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Background: Hemodialysis (HD) can significantly lower blood glucose levels, 
increasing the risk of hypoglycemia. The contributing factors are not fully 
understood. This study aimed to identify key risk factors for hypoglycemia during 
HD and develop a predictive model.
Methods: A retrospective nested case-control study was conducted at the Third 
Hospital of Shandong Province from January 2020 to December 2023. Clinical 
and laboratory data were collected from electronic medical records and patient 
questionnaires. Univariate and multivariate analyses identified independent risk 
factors, and a predictive model was developed using stepwise logistic regression. 
Internal validation was performed using 10-fold stratified cross-validation, with 
model performance evaluated by mean area under the receiver operating 
characteristic curve (AUC), accuracy, sensitivity, and specificity.
Results: Among 114 HD patients (57 cases, 57 controls), six independent risk 
factors were identified: afternoon HD session, presence of cardiovascular 
disease, and low levels of albumin (<37.35 g/L), creatinine (<828.65 μmol/L), urea 
(<28.05 mmol/L), and pre-dialysis blood glucose (<5.75 mmol/L). The predictive 
model demonstrated good internal validity with mean AUC 0.79, accuracy 
0.71, sensitivity 0.64, and specificity 0.78, indicating stable discriminative 
performance.
Conclusion: Six key risk factors for hypoglycemia during HD were identified, 
and a predictive model integrating disease status, HD timing, and laboratory 
markers was developed. Early identification of high-risk patients may help 
prevent hypoglycemic events and improve HD outcomes. Future studies should 
externally validate and refine this model for broader clinical application.
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Introduction

Background

Kidney failure, resulting from conditions such as chronic 
kidney disease (CKD) and end-stage renal disease (ESRD), is a 
growing global public health challenge with significant economic 
and healthcare burdens (Levey, 2012; KDIGO, 2024). By 2030, 
approximately 14.5 million people are projected to have ESRD 
(Bello et al., 2021), and CKD is expected to be the fifth leading 
cause of death worldwide by 2040 (Foreman et al., 2018). Kidney 
replacement therapy (KRT) is essential for prolonging survival in 
patients with kidney failure, with dialysis accounting for 78% of KRT, 
of which hemodialysis (HD) represents the predominant modality 
(Pecoits-Filho et al., 2011; Himmelfarb et al., 2020).

Hypoglycemia is a frequent and potentially life-threatening 
complication in HD patients (Copur et al., 2021). Blood glucose 
levels fluctuate significantly during HD, particularly within the 
first 2 h of treatment (Li et al., 2022). Studies have reported lower 
blood glucose levels on dialysis days compared to non-dialysis 
days in maintenance HD patients (Kazempour-Ardebili et al., 
2009). Hypoglycemia can lead to severe outcomes such as 
arrhythmias, sudden cardiac death, and stroke (Kofod et al., 2023; 
Abe and Kalantar-Zadeh, 2015). In diabetic patients, recurrent 
hypoglycemia can blunt neurohumoral responses, reducing the 
warning signs of hypoglycemia (Amiel et al., 1988). Even in non-
diabetic individuals, a single hypoglycemic episode can impair 
neuroendocrine function (Heller and Cryer, 1991). The subtle and 
often unnoticed signs of hypoglycemia make glucose management 
challenging in HD patients.

Despite the clinical significance of hypoglycemia, its prevention 
in HD patients remains suboptimal. Studies estimate that the 
incidence of hypoglycemia during HD in patients with diabetic 
nephropathy ranges from 23.8% to 47.6% (Ricks et al., 2012; 
Chu et al., 2017). Although continuous glucose monitoring 
has been suggested as a potential solution (Galindo and 
Aleppo, 2020), its clinical adoption is limited due to cost and 
complexity (Galindo et al., 2022). Given these challenges, identifying 
risk factors for hypoglycemia and developing predictive strategies 
are crucial for improving patient outcomes. CGM provides real-
time glucose monitoring during HD, allowing timely interventions 
such as dietary supplementation, insulin titration, or adjustment of 
dialysis prescriptions to counteract hypoglycemia. 

Rationale for study design

A nested case–control study is an epidemiological approach 
that combines the strengths of cohort and case–control designs, 
effectively minimizing selection bias by selecting both case 
and control subjects from the same well-defined source 
population (Dey et al., 2020). This method ensures temporal 
comparability between cases and controls and allows efficient 
utilization of existing retrospective data.

In the present study, the nested case–control design was 
chosen not because hypoglycemia during hemodialysis is rare, but 
because it enables efficient analysis within a large hemodialysis 
cohort while preserving the temporal sequence between clinical 

exposures and hypoglycemic events. This approach reduces data 
extraction burden, facilitates inclusion of multiple clinical and 
treatment-related variables, and enhances internal validity by 
selecting controls from the same risk set as the cases. Nested 
case–control designs have been successfully applied in various 
medical investigations, such as studies on traveler’s diarrhea 
(Schaumburg et al., 2020), the association between plasma 
trimethylamine N-oxide (TMAO) and stroke risk (Liu et al., 2023), 
and drug safety evaluations (Daneman et al., 2021). 

Knowledge gaps and study objectives

Despite the high incidence of hypoglycemia in HD patients, 
few studies have comprehensively investigated its risk factors, 
particularly those occurring during the HD session. Existing 
studies primarily focus on diabetic patients or rely on cross-
sectional designs, overlooking key laboratory markers and broader 
patient populations (Simic-Ogrizovic et al., 2001; Kang et al., 
2023). While previous research has linked hypoglycemia to 
factors such as age, gender, race, dialysis session length, and 
residual renal function (Kang et al., 2023), the role of laboratory-
based parameters remains underexplored. Additionally, metabolic 
changes during HD, including altered gluconeogenesis, reduced 
insulin clearance, glucose loss to the dialysate, and intracellular 
glucose diffusion, contribute to hypoglycemia but are difficult to 
monitor in routine clinical practice (Abe and Kalantar-Zadeh, 
2015). Recent efforts to develop predictive models have been 
limited to diabetic nephropathy patients, restricting their broader 
applicability (Zhang et al., 2023).

To address these gaps, we conducted a nested case-control study 
to identify comprehensive risk factors for hypoglycemia during HD 
and develop a predictive model. Unlike prior studies, we examined 
the entire HD patient population, including both diabetic and non-
diabetic individuals, with a particular focus on hypoglycemic events 
occurring during HD. Furthermore, to enhance the scientific rigor 
and ensure model reliability, we incorporated an internal validation 
step using 10-fold stratified cross-validation. This approach allowed 
us to evaluate the predictive model’s stability and generalizability 
within the study cohort, thereby reducing the potential for 
overfitting. Our findings aim to provide a scientific foundation 
for early risk stratification and targeted preventive strategies to 
reduce hypoglycemia-related complications in HD patients. While 
previous studies, including a recent investigation using CGM in 
both diabetic and non-diabetic patients (Piersanti et al., 2025), have 
also explored hypoglycemia during HD, our study differs in its 
use of stepwise logistic regression to build a risk-prediction model 
based on routinely available clinical and laboratory parameters and 
in performing internal validation to confirm the robustness of the 
predictive model.

Materials and methods

Study design and setting

This study was a retrospective nested case-control study 
conducted at the Department of Nephrology, The Third Hospital 
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of Shandong Province from 1 January 2020, to 31 December 
2023. A total of 114 patients undergoing maintenance hemodialysis 
(HD) were enrolled. The case group consisted of 57 patients 
who experienced hypoglycemia during HD, while the control 
group included 57 patients who did not develop hypoglycemia. 
Controls were randomly selected from the same HD cohort at 
the time each case was identified to ensure comparability. Kidney 
transplant recipients who returned to HD were not included in this 
study. The etiology of kidney failure leading to HD (e.g., diabetic 
nephropathy, glomerulonephritis, polycystic kidney disease) was 
not systematically analyzed in this dataset, representing a potential 
limitation. 

Definition of hypoglycemia during HD

Hypoglycemia during HD was defined as a blood glucose 
(GLU) level below 70 mg/dL (3.9 mmol/L), with or without 
clinical symptoms, occurring at least once during an HD session. 
Blood glucose measurements were obtained using Sinocare 1,000 
glucometers (glucose dehydrogenase method) at standardized 
points during each HD session, including pre-dialysis, hourly during 
dialysis, and post-dialysis. 

Eligibility criteria

Patients were eligible for inclusion if they were ≥18 years 
of age, stable outpatients who had been receiving HD for at 
least 3 months, and were undergoing HD three times per week 
for 4 h per session. The case group comprised patients who 
experienced at least one episode of hypoglycemia during HD, 
while the control group included those who had never experienced 
hypoglycemia during HD.

Patients were excluded if they were lost to follow-up during the 
study period, had missing key demographic or clinical data (such as 
gender, age, height, or weight), had severe comorbidities requiring 
intensive care (e.g., ICU admission), or were unable to complete the 
questionnaire due to cognitive or physical limitations. 

Data collection

A structured one-on-one questionnaire survey was conducted 
by a trained researcher to collect data on demographic 
characteristics, disease history, and HD conditions. Written 
informed consent was obtained from all participants before data 
collection. Additionally, laboratory test results were extracted 
from the hospital’s electronic medical records (EMR) to ensure 
comprehensive data collection. The parameters assessed included 
mean arterial pressure (MAP), C-reactive protein (CRP), 
hemoglobin (HGB), red blood cell count (RBC), albumin (ALB), 
prealbumin (PAB), triglycerides (TG), total cholesterol (TC), 
creatinine (Cre), urea, and blood glucose (GLU). These laboratory 
values were carefully verified for accuracy to maintain the reliability 
of the study findings.

All laboratory parameters were obtained from routine pre-
dialysis investigations conducted within 1 week prior to the index 

hemodialysis session. These pre-HD values were considered baseline 
biochemical data for both case and control participants to ensure 
consistency and comparability. 

Statistical analysis

Data analyses were performed using IBM SPSS Statistics 
26, and graphical visualizations were generated with GraphPad 
Prism 10.1.2. The Kolmogorov-Smirnov test assessed normality. 
Descriptive statistics summarized data distributions: normally 
distributed variables were expressed as mean ± standard deviation 
(SD) and compared using the t-test, while non-normally distributed 
variables were presented as median (interquartile range, IQR) and 
analyzed with the Mann-Whitney U test. Categorical variables were 
expressed as counts (percentages) and compared using the Chi-
square test.

Variables with p < 0.1 in univariate analysis were included in a 
multiple stepwise logistic regression model to identify independent 
risk factors for hypoglycemia during HD. Multicollinearity among 
predictors was assessed using the variance inflation factor (VIF). 
Cut-off values were established for continuous variables to enhance 
interpretability, followed by subgroup analyses. Model performance 
was evaluated using the Hosmer-Lemeshow goodness-of-fit test and 
the receiver operating characteristic (ROC) curve. A p-value <0.05 
was considered statistically significant.

To further assess the internal robustness of the predictive model, 
a 10-fold cross-validation procedure was performed. The dataset was 
randomly partitioned into ten equal subsets. In each iteration, nine 
subsets were used for model training and one subset for validation. 
This process was repeated ten times so that each subset served once 
as a validation set. The average performance across all folds was 
used to estimate the stability and generalizability of the model within 
the study population. A p-value <0.05 was considered statistically 
significant.

Results

Baseline characteristics

A total of 114 patients undergoing maintenance hemodialysis 
(HD) were included, with 57 patients in the hypoglycemia group 
and 57 in the control group. Patients in the hypoglycemia group 
were significantly older than controls (mean ± SD: 65.2 ± 9.1 vs. 
59.8 ± 10.3 years, p < 0.05), and the prevalence of cardiovascular 
diseases (CVDs) was nearly three times higher compared to 
controls (49.1% vs. 16.7%, p < 0.01). Timing of HD sessions 
also differed significantly, with a higher proportion of patients 
undergoing afternoon HD experiencing hypoglycemia, whereas 
controls were more frequently treated in the forenoon (p < 
0.01). Laboratory findings revealed notable differences between 
the groups: the inflammatory marker C-reactive protein (CRP) 
was markedly elevated in the hypoglycemia group (median [IQR]: 
12.8 [8.4–17.6] mg/L vs. 4.3 [2.1–7.9] mg/L, p < 0.01), while 
nutritional markers, including albumin (ALB) and prealbumin 
(PAB), were significantly lower (ALB: 34.5 ± 4.2 g/L vs. 39.1 ± 
3.8 g/L, p < 0.01; PAB: 0.20 ± 0.07 g/L vs. 0.28 ± 0.08 g/L, p < 
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0.01). Kidney function markers also differed, with lower creatinine 
(689 ± 142 μmol/L vs. 889 ± 135 μmol/L, p < 0.01) and urea 
levels (24.2 ± 5.6 mmol/L vs. 31.2 ± 6.3 mmol/L, p < 0.01) in the 
hypoglycemia group. Blood glucose (GLU) levels were lower in the 
hypoglycemia group (5.32 ± 0.42 mmol/L vs. 6.31 ± 0.49 mmol/L, p 
< 0.05). A detailed comparison is presented in Table 1 and Figure 1. 
Other factors—including gender, body mass index (BMI), diabetes, 
hypertension, high nutritional risk, food intake during HD, glucose 
injection during HD, mean arterial pressure (MAP), hemoglobin 
(HGB), red blood cell count (RBC), triglycerides (TG), and 
total cholesterol (TC)—were not significantly associated with 
hypoglycemia. Despite previous literature suggesting potential 
influences of gender and nutritional risk, our findings did not 
support these associations.

Multiple stepwise logistic regression 
analysis

Stepwise logistic regression identified several independent 
determinants of hypoglycemia during hemodialysis (HD) 
(Table 2) (Figure 2). Cardiovascular diseases (CVDs) significantly 
increased the risk of hypoglycemia, with an odds ratio (OR) of 4.54 
(95% CI: 1.70–12.11, p < 0.05). Timing of HD sessions was also 
an independent predictor, with patients undergoing afternoon HD 
having a higher risk compared to those treated in the forenoon 
(OR = 4.85, 95% CI: 1.85–12.70, p < 0.05). Therefore, it is advisable 
to avoid receiving HD too late in the day to better prevent the 
occurrence of hypoglycemia, especially for patients with severe 
glycemic regulation impairments.

Biochemical factors demonstrated strong associations with 
hypoglycemia risk. Albumin (ALB) levels were inversely related 
to hypoglycemia occurrence (OR = 0.84, 95% CI: 0.71–0.98, p < 
0.05), and lower pre-HD glucose (GLU) was similarly associated 
with greater hypoglycemia risk (OR = 0.66, 95% CI: 0.44–0.97, p 
< 0.05). Interestingly, higher creatinine (Cre) (OR = 1.00, 95% CI: 
0.99–1.00, p < 0.05) and urea (OR = 0.92, 95% CI: 0.85–0.99, p 
< 0.05) appeared to have a protective effect. Variables such as age, 
C-reactive protein (CRP), and prealbumin (PAB) were excluded 
from the final model. Although age differed significantly between 
groups in univariate analysis, it was not retained in the multivariable 
model, likely due to collinearity with cardiovascular diseases and 
renal function parameters, which accounted for a larger portion of 
the variance in hypoglycemia risk. Similarly, PAB was excluded due 
to its strong correlation with ALB.

To refine the predictive model, receiver operating characteristic 
(ROC) curve analysis was used to determine optimal cut-off 
values for continuous predictors (Table 3). For ALB, a threshold of 
37.35 g/L identified 45.6% of hypoglycemia patients below this value 
compared to 10.5% of controls (p < 0.01, Figure 3A). For Cre, a cut-
off of 828.65 μmol/L captured 70.2% of hypoglycemia patients versus 
22.8% of controls (p < 0.01, Figure 3B). For urea, a threshold of 
28.05 mmol/L included 78.9% of hypoglycemia patients below this 
level compared to 33.3% of controls (p < 0.01, Figure 3C). Finally, 
for GLU, a cut-off of 5.75 mmol/L identified 56.1% of hypoglycemia 
patients versus 33.3% of controls (p < 0.01, Figure 3D). These 
thresholds provide practical clinical indicators for identifying HD 
patients at greater risk of hypoglycemia.

Construction and evaluation of prediction 
model

A logistic prediction model was constructed based on 
the six independent determinants identified in the multiple 
stepwise logistic regression analysis. The formula for the
model is:

P = 1/[1+ e (13.083+ 1.512∗CVDs+ 1.580∗HD period ‐ 0.174∗

ALB ‐ 0.003∗Cre ‐ 0.087∗Urea ‐ 0.416∗GLU)]

where P represents the probability of experiencing hypoglycemia 
during HD. The closer P is to 1, the higher the likelihood of 
hypoglycemia occurrence, whereas a value closer to 0 suggests a 
lower risk.

To assess the reliability and predictive performance of the 
model, the Hosmer-Lemeshow goodness-of-fit test was conducted, 
yielding a value of 12.275 (p = 0.139), indicating no significant 
difference between the predicted and observed outcomes and 
suggesting a good model fit. Additionally, the area under the receiver 
operating characteristic (ROC) curve (AUC) was 0.864 (95% CI: 
0.798–0.929, p < 0.001), demonstrating excellent discriminative 
ability. In the 10-fold cross-validation, the model demonstrated 
consistent discriminative ability with a mean AUC of 0.794 (SD = 
0.165), accuracy of 0.737 (SD = 0.100), sensitivity of 0.759 (SD = 
0.160), and specificity of 0.666 (SD = 0.173) across folds (Figure 4). 
These results indicate reliable internal performance, suggesting 
that the model generalizes well within the available cohort. These 
results suggest that the logistic prediction model shows potential 
for estimating the likelihood of hypoglycemia in HD patients and 
could support early intervention and risk management; however, 
external validation is needed before its clinical application can 
be confirmed. A graphical representation of the prediction model 
is shown in Figure 5.

Discussion

The occurrence of hypoglycemia is not uncommon in HD 
patients, indicating a potential danger that should not be overlooked. 
Therefore, this study identified several risk factors and constructed 
a prediction model to help reduce the likelihood of hypoglycemia 
during HD. According to our study, patients who received HD in 
the afternoon were more likely to experience hypoglycemia episodes 
than those who had treatments in the forenoon. A study in 2021 
also noted that the timing of HD is associated with HD-related 
and post-HD hypoglycemia (Hayashi et al., 2021). In HD patients, 
insulin-mediated stimulation of peripheral glucose disposal by 
muscle and adipose tissue is significantly affected, while hepatic 
glucose uptake continues normally, and hepatic glucose production 
can be suppressed (Williams and Garg, 2014). Additionally, human 
muscle tissue exhibits a diurnal rhythm in insulin sensitivity and 
mitochondrial oxidative capacity (Stenvers et al., 2019). Recent 
medicinal chemistry studies have further provided molecular 
insights into glucose-lowering mechanisms of compounds 
such as pyrazoline and 2,4-thiazolidinedione derivatives, which 
are relevant for glycemic regulation in susceptible patients 
(Sharma et al., 2023; Malik and Singh, 2025). These factors may 
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TABLE 1  Baseline patient characteristics.

Variable Total (n = 114) Control (n = 57) Case (n = 57)

Male 69 (60.5%) 39 (68.4%) 30 (52.6%)

Age (years) 59.05 ± 12.47 56.61 ± 10.50 61.49 ± 13.84∗

BMI (kg/m2) 22.74 ± 3.23 22.40 ± 3.23 23.09 ± 3.21

Severe nutritional risk 12 (10.5%) 5 (8.8%) 7 (12.3%)

Hypoglycemia during HD interval 46 (40.4%) 21 (36.8%) 25 (43.9%)

Diabetes 52 (45.6%) 25 (43.9%) 27 (47.4%)

Hypertension 100 (87.7%) 50 (87.7%) 50 (87.7%)

CVDs 29 (25.4%) 8 (14.0%) 21 (36.8%)∗∗

HD period – Forenoon 55 (48.2%) 35 (61.4%) 20 (35.1%)∗∗

HD period – Afternoon 59 (51.8%) 22 (38.6%) 37 (64.9%)∗∗

Food intake during HD 59 (51.8%) 25 (43.9%) 34 (59.6%)

Glucose injection during HD 15 (13.2%) 5 (8.8%) 10 (17.5%)

MAP (mmHg) 105.53 ± 12.67 106.40 ± 12.76 104.66 ± 12.62

CRP (mg/L), M (IQR) 3.50 (10.725) 2.50 (4.10) 6.40 (26.85)∗∗

HGB (g/L) 108.17 ± 16.85 110.31 ± 11.81 106.03 ± 20.59

RBC (1012/L) 3.50 ± 0.55 3.50 ± 0.44 3.49 ± 0.65

ALB (g/L) 39.14 ± 4.47 40.40 ± 3.20 37.89 ± 5.18∗∗

PAB (mg/L) 254.05 ± 81.97 282.79 ± 80.34 225.31 ± 3.64∗∗

TG (mmol/L) 1.28 ± 0.81 1.14 ± 0.65 1.34 ± 1.07

TC (mmol/L), M (IQR) 3.52 (1.01) 3.43 (0.85) 3.58 (1.14)

Cre (μmol/L) 823.93 ± 263.00 924.81 ± 226.24 723.05 ± 260.15∗∗

Urea (mmol/L) 25.56 ± 8.34 28.99 ± 6.90 22.13 ± 8.28∗∗

GLU (mmol/L) 6.15 ± 3.30 6.50 ± 3.65 5.60 ± 3.30∗

HD, hemodialysis; severe nutritional risk was evaluated using Nutritional Risk Screening (NRS, 2002), where the total NRS, score is the sum of the nutrition score, disease severity score, and 
age adjustment. Severe risk was defined as NRS ≥3. Hypoglycemia during the HD, interval was defined as blood glucose <70 mg/dL measured between hemodialysis sessions, including both 
control and case groups. Variables from MAP, to GLU, were all measured before HD., Values are presented as mean ± SD, median (interquartile range), or n (%). ∗p < 0.05 vs. control; ∗∗p < 0.01 
vs. control.

explain the differences in hypoglycemia incidence related to 
the timing of HD treatments. Therefore, it is advisable to avoid 
receiving HD too late in the day to better prevent the occurrence of 
hypoglycemia, especially for those with severe glycemic regulation
impairments.

HD patients with CVDs had a higher incidence of hypoglycemia 
during HD in our study. Previous studies have suggested that 
hypoglycemia may exacerbate CVDs (Goto et al., 2016). During 
acute hypoglycemia, heart rate and systolic blood pressure increase, 
blood flow in the myocardium increases, and cardiac output, stroke 
volume, and myocardial contractility also rise (Snell-Bergeon and 

Wadwa, 2012). These changes can place substantial stress on the 
cardiovascular system. Given the high prevalence of CVDs among 
patients who experienced hypoglycemia during HD in our study, 
it may imply that hypoglycemia in HD patients with CVDs could 
lead to repeated aggravation of CVDs. In this way, hypoglycemia 
and CVDs can promote each other and form a vicious cycle. 
We plan to continue focusing on the interaction mechanisms and 
clinical trends between CVDs and hypoglycemia in the near future. 
Preventing hypoglycemia during HD might be a critical step in 
breaking this cycle and potentially improving the prognosis for HD 
patients with CVDs.
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FIGURE 1
Baseline characteristics of patients with significant differences between the case and control groups. (A) Age (years). (B) Number of patients with or 
without cardiovascular diseases (CVDs) in the case and control groups. (C) Distribution of HD treatment periods (forenoon vs. afternoon) in the case 
and control groups. (D) Serum albumin concentration (g/L). (E) Serum prealbumin concentration (g/L). (F) Serum creatinine concentration (μmol/L). (G)
Serum urea concentration (mmol/L). (H) Red blood cell (RBC) count (×1012/L). (I) Blood glucose levels (mmol/L). Significant differences between 
groups are indicated as ∗(p < 0.05) or ∗∗(p < 0.01).

We observed that the incidence rate of hypoglycemia during 
HD increased with the severity of ALB deficiency. In our study, 
HD patients with ALB levels below 37.35 g/L were particularly 
vulnerable to hypoglycemia during HD, according to the cut-off 

value analysis result. This cut-off value aligns closely with findings 
from an earlier study in Japan on diabetics treated with insulin 
(Kawaguchi et al., 2019). Furthermore, increased malnutrition risk 
has been associated with hypoglycemia occurrence in some studies. 
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FIGURE 2
Odds ratio (95%CI) of CVDs, HD period, ALB, Cre, Urea and GLU for hypoglycemia during HD.

TABLE 2  Multiple stepwise logistic regression analysis of 
hypoglycemia during HD.

Variable β S Wald χ2 OR (95% 
CI)

p

CVDs 1.51 0.68 4.93 4.54 (1.19, 
17.28)

0.027∗

HD period 1.58 0.54 8.65

Forenoon 1.00

Afternoon 4.85 (1.69, 
13.91)

0.003∗∗

ALB (g/L) −0.17 0.07 6.78 0.84 (0.74, 
0.96)

0.009∗∗

Cre (μmol/L) −0.003 0.001 4.35 0.99 (0.99, 
1.00)

0.037∗

Urea 
(mmol/L)

−0.09 0.04 5.84 0.926 (0.85, 
0.98)

0.016∗

GLU 
(mmol/L)

−0.42 0.13 11.033 0.66 (0.52, 
0.84)

0.001∗

β, regression coefficient; S standard error; OR, odds ratio; CI, confidence interval.

ALB, as an indicator of nutritional status, is closely related to human 
nutrition levels (Ricks et al., 2012; Leibovitz et al., 2018). Since HD is 
not only a method of elimination but also a process of consumption, 
it results in significant nutrient loss, leading to malnutrition in 
HD patients (Kalantar-Zadeh et al., 2004). For instance, there 
may be inevitable loss of amino acids and albumin into the 
dialysate, and the inflammatory stimuli associated with the dialysis 
procedure can lead to increased protein metabolism (Ikizler et al., 
2013). Therefore, achieving and maintaining a relatively high 
nutritional status and ALB level is crucial for HD patients. It is 
important to focus on a reasonable diet and adequate nutrient 
intake to achieve optimal nutrition goals, including maintaining
ALB levels.

TABLE 3  In-group analysis grouped by cut-off value.

Variable Case Control χ2 p

ALB (g/L)

 ≤37.35 26 6 17.378 <0.001

 >37.35 31 51

Cre (μmol/L)

 ≤828.65 40 13 25.706 <0.001

 >828.65 17 44

Urea (mmol/L)

 ≤28.05 45 19 24.082 <0.001

 >28.05 12 38

GLU (mmol/L)

 ≤5.75 32 19 5.996 0.014

 >5.75 25 38

Sensitivity and specificity in Table 3 are based on raw subgroup counts, whereas Table 4 
presents ROC-derived sensitivity and specificity at the optimal cut-off values (Youden’s 
index). Differences between the tables do not indicate errors.

Our study found that HD patients with relatively low Cre and 
urea levels were prone to hypoglycemia during HD, suggesting that 
greater adequacy of HD was more likely to trigger hypoglycemia. 
Normally, metabolic waste in the human body, including Cre and 
urea, should be sufficiently eliminated after effective HD. The lower 
the Cre and urea levels, the more adequate the HD treatment 
received. However, given the high incidence rate of hypoglycemia 
during HD as per our results, the adequacy of the HD therapy 
should be reconsidered. Since all patients in our study were treated 
with the same HD therapy schedule and the same HD fluid, it 
could be implied that the high clearance of Cre and urea by the 
HD therapy schedule may be accompanied by more clearing of 
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TABLE 4  ROC curve analysis of ALB, Cre, Urea, Glucose on hypoglycemia during HD.

Variable AUC Cut-off value Sensitivity (%) Specificity (%) Youden’s index p

ALB (g/L) 0.671 37.35 89.5 45.6 0.351 0.001

Cre (μmol/L) 0.730 828.65 77.2 70.2 0.474 <0.001

Urea (mmol/L) 0.758 28.05 66.7 78.9 0.456 <0.001

GLU (mmol/L) 0.629 5.75 66.7 56.1 0.228 0.014

AUC, area under the curve. ROC-derived sensitivity/specificity may differ from raw counts in Table 3 due to the method of determining the optimal cut-off (Youden’s index).

FIGURE 3
Differences of (A) ALB (g/L), (B) Cre (μmol/L), (C) Urea (mmol/L) and (D) GLU (mmol/L) level between case and control group, according to the cut-off 
value. Significant differences are marked as ∗(P < 0.05) or ∗∗(P < 0.01).

FIGURE 4
ROC curves from 10-fold cross-validation of the logistic regression 
model predicting hypoglycemia during hemodialysis. The mean AUC 
was 0.794 (SD = 0.165), with accuracy 0.737 (SD = 0.100), sensitivity 
0.759 (SD = 0.160), and specificity 0.666 (SD = 0.173), demonstrating 
consistent internal performance across folds.

glucose. This could potentially increase the risk of hypoglycemia. 
Moreover, several studies have linked low serum creatinine to 
diabetes (Bao et al., 2018; Hu et al., 2019; Hayes and Kriska, 2008), 
suggesting that low serum creatinine may influence blood glucose 
conditions. These findings demonstrate a close relationship between 
the sufficiency of HD and the occurrence of hypoglycemia during 
HD. Thus, we suggest that individualized therapy with appropriate 
HD adequacy should be made based on recent Cre and urea levels. 
However, the optimal HD adequacy for reducing the high risk of 
hypoglycemia during HD still requires further study.

We also found that patients with lower GLU levels before HD, 
particularly those below 5.75 mmol/L, were more susceptible to 
experiencing hypoglycemia episodes during HD. An earlier report 
indicated that the percentage change in peri-dialytic blood glucose 
was associated with the percentage change in pre-HD glucose, which 
corroborates our findings (Bao et al., 2018; Watha et al., 2022). 
Additionally, previous data have demonstrated that blood glucose 
fluctuation during HD may be due to blood flows to the liver,
muscle, and heart, which ultimately affect tissue glucose uptake 
(Foss et al., 1996). It is not difficult to speculate that lower GLU levels 
before HD may increase the risk of hypoglycemia induced by HD. 
Therefore, we advise against controlling GLU levels at a very low level 
before HD, although strict blood glucose management is necessary 
for HD patients. According to our study, the GLU level before HD 
should not be lower than 5.75 mmol/L to prevent hypoglycemia 
during HD (Kondrup et al., 2003).
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FIGURE 5
The ROC curve of the prediction model.

To further assess the robustness and reliability of the prediction 
model, internal validation was performed using 10-fold cross-
validation. The model demonstrated consistent discriminative 
ability with a mean AUC of 0.794 (SD = 0.165), accuracy of 0.737 (SD 
= 0.100), sensitivity of 0.759 (SD = 0.160), and specificity of 0.666 
(SD = 0.173) across folds (Figure 4). These results indicate reliable 
internal performance, suggesting that the model generalizes well 
within the available cohort, supporting its potential clinical utility 
for early identification of HD patients at risk of hypoglycemia. 

Limitations

This study has several limitations. Firstly, medication use, 
which may significantly influence hypoglycemia occurrence during 
HD, was not included in the analysis due to the complexity of 
assessing various drug effects and limitations in the hospital’s 
electronic health records, which may have affected the accuracy 
and applicability of the findings. Secondly, the nested case-control 
study design inherently has lower statistical power compared 
to the larger parent cohort, potentially limiting generalizability. 
Additionally, as a retrospective study with a relatively small 
sample size, establishing strong causal relationships between risk 
factors and hypoglycemia was difficult. Thirdly, continuous variables 
such as albumin, creatinine, urea, and pre-dialysis glucose were 
dichotomized for clinical interpretability, which may result in 
some loss of information and reduced statistical power; however, 
the logistic regression coefficients still reflect their continuous 
relationships. Fourthly, while the predictive model underwent 
internal validation using the Hosmer–Lemeshow goodness-of-fit 
test, ROC curve analysis, and 10-fold cross-validation, external 
validation or bootstrapping was not performed, which may limit 
its generalizability. Furthermore, certain factors could not be 
analyzed due to data limitations, including insulin or hypoglycemic 

medications, beta-blocker use, dialysate glucose concentration, 
tissue-level glucose/insulin dynamics, and individualized dialysis 
planning. Some associations observed, such as lower creatinine 
and urea appearing protective, are based on observational data 
and should be interpreted cautiously. The observation window 
for hypoglycemia was also limited to available medical record 
data, and the duration of “never experiencing hypoglycemia” 
may be insufficient to capture all events, potentially introducing 
selection bias.

These limitations highlight areas for future prospective 
studies with larger, multicenter cohorts and more comprehensive 
datasets—including medication history, dietary intake, and dialysis 
parameters—to confirm and strengthen the robustness, clinical 
applicability, and biological interpretation of hypoglycemia risk 
prediction in HD patients.

Conclusion

In summary, this study highlights HD period, CVDs, ALB, Cre, 
Urea, and GLU as key factors for preventing hypoglycemia during 
HD. The incidence of hypoglycemia during HD may be reduced 
by implementing strategies such as avoiding HD late in the day, 
promptly managing CVDs, maintaining adequate nutritional status 
particularly ALB levels, individualizing HD adequacy to prevent 
excessive clearance, and avoiding lowering blood glucose to very 
low levels before HD. While these recommendations provide a 
practical framework, further interventional studies are required 
to validate and refine these strategies. Clinical trials could help 
determine optimal HD timing, the most effective management of 
CVDs, and precise nutritional and glycemic targets to minimize 
hypoglycemic risk. Additionally, future research may identify 
other factors contributing to hypoglycemia during HD, expanding 
the scope of preventive measures. Ongoing evidence-based 
investigations are crucial to improve the safety and quality of care for
HD patients.
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