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Eye movement analysis provides critical insights across domains such 
as perception, cognition, neurological diagnostics, and human-computer 
interaction. However, reliable quantification of oculomotor remains challenging 
due to the lack of clear boundaries between fixations, saccades, and 
smooth pursuits, or variability across individuals and contexts. This article 
reviews methods for segmenting oculometry data into canonical oculomotor 
events, and the computational tools that can be used to characterize 
them. Binary segmentation employs mostly threshold-based algorithms and 
learning-based algorithms to distinguish fixations from saccades. Ternary 
segmentation additionally considers smooth pursuits using primarily threshold-
based approaches and deep learning techniques. The common challenges in 
the practical application of segmentation algorithms are highlighted, namely, 
parameter sensitivity, noise, and head movement artifacts in mobile eye 
trackers, and emphasize the need for standardized benchmarks. The usual 
oculomotor metrics that can be inferred from the canonical movements are 
described, encompassing temporal, spatial, and kinematic features. The critical 
insights they provide for cognitive and clinical research in fields such as 
reading comprehension, neurological disorder diagnostics, and sensorimotor 
development, are outlined. Finally, relatively underexplored methods from 
signal processing, including spectral, stochastic, and topological methods, 
are presented. Their potential in revealing oscillatory patterns and structural 
complexities in gaze dynamics is detailed. Together, these approaches enhance 
our understanding of eye movement behavior, with significant implications for 
psychology, neuroscience, and human-computer interaction.
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 1 Introduction

Eye movement research has a rich history, beginning with foundational work by Dodge 
and Cline (1901) in the early 20th century. Technological advancements have since 
enhanced the measurement, storage, and analysis of eye movements, enabling significant 
progress in understanding their underlying mechanisms. The growing accessibility 
of eye-tracking tools has expanded their use across global research laboratories,
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fostering specialized subfields like neuroscience, psychology, 
marketing, and medicine. Each discipline has provided critical 
insights, collectively shaping modern eye movement research.

A primary goal in eye movement research is to extract metrics 
that characterize the oculomotor system. Due to their close link 
with visual attention, eye movements analysis is a powerful tool 
for studying cognitive and behavioral processes. Recent studies 
have integrated eye movement analysis into cognitive psychology, 
exploring areas like language processing, reading, and problem-
solving (Rayner, 1998). Research has also investigated connections 
between eye movements, visual attention, and perception (Collins 
and Doré-Mazars, 2006; Schütz et al., 2011). Additionally, individual 
differences in oculomotor patterns have paved the way for eye 
movement biometrics (Rigas and Komogortsev, 2016).

Clinical research increasingly employs eye movement analysis 
as a non-invasive method to identify neural irregularities linked 
to neurodegenerative and neurological disorders (MacAskill and 
Anderson, 2016). Distinct oculomotor patterns have been observed 
in individuals with early-stage Alzheimer’s disease (Fernández et al., 
2013) and Parkinson’s disease (Wetzel et al., 2011), highlighting 
their potential as biomarkers for early diagnosis and disease 
monitoring. Furthermore, a growing body of evidence explores 
oculomotor features in behavioral disorders such as attention deficit 
hyperactivity disorder (ADHD) (Fried et al., 2014) and autism 
spectrum disorder (ASD) (Klin et al., 2002; Shirama et al., 2016), 
offering valuable insights into the neurocognitive mechanisms 
underlying these conditions.

The rapid growth of eye movement research has also brought 
significant challenges. The increasing volume of publications 
can obscure critical insights, while fragmentation across sub-
disciplines hinders effective knowledge integration. As the different 
research communities pursue distinct objectives, definitions and 
methodologies often become highly specialized, which limits their 
generalizability. This has contributed to a fragmented conceptual 
framework within the field. Notably, a recent study highlights that 
even fundamental terms such as fixation and saccade are defined 
inconsistently, resulting in conceptual confusion (Hessels et al., 2018). 
These definitions vary considerably depending on whether the 
perspective is functional, oculomotor, or computational, with little 
consensus even within individual subfields.

Beyond conceptual and terminological inconsistencies, the 
field lacks standardized methods for defining and extracting eye 
movement features. Most studies emphasize feature subsets tailored 
to specific research questions, and the methodological variability 
in segmenting raw gaze data into canonical movements—such 
as fixations, saccades, and smooth pursuits—undermines 
reproducibility. The growing availability of portable, cost-effective 
eye-tracking devices has facilitated the study of naturalistic 
behavior in both laboratory and real-world settings (Hayhoe and 
Ballard, 2005; Land, 2009). However, the absence of standardized 
analysis protocols limits comparability between studies and hinders 
the integration of knowledge. This work aims to address these 
challenges by proposing a unified methodological framework to 
improve interoperability across research communities and improve 
comparison across experimental contexts.

This review focuses on methods for segmenting, extracting 
and analyzing fixations, saccades, and smooth pursuits, building 
on prior comprehensive reviews of fixation and saccade features 

(Sharafi et al., 2015; Rigas et al., 2018; Brunyé et al., 2019; 
Skaramagkas et al., 2021; Mahanama et al., 2022a; Spering, 2022) and 
pursuit-based features (Skaramagkas et al., 2021; Mahanama et al., 
2022a; Spering, 2022). Some reviews target specific domains, 
such as emotional and cognitive processes (Skaramagkas et al., 
2021) or decision-making (Spering, 2022). Additionally, several 
studies, including Komogortsev et al. (2010b); Birawo and 
Kasprowski (2022); Startsev and Zemblys (2023), evaluate 
segmentation algorithms, often comparing their performance on 
open-source datasets and proposing quality metrics. This work 
aligns with these efforts by reviewing segmentation methods and 
their associated oculomotor features.

Specifically, this review surveys methodologies for quantifying 
oculomotor system activity and explores their diverse applications. 
While not exhaustive due to the breadth and specialization of 
some methods, it provides a concise overview of key approaches 
for characterizing canonical eye movements and their oculometric 
signals. The following sections are organized as follows. Section 2 
introduces segmentation algorithms for classifying fixations, 
saccades, and smooth pursuits. Two primary analytical approaches 
are then explored: physiological analysis—Section 3 — which 
extracts meaningful features like shape, dynamics, and kinematics 
from segmented sequences, and signal-based analysis—Section 4 
— which applies time-series descriptors to examine eye movement 
behavior from a global dynamic perspective. Although a detailed 
discussion of metrics is beyond the scope of this review, we aim to 
provide a unified framework for oculometric signal analysis.

This article is part of a series of four reviews dedicated to 
methods for analyzing oculomotor signals and gaze trajectories. 
The overarching goals of the series are to evaluate the application 
of eye movement and gaze analysis techniques across diverse 
scientific disciplines and to work toward a unified methodological 
framework by defining standardized representations and concepts 
for quantifying eye-tracking data. The first article in the series, 
already published in Frontiers in Physiology (Laborde et al., 2025), 
provided an overview of current knowledge on canonical eye 
movements, with particular emphasis on distinguishing findings 
obtained in controlled laboratory settings from those observed in 
more natural, head-free conditions. 

2 Segmentation algorithms

Three archetypal gaze patterns can typically be observed in eye-
tracking data: periods of relative stability, rapid eye shifts, and slower 
shifts corresponding to the tracking of moving objects. These are 
commonly assumed to reflect the three main canonical oculomotor 
events that direct gaze movements, namely, fixations, saccades 
and smooth pursuits. Thus, a necessary preliminary step in eye-
movement analysis is often to identify these canonical events from 
a continuous stream of gaze data using segmentation algorithms. 
Segmentation algorithms employ a number of predefined criteria, 
based on the underlying characteristics of the oculomotor 
events, in order to distinguish them. Such a process aligns with 
the traditional neurophysiological view, which postulates that 
distinct neural mechanisms govern specific movement types, 
such as the superior colliculus for saccades or the cerebellum for
smooth pursuits.

Frontiers in Physiology 02 frontiersin.org

https://doi.org/10.3389/fphys.2025.1661026
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Laborde et al. 10.3389/fphys.2025.1661026

However, the organization of the oculomotor system as a 
discrete set of events has been questioned, notably in the context of 
natural viewing conditions (Steinman et al., 1990). Under ecological 
conditions, a richer repertoire of ocular behavior can be observed. 
This results in potential overlap between the characteristics of 
the oculomotor events, which makes the segmentation task more 
challenging. Therefore, it seems more appropriate to refer to 
segmentation algorithms as event classification rather than event 
detection, since they merely assign a discrete event type to each 
data period based on some computationally inferred features—e.g., 
velocity thresholds for saccades or duration thresholds for 
fixations. This distinction is critical, as misclassification can distort 
interpretations of visual attention in fields such as psychology, 
neuroscience, and human-computer interaction.

A major challenge in eye movement segmentation is the 
dependence on user-defined parameters, such as velocity thresholds 
for saccades or minimum fixation durations. Although these 
events are grounded in physiological phenomena, no theoretical 
consensus exists on parameter values that definitively distinguish 
movement types. For instance, the transition from slow movements, 
such as smooth pursuits or drifts, to rapid saccades lacks a 
clear, physiologically validated threshold. Studies investigating 
optimal parameterization for specific algorithms (Blignaut, 2009; 
Shic et al., 2008) indicate that variations in parameter settings 
significantly influence classification outcomes (Komogortsev et al., 
2010b; Salvucci and Goldberg, 2000). This sensitivity hampers 
reproducibility and can distort findings in fields requiring precise 
event classification, such as psychology or human-computer 
interaction. In psychology, for example, precision in detecting 
fixations is crucial for analyzing attention strategies, such as in 
studies on reading or visual information processing (Rayner, 1998). 
For instance, in experimental paradigms measuring cognitive load, 
accurate identification of fixations enables reliable quantification 
of the time spent on specific stimuli, thereby revealing underlying 
attentional processes (Duchowski and Duchowski, 2017). In human-
computer interaction (HCI), precise classification of eye movement 
events is equally important for evaluating the usability of user 
interfaces (Jacob and Karn, 2003). Correct detection of saccades 
and fixations, for example, allows for the identification of interface 
areas that attract users’ attention or pose accessibility issues, directly 
influencing the design of more intuitive interfaces.

Conversely, errors in the detection of fixations or saccades 
can have significant repercussions on the interpretation of data in 
studies in cognitive psychology and human-computer interaction 
(HCI). As shown by Duchowski and Duchowski (2017) and 
Nyström and Holmqvist (2010), erroneous classification of eye 
movement events can bias the analysis of attentional processes or 
user behaviors. For example, a fixation incorrectly identified as 
a saccade can distort measures of cognitive load in experimental 
paradigms, leading to erroneous conclusions about underlying 
cognitive mechanisms (Rayner, 1998). Similarly, in HCI, imprecise 
detection of eye movement events can result in an incorrect 
evaluation of an interface’s usability, affecting recommendations for 
its optimization (Jacob and Karn, 2003). As such, threshold-based 
methods, including velocity or dispersion thresholding, provide 
computational interpretations of oculomotor events, but their 
criteria often vary across studies and implementations, leading to 
inconsistent classifications of identical gaze data due to insufficient 

standardization, which compromises the reproducibility of results in 
contexts requiring high precision (Holmqvist et al., 2011).

Finally, researchers must consider the coordinate system used 
when analyzing eye-tracking data, particularly with mobile eye 
trackers that permit free head movement. Unlike stationary trackers, 
which use a head-referenced coordinate system, mobile trackers 
record gaze in a world-referenced system, where head movements 
can complicate event classification. To avoid such conceptual 
confusion, researchers should ensure proper head movement 
compensation and clearly report their coordinate system. For a 
detailed discussion of challenges in defining oculomotor events, 
see the review by Hessels et al. (2018). Note that considerations 
regarding the utilization and transformation of these coordinates in 
relation to a moving observer’s visual field are addressed in the first 
part of this review series (Laborde et al., 2025)

Although some authors have called for the standardization 
of eye movement classification algorithms and evaluation tools 
(Komogortsev et al., 2010a), Startsev and Zemblys (2023), there is 
currently no clear consensus on how to benchmark these methods. 
This lack of agreement poses challenges to the development 
and comparison of new segmentation approaches. To address 
this gap, several concrete proposals have been suggested in the 
literature. First, minimal reporting standards could be established, 
requiring authors to clearly specify algorithm parameters, eye-
tracker sampling rates, stimulus types, and data preprocessing steps. 
Second, the use of shared, openly available datasets would enable 
reproducible evaluation across diverse conditions, including static, 
dynamic, and naturalistic stimuli. Third, benchmark competitions 
or challenges could be organized, similar to practices in computer 
vision and machine learning, where algorithms are tested on 
identical datasets using standardized metrics such as precision, 
recall, F1-score, Cohen’s Kappa, and RMSD. By adopting these 
practices, the field could facilitate more transparent, reproducible, 
and comparable assessments of eye movement segmentation 
algorithms, ultimately accelerating methodological improvements.

In this review, we focus on fixations, saccades, and smooth 
pursuit eye movements, as these are the most commonly studied 
and well-characterized oculomotor events in the literature. Other 
canonical eye movement events, such as vergence, optokinetic 
reflexes, and vestibulo-ocular reflex (VOR), are not included. These 
events are less frequently analyzed in eye-tracking studies, and 
their detection often requires specialized experimental setups or 
instrumentation beyond conventional gaze-tracking paradigms. By 
concentrating on fixations, saccades, and pursuits, we ensure that 
the discussion is grounded in well-supported empirical evidence 
while acknowledging that additional eye movement types remain 
an important direction for future work. Despite these challenges, 
the following sections provide an overview of widely used 
segmentation methods (Salvucci and Goldberg, 2000; Komogortsev 
and Karpov, 2013; Andersson et al., 2016). 

2.1 Separating saccades from fixations

Numerous algorithms have been developed to address the 
challenge of distinguishing saccades from fixations, a process known 
as binary segmentation. This is illustrated in Figure 1, which depicts 
alternating periods of relative gaze stability—fixations, marked in 
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purple—and rapid gaze reorientations—saccadic eye movements. 
The recording shown in Figure 1 is of exceptionally high quality, 
with minimal noise or signal loss. In contrast, real-world eye-
tracking data often exhibit lower quality due to several factors. For 
instance, blinks or partial eyelid closures interrupt the signal, while 
head movements or poor participant stabilization can introduce 
spatial jitter. Changes in lighting conditions or reflections on glasses 
can reduce the accuracy of gaze detection, and low sampling 
rates or occasional data dropouts may cause missing or irregular 
samples. Additionally, physiological variability, such as micro-
saccades or pupil size fluctuations, can further complicate event 
classification. These factors collectively increase the difficulty of 
distinguishing fixations from saccades, emphasizing the need for 
robust segmentation algorithms that can tolerate noise and handle 
incomplete or variable-quality data.

Binary segmentation algorithms are broadly categorized into 
threshold-based and learning-based approaches. Threshold-based 
methods rely on predefined computational criteria, such as velocity 
or spatial dispersion, to classify fixations and saccades, ensuring 
transparent, rule-based classification. In contrast, learning-based 
methods, encompassing machine learning and deep learning 
techniques, infer patterns from annotated training data, which 
reflect expert or task-specific interpretations of fixations and 
saccades. These annotations may reduce the transparency of 
classification criteria compared to threshold-based methods due to 
their reliance on subjective or context-dependent definitions. 

2.1.1 Threshold-based algorithms
The velocity-threshold identification (I-VT) algorithm (Salvucci 

and Goldberg, 2000) is a widely adopted method for distinguishing 
fixations from saccades in eye movement data. It leverages 
the distinct velocity profiles of eye movements: low velocities 
characterize fixations, while high velocities indicate saccades. 
The I-VT algorithm calculates the absolute velocity between 
consecutive gaze samples and classifies each sample as a fixation or 
saccade based on a user-defined velocity threshold. To address the 
subjectivity of manual threshold selection, Nyström and Holmqvist 
(2010) proposed an adaptive I-VT variant that dynamically 
computes thresholds for peak velocities and saccade onset/offset 
detection based on statistical properties of the data. This method 
incorporates constraints derived from the physical characteristics 
of eye movements—such as minimum and maximum velocities, 
accelerations, and event durations—to filter noise and enhance 
classification accuracy.

In contrast to velocity-based methods, the dispersion-threshold 
identification (I-DiT) algorithm offers an alternative approach 
by leveraging the tendency of fixation points—characterized by 
relatively low velocity—to cluster spatially (Salvucci and Goldberg, 
2000; Komogortsev et al., 2010a; Andersson et al., 2016). The I-DiT 
algorithm distinguishes fixations from saccades based on the spatial 
dispersion of consecutive gaze points within a defined temporal 
window. Dispersion is quantified by summing the ranges—i.e., the 
differences between the maximum and minimum values—of the 
gaze coordinates in both the horizontal and vertical dimensions. If 
the resulting dispersion value falls below a predefined threshold, the 
corresponding gaze points are classified as a fixation. Otherwise, 
if the dispersion exceeds the threshold, the sequence is identified 
as a saccade.

FIGURE 1
Binary Segmentation. This example illustrates an oculomotor 
recording containing both fixations and saccades. Panel (a) depicts the 
two-dimensional gaze trajectory, with alternating periods of 
stability—fixations shown in purple—and rapid ballistic 
reorientations—saccades shown in gray. Panels (b,c) present the 
horizontal and vertical gaze positions over time, respectively, using the 
same color scheme. These characteristic patterns form the basis of
binary segmentation algorithms, which aim to distinguish fixation 
sequences from saccadic sequences.

Another notable approach is the minimum spanning tree 
(MST)-based method (Goldberg and Schryver, 1995; Salvucci and 
Goldberg, 2000; Komogortsev et al., 2010a; Andersson et al., 2016), 
which also employs a dispersion-based strategy to evaluate local gaze 
dispersion within a temporal window of eye position data. Unlike 
traditional methods, MST-based algorithms model gaze points as 
nodes in a graph, with edges weighted by the Euclidean distance 
between corresponding positions. A minimum spanning tree is 
constructed—typically using Prim’s algorithm (Camerini et al., 
1988) — to connect all nodes while minimizing total edge length. 
The identification by minimum spanning tree (I-MST) algorithm 
classifies gaze points by applying edge-distance thresholds: points 
connected by edges shorter than the threshold are grouped as 
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FIGURE 2
Ternary Segmentation. This example illustrates an oculomotor 
recording comprising fixations, saccades, and smooth pursuits. Panel
(a)shows the two-dimensional gaze trajectory, where fixations are 
marked in purple, saccades in gray, and smooth pursuits in blue. 
Panels (b,c)display the corresponding horizontal and vertical gaze 
positions over time, highlighting the gradual directional displacements 
characteristic of smooth pursuit movements. These distinguishing 
features are the focus of ternary segmentation algorithms, which aim 
to isolate pursuit sequences from other phases.

fixation components, while those separated by longer edges are 
classified as saccadic components. Thresholds may be applied 
globally across the graph (Komogortsev et al., 2010a) or adapted 
locally based on vertex density (Goldberg and Schryver, 1995). The 
MST-based approach offers flexibility, adapts to local data structures, 
and demonstrates robustness in handling missing or noisy data, 
making it suitable for complex eye-tracking datasets.

The Density-Threshold Identification (I-DeT) algorithm is an 
adaptation of the DBSCAN clustering method (Ester et al., 1996). 
I-DeT extends DBSCAN by incorporating the temporal dimension 
of gaze data, ensuring that segmented events reflect the sequential 
nature of eye movements. As introduced by Li et al. (2016), a gaze 
point is classified as a core point if: (i) at least a minimum number 

of gaze points lie within a specified spatial radius of the reference 
point, forming a local neighborhood; and (ii) these neighboring 
points form a temporally contiguous sequence in the gaze dataset. 
Fixations are identified as clusters comprising core points and their 
associated neighborhoods, while non-core, non-neighbor points 
are classified as saccades or noise. This integration of spatial and 
temporal constraints makes I-DeT robust for segmenting gaze data, 
though its performance depends on careful parameter tuning to 
avoid over—or under—segmentation.

Building on classical signal processing, Kalman filter-based 
algorithms (I-KF) model eye movements as a dynamic system. 
The two-state Kalman filter, as proposed by Komogortsev and 
Khan (2007), represents eye movements using position and velocity 
states, assuming linear dynamics and Gaussian noise. The algorithm 
operates recursively in two phases: (i) the predict phase, which 
forecasts the next state based on the system model, and (ii) the 
update phase, which refines the prediction using observed data to 
produce a more accurate state estimate. Saccade detection employs 
a Chi-square test (Sauter et al., 1991) to assess discrepancies between 
predicted and observed gaze velocities, with a threshold determining 
whether a sample is classified as a saccade—high velocity—or 
fixation—low velocity. This approach excels in handling noisy data 
by combining predictive modeling with statistical testing, offering 
a robust framework for eye movement classification applicable in 
fields such as human-computer interaction and clinical research. 

2.1.2 Learning-based algorithms
The Hidden Markov Model Identification (I-HMM) algorithm, 

introduced by Salvucci and Goldberg (2000), extends the 
velocity-threshold identification (I-VT) approach by employing 
a probabilistic framework to segment eye movements into fixations 
and saccades. I-HMM models eye movements as a sequence 
of two latent states—fixation and saccade—each characterized 
by a Gaussian velocity distribution. Fixations typically exhibit 
low mean velocity, while saccades are defined by high mean 
velocity—e.g., >200 degrees per second. Transitions between these 
states are modeled as a first-order Markov process, capturing 
the temporal dependencies inherent in gaze data. The approach 
leverages the Baum-Welch algorithm (Bilmes et al., 1998) to 
estimate model parameters, including state transition probabilities 
and emission distribution parameters—e.g., mean and variance of 
velocity distributions—from training data. Subsequently, the Viterbi 
algorithm infers the optimal sequence of states for a given gaze 
dataset. Unlike deterministic threshold-based methods like I-VT, I-
HMM accounts for noise and sequential patterns, providing robust 
segmentation that is particularly effective for noisy or complex 
eye-tracking datasets.

The Two-Means Clustering Identification (I2MC) algorithm, 
introduced by Hessels et al. (2017), is designed to extract fixations 
from gaze data with high noise levels, such as those recorded from 
infants. The algorithm employs two-means clustering—k-means 
with k = 2 — on a fixed-length temporal window—typically 200–400 
milliseconds—to partition gaze samples into stable—fixation—and 
rapid—saccade—clusters based on their spatial coordinates. For 
each window, the number of transitions between clusters is 
calculated, and each gaze sample is assigned a weight inversely 
proportional to the number of transitions, reflecting the stability 
of the cluster assignment. To enhance robustness to noise, this 
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process is applied across multiple down-sampled versions of the 
gaze signal. The clustering weights for each gaze sample are 
aggregated and averaged to generate a weight signal, which is then 
thresholded using an empirically determined cut-off to identify 
fixation periods, effectively distinguishing fixations from ballistic 
saccades. I2MC demonstrates robustness to data loss—e.g., due to 
blinks or tracker errors—and was shown to outperform seven state-
of-the-art algorithms on noisy infant data, making it well-suited 
for applications in developmental psychology, clinical research, and 
longitudinal studies with variable data quality (Hessels et al., 2017).

Building upon established machine learning techniques,
Zemblys et al. (2018) introduced the Random Forest Classifier (I-
RF) algorithm to distinguish fixations, saccades, and potentially 
other eye movement events from raw gaze data. The I-RF model is 
trained on a set of 14 features, including spatial measures—e.g., 
root mean square of sample-to-sample displacement, standard 
deviation of gaze positions, bivariate contour ellipse area—and 
statistical measures—e.g., sample dispersion, kurtosis. The random 
forest classifier leverages these features to model complex, non-
linear relationships, achieving high classification accuracy. However, 
a key limitation is the reliance on hand-tagged training data, 
which is labor-intensive and hinders scalability. Reproducibility 
is also challenging, as model performance depends on the quality 
and representativeness of training datasets. Additional limitations 
include the computational cost of feature extraction and the risk of 
overfitting to specific datasets. Nevertheless, I-RF is particularly 
valuable in eye-tracking research for applications in cognitive 
psychology, human-computer interaction, and clinical diagnostics, 
offering robustness to noise and the potential to detect diverse eye 
movement types when trained appropriately.

The evaluation of binary segmentation algorithms, which aim to 
distinguish fixations from saccades, has been reported in benchmark 
studies comparing algorithm outputs to human coders using high-
frequency datasets that include static images, text, moving dots, 
and videos (Andersson et al., 2016). These studies provide a 
valuable baseline for assessing segmentation quality. Performances 
are generally summarized using metrics such as Cohen’s Kappa, 
which captures agreement with human annotations, or RMSD 
for event durations, which reflects temporal precision. However, 
reported values vary considerably depending on the dataset, the type 
of stimulus, and the specific evaluation protocol, making it difficult 
to directly compare results across studies.

Among threshold-based methods, the velocity-threshold 
approach (I-VT) typically reaches Kappa values around 0.65−−0.75
for static image datasets but drops markedly in dynamic conditions, 
particularly for fixations (Andersson et al., 2016). The dispersion-
based algorithm (I-DiT) rarely exceeds 0.45 and shows high 
sensitivity to noise, while I-MST adapts better to missing data 
but yields modest agreement overall, usually between 0.3 and 0.5 
(Andersson et al., 2016). Kalman filter approaches (I-KF) report 
reasonable performance for saccades—up to 0.6 — but poor fixation 
detection. More recently, density-based methods such as I-DeT, 
inspired by clustering techniques, have been proposed as more 
robust under noise and data loss, though systematic benchmarks 
remain scarce (Li et al., 2016).

Learning-based approaches tend to report more robust and 
generalizable performance, particularly in challenging or noisy 
datasets. Hidden Markov models (I-HMM) achieve balanced results 

across stimulus types, with Kappa values close to 0.7 for saccades 
(Andersson et al., 2016). The two-means clustering method (I2MC), 
developed specifically for noisy infant recordings, reports an average 
F1-score of 0.83 across seven independent datasets, consistently 
outperforming several threshold-based methods (Hessels et al., 
2017). Random forest classifiers (I-RF) have achieved state-of-the-
art sample-level results, with F1-scores near 0.97 and Kappa values 
around 0.85 in validation data, though performance decreases to 
about 0.70 on independent test sets (Zemblys et al., 2018).

In summary, threshold-based methods are attractive for their 
simplicity and efficiency and remain effective under controlled 
static conditions, but they degrade substantially in noisy or 
dynamic environments. Learning-based methods demonstrate 
greater resilience, adaptability, and the ability to model complex 
data patterns, although they require annotated training datasets and 
greater computational resources. It is important to emphasize that 
these are reported performances drawn from heterogeneous studies, 
and differences in dataset characteristics, sampling frequency, and 
evaluation protocols likely account for a substantial part of the 
observed variability across algorithms. 

2.2 Separating smooth pursuits from 
fixations and saccades

The detection of smooth pursuit events, characterized by low-
velocity, consistent-directionality eye movements that track moving 
targets, has received less attention compared to saccade and fixation 
classification. This task, known as ternary segmentation—classifying 
fixations, saccades, and smooth pursuits—is illustrated in Figure 2, 
which depicts smooth pursuits—marked in purple—alongside 
fixations and saccades in high-quality eye-tracking data. Methods 
for identifying smooth pursuits are broadly categorized into 
threshold-based and learning-based approaches. Both approaches 
encounter the same limitations outlined in Section 2.1, including 
sensitivity to predefined thresholds in threshold-based methods 
and reliance on annotated training datasets in learning-based 
methods, which can be labor-intensive and specific to the dataset. 
Smooth pursuit detection is particularly challenging in noisy or 
low-quality data—e.g., from low-frequency eye trackers or studies 
involving infants—often necessitating preprocessing steps such as 
noise filtering or blink removal to improve accuracy. 

2.2.1 Threshold-based algorithms
Typically, a simple velocity threshold is first applied to isolate 

saccadic events, followed by a second step to distinguish between 
the remaining movements, namely, fixation and pursuit events. A 
straightforward but effective method for this task, known as the I-
VVT approach, was proposed by Komogortsev and Karpov (2013). 
This method builds upon the I-VT algorithm by introducing a 
second velocity threshold to specifically isolate fixation events. Any 
remaining data points are then classified as pursuit events. However, 
a potential limitation of this approach is that eye movement 
velocities can vary between individuals and even within the same 
individual depending on the specific task being performed. As 
such, establishing universally effective thresholds to differentiate 
smooth pursuits from fixations—both of which are low-velocity 
movements—presents a challenge. This variability can complicate 
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the application of this algorithm in real-world scenarios, particularly 
those involving dynamic scenes (Kasneci et al., 2015).

To reduce reliance on velocity thresholds, Komogortsev and 
Karpov (2013) proposed to distinguish between pursuit and 
fixation movements using a dispersion threshold combined with a 
temporal window—an approach commonly referred to as I-VDT. 
This method naturally extends the I-DiT approach by isolating 
fixation samples based on their spatial proximity. Similarly, Lopez 
(2009) proposed an alternative strategy where the standard 
deviation of movement direction within a time window is used 
to differentiate between fixation and pursuit events. This approach 
provides an additional method for segmentation that focuses on 
directional variability rather than relying solely on velocity-based
thresholds.

The Velocity and Movement Pattern Identification (I-VMP) 
algorithm, proposed by Lopez (2009), provides an advanced 
method for detecting smooth pursuits in eye-tracking data. I-
VMP employs a two-stage approach: it first applies a velocity 
threshold to isolate saccades, then analyzes the angular displacement 
between consecutive gaze points to identify smooth pursuits 
among low-velocity movements. Specifically, the angle between the 
horizontal axis and the line connecting successive gaze points is 
projected onto a unit circle, and a Rayleigh score is computed to 
quantify directional consistency within a defined temporal window. 
High Rayleigh scores indicate stable directionality, characteristic 
of smooth pursuits, distinguishing them from fixations, which 
exhibit random or minimal directional changes. While this method 
reduces dependence on velocity thresholds compared to traditional 
approaches, it requires preprocessing steps, such as noise filtering 
and blink removal, and knowledge of stimulus motion for optimal 
performance.

Finally, Santini et al. (2016) introduced a Bayesian decision 
theory-based approach (I-BDT), specifically designed for the 
classification of smooth pursuit eye movements when viewing 
dynamic stimuli. Unlike earlier methods that rely on a velocity-
based initial step to isolate non-saccadic sequences, this approach 
directly separates smooth pursuits from saccades and fixations 
without the need for an initial velocity threshold. Grounded 
in physiological hypotheses, the I-BDT approach incorporates 
explicit formulas to compute the likelihoods and priors for each 
type of eye movement—fixation, saccade, and smooth pursuit. 
These formulas enable the efficient classification of eye movement 
events by applying Bayes’ theorem, offering a probabilistic 
framework for distinguishing between different types of
oculomotor behavior. 

2.2.2 Learning-based algorithms
Fuhl et al. (2018) introduced the Histogram of Oriented 

Velocities (I-HOV) method, which adapts a computer vision 
technique to classify fixations, saccades, and smooth pursuits in eye-
tracking data. The I-HOV algorithm computes velocity-weighted 
angles between a gaze point and its predecessors or successors 
within a defined temporal window, generating a histogram that 
serves as a meta-representation of local gaze behavior for each 
sample. These histograms are used as feature vectors for machine 
learning algorithms, such as random forests, k-nearest neighbors, 
and support vector machines, to classify eye movement types. 
Similar to the I-VMP algorithm (Lopez, 2009), I-HOV leverages the 

consistent directionality and low-velocity profiles of smooth pursuits 
to distinguish them from fixations and saccades. While effective 
for ternary segmentation, I-HOV relies on high-quality annotated 
training data and is computationally intensive. Its performance is 
also sensitive to noise and the limitations of low-frequency eye 
trackers, which may reduce the accuracy of velocity and angle 
calculations.

Recent advances in eye movement classification have leveraged 
deep learning techniques to distinguish smooth pursuit sequences 
from fixations and saccades. One such approach, proposed by 
Hoppe and Bulling (2016), employs a convolutional neural network 
(CNN) combined with data windowing. In this method, gaze points 
within each temporal window are transformed into the frequency 
domain using a Fourier transform and then input to the CNN, 
which classifies the eye movement type. Similarly, Fuhl et al. 
(2021) introduced a CNN-based method, termed I-CNN, that 
operates directly on windowed raw eye data to isolate oculomotor 
events. These deep learning approaches demonstrate significant 
effectiveness, particularly when trained on datasets tailored 
to specific experimental conditions and eye-tracking devices, 
underscoring their potential for robust eye movement classification. 
However, their performance remains heavily dependent on the 
quality and annotation of training data, which can substantially 
impact model accuracy and generalizability.

Ternary segmentation, tasked with classifying fixations, 
saccades, and smooth pursuits, presents greater challenges than 
binary segmentation due to the subtle low-velocity characteristics 
of smooth pursuits. Insights from Komogortsev and Karpov 
(2013), Santini et al. (2016), Fuhl et al. (2018), and Fuhl et al. 
(2021), evaluated on varied datasets with dynamic stimuli, 
provide a foundation for assessing performance, although 
quantitative benchmarks remain less comprehensive than for binary 
segmentation. Moreover, the different evaluations were conducted 
on distinct datasets, making it challenging to provide a reliable 
comparative analysis of the various segmentation methods. As such, 
the following paragraphs will focus on qualitative considerations.

Among threshold-based approaches, extensions of velocity- and 
dispersion-threshold methods—e.g., I-VVT, I-VDT—have been 
applied to pursuits, while variants such as I-VMP incorporate 
directional information to reduce velocity ambiguities. Bayesian 
decision theory (I-BDT) has been reported to outperform 
dispersion-based methods (I-VDT) on several dynamic datasets at 
30 Hz, leveraging priors to enhance pursuit detection (Santini et al., 
2016). Learning-based methods show greater adaptability. 
Histogram-based classification (I-HOV) and convolutional neural 
networks (I-CNN) have been reported to provide robust detection 
of pursuits in noisy or low-resolution dynamic data, outperforming 
threshold-based methods in these contexts (Fuhl et al., 2018; 2021).

In summary, ternary segmentation highlights the intrinsic 
difficulty of reliably detecting smooth pursuits, particularly at 
low velocities where they overlap with fixations. Threshold-based 
methods capture faster pursuits but remain sensitive to noise and 
sampling rate. Bayesian and direction-based extensions have been 
reported to reduce some of these ambiguities, though results vary 
across datasets. Learning-based methods appear more promising for 
handling complex or noisy recordings, especially with CNNs and 
histogram-based approaches, yet their effectiveness still depends 
on the availability of well-annotated training corpora. Reported 
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TABLE 1  Fixation-based features.

Feature name Description References

Count Given a set of fixation sequences, computes the number of fixations Rigas et al. (2018)

Frequency Given a set of fixation sequences, computes the number of fixations occurring per second Rigas et al. (2018)

Duration Given a fixation sequence, computes the duration of the sequence Rigas et al. (2018)

First duration Given a set of fixation sequences, computes the duration of the first fixation sequence identified Inhoff et al. (2000)

Centroid Given a fixation sequence, computes centroid position by averaging coordinates of data samples Rigas et al. (2018)

Drift displacement Given a fixation sequence, computes the distance between the starting and ending points of the sequence Rigas et al. (2018)

Drift distance Given a fixation sequence, computes the sum of distances between each data sample within this sequence Rigas et al. (2018)

Mean velocity Given a fixation sequence, computes the mean velocity of data sample within this sequence Rigas et al. (2018)

Drift velocity Given a fixation sequence, computes the drift displacement normalized by the fixation duration Rigas et al. (2018)

BCEA Given a fixation sequence, computes the bivariate contour ellipse area (BCEA) as the area of the elliptical contour that 
encompasses a given percentage of sample points of the sequence

Crossland et al. (2004)

performances point to relative strengths of each family of methods, 
but the absence of standardized benchmarks makes it difficult to 
establish a consensus hierarchy of algorithms. 

3 Physiological features

Applying the segmentation algorithms presented in Section 2 
produces a sequence of fixations, saccades, and possibly smooth 
pursuits from raw gaze data. The following sections will review the 
most common metrics found in the literature to describe and analyze 
these oculomotor events.

The fundamental features and metrics for fixations, saccades, 
and smooth pursuits are summarized in Tables 1–3, respectively. 
The tables provide a concise description of each feature and 
references from the literature that offer guidance for their
implementation.

3.1 Fixation measures

A fixation is defined as a period during which the gaze 
is stabilized on a specific spatial location, projecting visual 
stimuli onto the fovea centralis, the retinal region with maximal 
photoreceptor density and visual acuity. Despite attempts 
to maintain steady fixation on a stationary target, the eyes 
exhibit continuous, involuntary micromovements, including 
microsaccades—rapid, small-amplitude saccades—drifts—slow, 
curvilinear deviations—and tremors—high-frequency, low-
amplitude oscillations. This section examines the quantitative 
features characterizing fixations, including temporal, positional 
attributes, and dynamic characteristics. These properties are 
typically analyzed under head-constrained conditions using high-
resolution eye-tracking systems to isolate oculomotor behavior. 

3.1.1 Temporal features
Fixation count is defined as the total number of fixations within 

a defined time interval or stimulus region. Despite its simplicity, 
the fixation count remains a cornerstone metric in eye-tracking 
research due to its robustness and interpretability. It is frequently 
employed in exploratory analyses before applying more advanced 
techniques. Fixation count is widely utilized to assess visual attention 
allocation to regions of interest (ROIs) in textual or pictorial 
stimuli (Scheiter and Eitel, 2017), infer the depth and efficiency 
of visual processing (Jacob and Karn, 2003; Park et al., 2015), and 
investigate how expertise influences oculomotor behavior in visual 
tasks (Schoonahd et al., 1973; Megaw and Richardson, 1979).

Pioneering work by Goldberg and Kotval (1999) highlighted that 
a higher number of fixations directed at a stimulus often indicates 
inefficiency in the search for relevant information. As such, fixation 
count has been used in eye-tracking studies to identify visual regions 
that attract more attention or to infer the amount of cognitive 
effort required for a particular task. For example, in challenging 
tasks such as source code reading, a higher fixation count could 
signify increased visual effort and processing time (Binkley et al., 
2013; Sharif et al., 2012). The fixation count is often expressed 
per unit of time or relative to a specific task or sub-task. For 
example, in reading tasks, the fixation count can be normalized to 
the length of the text by dividing the number of fixations by the 
number of words (Sharafi et al., 2015).

Another critical metric, fixation duration, quantifies the 
temporal dynamics of gaze behavior. Typical fixations last between 
200 and 300 milliseconds; however, longer durations on a stimulus 
may indicate greater processing complexity (Jacob and Karn, 2003; 
Krejtz et al., 2016b; Liu and Chuang, 2011). This metric is frequently 
employed in eye-tracking studies to examine complex cognitive 
functions such as reading comprehension (Raney et al., 2014), 
learning processes (Liu, 2014), and mental workload assessment 
(Liu et al., 2022). Furthermore, individual fixation durations may 
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TABLE 2  Saccade-based features.

Feature name Description References

Duration Given a saccade sequence, computes the duration of the sequence Rigas et al. (2018)

Frequency Given a set of saccade sequences, computes the number of saccades occurring per second Rigas et al. (2018)

Amplitude Given a saccade sequence, computes the distance between the starting and ending points of the sequence Rigas et al. (2018)

Travel distance Given a saccade sequence, computes the sum of distances between each data sample of the sequence Rigas et al. (2018)

Efficiency Given a saccade sequence, computes the ratio of saccadic amplitude over the distance traveled Rigas et al. (2018)

Direction Given a saccade sequence, computes the deviation from the horizontal plane of the line connecting the 
start and end points of the sequence

Foulsham et al. (2008)

Successive deviation Given a set of saccade sequences, computes the angle formed by successive saccadic trajectories, where 
each saccade is modeled as a vector connecting its start and end points

Foulsham et al. (2008)

Initial direction Given a saccade sequence, computes the initial direction of the saccadic trajectory after a fixed number 
of data measures

Ludwig and Gilchrist (2002)

Initial deviation Given a saccade sequence, computes the angle between the overall direction determined at the endpoint 
of the saccade, and the initial direction after a fixed number of data measures

Ludwig and Gilchrist (2002)

Maximum curvature Given a saccade sequence, computes the maximum perpendicular distance from any point along the 
saccadic trajectory to the straight line connecting the start and end points of the saccade

Ludwig and Gilchrist (2002)

Area curvature Given a saccade sequence, computes the area under the curve of the sampled saccadic trajectory, relative 
to the straight-line distance between the saccade starting and ending points

Ludwig and Gilchrist (2002)

Mean velocity Given a saccade sequence, computes the mean velocity of data samples within the sequence Rigas et al. (2018)

Peak velocity Given a saccade sequence, computes the peak velocity of data samples belonging to the sequence Rigas et al. (2018)

Acceleration profile Given a saccade sequence, computes the mean acceleration of data sample within the sequence Rigas et al. (2018)

Mean acceleration Given a saccade sequence, computes the mean absolute acceleration during the acceleration phase of the 
saccade, measured from the start point to the timestamp of peak acceleration

Rigas et al. (2018)

Skewness exponent Given a saccade sequence, computes the shape parameter obtained by fitting a gamma function to the 
sequence velocity profile

Chen et al. (2002)

Amplitude to duration ratio Given a saccade sequence, computes the sequence amplitude over duration ratio Rigas et al. (2018)

Peak velocity to amplitude ratio Given a saccade sequence, computes the sequence peak velocity over amplitude ratio Rigas et al. (2018)

Peak velocity to duration ratio Given a saccade sequence, computes the sequence peak velocity over duration ratio Rigas et al. (2018)

Peak velocity to velocity ratio Given a saccade sequence, computes the sequence peak velocity over mean velocity ratio Rigas et al. (2018)

Main sequence Given a set of saccade sequences, computes slopes of the amplitude/duration curve and the log peak 
velocity/log amplitude curve

Bahill et al. (1975)

Latency Given a saccade sequence and a theoretical trajectory, computes the time difference between the onset of 
the theoretical saccade and the start time of the corresponding saccade

Whelan (2008)

Latency quantiles Given a set of saccade sequences and a theoretical trajectory, computes the set of saccade latencies, 
before evaluating quantiles of the latency distribution

Vullings (2018)

Gain Given a saccade sequence and a theoretical trajectory, computes the ratio between saccade and target 
amplitudes

Holmqvist et al. (2011)

be analyzed independently. A notable example is the first fixation 
duration during reading, which is a commonly reported linguistic 
measure used to assess initial processing of a word or phrase 
(Inhoff et al., 2000; Underwood et al., 2000).

The temporal characteristics of eye fixations are often analyzed 
in relation to specific regions within the visual field that are visually 
explored. These areas of interest (AoI), may represent regions 
particularly relevant to the task at hand, or with semantical meaning. 
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TABLE 3  Pursuit-based features.

Feature name Description References

Duration Given a pursuit sequence, computes the duration of the sequence Murray et al. (2020)

Frequency Given a set of pursuit sequences, computes the number of pursuits occurring per second Murray et al. (2020)

Amplitude Given a pursuit sequence, computes the distance between the starting and ending points of the sequence Mahanama et al. (2022a)

Direction Given a pursuit sequence, computes the deviation from the horizontal plane of the line connecting the start 
and end points of the sequence

Rottach et al. (1996)

Mean velocity Given a pursuit sequence, computes the mean velocity of data sample within the sequence Mahanama et al. (2022b)

Peak velocity Given a pursuit sequence, computes the peak velocity of data samples Mahanama et al. (2022b)

Latency Given a pursuit sequence and a theoretical trajectory, computes the time difference between the onset of the 
theoretical smooth pursuit and the start time of the corresponding experimental pursuit

Carl and Gellman (1987)

Initial acceleration Given a pursuit sequence and a theoretical trajectory, computes the mean second-order position derivative of 
the sequence in a time interval immediately following pursuit onset

Kao and Morrow (1994)

Triangular overall gain Given a pursuit sequence and a triangular theoretical trajectory, computes the ratio between pursuit sequence 
and target mean velocities

Rashbass (1961)

Sinusoidal overall gain Given a pursuit sequence and a sinusoidal theoretical trajectory, computes the ratio between pursuit sequence 
and target mean velocities

O’Driscoll and Callahan (2008)

Sinusoidal gain Given a pursuit sequence and a theoretical trajectory, fits the eye velocity with a trigonometrical curve, before 
computing the ratio between the peak velocity of the best fitting curve over the target’s peak velocity

Accardo et al. (1995)

Sinusoidal phase Given a pursuit sequence and a theoretical trajectory, computes the difference between the phases of the 
best-fitting velocity curve and the target’s velocity profile

Accardo et al. (1995)

Error entropy Given a pursuit sequence and a theoretical trajectory, computes the pursuit velocity error series as the 
difference between the experimental pursuit velocities and theoretical stimulus velocities, before evaluating the 
approximate entropy of the velocity error series

Pincus et al. (1991)

Cross-correlation Given a pursuit sequence and a theoretical trajectory, computes normalized cross-correlation between the 
experimental pursuit velocity and theoretical stimulus velocity signals

Rabiner (1978)

Under this formalism, fixation duration metrics are also used, albeit 
with slight variations. For instance, the dwell time is defined as the 
cumulative duration of all fixations during a single visit to an AoI. 
The total dwell time sums all dwell time within a specific AoI over the 
entire experimental session. Additional AoI-specific metrics offer 
further granularity, such as the fixation ratio, defined as the sum 
of fixation durations within an AoI divided by the total fixation 
duration across all AoIs, or the average fixation duration within an 
AoI, derived by normalizing the sum of fixation durations by the 
number of fixations in that AoI. The concept of AoI as a symbolic 
tool will be explored in greater detail in the Areas of Interest part of 
this review series (Part 4). 

3.1.2 Position and drift
The location of visual fixations is widely studied across various 

contexts, as it is often assumed to reflect the allocation of visual 
attention (Findlay and Gilchrist, 2003). A robust method for 
modeling the central position of fixations is the fixation centroid, 
calculated by averaging the coordinates of gaze points within 
individual fixation sequences. Analyzing the spatial distribution 
of these centroids provides valuable insights into the regions of 

a stimulus that are prioritized during task-specific processing, 
offering direct evidence of underlying cognitive processes 
(Henderson, 2003; Rayner, 1998).

For instance, in studies related to face processing, analyses 
of fixation patterns have identified specific gaze patterns, such as 
directing attention to a point just below the eyes (Hsiao and Cottrell, 
2008; Peterson and Eckstein, 2012). Similarly, in reading tasks, 
research has shown that both the likelihood of misidentifying a 
word and the time required for identification decrease when the 
eyes fixate near the center of the word (O’Regan and Jacobs, 1992; 
Brysbaert et al., 1996). These phenomena, known as optimal viewing 
position effects, are thought to stem from the rapid decline in visual 
acuity as retinal eccentricity increases (Nazir et al., 1998).

While fixational sequences typically exhibit limited eye mobility, 
the variability in the micro-movements can provide valuable 
information related to oculomotor function. Consequently, several 
additional features—many of which are illustrated in Figure 3 — 
have been proposed in the literature to better characterize fixational 
micro-movements.

As such, the drift displacement is calculated as the distance 
between the starting and ending points of each fixation sequence. 
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FIGURE 3
Fixation Drift and Stability. An example of gaze data—black crosses—representing a fixation sequence is shown. Note that the raw data have been 
largely downsampled for presentation clarity. In this illustration, the drift displacement between the starting and ending points of the fixation sequence 
is denoted as d0. The cumulative drift distance is computed by summing the distances d1 to d24. Additionally, the figure displays the bivariate contour 
ellipses for probabilities of 0.68 — blue dashed line—and 0.90 —blue dotted line. The areas enclosed by these ellipses are used to compute the BCEA, a 
commonly used metric for fixation stability.

Similarly, the cumulative drift distance, which reflects ocular stability 
during fixation, is obtained by summing the distances between all 
consecutive fixational data samples from a given fixation sequence. 
Another feature, the drift mean velocity, is computed as the 
average of the first-order position derivatives of the fixation data 
samples and can be used to characterize the minor movements 
occurring during fixation sequences. Together, these measures 
can provide valuable insights into the stability of eye movements 
during fixation, which may be particularly useful for detecting 
pathological conditions, such as sight impairments and cerebellar 
diseases (Leech et al., 1977; Schor and Westall, 1984).

Lastly, fixation stability can be quantified by computing the 
area of the elliptical contour that encompasses a given percentage 
of fixation points (Steinman, 1965; Crossland et al., 2004). 
Assuming that the fixation positions follow a bivariate normal 
distribution, the dispersion of these positions is represented 
by an ellipse. The bivariate contour ellipse area (BCEA) thus 
provides a measure of fixation stability, with smaller values 
indicating more stable fixation. This metric is considered 
the current gold standard to measure the stability of fixation 
(Crossland et al., 2009) and has been widely used to examine 
changes in fixational eye movements, particularly in clinical contexts 
(Shaikh et al., 2016; Montesano et al., 2018; Leonard et al., 2021;
Ghasia and Wang, 2022). 

3.2 Saccade measures

Saccades are rapid, ballistic eye movements that direct the fovea
toward objects of interest, enabling high-acuity vision. Since the 

inception of eye movement research, the kinematic properties—e.g., 
velocity, amplitude—and shape characteristics—e.g., trajectory, 
curvature—of saccadic eye movements have been extensively 
studied using diverse measurement techniques, which we will now 
review and discuss.

In experimental settings, saccadic behavior is investigated using 
paradigms involving both predictable and unpredictable target 
conditions. The metrics presented in the following sections are 
designed to quantify the dynamics of saccadic eye movements 
in these two conditions, that is free-viewing scenarios and those 
involving target-based stimuli. These metrics offer critical insights 
into saccade dynamics and their modulation by experimental 
manipulations. 

3.2.1 Temporal features
Saccade duration is a commonly analyzed metric in eye 

movement research, with typical values ranging from 30 to 
70 milliseconds. While these values may vary slightly across 
studies, various factors have been identified in the literature as 
influencing saccade duration. For example, during coordinated 
reaching movements, saccades that accompany hand motions tend 
to have shorter durations (Donkelaar et al., 2004; Snyder et al., 
2002). Conversely, repeated saccades to the same visual stimulus 
often result in longer durations (Golla et al., 2008; Chen-Harris et al., 
2008). The measurement of saccade duration typically involves 
estimating the onset and offset of the saccade. Given the brief 
nature of saccadic movements, the accuracy of this measurement 
is highly sensitive to the thresholds applied to segment raw 
gaze data—see Section 2.
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In addition to duration, saccade count and saccade rate—or 
saccade frequency—are widely used metrics to characterize saccadic 
sequences. Generally, saccade frequency tends to decrease with 
increasing task difficulty (Nakayama et al., 2002) or under 
conditions of fatigue (Van Orden et al., 2000). Like saccade duration, 
saccade count is a simple and robust measure commonly employed 
in studies that investigate cognitive processes such as reading 
or scene perception (Inhoff and Radach, 1998). Furthermore, 
deviations from typical saccadic temporal characteristics, such as 
prolonged saccade duration, can serve as early indicators of neural 
disorders (Ramat et al., 2007).

In experimental paradigms that involve target-directed 
saccades, the temporal aspect of saccadic movements is frequently 
examined using saccadic latency, which is the time delay between 
stimulus onset and saccade initiation. For any given target, while 
saccade duration, velocity, and amplitude tend to remain relatively 
consistent, latency is notably variable across trials, ranging from 
100 to 1,000 milliseconds (Liversedge et al., 2011). The distribution 
of saccadic latency is generally skewed toward shorter latencies, 
with a long tail representing longer latencies. Additionally, the 
distribution is often unimodal, although a second peak—referred 
to as express saccades—can sometimes appear, representing shorter 
saccadic responses (Fischer and Weber, 1993).

The mean saccade latency is typically used to describe the 
central tendency of reaction times, while the standard deviation 
is used to assess variability (Whelan, 2008). However, since 
the latency distribution is not Gaussian, these statistics may 
not fully capture the nature of the distribution. As a result, 
more robust statistical measures, such as the median or quantile 
estimators, are increasingly adopted to describe saccadic latency 
distributions more accurately (Vullings, 2018). In clinical contexts, 
saccadic latency distributions have shown promise as biomarkers 
for various neurological conditions. For instance, Michell et al. 
(2006) demonstrated that saccadic latency could be used as 
a diagnostic marker for Parkinson’s disease, highlighting its 
potential utility in clinical assessments of cognitive and motor
dysfunctions. 

3.2.2 Amplitude features
Describing saccade morphology is essential for a comprehensive 

understanding of eye movement dynamics. Among the various 
morphological features, saccade amplitude serves as a fundamental 
and easily accessible descriptor that reflects the distance the eye 
travels during a saccadic movement. It is typically calculated as 
the spatial distance between the starting and ending points of 
each identified saccade sequence. Alternatively, to model the non-
linearity of saccade trajectory, the traveled distance can be computed 
by summing the distances between consecutive saccadic data 
samples within a saccade sequence. Lastly, saccade efficiency, derived 
as the ratio of saccadic amplitude to the total distance traveled, 
is often used to quantify the complexity and non-linearity of the 
saccadic trajectory. This metric provides insight into the degree 
to which the eye movement follows a straight path versus a more 
convoluted or inefficient trajectory.

Saccade amplitude is highly context-dependent, varying 
according to the task and visual environment. For example, in 
reading tasks, saccades are typically constrained to around 2 
degrees of visual angle horizontally (Rayner et al., 2012). In 

contrast, during scene perception, the average saccade amplitude
increases with the size of the visual stimulus, reflecting the broader 
spatial search required to process larger or more complex images 
(von Wartburg et al., 2007). Cognitive factors also influence saccade 
amplitude, with increases in task difficulty often leading to a 
decrease in the amplitude of saccadic movements. Phillips and 
Edelman (2008) demonstrated that variability in performance 
during visual scanning tasks was related to oculomotor variables 
such as amplitude, with smaller saccades indicating a reduced 
perceptual span. Similarly, May et al. (1990) provided evidence 
that this metric could serve as an indicator of cognitive workload, 
with smaller amplitudes reflecting greater cognitive demands. It 
should also be mentioned that saccade amplitude is closely related 
to its duration and peak velocity through the main sequence
relationship—see Section 3.2.7 for further details. These oculomotor 
characteristics—amplitude, duration, and peak velocity—are often 
analyzed together as they provide complementary insights into the 
saccadic process.

When viewers are instructed to follow a visual target, the 
saccadic gain—the ratio between the amplitude of the saccade 
performed and the amplitude of the target displacement—becomes 
a critical measure. Saccadic gain is particularly useful in assessing 
saccadic dysmetria, a condition characterized by errors in saccade 
accuracy. In neurological studies, saccadic dysmetria is often 
investigated to identify impairments in saccadic control. For 
instance, in overshoot dysmetria, the saccade initially overshoots 
the target, requiring a corrective saccade in the opposite direction. 
While overshoots can occur in healthy individuals, they typically 
reduce over time as the oculomotor system adjusts to the target 
location. Persistent overshooting, however, is indicative of a 
cerebellar lesion (Selhorst et al., 1976; Ritchie, 1976). Conversely, 
undershoot dysmetria occurs when the initial saccade is too small, 
and a corrective saccade is required to bring the eye to the target. 
Significant undershooting is often associated with basal ganglia 
disorders, such as Parkinson’s disease (MacAskill et al., 2002) or 
progressive supranuclear palsy (Troost and Daroff, 1977).

More intriguingly, saccadic dysmetria—particularly hypometric 
saccades—has been proposed as a potential objective biomarker 
for neurodegenerative diseases. Abnormally hypometric saccades, 
along with other eye movement deficits, have shown promise 
as early indicators of conditions like Alzheimer’s disease, 
making them valuable targets for early diagnosis (Fletcher and 
Sharpe, 1986; Cerquera-Jaramillo et al., 2018). This highlights the 
importance of saccade morphology not only for understanding 
normal visual behavior but also as a potential tool for identifying 
and monitoring the progression of neurological disorders. 

3.2.3 Direction and curvature
The direction of a saccadic trajectory—or sequence of 

saccades—provides a crucial descriptive measure of eye movements. 
This direction is typically quantified as the angle, measured in 
degrees or radians, between the horizontal axis and the line 
connecting the starting and ending points of the saccade. For 
instance, Walker et al. (2006) employed saccadic direction to examine 
the effects of target predictability, while Foulsham et al. (2008) 
explored the horizon bias during natural scene viewing, revealing a 
prevalent tendency for horizontal saccades. More recently, studies 
have employed saccadic direction to classify task-specific gaze 
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patterns, offering valuable insights for designing effective learning 
strategies (Mozaffari et al., 2020).

However, simple metrics such as amplitude, efficiency—as 
discussed in Section 3.2.2 — and direction alone are insufficient 
for fully capturing the complexity and non-linearity of saccadic 
trajectories. To address this gap, several additional features have 
been developed to better characterize the curvature of saccadic 
movements (Ludwig and Gilchrist, 2002).

One such metric is initial deviation, which measures the angle 
between the initial direction of the saccade—computed after a fixed 
number of time samples, e.g., 20 milliseconds (Van Gisbergen et al., 
1987) — and the overall direction of the saccade at its endpoint. A 
limitation of this method is that it assigns varying curvature values to 
saccades with identical trajectories but different velocities, because it 
relies on a fixed time interval. Another common metric is maximum 
curvature, defined as the greatest perpendicular distance between a 
point on the saccadic trajectory and the straight line connecting the 
starting and ending points of the saccade (Smit and Van Gisbergen, 
1990). Although widely used, this approach has limitations, as it 
relies on a single point to represent the curvature of a trajectory. This 
can be especially problematic for double-curved saccades, where the 
trajectory may involve multiple directional changes (Ludwig and 
Gilchrist, 2002).

To address these shortcomings, the area curvature metric has 
emerged as a more robust and popular approach, as it incorporates 
the entire trajectory of the saccadic eye movement (Walker et al., 
2006). This metric is typically calculated by evaluating the area 
beneath the curve formed by the sampled trajectory, relative to 
the direct distance between the starting and ending points of the 
saccade. The curvature metrics discussed so far are illustrated 
in Figure 4. Additionally, Ludwig and Gilchrist (2002) proposed 
deriving saccade curvature directly from second- and third-order 
polynomial fits. Like the area curvature approach, this method uses 
the full set of samples from a given saccade, which enhances its 
robustness by making it less sensitive to sampling noise.

To investigate the inherent tendency for curvature observed in 
saccadic movements—particularly prominent in oblique saccades 
(Viviani and Swensson, 1982) — early research primarily focused 
on target location and the type of saccade being performed (Viviani, 
1977; Smit and Van Gisbergen, 1990). More recent studies, however, 
have shown that both the direction and magnitude of saccadic 
curvature can be modulated by a variety of factors. Notably, strong 
correlations have been observed between saccade curvature and 
the modulation of eye movements by distractors. For example, 
Doyle and Walker (2001) found that both reflexive and voluntary 
saccades tended to curve away from irrelevant distractor stimuli 
when a target was presented. Similarly, Sheliga et al. (1997), 
Sheliga et al. (1995) demonstrated that saccades deviated from a 
previously attended location. These variations in saccadic trajectory 
have been attributed to antagonistic interactions between different 
populations of neurons in the superior colliculus, which help resolve 
conflicts caused by competing targets in the vicinity at the onset 
of movement (McPeek et al., 2003). 

3.2.4 Velocity features
The velocity waveform of a saccade is generally described 

as symmetrical with comparable durations for the acceleration 
and deceleration phases—Figure 5a. Peak saccadic velocity, the 

FIGURE 4
Saccade Direction and Curvature. Illustration of various metrics used 
to describe saccade non-linearity in the literature. The line connecting 
the starting point and the endpoint of the saccade, with amplitude d1, 
defines the overall saccade direction, denoted as θ1. The initial 
direction of the saccade, denoted θ2, is calculated after a fixed number 
of data points. From these two directions, the initial deviation of the 
saccade, denoted θ3, can be derived. Additionally, the figure highlights 
the maximum curvature, represented by d2, and the area of curvature, 
indicated by the purple shaded region.

maximum speed attained during a saccade, typically coincides 
with the cessation of the neural signal pulse and aligns with the 
point of maximum firing rate of burst neurons within the pontine 
reticular formation that project to oculomotor neurons (Galley, 
1989; Leigh and Zee, 2015). It is noteworthy that average and 
peak saccadic velocities are frequently analyzed together due to 
their strong correlation. Their absolute values generally exhibit 
a consistent ratio of approximately 1:2, a relationship commonly 
referred to as the Q ratio. This ratio remains relatively stable 
across various saccadic amplitudes, underscoring its reliability as a 
metric for characterizing saccadic dynamics (Harwood et al., 1999;
Garbutt et al., 2003).

More specifically, saccade mean velocity is regarded as a reliable 
metric for assessing the velocity of small saccades, particularly those 
with symmetrical velocity waveforms. The properties of saccadic 
velocity have been thoroughly investigated across numerous fields 
and clinical applications (Di Stasi et al., 2013). Early research 
observed that external factors such as alcohol, drugs, and fatigue lead 
to reductions in saccadic velocity (Dodge and Benedict, 1915; Miles, 
1929), a phenomenon attributed to diminished central nervous 
system activation. More recently, studies have highlighted saccadic 
velocity as a marker for fluctuations in sympathetic nervous system 
activity (Di Stasi et al., 2013), variations in the intrinsic value of 
visual stimuli (Xu-Wilson et al., 2009), and the effects of task 
experience on oculomotor control (Xu-McGregor and Stern, 1996). 
Clinically, abnormally low saccadic velocities—commonly termed 
slow saccades—are symptomatic of midbrain disorders such as 
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FIGURE 5
Saccade Velocity and Acceleration Profiles. Examples of saccade velocity and acceleration profiles for short — (a) — and long — (b) —- saccades, 
illustrating differences in peak values and overall shapes. For both types of saccades, the peak velocity is denoted as v1, the peak acceleration as a1, and 
the peak deceleration as a2. Additionally, the duration of the acceleration phase is represented by t1, while the duration of the deceleration phase is 
denoted by t2.

progressive supranuclear palsy, spinocerebellar ataxia type 2, and 
various cerebellar pathologies (Jensen et al., 2019).

While mean velocity provides a useful summary metric, 
it becomes less effective for saccades larger than 10°, which 
often exhibit asymmetric velocity profiles—Figure 5b. For such 

larger saccades, saccade peak velocity is typically preferred as 
it reflects the highest firing rates of burst neurons driving the 
movement (Galley, 1989). Unlike mean velocity, peak velocity 
has computational advantages: it remains consistent regardless of 
segmentation thresholds—see Section 2 for further details—making 
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it robust to variations in how sharply a saccade terminates during its 
final phase.

Several methodological considerations are important when 
calculating velocity features, particularly for saccades, though 
these principles extend to other canonical gaze movements as 
well. The simplest and most common method calculates velocity 
by applying a two-point central difference algorithm to the eye 
position signal (Schmidt et al., 1979). However, this straightforward 
approach has significant drawbacks. First, the numerical derivative 
is inherently highly sensitive to noise. Depending on the specific 
eye-tracking device, characterizing and removing measurement 
noise can be challenging or even infeasible. While filtering 
techniques can mitigate noise, they may inadvertently alter 
velocity estimates, particularly the crucial peak velocity. Second, 
this method is strongly influenced by sampling frequency. 
Since saccade peak velocity typically occurs between recorded 
samples, devices with low sampling rates often underestimate this
key measure.

To address these limitations, more sophisticated and robust 
methods have been developed. These include the eight-point central 
difference derivative algorithm (Inchingolo and Spanio, 1985; 
Federighi et al., 2011), which enhances noise resilience, as well as 
velocity profile fitting using gamma functions (Smit et al., 1987), 
and saccade trajectory curve fitting using sigmoid functions (Gibaldi 
and Sabatini, 2021), both of which provide refined estimates by 
leveraging model-based approaches. These advanced techniques 
are robust against noise and sampling artifacts, enabling accurate 
velocity estimation even when using low-cost, low-sampling-
rate eye trackers. This compatibility with accessible technologies 
broadens the utility of such methods for a wide range of research 
and practical applications. 

3.2.5 Acceleration features
To effectively quantify saccade acceleration characteristics, 

several metrics can be derived from the acceleration profile. As 
such, saccade peak acceleration is defined as the maximum absolute 
value of acceleration during the acceleration phase, which spans the 
interval from saccade onset to saccade peak velocity. Conversely, 
saccade peak deceleration represents the maximum absolute value 
of acceleration during the deceleration phase, occurring from peak 
velocity to saccade termination.

An additional metric of interest is the acceleration/deceleration 
ratio, computed as the ratio of the duration of the acceleration phase 
to that of the deceleration phase. This ratio reflects the skewness 
of the velocity profile. As expected, it tends to approximate one 
for small saccades but decreases as saccade amplitude increases. 
Finally, saccade skewness can be directly quantified through curve 
fitting, typically using a gamma function applied to the velocity 
profile. The resulting shape parameter provides a reliable estimate 
of skewness (Chen et al., 2002).

As briefly discussed in Section 3.2.4, the acceleration and 
deceleration characteristics of saccades vary markedly with saccade 
amplitude. Specifically, larger saccades exhibit left-skewed velocity 
profiles, where the acceleration phase constitutes roughly one-third 
of the total saccade duration (Baloh et al., 1975; Lin et al., 2004). 
This asymmetry correlates strongly with both saccade amplitude 
and, even more so, its duration (Van Opstal and Van Gisbergen, 
1987). While the duration of the deceleration phase increases with 

saccade amplitude and duration, the duration of the acceleration 
phase remains relatively constant (Becker, 1991).

The asymmetry in saccade velocity profiles, as well as its 
relationship with saccade duration, has been consistently observed 
and documented over several decades. However, the physiological 
significance and underlying mechanisms of this phenomenon 
remain unclear, with no definitive hypothesis currently available 
in the literature. Research suggests that saccade acceleration 
characteristics may be subject to modification through motor 
learning processes (Collins et al., 2008). Furthermore, these 
characteristics have been linked to neurodevelopmental conditions, 
such as autism spectrum disorder, where abnormal acceleration and 
deceleration profiles have been observed (Schmitt et al., 2014). These 
findings highlight the potential for saccade dynamics to serve as 
biomarkers for both cognitive and neurological assessments. 

3.2.6 Saccadic ratios
Various ratios derived from saccadic characteristics have 

been extensively studied, revealing valuable insights into 
the interconnections between oculomotor mechanisms. For 
instance, Garbutt et al. (2003) identified abnormally high peak 
velocity-to-mean velocity ratios in saccadic trajectories recorded 
from patients with progressive supranuclear palsy. This anomaly 
suggested that these movements might not be purely saccadic but 
rather comprise a sequence of small-amplitude saccades.

In healthy individuals, saccadic ratios have been shown to 
reflect low-level idiosyncrasies. For example, these ratios have 
been employed as biometric features for individual identification 
among other eye-movement metrics (Rigas and Komogortsev, 
2016). Extending this analysis to higher cognitive functions, Gupta 
and Routray (2012) demonstrated a significant correlation between 
the peak velocity-to-duration ratio and human alertness, suggesting 
its utility for vigilance monitoring. These findings underscore the 
potential of saccadic ratios as versatile markers, ranging from 
physiological baselines to cognitive states.

Shifting focus to broader measures of eye movement 
dynamics, the saccade-fixation ratio, introduced by Goldberg 
and Kotval (1999), highlights the balance between exploratory 
behavior—searching—and cognitive processing—information 
extraction. A higher value for this ratio reflects increased searching 
relative to processing. This metric has been used in comparative 
studies of different layouts or visual representations. Both the total 
fixation-to-saccade duration ratio and the average fixation-to-saccade 
duration ratio per occurrence can be derived from this measure. 
These simple yet powerful metrics have been employed in diverse 
experimental contexts to assess attention and cognitive information 
processing levels (Bhoir et al., 2015; Berges et al., 2023).

Finally, we mention the K coefficient introduced by 
Krejtz et al. (2016a), Krejtz et al., (2017). This metric has emerged 
as an extension of the saccade-fixation ratio and is inherently linked 
to scanpath analysis. As such, it will be described in greater detail in 
the corresponding article of this review series. 

3.2.7 Main sequence
The term main sequence describes a consistent relationship 

between three fundamental saccadic parameters: amplitude, 
duration, and velocity (Bahill et al., 1975). Specifically, the 
relationship between saccadic peak velocity and amplitude 
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demonstrates three key trends: (i) a roughly linear increase for small 
saccades—up to 5−−10 degrees — (ii) an inflection point between 
10 and 20°, and (iii) a plateau where peak velocity saturates for larger 
saccades (Gibaldi and Sabatini, 2021). This stereotypical behavior is 
thought to result from an optimization process that improves visual 
performance amidst internal noise and peripheral visual uncertainty 
(Harris and Wolpert, 2006; Saeb et al., 2011; van Opstal and 
Goossens, 2008). Additionally, the main sequence exhibits a linear 
relationship between saccade duration and amplitude for saccades 
up to approximately 80° (Baloh et al., 1975), as shown in Figure 6A. 
However, most naturally occurring saccades are confined to a range 
of about 30° in the absence of head movement (Lebedev et al., 1996).

The main sequence is widely employed in clinical research 
as a diagnostic tool to evaluate the integrity of the saccadic 
system. Deviations from its expected patterns and abnormalities 
in saccadic behavior are indicative of various neurological 
and ocular conditions, including palsy of extraocular muscles 
(Metz et al., 1970; Garbutt et al., 2003), myasthenia gravis 
(Yee et al., 1976), cerebellar disorders (Selhorst et al., 1976), and 
multiple sclerosis (Frohman et al., 2002; Bijvank et al., 2019). 
Recent work by Guadron et al. (2023) further highlighted the 
diagnostic relevance of the main sequence by examining patients 
with central and peripheral retinal defects. Their findings revealed 
that the characteristic relationships between saccadic parameters 
were most disrupted when targets were located within the subjects’ 
blind fields. This disruption underscores the critical role of visual 
input in planning saccadic kinematics, reinforcing the main sequence
as a valuable lens through which the interplay between sensory input 
and motor control can be assessed.

Despite its widespread utility, there remains no universal 
consensus on the best mathematical model to describe the main 
sequence, particularly the non-linear relationship between peak 
velocity and saccade amplitude. Early work adopted power-
law models to capture the non-linear growth of peak velocity 
with amplitude (Yarbus and Yarbus, 1967; Baloh et al., 1975; 
Lebedev et al., 1996). These models have proven useful for detecting 
performance deficits in clinical settings (Garbutt et al., 2003). 
For larger saccades, 15−−20 degrees and beyond, where the 
maximum velocity saturates, exponential-based models have gained 
traction. First proposed by Bahill et al. (1975), these models have 
been extensively utilized in both research and clinical diagnostics 
(Ramat et al., 2007; Federighi et al., 2017) and remain popular for 
their accuracy and applicability in recent studies (Leigh and Zee, 
2015). Alternatively, logarithmic transformations allow the main 
sequence to be expressed as linear for saccades within the 1−−15
degree range (Bahill et al., 1975; 1981), as illustrated in Figure 6b. 
This approach simplifies analysis while preserving the relationship’s 
fundamental trends.

In pursuit of greater robustness, alternative approaches have 
explored simpler models. For example, square-root models have 
been proposed to enhance the reliability of main sequence
estimation (Lebedev et al., 1996). These models demonstrate strong 
generalization and repeatability, as highlighted in a recent review 
by Gibaldi and Sabatini (2021). Despite their simplicity, square-
root models effectively capture the main sequence’s three primary 
trends when applied to saccades larger than 1°—a threshold that 
aligns with the typical amplitude range of microsaccades (Martinez-
Conde et al., 2009). In conclusion, while multiple modeling 

approaches exist, the main sequence remains a foundational tool for 
understanding saccadic dynamics, with applications ranging from 
clinical diagnostics to explorations of the fundamental mechanisms 
underlying oculomotor control. 

3.3 Smooth pursuit measures

Smooth pursuits represent another type of eye movement from 
which valuable metrics can be extracted. In natural scene viewing 
conditions, smooth pursuits occur alongside fixations and saccades 
to track moving objects within the field of view. To isolate these 
pursuit sequences, algorithms outlined in Section 2.2 must first be 
applied. In real-world scenarios, targets often move unpredictably, 
changing speed and direction rapidly. Such stimuli are rarely used in 
laboratory settings, as the performance of the smooth pursuit system 
is limited under these conditions, often resulting in interfering 
saccades that complicate the analysis.

In controlled experimental conditions, smooth pursuit tasks 
typically require the viewer to follow targets moving horizontally or 
vertically at a fixed frequency, back and forth. Two common types of 
stimuli used in these protocols are triangular and sinusoidal motion 
profiles. Triangular stimuli move the target at a constant velocity 
in one direction before abruptly reversing direction, forming a 
triangle in position-time space. This constant-velocity motion allows 
researchers to precisely measure the pursuit system’s ability to 
maintain a steady eye velocity and to detect catch-up saccades 
when the eye lags behind the target. In contrast, sinusoidal stimuli 
move the target in a smooth, oscillating pattern where velocity 
continuously varies, peaking at mid-path and slowing near the 
reversal points. Sinusoidal motion more closely mimics naturalistic 
motion and tests the pursuit system’s ability to adapt to continuously 
changing velocities. In these experimental setups, it is typically 
assumed that the oculomotor signal reflects primarily smooth 
pursuit eye movements, along with any catch-up saccades, without 
the inclusion of fixation sequences. The pursuit system is expected to 
generate smooth, coordinated eye movements that closely follow the 
target’s trajectory, minimizing interruptions from fixational pauses. 

3.3.1 Temporal and velocity features
The analysis of smooth pursuit eye movements typically starts 

with the estimation of fundamental descriptors, such as pursuit 
duration, pursuit count, and pursuit rate—or pursuit frequency. 
However, interpreting these metrics is not as straightforward as it 
might initially appear. This complexity arises primarily from the 
influence of catch-up saccades, which are corrective eye movements 
that compensate for discrepancies between the target’s position 
and the smooth pursuit response. These saccades interrupt smooth 
pursuit sequences, effectively shortening their duration while 
increasing the overall pursuit frequency.

More specifically, catch-up saccades are rapid eye movements 
that occur during smooth pursuit when the eye falls behind the 
target. They help correct the eye’s position by quickly redirecting 
the gaze to the moving target. These saccades occur when the 
smooth pursuit mechanism, which is responsible for maintaining 
the eye’s tracking of a moving object, is unable to keep up with 
sudden changes in the target’s velocity or direction. Catch-up 
saccades are particularly common when the target moves too fast 
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FIGURE 6
Main Sequence. Main-sequence relationships for saccades, along with the respective linear regression fits, are shown for amplitude-duration (a) and 
the logarithms of peak velocity-amplitude (b). Each colored dot represents a saccade from a set performed by the same individual during a reading 
task. The data emphasize the linear relationship between the logarithms of amplitude and peak velocity for saccades of moderate amplitude. While the 
amplitude-duration relationship is well-established in the literature, its experimental clarity appears to be less consistent.

for the smooth pursuit system to follow continuously or during 
pursuit of targets with unexpected changes in velocity or direction 
(Boman and Hotson, 1992). Instead of maintaining a smooth 
motion, the eyes make these corrective jumps to catch up with 
the target, thus ensuring the target stays within the central vision. 
Additionally, their occurrence is modulated by factors such as target 
properties (Heinen et al., 2016) and clinical conditions, including 
schizophrenia and affective disorders (Abel et al., 1991).

Characterizing the velocity profile of smooth pursuit typically 
involves measurements of pursuit mean velocity and pursuit peak 
velocity. Smooth pursuit velocities are generally modest, ranging 
between 15 and 30° per second (Meyer et al., 1985; Zuber et al., 
1968; Ettinger et al., 2003; Klein and Ettinger, 2019), significantly 
lower than saccadic velocities. However, trained observers or tasks 
involving accelerating stimuli can elicit higher peak velocities. For 
instance, Barmack (1970) reported peak pursuit velocities of up to 
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100° per second during acceleration tasks. In humans, peak eye 
velocity typically occurs between 200 and 300 milliseconds after 
pursuit onset when following targets moving at velocities up to 30°
per second (Robinson et al., 1986).

Importantly, the velocity profile is closely linked to temporal 
characteristics: as stimulus velocity increases, the frequency of 
catch-up saccades also rises to correct for larger retinal offsets. 
A valuable descriptor for exploring this relation between velocity 
and compensation mechanisms is eye crossing time, defined as the 
duration required for the eye to align with the target at constant 
velocity. De Brouwer et al. (2002) demonstrated that catch-up 
saccades are initiated when the eye crossing time reaches the saccade 
zone, indicating that smooth acceleration alone is insufficient for 
target capture.

However, simple spatio-temporal features such as pursuit mean 
velocity and pursuit duration do not fully capture the complexity of 
smooth pursuit dynamics. Smooth pursuit consists of two distinct 
phases: open-loop and closed-loop. In the open-loop phase, the eye’s 
movement is primarily driven by the initial target presentation, 
with little to no influence from the retinal image changes caused 
by the eye movement. In contrast, during the closed-loop phase, 
the eye continuously adjusts to changes in the retinal image that 
result from its own movements, maintaining the pursuit of the target. 
In the following Sections 3.3.2, 3.3.3, we will introduce methods to 
quantify the initiation and maintenance of pursuit, respectively. 

3.3.2 Smooth pursuit latency and acceleration
In this section, we introduce two classes of features used to 

characterize the pursuit initiation phase, namely, pursuit latency and 
pursuit acceleration. In target pursuit paradigms, pursuit latency—or 
pursuit onset—is commonly defined as the delay between the 
initiation of target motion and the start of ocular pursuit. The onset 
of smooth pursuit is typically calculated as the intersection point 
between two regression lines (Carl and Gellman, 1987). The first 
line represents the pre-response baseline, which fits the velocity signal 
during a time window from 100 milliseconds before target motion 
onset to 80 milliseconds after it begins. This baseline duration 
may vary depending on the experimental setup, particularly when 
anticipation of the target motion is expected (De Hemptinne et al., 
2006). The second regression line fits the pursuit initiation velocity 
signal, typically recorded over a 50 milliseconds window after the 
pre-response baseline. This duration may differ across studies, often 
beginning at the first time point when eye velocity exceeds three to 4 
standard deviations of the baseline velocity measures (Krauzlis and 
Miles, 1996).

Pursuit typically exhibits much shorter latency than saccades, 
with pursuit latency ranging from 100 to 125 milliseconds, 
compared to 200–250 milliseconds for saccades (Krauzlis, 2004). 
In experimental conditions involving anticipation, pursuit latency 
can be reduced to zero or even become negative, especially when 
pursuit begins before the target motion, such as when the direction 
and velocity of the stimulus are highly predictable (Burke and 
Barnes, 2006; De Hemptinne et al., 2006). Spering and Gegenfurtner 
(2007) further demonstrated that pursuit latency is influenced by the 
surrounding visual context, particularly by contrast and distracting 
motion orientation. They found that latency decreases when the 
context moves in the same direction as the target, while a rapidly 
moving context in the opposite direction tends to pull the eyes 

back, delaying pursuit onset. Additionally, higher contrast enhances 
the effect of co-linear drifting context motion, further reducing the 
latency before the pursuit begins.

In addition to latency, pursuit initiation is often examined 
through pursuit initial acceleration (Kao and Morrow, 1994). This is 
typically calculated as the mean second-order position derivative of 
the saccade-free component extracted from the tracking response 
within the first 100 milliseconds following pursuit onset. During 
this initial phase, acceleration continues until the eye velocity 
matches that of the target. The pursuit initial peak acceleration can 
also be assessed during this period. The first 20–30 milliseconds 
of eye acceleration show a modest increase with target velocity 
(Tychsen and Lisberger, 1986). However, between 60 and 80 
milliseconds after pursuit onset, eye acceleration becomes much 
more strongly modulated by target velocity, and is also influenced by 
the eccentricity of the initial eye position (Fukushima et al., 2013).

Furthermore, like latency, the pursuit initial acceleration is 
significantly influenced by expectations regarding the target’s 
trajectory (Kao and Morrow, 1994). Prior knowledge of the 
target’s movement—not only from its motion history but also 
from static visual cues—profoundly affects eye movements 
during pursuit initiation (Kao and Morrow, 1994; Ladda et al., 
2007). Notably, Ladda et al. (2007) found that cue-induced 
acceleration during smooth pursuit increases quadratically with 
target velocity. This behavior aligns with the velocity scaling 
predicted by the two-thirds power law, a natural principle of 
biological motion (Lacquaniti et al., 1983). 

3.3.3 Pursuit gain and accuracy
Smooth pursuit gain refers to the ratio of the eye’s mean 

velocity to the target’s mean velocity during a pursuit segment, 
typically under constant target velocity conditions, often referred 
to as triangular stimuli. This metric is generally assessed around 
500–1,000 milliseconds after pursuit onset, during the pursuit 
maintenance phase, and serves as a measure of pursuit performance. 
During pursuit initiation, which occurs within the first 50–100 
milliseconds after the target starts moving, pursuit gain is primarily 
controlled by visual motion (Rashbass, 1961). However, in the 
pursuit maintenance phase, the gain is influenced by a combination 
of visual feedback regarding performance quality and internal 
cues, such as anticipation and prediction of target velocity (Lencer 
and Trillenberg, 2008). This stable regime facilitates a more 
accurate assessment of performance compared to the more transient 
initiation phase. Typically, smooth pursuit gain is lower than 1, 
indicating that the eye lags behind the target, and it tends to decrease 
as target velocity increases (Zackon and Sharpe, 1987).

In sinusoidal stimulation paradigms, the smooth pursuit 
response is usually described by two key characteristics: pursuit 
velocity phase and pursuit velocity gain (Accardo et al., 1995). 
These values are derived by fitting the eye velocity data with a 
trigonometric curve for each experimental pursuit sequence. The 
pursuit velocity gain is then computed as the ratio of the peak 
velocity of the best-fitting curve to the peak velocity of the target’s 
trajectory. Similarly, the pursuit velocity phase is computed as 
the phase difference between the best-fitting velocity curve and 
the target’s velocity profile. Note that overall gain is also widely 
used in the literature, calculated as the ratio of eye velocity to 
target velocity (Churchland and Lisberger, 2002).
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Smooth pursuit is often conceptualized as a negative feedback 
control system in which smooth eye acceleration works to eliminate 
retinal motion by matching the eye velocity to the target velocity. 
However, substantial evidence suggests that smooth pursuit gain is 
modulated by an on-line gain control mechanism, which implies 
distinct visual-motor gain processing during pursuit and fixation 
(Robinson, 1965; Churchland and Lisberger, 2002). It is now 
widely accepted that visual inputs are not the sole mediators of 
smooth pursuit. Higher-order brain functions, such as attention, 
have been shown to play a significant role in pursuit gain and 
performance, though their effects have been debated (Březinová 
and Kendell, 1977; Acker and Toone, 1978; Kathmann et al., 
1999; Van Gelder et al., 1995). Studies suggest that attention 
is crucial for pursuit performance (Van Donkelaar and Drew, 
2002), but Stubbs et al. (2018) demonstrated that while increased 
attentional demands do not alter smooth pursuit gain, they do 
improve its consistency, as long as attention remains focused on 
the target.

Furthermore, smooth pursuit performance can be influenced by 
a trade-off between perceptual discrimination and pursuit efficiency. 
Specifically, when a perceptual discrimination task involves objects 
moving at a different velocity from the pursuit target, the 
ability to maintain smooth pursuit is compromised (Khurana 
and Kowler, 1987). More recently, Kerzel et al. (2009) or Souto 
and Kerzel (2014) have further confirmed this interdependence 
between target selection for pursuit and perceptual processing. This 
interaction is generally understood as reflecting a shared, limited 
resource that is required for both steady-state smooth pursuit and 
perceptual tasks (Stolte et al., 2023).

Finally, smooth pursuit gain has become a crucial measure in 
neuro-pathological research. For example, a review by Franco et al. 
(2014) highlighted studies showing that individuals diagnosed 
with schizophrenia often exhibit lower smooth pursuit gain. 
Smooth pursuit performance is also a valuable tool in assessing 
sensorimotor development in preadolescence and adolescence. 
Horizontal smooth pursuit typically matures by age 7 (Ingster-
Moati et al., 2009), while vertical smooth pursuit does not 
reach maturity until late adolescence (Katsanis et al., 1998). This 
asymmetry between horizontal and vertical pursuit is due to 
the involvement of different brain structures in controlling these 
movements (Collewijn and Tamminga, 1984; Grönqvist et al., 2006), 
with significant clinical implications. For instance, Robert et al. 
(2014) demonstrated that children with developmental coordination 
disorder often exhibit impaired vertical pursuit performance, 
indicating delayed maturation of the pursuit system in
this population. 

4 Signal analysis

In this section, we review time series analysis methods 
for the study of ocular behavior. Compared to traditional 
neurophysiological approaches, these methods are underexplored 
but offer a robust framework for analyzing eye movements as 
a cohesive, dynamic system. In contrast to neurophysiological 
methods, which focus on specific neural circuits associated with 
individual eye movement types, time series approaches capture 
the temporal and structural patterns of eye behavior across 

contexts. Table 4 summarizes the metrics and algorithms discussed, 
describes each method and the required input formats, and provides 
key literature references to facilitate implementation.

4.1 Frequency variables

Section 3 described methods for characterizing eye movements, 
focusing on spatial and temporal attributes such as fixation locations 
and saccade kinematics. These approaches often neglect the dynamic 
processes underlying these patterns. Spectral analysis provides an 
alternative framework by examining the frequency content of eye 
movement time series, revealing oscillatory patterns that reflect 
underlying dynamics (Stoica and Moses, 2005).

The spectral content of gaze data is commonly analyzed using the 
discrete Fourier transform (DFT), which converts the ocular signal 
into a frequency-domain representation (McGillem and Cooper, 
1991). The DFT decomposes the signal by correlating it with 
sinusoids of varying frequencies, identifying dominant rhythmic 
components. The power spectral density (PSD) complements this 
by quantifying the amplitude of these rhythms as a function of 
frequency, offering insights into the signal’s oscillatory structure. 
Welch’s method (Welch, 1967), a widely adopted PSD estimation 
technique, segments the signal into overlapping windows, applies 
a window function, and averages the squared DFT magnitudes 
across segments. This approach balances frequency resolution 
and statistical reliability, yielding robust PSD estimates with 
reduced noise.

Spectral analysis also enables comparative studies of gaze data 
through metrics such as cross-spectral density and signal coherence, 
which are valuable for analyzing eye movement behavior across 
experimental conditions, individuals, or species (Ko et al., 2016). 
Cross-spectral density measures the frequency-specific covariance 
between two signals, while signal coherence, derived from cross-
spectral density, quantifies the consistency of phase relationships, 
revealing synchronized rhythmic activities. For instance, Nakayama 
and Shimizu (2004) used cross-spectral density to demonstrate 
task-related differences in the coordination of horizontal and 
vertical eye movement components, highlighting the influence 
of task difficulty. Additionally, spectral analysis has been applied 
to compare real and synthetic gaze data, enabling evaluation of 
generative models. Duchowski et al. (2016) utilized spectral analysis 
to distinguish experimentally recorded gaze patterns from synthetic 
ones, advancing insights into eye movement dynamics. 

4.2 Stochastic variables

Directly comparing eye movement data is challenging due 
to the stochastic, or inherently random, nature of gaze signals, 
as discussed in Section 3. Modeling eye movements as random 
variables provides an alternative approach, uncovering physiological 
patterns through their statistical characteristics. A key tool, the 
mean squared displacement (MSD), tracks how gaze positions shift 
over time. In simple random walks, like Brownian motion with 
independent steps, the spread grows steadily. In complex cases, such 
as eye movements, the spread follows a power-law pattern, reflecting 
diverse neural and behavioral dynamics.
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TABLE 4  Signal-based features.

Feature name Description References

Periodogram Given a raw gaze signal, estimates power spectral 
density

McGillem and Cooper (1991)

Welch periodogram Given a raw gaze signal, estimates power spectral 
density, using a Welch windowed periodogram

Welch (1967)

Cross spectral density Given a set of raw gaze signals, estimates the cross 
power spectral density between pairs of signals

McGillem and Cooper (1991)

Welch cross spectral density Given a set of raw gaze signals, estimates the cross 
power spectral density between pairs of signals, 
according to Welch’s method

McGillem and Cooper (1991)

Coherency Given a set of raw gaze signals, estimates how strongly 
pairs of signals are related at specific frequencies

Bendat and Piersol (1986)

Mean squared displacement Given a raw gaze signal, estimates the average squared 
deviation of the eye-gaze position from a reference 
position over time

Herrmann et al. (2017)

Displacement auto-correlation function Given a raw gaze signal, estimates the degree of 
similarity between the gaze signal and a lagged version 
of itself over successive time intervals

Herrmann et al. (2017)

Detrended fluctuation analysis Given a raw gaze signal, estimates long-range 
correlations and scaling behavior by analyzing signal 
fluctuations over different time scales

Wang and Cong (2015)

Persistence size Given a raw gaze signal, estimates the entropy of the 
size of the holes in the persistence diagram obtained 
from gaze signal

Chung et al. (2021)

Persistence robustness Given a raw gaze signal, estimates the entropy of the 
robustness of the holes in the persistence diagram 
obtained from gaze signal

Chung et al. (2021)

Betti curve Given a raw gaze signal, estimates a function 
evaluating the Betti numbers obtained from a 
persistence diagram, at different levels of filtration

Güzel and Kaygun (2023)

persistence curve Given a raw gaze signal, estimates a function that 
summarizes the total persistence of topological hole of 
the persistence diagram, at different levels of filtration

Kachan and Onuchin (2021)

Persistence entropy Given a raw gaze signal, estimates the Shannon 
entropy of the collections of topological holes lifetimes 
of the persistence diagram obtained from gaze signal

Kachan and Onuchin (2021)

Isolated fixational eye movements, such as microsaccades 
and drift, are well-suited for stochastic analysis due to their 
structured yet random nature. Engbert and Kliegl (2004) used 
the MSD to reveal distinct patterns in these movements. On 
short time scales—tens to hundreds of milliseconds—fixational 
movements are persistent, following consistent directions to 
promote retinal shifts that prevent visual fading. On longer time 
scales, they become anti-persistent, with negatively correlated 
increments that facilitate maintaining gaze on the intended
fixation point.

Detrended fluctuation analysis (DFA), another powerful 
method, quantifies long-term power-law correlations in non-
stationary gaze data. Moshel et al. (2008) applied DFA to 

demonstrate that microsaccades enhance persistence more in 
horizontal than vertical fixational movements, suggesting distinct 
neural control mechanisms for these components (Sparks, 1986; 
Moschovakis, 1996). Beyond physiological studies, DFA has been 
used in functional research. For example, Wang and Cong (2015) 
employed DFA to investigate how professional experience shapes eye 
movement patterns in air traffic controllers, linking gaze dynamics 
to cognitive and task-related factors.

Finally, the MSD analysis of fixational movements exhibits 
oscillatory behavior over longer time scales (Herrmann et al., 2017). 
The displacement auto-correlation function (DACF) complements 
MSD by comparing a movement’s trajectory to its delayed versions, 
highlighting these rhythmic patterns. Such patterns suggest that 
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drift movements are centrally controlled, potentially through time-
delayed feedback mechanisms (Herrmann et al., 2017). These 
methods, summarized in Table 4, provide insights into the dynamic 
control of gaze allowing to explore additional temporal patterns. 

4.3 Topological variables

Recent studies have applied topological data analysis (TDA) 
to investigate the complex patterns of eye movement trajectories. 
Conventional measures, such as fixation durations or saccade 
amplitudes, often fail to capture the broader spatial and temporal 
structure of gaze patterns. Pioneering works by Kachan and 
Onuchin (2021) and Onuchin and Kachan (2023) addressed 
this limitation by using TDA to extract novel features from 
eye movement data, demonstrating improved performance 
in recognition tasks on new gaze trajectory datasets. More 
recently, He et al. (2025) showed that spatial-temporal topological 
features derived from eye-tracking data can be informative for 
neural disorder screening, highlighting the clinical relevance of 
these TDA-based representations.

A central tool in TDA is persistent homology, which provides 
a way to measure the shape of a dataset across multiple scales. To 
illustrate, consider a set of eye positions represented as points in 
space. Persistent homology tracks the formation and disappearance 
of topological features, including connected clusters of points, 
circular arrangements forming loops, and higher-dimensional 
empty regions called voids. These features are identified through 
a process called a filtration, in which a scale parameter gradually 
increases. Initially, each point is separate, but as the scale grows, 
points that are close to each other become connected. A topological 
feature is said to be born when it first appears, for example, when 
two points merge into a cluster or a loop forms, and it dies when it 
disappears, such as when two clusters merge into one larger cluster 
or a loop is filled in. By recording the birth and death of each feature, 
the structural information of the dataset can be summarized in a 
persistence diagram, where longer-lived features typically represent 
meaningful structures while short-lived features correspond to noise 
(Carlsson, 2009; Edelsbrunner and Harer, 2022). Figure 7 illustrates 
this process schematically.

One common method to build topological structures is the 
Vietoris-Rips complex. In this approach, points in a cloud are 
connected if they are within a certain distance defined by the 
current scale parameter. Sets of points that are mutually connected 
form higher-dimensional shapes: a pair of points forms a line 
segment, three points form a filled triangle, and four points 
form a tetrahedron. As the scale increases, more connections are 
added, creating new features or merging existing ones. This gradual 
growth generates the birth and death events that are tracked in 
persistent homology.

Kachan and Onuchin (2021) proposed two TDA-based 
approaches for analyzing eye movements. In the first, eye positions 
are treated as a point cloud, ignoring timestamps, to capture spatial 
patterns. In the second, horizontal and vertical gaze coordinates 
are analyzed as separate time series to study temporal dynamics. 
From these representations, persistence diagrams are derived 
and transformed into compact features, such as the lifespan of 
topological features or their stability across scales. These features 

can be computed for Vietoris-Rips complexes or for sub-level 
set filtrations, which track the appearance and disappearance of 
features as the values of the data themselves vary, for example, along 
intensity or velocity thresholds. Persistence diagrams can then be 
vectorized into structured formats suitable for machine learning, 
enabling classification, clustering, or other data-driven analyses. By 
emphasizing shape-related properties of gaze data, TDA provides 
tools to capture structural patterns that traditional metrics often 
overlook, and as shown by He et al. (2025), these spatial-temporal 
topological features can also serve as biomarkers for neural disorder 
screening. 

5 Discussion

The segmentation of raw gaze data into a sequence of 
oculomotor events remains a cornerstone of eye movement 
research. In this article, we have reviewed the most common 
segmentation algorithms—Section 2). Historically, threshold-based 
methods dominated the field, relying on predefined criteria 
such as velocity or displacement thresholds to categorize eye 
movements. These approaches remain widely used because of their 
simplicity, computational efficiency, and relatively low barrier to 
implementation. However, they also exhibit critical limitations: their 
sensitivity to parameter selection can lead to inconsistent results 
across laboratories, and their robustness often degrades in noisy 
or dynamic environments, such as mobile or low-cost eye trackers. 
These drawbacks highlight the need for approaches that are less 
dependent on arbitrary thresholds and more adaptable to variability 
in recording conditions.

In contrast, learning-based approaches have gained prominence 
by leveraging annotated datasets that encode expert knowledge of 
eye movement types. By training models on rich and diverse data, 
these methods can capture complex patterns in the gaze signal that 
extend beyond traditional definitions of fixations, saccades, and 
pursuits. For instance, they are better suited to handle ambiguous 
or overlapping cases, where threshold-based approaches often fail. 
Nevertheless, their performance is critically dependent on model 
architecture, hyperparameter optimization, and, above all, the 
quality, diversity, and size of the training datasets. A model trained 
on limited or biased data may perform well within a narrow domain 
but fail to generalize to different populations, tasks, or devices. 
This dependency underscores the importance of carefully curated 
datasets and rigorous cross-validation protocols.

To foster transparency and reproducibility in machine 
learning–based segmentation, detailed methodological reporting 
is essential. Beyond describing the general algorithmic 
approach, authors should provide explicit documentation of the 
algorithms and software packages employed, the hyperparameter 
configurations chosen, and the strategies used for validation. Where 
feasible, access to training and validation datasets should also be 
shared, either through open repositories or upon reasonable request. 
Such openness ensures that results can be replicated, facilitates 
the systematic refinement of models, and lowers the entry barrier 
for new research groups seeking to build upon existing work. 
Ultimately, transparent reporting practices strengthen confidence in 
published findings and encourage convergence toward best practices 
in the field.
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FIGURE 7
Forming Persistence Diagrams. Given a set of points—gaze data-samples—the Vietoris-Rips filtration approximates the topology of the union of the 
balls of radius equal to the threshold parameter α centered at each point from the dataset. The (a) shows, for three values of α — also represented by 
dotted lines in (b) — appearance of topological features of dimension 0 — purple lines for connected components—and dimension 1 — blue shaded 
areas for holes. The persistence diagram, or persistence barcode, plotted (b) of dimension 0 — purple bars—summarizes the linking of clusters while 
the persistence diagram of dimension 1 — blue bars—summarizes the number of topological holes between clusters, describing the complexity of 
clusters arrangement.

In this regard, specialized databases are playing an increasingly 
central role. Resources such as the GazeBase dataset (Griffith et al., 
2021) provide large and heterogeneous eye movement recordings 
across diverse tasks, from controlled guided stimuli designed to 
elicit specific movements, to goal-directed activities, and free-
viewing scenarios such as reading or video watching. These 
datasets are indispensable for benchmarking both traditional 
and learning-based algorithms, enabling fair comparisons across 
methods, and for training models with stronger generalizability 
across tasks and hardware. By facilitating standardized evaluation, 
such databases support the transition from isolated methodological 
contributions toward a cumulative science of eye movement 
analysis. Looking ahead, the expansion of open repositories covering 
diverse populations, age groups, and experimental contexts will be 
critical for building robust segmentation algorithms with real-world 
applicability.

Beyond segmentation itself, this article has also reviewed the 
metrics derived from canonical oculomotor events—Section 3). 
These metrics are essential for characterizing fixations, saccades, 
and smooth pursuits in terms of their temporal, spatial, and 
kinematic properties, and for linking them to cognitive, clinical, 
and applied research contexts. For example, fixation duration can 
be tied to attentional processes, while saccade amplitude and 
velocity are informative about motor control and neurological 
function. However, meaningful cross-study comparisons are only 
possible if these metrics are computed in standardized ways and 
interpreted within a shared conceptual framework. Advancing this 
line of work therefore requires: (i) a unified set of definitions and 
formal concepts, (ii) standardized analytical pipelines that minimize 
methodological variability, and (iii) accessible open-source 
datasets and software packages that encourage reproducibility 
and methodological convergence. Together, these elements will
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harmonize computational practices, foster interdisciplinary 
collaboration, and ultimately improve the comparability and 
interpretability of findings across the diverse fields that rely on eye 
movement research.

It is important to stress, however, that the robustness of 
segmentation and derived metrics depends strongly on the hardware 
employed. High-speed laboratory-grade eye trackers — 500−
−1000 Hz — provide fine-grained temporal resolution, yielding 
reliable estimates of fixation stability, saccade dynamics, and pursuit 
gain. In these conditions, reproducibility is typically high for 
metrics such as RMSD or Cohen’s Kappa. By contrast, low-cost 
or mobile devices — 30−−120 Hz — are more prone to noise 
and data loss, which introduces uncertainty in event boundaries. 
Fixations, being relatively long in duration, are somewhat resilient, 
although noise can still inflate false positives. Saccades, in turn, 
are especially vulnerable: low sampling rates may miss peak 
velocities or misestimate onset and offset times, leading to degraded 
temporal precision and event-level accuracy. These differences 
underscore the need for robust, hardware-agnostic metrics that 
remain interpretable across diverse research settings.

Looking ahead, several technological and methodological trends 
promise to reshape oculomotor research. The rapid adoption of 
VR platforms equipped with eye tracking enables exploration of 
gaze behavior in immersive, ecologically valid 3D contexts, where 
traditional eye movements interact with head and body dynamics 
(Adhanom et al., 2023). The growing use of mobile eye tracking 
is similarly expanding research far beyond lab settings, though 
it raises significant challenges in data quality and reproducibility 
(Fu et al., 2024). On the computational front, while AI and deep 
learning methods for event segmentation are emerging, the need 
for rigorous evaluation and privacy-aware implementations remains 
pressing—especially in VR contexts (Bozkir et al., 2023). More broadly, 
as Extended Reality (XR) environments integrate eye tracking with 
multimodal sensors, methodologies must adapt to both technological 
possibilities and ethical considerations (Kourtesis, 2024). Together, 
these advances point toward richer, more scalable, and context-
sensitive analyses of oculomotor behavior. 

Finally, we reviewed emerging approaches that challenge the 
traditional paradigm of segmentation into discrete events—Section 4. 
Advanced signal processing methods, such as topological data 
analysis (TDA), enable the study of the intrinsic structure of 
eye movement signals without imposing predefined categories. 
By focusing on patterns such as connectivity, loops, or voids in 
gaze trajectories, TDA captures structural properties that may 
be overlooked by conventional event-based frameworks. This 
represents a promising step toward more naturalistic analyses, 
particularly in contexts where boundaries between fixations, 
saccades, and pursuits are ambiguous or functionally irrelevant. 
As these methods mature, they are likely to complement existing 
frameworks and enrich our understanding of oculomotor control in 
real-world visual behavior.
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