
robustness of the holes in the persistence diagram
obtained from gaze signal

Chung et al. (2021)

Betti curve

Given a raw gaze signal, estimates a function
evaluating the Betti numbers obtained from a
persistence diagram, at different levels of filtration

Giizel and Kaygun (2023)

persistence curve

Given a raw gaze signal, estimates a function that
summarizes the total persistence of topological hole of
the persistence diagram, at different levels of filtration

Kachan and Onuchin (2021)

Persistence entropy

Given a raw gaze signal, estimates the Shannon
entropy of the collections of topological holes lifetimes
of the persistence diagram obtained from gaze signal

Kachan and Onuchin (2021)

Isolated fixational eye movements, such as microsaccades
and drift, are well-suited for stochastic analysis due to their
structured yet random nature. Engbert and Kliegl (2004) used
the MSD to reveal distinct patterns in these movements. On
short time scales—tens to hundreds of milliseconds—fixational
movements are persistent, following consistent directions to
promote retinal shifts that prevent visual fading. On longer time
scales, they become anti-persistent, with negatively correlated
increments that facilitate maintaining gaze on the intended
fixation point.

Detrended fluctuation analysis (DFA), another powerful
method, quantifies long-term power-law correlations in non-
stationary gaze data. Moshel et al. (2008) applied DFA to
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demonstrate that microsaccades enhance persistence more in
horizontal than vertical fixational movements, suggesting distinct
neural control mechanisms for these components (Sparks, 1986;
Moschovakis, 1996). Beyond physiological studies, DFA has been
used in functional research. For example, Wang and Cong (2015)
employed DFA to investigate how professional experience shapes eye
movement patterns in air traffic controllers, linking gaze dynamics
to cognitive and task-related factors.

Finally, the MSD analysis of fixational movements exhibits
oscillatory behavior over longer time scales (Herrmann et al., 2017).
The displacement auto-correlation function (DACF) complements
MSD by comparing a movement’s trajectory to its delayed versions,
highlighting these rhythmic patterns. Such patterns suggest that
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drift movements are centrally controlled, potentially through time-
delayed feedback mechanisms (Herrmann et al, 2017). These
methods, summarized in Table 4, provide insights into the dynamic
control of gaze allowing to explore additional temporal patterns.

4.3 Topological variables

Recent studies have applied topological data analysis (TDA)
to investigate the complex patterns of eye movement trajectories.
Conventional measures, such as fixation durations or saccade
amplitudes, often fail to capture the broader spatial and temporal
structure of gaze patterns. Pioneering works by Kachan and
Onuchin (2021) and Onuchin and Kachan (2023) addressed
this limitation by using TDA to extract novel features from
eye movement data, demonstrating improved performance
in recognition tasks on new gaze trajectory datasets. More
recently, He et al. (2025) showed that spatial-temporal topological
features derived from eye-tracking data can be informative for
neural disorder screening, highlighting the clinical relevance of
these TDA-based representations.

A central tool in TDA is persistent homology, which provides
a way to measure the shape of a dataset across multiple scales. To
illustrate, consider a set of eye positions represented as points in
space. Persistent homology tracks the formation and disappearance
of topological features, including connected clusters of points,
circular arrangements forming loops, and higher-dimensional
empty regions called voids. These features are identified through
a process called a filtration, in which a scale parameter gradually
increases. Initially, each point is separate, but as the scale grows,
points that are close to each other become connected. A topological
feature is said to be born when it first appears, for example, when
two points merge into a cluster or a loop forms, and it dies when it
disappears, such as when two clusters merge into one larger cluster
or aloop is filled in. By recording the birth and death of each feature,
the structural information of the dataset can be summarized in a
persistence diagram, where longer-lived features typically represent
meaningful structures while short-lived features correspond to noise
(Carlsson, 2009; Edelsbrunner and Harer, 2022). Figure 7 illustrates
this process schematically.

One common method to build topological structures is the
Vietoris-Rips complex. In this approach, points in a cloud are
connected if they are within a certain distance defined by the
current scale parameter. Sets of points that are mutually connected
form higher-dimensional shapes: a pair of points forms a line
segment, three points form a filled triangle, and four points
form a tetrahedron. As the scale increases, more connections are
added, creating new features or merging existing ones. This gradual
growth generates the birth and death events that are tracked in
persistent homology.

Kachan and Onuchin (2021) proposed two TDA-based
approaches for analyzing eye movements. In the first, eye positions
are treated as a point cloud, ignoring timestamps, to capture spatial
patterns. In the second, horizontal and vertical gaze coordinates
are analyzed as separate time series to study temporal dynamics.
From these representations, persistence diagrams are derived
and transformed into compact features, such as the lifespan of
topological features or their stability across scales. These features
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can be computed for Vietoris-Rips complexes or for sub-level
set filtrations, which track the appearance and disappearance of
features as the values of the data themselves vary, for example, along
intensity or velocity thresholds. Persistence diagrams can then be
vectorized into structured formats suitable for machine learning,
enabling classification, clustering, or other data-driven analyses. By
emphasizing shape-related properties of gaze data, TDA provides
tools to capture structural patterns that traditional metrics often
overlook, and as shown by He et al. (2025), these spatial-temporal
topological features can also serve as biomarkers for neural disorder
screening.

5 Discussion

The segmentation of raw gaze data into a sequence of
oculomotor events remains a cornerstone of eye movement
research. In this article, we have reviewed the most common
segmentation algorithms—Section 2). Historically, threshold-based
methods dominated the field, relying on predefined criteria
such as velocity or displacement thresholds to categorize eye
movements. These approaches remain widely used because of their
simplicity, computational efficiency, and relatively low barrier to
implementation. However, they also exhibit critical limitations: their
sensitivity to parameter selection can lead to inconsistent results
across laboratories, and their robustness often degrades in noisy
or dynamic environments, such as mobile or low-cost eye trackers.
These drawbacks highlight the need for approaches that are less
dependent on arbitrary thresholds and more adaptable to variability
in recording conditions.

In contrast, learning-based approaches have gained prominence
by leveraging annotated datasets that encode expert knowledge of
eye movement types. By training models on rich and diverse data,
these methods can capture complex patterns in the gaze signal that
extend beyond traditional definitions of fixations, saccades, and
pursuits. For instance, they are better suited to handle ambiguous
or overlapping cases, where threshold-based approaches often fail.
Nevertheless, their performance is critically dependent on model
architecture, hyperparameter optimization, and, above all, the
quality, diversity, and size of the training datasets. A model trained
on limited or biased data may perform well within a narrow domain
but fail to generalize to different populations, tasks, or devices.
This dependency underscores the importance of carefully curated
datasets and rigorous cross-validation protocols.

To foster transparency and reproducibility in machine
learning-based segmentation, detailed methodological reporting
the
approach, authors should provide explicit documentation of the

is essential. Beyond describing general algorithmic
algorithms and software packages employed, the hyperparameter
configurations chosen, and the strategies used for validation. Where
feasible, access to training and validation datasets should also be
shared, either through open repositories or upon reasonable request.
Such openness ensures that results can be replicated, facilitates
the systematic refinement of models, and lowers the entry barrier
for new research groups seeking to build upon existing work.
Ultimately, transparent reporting practices strengthen confidence in
published findings and encourage convergence toward best practices

in the field.
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FIGURE 7

Forming Persistence Diagrams. Given a set of points—gaze data-samples—the Vietoris-Rips filtration approximates the topology of the union of the
balls of radius equal to the threshold parameter a centered at each point from the dataset. The (a) shows, for three values of a — also represented by
dotted lines in (b) — appearance of topological features of dimension 0 — purple lines for connected components—and dimension 1 — blue shaded
areas for holes. The persistence diagram, or persistence barcode, plotted (b) of dimension 0 — purple bars—summarizes the linking of clusters while
the persistence diagram of dimension 1 — blue bars—summarizes the number of topological holes between clusters, describing the complexity of

clusters arrangement.

In this regard, specialized databases are playing an increasingly
central role. Resources such as the GazeBase dataset (Griffith et al.,
2021) provide large and heterogeneous eye movement recordings
across diverse tasks, from controlled guided stimuli designed to
elicit specific movements, to goal-directed activities, and free-
viewing scenarios such as reading or video watching. These
datasets are indispensable for benchmarking both traditional
and learning-based algorithms, enabling fair comparisons across
methods, and for training models with stronger generalizability
across tasks and hardware. By facilitating standardized evaluation,
such databases support the transition from isolated methodological
contributions toward a cumulative science of eye movement
analysis. Looking ahead, the expansion of open repositories covering
diverse populations, age groups, and experimental contexts will be
critical for building robust segmentation algorithms with real-world
applicability.

Frontiers in Physiology

Beyond segmentation itself, this article has also reviewed the
metrics derived from canonical oculomotor events—Section 3).
These metrics are essential for characterizing fixations, saccades,
and smooth pursuits in terms of their temporal, spatial, and
kinematic properties, and for linking them to cognitive, clinical,
and applied research contexts. For example, fixation duration can
be tied to attentional processes, while saccade amplitude and
velocity are informative about motor control and neurological
function. However, meaningful cross-study comparisons are only
possible if these metrics are computed in standardized ways and
interpreted within a shared conceptual framework. Advancing this
line of work therefore requires: (i) a unified set of definitions and
formal concepts, (ii) standardized analytical pipelines that minimize
methodological variability, and (iii) accessible open-source
datasets and software packages that encourage reproducibility
and methodological convergence. Together, these elements will
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harmonize computational practices, foster interdisciplinary
collaboration, and ultimately improve the comparability and
interpretability of findings across the diverse fields that rely on eye
movement research.

It is important to stress, however, that the robustness of
segmentation and derived metrics depends strongly on the hardware
employed. High-speed laboratory-grade eye trackers — 500 -
—-1000 Hz — provide fine-grained temporal resolution, yielding
reliable estimates of fixation stability, saccade dynamics, and pursuit
gain. In these conditions, reproducibility is typically high for
metrics such as RMSD or Cohens Kappa. By contrast, low-cost
or mobile devices — 30—--120 Hz — are more prone to noise
and data loss, which introduces uncertainty in event boundaries.
Fixations, being relatively long in duration, are somewhat resilient,
although noise can still inflate false positives. Saccades, in turn,
are especially vulnerable: low sampling rates may miss peak
velocities or misestimate onset and offset times, leading to degraded
temporal precision and event-level accuracy. These differences
underscore the need for robust, hardware-agnostic metrics that
remain interpretable across diverse research settings.

Looking ahead, several technological and methodological trends
promise to reshape oculomotor research. The rapid adoption of
VR platforms equipped with eye tracking enables exploration of
gaze behavior in immersive, ecologically valid 3D contexts, where
traditional eye movements interact with head and body dynamics
(Adhanom et al.,, 2023). The growing use of mobile eye tracking
is similarly expanding research far beyond lab settings, though
it raises significant challenges in data quality and reproducibility
(Fu et al,, 2024). On the computational front, while AI and deep
learning methods for event segmentation are emerging, the need
for rigorous evaluation and privacy-aware implementations remains
pressing—especially in VR contexts (Bozkir et al., 2023). More broadly,
as Extended Reality (XR) environments integrate eye tracking with
multimodal sensors, methodologies must adapt to both technological
possibilities and ethical considerations (Kourtesis, 2024). Together,
these advances point toward richer, more scalable, and context-
sensitive analyses of oculomotor behavior.

Finally, we reviewed emerging approaches that challenge the

traditional paradigm of segmentation into discrete events—Section 4.

Advanced signal processing methods, such as topological data
analysis (TDA), enable the study of the intrinsic structure of
eye movement signals without imposing predefined categories.
By focusing on patterns such as connectivity, loops, or voids in
gaze trajectories, TDA captures structural properties that may
be overlooked by conventional event-based frameworks. This
represents a promising step toward more naturalistic analyses,
particularly in contexts where boundaries between fixations,
saccades, and pursuits are ambiguous or functionally irrelevant.
As these methods mature, they are likely to complement existing
frameworks and enrich our understanding of oculomotor control in
real-world visual behavior.
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