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Purpose: Age-related gait impairments are strongly associated with increased
fall risk, disability, and mortality. While traditional rehabilitation focuses on the
lower limbs, arm movements play a key role in stabilizing gait through interlimb
neural coupling. This study investigates whether rhythmic haptic cueing of arm
swing, which enhances gait, affects interlimb neuromuscular coordination in
older adults.

Methods: Seventeen older adults (mean age = 73.2 + 6.0 years) completed
three walking conditions: Baseline walking, self-selected Fast walking, and
walking while rhythmically receiving haptic cues (Cueing) to increase arm
swing frequency and walking speed. Gait speed, arm range of motion (ROM),
and intermuscular coherence were analyzed using inertial measurement units
(IMUs) and surface Electromyography (sEMG). Coherence and directionality
analyses were performed in the alpha (815 Hz), beta (15-30 Hz), and gamma
(30-60 Hz) frequency bands to quantify neural coupling and intermuscular
directionality.

Results: Rhythmic Cueing significantly increased arm ROM and gait speed
compared to Baseline walking, with improvements comparable to Fast walking.
Overall upper—lower limb coherence increased in the alpha and beta bands
during Cueing compared to Baseline, with Cueing also exceeding Fast in
the alpha band. In specific muscle pairings, significant alpha-band effects
were observed in contralateral shoulder—leg pairs, specifically between the
left anterior deltoid and right rectus femoris, and between the left posterior
deltoid and right biceps femoris. Directionality analysis revealed dominant
zero-lag coherence, reflecting shared subcortical and cortical drive in the
alpha and beta/gamma bands, respectively, and greater forward-lag coherence
during Cueing compared to Baseline, indicating enhanced cortical arm-to-leg
influence.

Significance: These findings demonstrate that externally cued arm swing can
modulate gait performance and potentially interlimb neural coupling, activating
both subcortical and cortical pathways. Rhythmic haptic cueing shows promise
as an intervention for older adults, supporting its potential integration into
home-based gait rehabilitation programs.

coordination, interlimb, neural coupling, intermuscular coherence, aging, haptic
cueing, arm swing, wearable system
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1 Introduction

Gait impairments are a significant concern in the aging
population, as slow or unstable walking is strongly associated with an
increased risk of falls, disability, and even mortality (Nonnekes et al.,
2025; Montero-Odasso et al., 2022; Verghese et al., 2006). Recent
studies confirm that even small declines in gait speed or stability
predict higher rates of hospitalization and loss of independence
(Nonnekes et al., 2025; Montero-Odasso et al., 2022; Hardy et al,,
2007). A combination of musculoskeletal, sensory, and neural
changes causes these impairments. Age-related neurodegeneration,
including early changes that precede Alzheimer’s disease, is
now recognized as a key contributor to gait decline even in
the absence of overt cognitive symptoms (Ali et al, 2025;
Allali et al., 2016). Age-related reductions in interlimb coordination
and balance are well documented, with older adults exhibiting
greater instability and slower recovery after perturbations, reflecting
diminished neural control and adaptability (Krasovsky et al., 2012;
Krasovsky et al., 2014; Bruijn et al., 2010; Van Hoornweder et al.,
2022; Rezaei et al., 2024; Noghani et al., 2025).

Traditional rehabilitation approaches primarily target the legs,
but given the growing evidence that arm movements play a
significant role in walking, integrating arm swing into gait
rehabilitation warrants further investigation. Arm swing is not
merely a passive result of trunk rotation; rather, it actively
contributes to rhythm regulation, energy conservation, and body
stabilization during gait (Meyns et al., 2013; Punt et al, 2015;
Bruijn et al, 2010). Restricting arm swing has been shown to
increase instability (Bloom and Hejrati, 2021), whereas enhancing
it can improve gait stability and coordination, potentially reducing
the risk of falls (Krasovsky et al., 2012; Lamontagne and Fung, 2004;
Bruijn et al., 2010; Thompson et al., 2017).

Recent work shows that training interventions such as wearable
devices can be used to drive arm swing with rhythmic haptic cues
(Noghani et al., 2023). Our previous study using a wearable haptic
cueing system to shorten arm swing cycle time (CT) by 20%, led
to a 30.2% increase in arm range of motion (ROM) and an 18.2%
increase in walking speed in older adults (Khiyara et al., 2025).
These results suggest that cueing the arms can improve gait speed,
symmetry, and perceived balance and coordination in older adults.

While these findings demonstrate the potential for external
cueing to enhance arm swing and overall gait performance, the
underlying neural mechanisms that mediate these improvements
remain unclear. In particular, it is not yet known whether changes
in arm movement directly influence leg motion through neural
pathways or if both are modulated by a shared central drive. To
investigate this, electromyography (EMG) can be used to explore the
directionality and coordination of neural signals between the limbs
during locomotion.

To better understand these potential neural pathways,
directional coherence analysis of EMG signals offers a valuable
tool. This technique not only assesses the frequency of muscle
activation patterns but also identifies the directionality of neural
influence between limbs. Specifically, coherence can be decomposed
into three components: zero-lag coherence, indicating shared
input; forward-lag coherence, suggesting arm-to-leg influence; and
reverse-lag coherence, indicating leg-to-arm influence (Halliday,
2015; Weersink et al., 2021a). This partitioning allows researchers
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to determine whether limb coordination arises from a common
neural source or reflects directional drive between arms and legs.
For example, Weersink et al. (2021a) demonstrated that during gait,
forward-lag coherence from arm to leg muscles reflects top-down
cortical influence, suggesting a potential mechanism by which arm
movement could modulate leg activity during walking.

While our previous study (Khiyara et al., 2025) demonstrated
the benefits of arm swing training in older adults in terms of key
spatiotemporal gait parameters, the current study aims to investigate
the underlying neural mechanisms that may explain these
improvements. Prior work has shown that arm swing is neurally
coupled with leg movement during walking, involving shared
cortical and subcortical control pathways, and that gait-related arm
swing can drive lower limb muscles, as demonstrated by significant
alpha and beta/gamma intermuscular coherence between upper
and lower limbs (Weersink et al., 2021a). Alpha-band coherence, in
particular, is often linked to subcortical rhythmic control and may
be enhanced through synchronized arm swing driven by rhythmic
cueing. Moreover, challenging walking tasks have been reported
to increase intermuscular coherence (Da Silva Costa et al., 2024;
Hiiche Larsen et al., 2024). For instance, beta-band intermuscular
coherence increased during more complex balance tasks such as
beam walking (da Silva Costa et al., 2024; De Freitas et al., 2025).
Similarly, proprioceptively challenging or proactive locomotor
conditions are associated with increased EMG-EMG coherence,
indicating augmented functional coupling under heightened task
demands (De Freitas et al., 2025; Da Silva Costa et al., 2024).
In addition, Kerkman et al. (2020) found that intermuscular
coherence in the 4-22 Hz range increases during 1:1 arm-leg
coordination (Kerkman et al., 2020), a pattern associated with faster
walking speeds. While increased task difficulty has been associated
with elevated intermuscular coherence, the specific effect of walking
speed alone remains unclear. Faster walking in older adults may itself
represent a more demanding task, potentially recruiting additional
neural resources that support enhanced interlimb coupling.

We therefore propose that a wearable haptic cueing system
which can increase arm swing rhythm and amplitude, as well
as promote faster walking may influence interlimb neural
coordination, potentially enhancing intermuscular coherence,
particularly in the alpha (8-15 Hz) and beta (15-30 Hz) frequency
bands. We hypothesize that both rhythmic cueing and fast walking
can enhance intermuscular coherence and forward-lag coherence
(arm — leg), indicating top-down neural drive. This study leverages
advanced signal processing and directional coherence analysis to
determine whether gait improvements arise from strengthened
subcortical pathways, increased cortical drive, or more efficient
bidirectional coupling between the limbs. These findings will
guide the development of more effective, mechanism-based gait
rehabilitation interventions for the growing population of older
adults at risk for falls and mobility decline.

2 Methods
2.1 Participants

The data were collected during the human subject experiment
previously reported in our study (Khiyara et al., 2025). Here, we

frontiersin.org


https://doi.org/10.3389/fphys.2025.1657092
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Khiyara et al.

analyzed the data of seventeen community-dwelling older adults (6
males/11 females; mean + standard deviation, age: 73.2 + 6.0 years;
range: 65-92 years; height: 168.7 + 8.9 cm; mass: 73.1 + 18.5 kg)
who self-reported being right-handed. Participants were required
to be able to walk independently for at least 20 min continuously to
meet the inclusion criteria. Exclusion criteria included self-reported
conditions affecting gait, muscle function, such as peripheral
neuropathy, Parkinson’s disease, cerebral palsy, multiple sclerosis,
and stroke, reported via an online screening questionnaire. All
procedures were approved by the University of Maine Institutional
Review Board (IRB 2019-04-15). Written informed consent was
obtained from all participants, and data were anonymized to ensure
confidentiality.

2.2 Experimental protocol

Each participant completed four walking conditions on an
indoor standard 200-m track: Baseline, Fast, and two trials with
haptic cueing as previously described (Khiyara et al., 2025). The
Baseline and Fast conditions were performed without any cueing.
In the Baseline condition, participants walked at their self-selected
comfortable pace. In the Fast condition, participants walked at
their fastest comfortable pace without running. These two walking
conditions were conducted on a straight 60-m segment of the track.
The Cueing condition utilized a wearable vibrotactile system to
deliver bilateral haptic cues, aimed at modulating the timing of arm
swing. While there were two Cueing conditions, one to reduce and
the other to increase arm swing cycle time (CT), here we focus on
the condition to reduce CT by 20%. This condition aimed to increase
the frequency of arm swing (i.e., equivalent to shortening the CT)
and thereby increase walking speed in the older-adult participants.
Participants were instructed to synchronize peak shoulder flexion
with the onset of vibration on that arm. The Cueing condition was
performed over a full 200-m lap around the indoor track, and the
participants were familiarized with the rhythmic cueing on their
arms before the experimental trial.

2.3 Data collection

As shown in Figure la, each participant’s arm was equipped
with a haptic cueing unit secured with Velcro straps on the lateral
side of each brachium, positioned midway between the shoulder
and elbow. The location was chosen because it sits on soft tissue,
avoids joints, and allows the device to remain comfortable and stable
during walking, consistent with previous work (Noghani et al., 2023;
Khiyara et al., 2025). Each haptic electronic unit consisted of an
ESP8266 microcontroller, a battery, and a custom circuit board,
which was connected to a haptic cell containing three vibrotactors.
The haptic cell was oriented toward the front of the arm to deliver
cues aligned with the forward motion of arm swing (Figure la).
The vibrotactors vibrated at 240 Hz, a frequency that falls within
the optimal response range of Pacinian mechanoreceptors, making
the vibrations easily detectable and producing a clear tactile
sensation (Noghani et al., 2021; Noghani et al., 2023; Khiyara et al.,
2025; Sharafian et al., 2025). Each vibration cue lasted 100 ms, a
duration previously shown to produce a distinct and easily perceived
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sensation during walking (Noghani et al., 2021; Noghani et al., 2023;
Khiyara et al., 2025). An Inertial Measurement Unit (IMU) mounted
on each arm recorded arm swing CT and arm range of motion
(ROM). Additional IMUs, embedded in custom 3D-printed heel
clips, were placed on the participants’ shoes to capture gait events
such as heel strikes and toe-offs. Surface Electromyography (SEMG)
sensors were placed on eight muscles (Figure 1b): the shoulder
muscles [anterior (AD) and posterior deltoid (PD)] and the upper
leg muscles [biceps femoris (BF), and rectus femoris (RF)] of both
the left and right limbs, following SENIAM guidelines for electrode
positioning (Hermens et al., 1999) and Delsys guidelines for sensor
placement (Delsys Inc, 2025; D. Inc, 2023). These specific muscles
were selected based on a prior work by Weersink et al. (2021a), who
conducted intermuscular coherence analysis during gait between
bilateral shoulder muscles (AD and PD) and both proximal and
distal lower-limb muscles in healthy participants. They reported
that the highest coherence values were observed between shoulder
muscles and proximal leg muscles, specifically the BF and RE

The rhythmic haptic cues were controlled by a custom Android
application (Noghani et al., 2021; Noghani et al., 2023) that received
real-time foot IMU data at 60 Hz and detected heel strikes based on
sagittal foot angle trajectories. The application managed vibrotactor
activation by calculating a delay D to maintain rhythmic alternation
between arms, based on foot CT measured during the Baseline
condition (Khiyara et al, 2025). This approach is based on 1:1
frequency coupling between arms and legs during normal speed
walking (Hejrati et al., 2017), in which arm and foot CTs were
matched (Noghani et al., 2023; Hejrati et al., 2016). Cueing delay D
was computed using Equation 1, as defined by Noghani et al. (2023):

CTyn
2

D=kx

t (1)

where CT} is the foot CT from the Baseline condition, k is the cue
coefficient for Cueing, which was 0.8 for this study, and ¢ is a fixed
delay of 100 ms. The target arm CT for the Cueing condition (CT,)
was given by Equation 2 (Noghani et al., 2023):

CT.=kxCTyy (2)

Coefficients k<1 produced shorter arm CTs, while k>1
increased them. For example, if CTf)N =1000 ms, a k= 0.8 would
result in CT, =800 ms and D =500 ms. After the 10th heel strike
detection in each Cueing condition, the Android app transmitted
the calculated D to the ESP8266 microcontrollers via HT' TP, which
then triggered alternating vibration sequences.

SEMG signals were recorded at a sampling rate of 1926 Hz
using the Trigno Wireless Biofeedback System by D.Inc. (2023)
with the manufacturer’s built-in 20-450 Hz band-pass filter.
Although this setting attenuates sub-20 Hz power, coherence
remains mathematically preserved when the same linear time-
invariant filter is applied to both channels used in analysis; therefore,
a (8-15Hz) and low-f (15-30 Hz) coherence are unaffected by
the hardware filter (Chen et al., 2018; van Asseldonk et al., 2014;
Chen et al., 2022). This system includes wireless sensors designed for
high-fidelity EMG acquisition, ensuring precise capture of muscle
activity during gait (D. Inc, 2023). Sensors were placed on cleaned
skin surfaces and oriented parallel to the muscle fibers to optimize
signal quality. The EMG signals were transmitted wirelessly to a
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base station and stored on a laptop for subsequent analysis (D. Inc,
2023). Kinematic signals were recorded separately using Xsens IMUs
(Xsens Technologies B.V., Enschede, The Netherlands). After data
collection, the EMG and IMU recordings were synchronized by
cross-correlating their triaxial acceleration signals from the same
body segment (upper arm) and shifting the EMG data accordingly.
This procedure aligned both systems to a common time base,
ensuring consistent gait event timing. Once synchronized, gait
events such as heel strikes and toe-offs were identified from the
IMU data and used to segment the EMG signals into individual
gait cycles.
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2.4 Spatiotemporal and kinematic data
processing

Kinematic parameters, including walking speed, arm ROM, and
arm ROM symmetry ratio, were calculated from the IMU data
recorded on the arms and feet. Sagittal plane angles of the upper
limbs were derived from the arms’ IMUs. Arm ROM was computed
as the angular difference between maximum shoulder flexion and
extension within a gait cycle. Arm ROM symmetry was calculated as
the ratio of right arm ROM divided by left arm ROM, where values
greater than 1 indicate a larger right arm ROM, values less than 1
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indicate a larger left arm ROM, and values closer to 1 indicate greater
symmetry (Khiyara et al., 2025). Walking speed was calculated by
integrating linear acceleration data from foot-mounted IMUs using
a zero-velocity update algorithm (Dadashi et al., 2013; Hossain et al.,
2023). To ensure analysis of steady-state walking, the first 10 gait
cycles of each walking condition were discarded, and the subsequent
30 consecutive gait cycles were analyzed (Khiyara et al., 2025;
Noghani et al., 2023).

2.5 Preprocessing EMG data

The
directionality analysis closely followed the process described by

preprocessing for intermuscular coherence and
Weersink et al. (2021a), with adjustments to account for different
experimental conditions and the implementation of algorithms
using MATLAB 2024b (MathWorks Inc. 2024). The raw sEMG
signals were first high-pass filtered at 5 Hz using a finite impulse
response (FIR) filter. The FIR filters were selected for their stability
and linear phase response, which preserves the temporal structure
of the signal (Litwin, 2000). MATLABs designfilt and
filtfilt functions were used to implement the filter and ensure
zero-phase distortion. This process effectively removed the low-
frequency noise, including baseline drift and movement artifacts
commonly introduced during gait. Following filtering, the SEMG
signals were rectified using full-wave rectification, which converted
all negative values to positive (Konrad, 2005; Weersink et al., 2021a).
The filtered and rectified signals were segmented into individual gait
cycles based on right heel strikes identified from the Xsens IMU
data, consistent with prior EMG studies that used right-heel-strike
segmentation (Kim et al., 2016; Kwon et al., 2023; Weersink et al.,
2021a). The first 10 steps of each condition were excluded to
ensure the analysis of steady-state walking, and 30 gait cycles were
analyzed for each participant (Sharafian et al., 2025; Khiyara et al.,
2025). For consistency, the 30 analyzed gait cycles during the
cueing condition were extracted from the same straight 60-
m portion of the 200-m track as used in the Baseline and
Fast conditions.

The duration of each gait cycle was calculated, and the SEMG
data were time-warped using linear interpolation to align each
cycle to the individual’s average gait cycle duration. The time-
warped sEMG envelopes were normalized by expressing them
as a percentage of the mean activity of the individual within
each condition (Weersink et al., 2021a). The normalized sSEMG
envelopes were smoothed using a moving average filter with a
10-ms window to further refine the signal. This preprocessing
pipeline, which included time-warping, normalization, and
smoothing, was applied separately for each condition, exclusively
for visualization purposes, to generate the grand-averaged EMG
envelopes shown in Figure lc. For intermuscular coherence
analysis, only the sSEMG signals high-pass filtered at 5 Hz and
rectified were used (Weersink et al., 2021a; 2022a). The signals
were segmented into individual gait cycles based on right
heel strikes (Weersink et al., 2021a); no time-warping was applied,
and all original gait cycle durations were retained to avoid frequency
distortion. Time-warping to 0%-100% of the gait cycle was applied
only after the spectral analysis, strictly for coherence heatmap
visualization.
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2.6 Coherence and directionality analysis

Time-dependent intermuscular coherence was computed using
a sliding-window Fourier analysis, following the framework of
Halliday et al. (1995) as also implemented in more recent gait studies
(Weersink et al., 2021a; Weersink et al., 2022a). The sEMG signals
from the upper and lower limbs were segmented with a 200 ms
window sliding in 50 ms steps across each gait cycle. This produced a
series of time offsets (i.e., the window positions) relative to the heel-
strike event. For each offset, auto-spectral densities f, (w) and fyy(w)
and the cross-spectral density f, (w) were estimated by averaging
FFT-based periodograms across all gait cycles at that offset. The
magnitude-squared coherence between signals x and y at frequency
w was then calculated using Equation 3 (Halliday et al. 1995):

| @

R 2o
| )’x(w)l fxx(w)fyy(w)

3)

This procedure yields a time-dependent coherence spectrum
at each offset, |Ryx(w)|2, characterizing how intermuscular coupling
strength varies over the gait cycle and across frequencies. Coherence
values were estimated across three frequency bands: alpha
(8-15Hz), beta (15-30 Hz), and gamma (30-60 Hz), which are
commonly associated with distinct neural sources. Specifically,
alpha-band coherence is associated with subcortical drive,
particularly from brainstem structures such as the reticulospinal
tract, and is often linked to automatic control of rhythmic movement
(Conway et al., 1995). In contrast, beta- and gamma-band coherence
are both associated with corticospinal contributions from the
sensorimotor cortex (Salenius et al., 1997; Baker and Baker, 2003;
Borhanazad et al.,, 2024), but we analyzed them separately because
they are thought to reflect different motor control processes.
Beta coherence is typically stronger during steady, continuous
movements and is linked to maintaining stable motor output
and sustained sensorimotor integration (Baker and Baker, 2003;
Borhanazad et al., 2024), whereas gamma coherence tends to
appear during rapid or changing movements and may support
brief, task-specific bursts of corticospinal drive (Mima et al., 2000;
Brown et al., 1998; Borhanazad et al., 2024).

For each participant, coherence was computed individually
and later pooled across participants to derive group-level
coherence estimates. Coherence estimates were averaged over
gait cycles and time offsets within each condition. Following
the approach by Halliday etal. (Halliday et al, 1995) and
Weersink et al. (Weersink et al., 2021a), significant coherence values
(P <0.05) were identified and prepared for visualization in the
time-frequency heat maps.

To assess the directionality of coupling, we applied the
method  (Halliday, 2015),
which separates coherence into forward, reverse, and zero-lag

non-parametric  decomposition
components. First, the SEMG signals were pre-whitened to remove
autocorrelation structure while preserving their coherence. Each
signal’s Fourier transform was divided by its amplitude spectrum
(i.e., the square root of its autospectrum), yielding whitened
(w) = f}‘j;,(a)) =1. The cross-
spectrum of the whitened signals, f;;(w), is therefore equal in

processes with flat unit spectra f

magnitude to the original coherence spectrum. We then performed
an inverse Fourier transform on f}‘j;(w) to obtain the time-domain
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cross-correlation function between the two signals, which is given
by Equation 4 (Halliday, 2015):

b= 3| S e @

The resulting time-domain function, p,,(7), was separated
into lag ranges corresponding to reverse-lag (negative lags),
zero-lag, and forward-lag (positive lags) interactions. Each
segment was individually transformed back into the frequency
domain, producing three coherence components, as described in
Equation 5 (Halliday, 2015):

IRy (@)1 = IR, (@) P+ IR, o (@) P + R, @)P (5)

These components reflect direction-specific coherence: forward-
lag indicates upper-limb influence on lower limb, reverse-lag
indicates lower-limb influence on upper limb, and zero-lag reflects
common input. Directional coherence was computed for each
participant and condition, and the results were used to quantify task-
specific modulation of interlimb neural coupling. All computations
were implemented in MATLAB 2024a.

2.7 Statistical analysis

Walking speed, arm ROM, and arm ROM ratio were analyzed
using linear mixed-effects models in SPSS v29 (IBM Corp., Armonk,
NY, USA), similar to the statistical approach used in our previous
work (Khiyara et al,, 2025). Walking condition (Baseline, Fast,
Cueing) was included as a fixed main effect, with participant ID
as a random effect to account for repeated measurements within
participants. Gender was modeled as a fixed factor, and age and
BMI were included as covariates. BMI was calculated from measured
height and body mass using the standard formula: body mass
(kg) divided by height squared (m?). Two-way interaction terms
between gender, age, and BMI were included in the models to
assess potential moderating effects on gait outcomes. Post hoc
pairwise comparisons between walking conditions were performed
with Bonferroni-adjusted confidence intervals (CI) to control for
multiple comparisons. All statistical analyses were conducted at
a significance level of a=0.05. Grand mean coherence values
within each frequency band (alpha: 8-15Hz, beta: 15-30 Hz,
gamma: 30-60 Hz) were compared across walking conditions using
non-parametric Friedman’s ANOVA for related samples. When a
significant main effect was observed, post hoc Wilcoxon signed-
rank tests were performed for pairwise comparisons, and p-
values were adjusted using the Benjamini-Hochberg false discovery
rate (FDR) procedure to control for multiple testing (Benjamini
and Hochberg, 1995; Benjamini and Yekutieli, 2001). Statistical
comparisons of forward and reverse coherence components were
performed using Wilcoxon signed-rank tests on the area under
the curve (AUC) within the alpha (8-15Hz), beta (15-30 Hz),
and gamma (30-60 Hz) frequency bands. To account for multiple
comparisons and limit false positives, p-values were adjusted
using the Benjamini-Hochberg FDR procedure (Benjamini and
Hochberg, 1995; Benjamini and Yekutieli, 2001). A significance level
of « = 0.05 was used for all tests. This statistical approach was based
on the methods described by Weersink et al. (2021a).
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3 Results
3.1 Gait speed and arm swing metrics

Figure 2 shows group means and standard deviations for
walking speed, arm ROM, and arm ROM ratio across the Baseline,
Fast, and Cueing conditions. The pairwise comparison results are
displayed in Figure 2, in the form of asterisks for the p value and
a line connecting the significant bar plots. In Figure 2a, a significant
main effect of condition was found for gait speed (F(2,32) = 25.33,
p <0.001, 1712, = 0.613). Pairwise comparisons revealed that gait speed
was significantly higher in both Fast and Cueing compared to
Baseline (p < 0.001 for both), with no significant difference between
Fast and Cueing. These findings suggest that rhythmic cueing
elicited a gait speed increase similar to that observed with self-
selected Fast walking.

As shown in Figure 2b, arm ROM was significantly affected by
walking condition (F(2,32) = 11.02, p < 0.001, r]; =0.408). Pairwise
comparisons revealed that arm ROM was significantly greater in
the Cueing condition compared to Baseline walking (p < 0.001),
with no significant differences between Baseline and Fast or
between Fast and Cueing. Although not statistically significant,
the average arm ROM during the Cueing condition was 16.5%
higher than during the Fast condition. This trend suggests
that rhythmic haptic cueing can increase arm swing amplitude
beyond that achieved during voluntary Fast walking, aligning with
previous findings (Khiyara et al., 2025).

Finally, as shown in Figure 2¢, there was a trend indicating
that walking condition may have affected the arm ROM ratio
(F(2,32) =3.13, p=0.057, 7 = 0.164), though this effect did not
reach statistical significance. An arm ROM ratio value of 1 indicates
perfect symmetry between the left and right arms. To assess the
degree of symmetry in each condition, one-sample t-tests were
performed against a reference ratio of 1. The Baseline condition
(0.853 +£0.390) was not significantly different from 1 (p =0.139),
nor were the Fast (1.027 +0.487, p = 0.821) and Cueing (0.989 +
0.305, p = 0.881) conditions. Pairwise comparisons between walking
conditions showed no statistically significant differences between
Baseline, Fast, and Cueing after correction for multiple comparisons.
Although the differences were not statistically significant, these
results suggest that trends toward improved arm swing symmetry
were observed in Fast and Cueing compared to Baseline. Consistent
with our previous findings (Khiyara et al., 2025), some participants
exhibited individual improvements in arm symmetry, underscoring
the potential for personalized effects of rhythmic cueing even in the
absence of statistically significant group-level differences.

3.2 Intermuscular coherence

Time-dependent intermuscular coherence was computed
between the anterior deltoid (AD) and posterior deltoid (PD)
muscles (left and right), as well as the bilateral biceps femoris (BF)
and rectus femoris (RF) muscles. Figures 3, 4 show time-frequency
coherence heatmaps for the Baseline, Fast, and Cueing walking
conditions. Coherence is plotted across the normalized gait cycle
percentage.
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FIGURE 2

Group means and standard deviations for (a) gait speed, (b) arm ROM, and (c) arm ROM ratio across Baseline, Fast, and Cueing conditions. Significant
pairwise differences are indicated by asterisks: *p < 0.05, **p < 0.01, ***p < 0.001.
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Time—frequency coherence heatmaps between the left (a) and right (b) AD and bilateral lower-limb muscles (BF and RF) across three walking
conditions: Baseline, Fast, and Cueing. Coherence is plotted over the normalized gait cycle based on the right heel strike (x-axis) and frequency range
0-70 Hz (y-axis). Frequency bands are denoted by dashed lines: « (8-15 Hz),  (15-30 Hz), and y (30-60 Hz). Color indicates coherence magnitude

(0-0.15), with warmer colors representing stronger coupling.

For the left AD-leg muscle pairs (Figure 3a), coherence during
Baseline walking was primarily confined to the « band (8-15 Hz;
mean = 0.0449) with low magnitude. For the 8 (15-30 Hz; mean =
0.0339) and y band (30-60 Hz; mean = 0.0291), coherence values
were minimal. During the Fast condition, & coherence increased
slightly (mean = 0.0547) and extended over a larger portion of the
gait cycle, accompanied by a small rise in 3 coherence (mean =
0.0415) and y coherence (mean = 0.0331). Cueing further increased

Frontiers in Physiology

a coherence (mean = 0.0571) and produced a modest gain in
B coherence compared to Baseline (0.0372 vs. 0.0339), while y
coherence showed only a small change from Baseline (0.0311 vs.
0.0291) and remained low. Pairwise analysis of individual muscle
combinations (Supplementary Figures S1-S3) indicated significant
a-band increases from Baseline to Fast and from Baseline to
Cueing for the Left AD-Right RF pairing (p <0.05), and a f-
band increase from Baseline to Fast for the Left AD-Left RF
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Time-frequency coherence heatmaps between the left (a) and right (b) PD and bilateral lower-limb muscles across Baseline, Fast, and Cueing
conditions. Coherence is plotted over the normalized gait cycle (x-axis) and frequency range 0—-70 Hz (y-axis). Frequency bands are denoted by dashed
lines: a (8-15 Hz), $ (15-30 Hz), and y (30-60 Hz). Color indicates coherence magnitude (0-0.15), with warmer colors representing stronger coupling.

pairing (p < 0.05). For the right AD-leg muscle pairs (Figure 3b),
Baseline a-band coherence was higher (mean = 0.0533) than for
the left AD-leg muscle pairs. f (mean = 0.0352) and y (mean
= 0.0325) coherence remained low. In the Fast condition, «
coherence increased further (mean = 0.0558), 3 coherence rose
to 0.0411, and y coherence showed a small increase to 0.0320.
Cueing produced the highest « coherence compared to Baseline
(0.0610 vs. 0.0533) and Fast (0.0610 vs. 0.0558), and slightly elevated
B coherence compared to Baseline (0.0402 vs. 0.0352), with y
coherence remaining low and comparable to Baseline (0.0297 vs.
0.0325). Pairwise results (Supplementary Figures S1-S3) revealed
a significant y-band increase from Baseline to Fast for the Right
AD-Left BF pairing (p < 0.05).

For the left PD-leg muscle pairs (Figure 4a), coherence during
Baseline walking was dominated by the a band (8-15 Hz; mean =
0.0568) across most pairings; - (15-30 Hz; mean = 0.0368) and
y-band (30-60 Hz; mean = 0.0279) coherence were minimal. In
the Fast condition, a coherence increased (mean = 0.0660) and
became more consistently distributed across the gait cycle. This
was accompanied by a rise in § coherence (mean = 0.0418) and
a slight increase in y coherence (mean = 0.0297). Cueing further

increased « coherence (mean = 0.0684) compared to Baseline
(0.0568) and Fast (0.0660), while 3 coherence slightly decreased
from Fast (0.0383 vs. 0.0418) and y coherence remained low (mean =
0.0292). Pairwise analysis (Supplementary Figures S1-S3) revealed
significant a-band increases from Baseline to Fast for the Left
PD-Right BF pairing (p < 0.01) and from Baseline to Cueing for the
same pairing (p < 0.05). For the right PD (Figure 4b), Baseline a-
band coherence was strong (mean = 0.0582) similar to the coherence
of the left PD. In both the 8 and y bands, coherence was low
(means = 0.0355 and 0.0290, respectively). In the Fast condition,
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a coherence increased to 0.0612, 3 coherence rose to 0.0377, and
y coherence to 0.0305. Cueing produced the highest & coherence
compared to Baseline and Fast (0.0665 vs. 0.0582 and 0.0612), while
[ coherence was similar to Fast and above Baseline (0.0375 vs. 0.0377
and 0.0355), and y coherence remained low and close to Baseline
(0.0291 vs. 0.0290). Coherence was generally higher between the
right PD and contralateral leg muscles than with ipsilateral leg
muscles. Pairwise results (Supplementary Figures S1-S3) indicated
a significant $-band increase from Baseline to Fast for the Right
PD-Left BF pairing (p < 0.05).

Across all conditions and frequency bands, PD-leg coherence
values were consistently higher than AD-leg coherence, although
none of these differences reached statistical significance. This trend
was most apparent in the a band, where PD-leg coherence exceeded
AD-leg coherence in Baseline (p = 0.1588), Fast (p = 0.1676), and
Cue (p = 0.2000) conditions. In the 3 and y bands, coherence values
between AD and PD were similar, with no clear visual separation.

Finally, as shown in Figure 5, when coherence values across
all upper-lower limb muscle pairs were analyzed using Friedman’s
ANOVA, significant effects of walking condition were found in all
three frequency bands. In the « band, coherence was significantly
greater during Fast compared to Baseline (p < 0.01), during Cueing
compared to Baseline (p < 0.001) and during Cueing compared to
Fast (p <0.01). In the 8 band, both Fast and Cueing conditions
exhibited significantly higher coherence than Baseline (p < 0.01 with
Cueing and p < 0.001 with Fast). In the y band, coherence was
significantly greater during Fast compared to Baseline (p < 0.001).
These findings indicate that faster walking and rhythmic haptic
cueing are associated with increased intermuscular coherence
between the upper and lower limbs, with the largest relative increases
observed in the « band.

frontiersin.org


https://doi.org/10.3389/fphys.2025.1657092
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Khiyara et al.

0.25 ; - -

0.1 ]
a (8—i5 Hz) 2 (15!30 Hz) ~ (30!60 Hz)

’ O Baseline ® Fast ® Cue|

Coherence

0.0571

FIGURE 5

Intermuscular coherence between upper and lower limb muscle pairs
within the a (8-15 Hz),  (15-30 Hz), and y (30-60 Hz) frequency
bands across walking conditions (Baseline, Fast, Cueing). Each box
represents the median (horizontal line) and interquartile range (IQR),
with whiskers indicating the true minimum and maximum values
across all subject—pair combinations. Statistical differences were
assessed using non-parametric Friedman’s ANOVA for related samples
on the subject—pair data, followed by Wilcoxon signed-rank tests with
Benjamini—Hochberg FDR correction for multiple comparisons.
Significant pairwise differences are indicated by asterisks: "p <

0.05, **p < 0.01, ***p < 0.001 (after FDR correction).

3.3 Directionality coherence

To determine the direction of neural influence, coherence
was decomposed into forward-lag (+; arm — leg), reverse-lag
(- leg — arm), and zero-lag (0; shared input) components
using Halliday’s non-parametric directionality framework (Halliday,
2015). Figures 6-8 illustrate the directional coherence spectra results
between upper- and lower-limb muscles for the Baseline, Fast,
and Cueing conditions, respectively, across alpha (8-15 Hz), beta
(15-30 Hz), and gamma (30-60 Hz) frequency bands.

Each subplot shows a muscle pair with zero-lag (0, black
line; shared neural drive), forward-lag (+, red line; arm-to-leg
influence), and reverse-lag (-, blue line; leg-to-arm influence)
coherence components. Shaded areas denote 95% Cls and the dotted
horizontal line marks significance/confidence limit. Consistent with
Weersink et al. (Weersink et al., 2021a), only the FDR-corrected
Wilcoxon p-values for the forward versus reverse (+ < —) area-
under-the-curve comparison are annotated. We did not perform
statistical comparisons involving the zero-lag component, as it
reflects shared (common) neural drive rather than directional
influence; thus, we focused on comparing forward and reverse
components only.

During the Baseline condition (Figure 6), zero-lag coherence
was present in every shoulder-leg combination, confirming a strong
shared drive. After FDR correction, the forward-lag component
exceeded the reverse-lag component in several specific pairs,
indicating a top-down arm — leg influence. The left AD-left BF pair
showed significant beta- (p = 0.041) and gamma-band (p = 0.020)
coherence. Additional gamma-band shoulder-to-leg coupling was
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observed for the left PD-left BF (p = 0.032) and right PD-left BF
(p =0.041) pairs. In the alpha band (8-15Hz), a significant effect
emerged for right PD-right BF (p = 0.041) and for right RF-left AD
(p = 0.041); the latter pair also reached significance in the gamma
band (p =0.041). The right RF-left PD pair exhibited significant
beta (p=0.032) and gamma (p =0.020) coherence, while right
RF-right AD was significant in the beta band (p = 0.035). Reverse-
lag coherence never surpassed forward-lag for any shoulder-leg pair
or frequency band.

In the Fast condition (Figure?7), forward-lag coherence
consistently exceeded reverse-lag coherence for all shoulder-leg
combinations, with significant effects occurring in at least one of the
frequency bands (alpha, beta, or gamma) for each pair. In the Cueing
condition (Figure 8), a larger number of shoulder-leg pairs reached
significance in the forward-versus reverse-lag comparison compared
to Baseline, further reflecting a strengthened top-down influence
during rhythmic haptic cueing, which was used to synchronize arm
swing to a target rhythm designed to increase walking speed and arm
ROM. Significant forward-lag coherence was especially prevalent in
the gamma band, with multiple ipsilateral and contralateral muscle
pairings surpassing the confidence limit and showing statistical
significance after correction. As shown in Figure 8, the detailed p-
values for all significant pairs indicate that rhythmic haptic cueing
increases the number of muscle pairs exhibiting forward dominance
and broadens the frequency range of this effect relative to the
Baseline condition. One exception is the left AD-right BF pair,
which, similar to Baseline, did not reach significance in the Cueing
condition; in the Fast condition, this pair exhibited significant
forward-lag coherence in both the alpha and beta bands.

For every subject-pair combination, the AUC of the zero-,
forward-, and reverse-lag spectra was integrated within each
frequency band. Each AUC was then expressed as a percentage of
the sum of the three components. These percentages were averaged
across participants within a muscle pair and subsequently across all
the pairs; the resulting grand means and standard deviations are
reported in Table 1.

Across all conditions, zero-lag coherence accounted for
approximately half of the total coherence, indicating that interlimb
coupling was primarily driven by a common (zero-lag) input.
Forward-lag coherence was consistently greater than reverse-lag
coherence, reflecting a predominant arm — leg influence. In each
condition, the zero-lag component increased from the alpha to
the gamma band, while reverse-lag showed the opposite trend.
Zero-lag coherence also showed a small but consistent increase
from Baseline to Fast to Cueing across all frequency bands, with
reverse-lag decreasing accordingly. These patterns suggest a modest
strengthening of the common drive and a reduction in the leg — arm
component with faster gait and rhythmic haptic cueing.

Building on the pair-level averages in Table 1; Figure 9 presents
box plots including all participants’ data in each frequency across
the conditions. For each participant, coherence values were averaged
across all shoulder-leg pairs to provide an overall upper-versus
lower-limb value in each frequency band and condition. Then, the
data of all participants were used to calculate the box plots for
each frequency band for each condition. Across all conditions, the
separation between forward- and reverse-lag coherence was evident
across all frequency bands. In Baseline, forward- and reverse-lag
coherence were the closest, differing by less than 10% across all
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FIGURE 6

Directional coherence spectra for Baseline between upper- and lower-limb muscles. Subplots (4 x 4) show zero-lag (O, black), forward-lag (+, red),
and reverse-lag (-, blue) coherence; shaded areas are 95% Cls, and the horizontal dotted line marks the 95% confidence threshold for significance,
assuming the time series are uncorrelated. P-values for AUC comparisons (+vs. —) are annotated by (+< -) in each subplot.

frequency bands. In contrast, both Fast and Cueing showed a larger
separation between forward and reverse components in every band,
indicating a clearer predominance of arm — leg influence under
these conditions. While forward-lag coherence was significantly
greater than reverse-lag coherence in all conditions, the effect was
particularly strong (p < 0.001) in all cases other than the Baseline
a-band, where the difference was also significant (p < 0.01). These
plots illustrate variability across individuals and confirm that the
forward dominance observed in the averages was consistent at the
individual level.
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4 Discussion
4.1 Overview of findings

This study demonstrates that rhythmic haptic cueing of arm
swing significantly influences gait performance and enhances
neuromuscular coordination in older adults. Specifically, the Cueing
condition, in which arm swing cycle time was reduced, resulted
in a significant increase in arm range of motion (ROM) and a
corresponding significant improvement in gait speed compared
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FIGURE 7

Directional coherence spectra for Fast between upper- and lower-limb muscles. Subplots (4 x 4) show zero-lag (0, black), forward-lag (+, red), and
reverse-lag (-, blue) coherence; shaded areas are 95% Cls, and the dotted line marks significance. P-values for AUC comparisons (+vs. —) are

annotated by (+< -) in each subplot.

to Baseline. A similar trend was observed in the Fast condition,
where gait speed increased significantly, though increases in arm
ROM did not reach significance. Although improvements in arm
ROM ratio were not statistically significant at the group level,
individual-level enhancements were observed. These behavioral
improvements coincided with increased intermuscular coherence
in the alpha and beta bands, and a notable presence of gamma-
band coherence in directionality analysis in the forward-lag (arm
to leg) component. Together, these results suggest that the cueing
intervention activated both subcortical and cortical pathways to
enhance interlimb coordination.
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4.2 Interpretation of gait metrics

The significant increase in gait speed observed in the
Cueing condition reinforces the hypothesis that modulating
arm swing can influence lower-limb output through interlimb
coupling, as reported previously (Khiyara et al., 2025). While Fast
walking also increased gait speed, the Cueing condition achieved
comparable improvements without consciously trying to walk faster,
highlighting the potential of externally driven arm swing training for
older adults with reduced mobility. The significant 40.6% increase in
arm ROM during Cueing compared to Baseline, along with a 16.5%
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increase relative to Fast (not significant), suggests that rhythmic
cueing can elicit greater upper-limb engagement than both normal
and voluntary fast walking. Previous studies have highlighted the
importance of arm swing amplitude in enhancing trunk stability
and reducing energy expenditure during gait (Ortega et al., 2008;
Meyns et al., 2013). Our findings are consistent with this body of
research, supporting the view that increased arm swing amplitude
contributes to both biomechanical and neuromuscular efficiency
(Huang and Ferris, 2004; Umberger, 2008). Although changes
in arm ROM ratio did not reach statistical significance at the
group level (p=0.057), inspection of individual data revealed
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that several participants moved closer to perfect symmetry in the
Cueing condition. This suggests the potential of subject-specific
responsiveness to rhythmic cueing, highlighting the need for further
research into personalized cueing protocols.

4.3 Intermuscular coherence
Intermuscular coherence is a neurophysiological measure that

quantifies the correlation in the frequency domain between
EMG signals recorded from two distinct muscles, reflecting the
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TABLE 1 Grand mean + SD from per-pair means for Baseline, Fast, and Cueing.

10.3389/fphys.2025.1657092

Condition Frequency band Zero-lag Forward-lag Reverse-lag
Baseline Alpha 484+ 4.4 299+44 21.8+£5.0
Baseline Beta 53.2+5.5 28.6+4.2 18.1 +4.2
Baseline Gamma 54.8+4.9 275+£25 17.7 £3.7
Fast Alpha 48.8 £5.4 31.6+£32 19.7 £4.7
Fast Beta 543 +5.1 299+3.1 159+3.2
Fast Gamma 56.5+4.6 27.8+2.1 157 +3.3
Cueing Alpha 49.3+6.6 316+5.1 19.1+4.3
Cueing Beta 553+6.3 285146 162 £3.7
Cueing Gamma 583+5.3 26.8+2.5 149 +3.8
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FIGURE 9
Proportion of forward (red) and reverse (blue) intermuscular coherence in the a-, -, and y-bands across walking conditions (Baseline, Fast, Cue). Data
represent all muscle pairs combined to provide an overall comparison of upper-to lower-limb coherence direction. Box plots show the median, IQR,
and whiskers from the true minimum to the maximum observed values, thereby illustrating variability across all participants. Significance bars indicate
results of within-subject comparisons between directions for each condition (**p < 0.01, ***p < 0.001; paired Wilcoxon tests with Benjamini—-Hochberg
FDR correction).

common neural input shared between their motor unit pools
(Dos Santos et al., 2020; De Freitas et al., 2025; Weersink, 2021).
This shared neural input may originate from cortical, subcortical,
or spinal pathways that collectively coordinate muscle activation
during rhythmic tasks such as walking (Farmer et al, 1993;
Grosse et al., 2004; Weersink et al., 2021a; De Freitas et al., 2025).
Intermuscular coherence is typically stronger between muscle pairs
with close anatomical and functional relationships, making it a
valuable tool for exploring neural circuitry involved in motor control
and detecting impairments in these pathways (Farina et al., 2004).
The present coherence results indicate that both normal walking
(Baseline and Fast) and rhythmic haptic cueing engage multiple
levels of the central nervous system. At the group level (Figure 5),
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walking condition significantly modulated intermuscular coherence
between upper and lower limbs in all bands: in the alpha-band,
coherence increased stepwise (Fast > Baseline; Cue > Baseline;
Cue > Fast); in the beta band, both Fast and Cue exceeded Baseline;
and in the gamma band, Fast exceeded Baseline whereas Cue did
not. These effects were quantified with Friedman’s ANOVA on the
full set of subject-pair values, followed by Wilcoxon signed-rank
tests with Benjamini-Hochberg FDR correction. The increase in
alpha coherence with Fast, and most prominently with Cueing,
is consistent with strengthened common subcortical drive and
spinal patterning, likely mediated by reticulospinal pathways. This
is supported by central pattern generators (CPGs) and propriospinal
interlimb connections, which form long descending and ascending
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pathways linking cervical (arm) and lumbar (leg) CPG networks to
coordinate diagonal arm-leg movement during gait (Weersink et al.,
2021a; Zehr and Duysens, 2004; Dietz, 2003; Klarner and Zehr,
2018). In practical terms, rhythmic haptic cueing can help
synchronize the timing of arm and leg movements and modulate
CPG output, and our results show that this could amplify the
shared neural drive between upper and lower limbs more effectively
than simply walking faster, as shown by the significantly higher
alpha-band coherence in the Cueing condition (Figure5). Past
work has shown that CPG activity can be tuned by sensory input,
including proprioceptive and cutaneous feedback (Dietz, 2003;
Zehr and Duysens, 2004; Klarner and Zehr, 2018). In the present
study, rhythmic vibration to the arm likely provided cutaneous
afferents directly and proprioceptive afferents indirectly through
larger and more regular arm swings, both of which could influence
CPG output. Consistent with prior work, sensory-driven signals
can modulate CPG activity via propriospinal pathways, adjusting
rhythmic arm-leg coordination to meet task demands (Dietz,
2003; Zehr and Duysens, 2004; Klarner and Zehr, 2018). Although
CPG activity was not measured directly here, the band-specific
intermuscular coherence patterns and established neuroanatomy
support this interpretation. By enhancing the timing and amplitude
of arm movements, cueing may have strengthened the sensory drive
from the upper limbs to spinal circuits coordinating gait, which
could help explain the greater alpha-band intermuscular coherence
often associated with shared subcortical/spinal drive.

The beta-band increases observed in both Fast and Cue
compared to Baseline are consistent with previous findings
that more challenging or coordinated walking tasks increase
EMG-EMG coherence. These beta-band effects likely reflect
added corticospinal contributions for sensorimotor integration
and adaptive control under higher demand and tighter timing
constraints (De Freitas et al., 2025; Da Silva Costa et al., 2024;
Kerkman et al., 2020). Similarly, Kerkman et al. (2020) reported
increased intermuscular coherence in the alpha and lower beta
bands during 1:1 arm-leg coordination. In our study, Fast
walking likely promoted this natural 1:1 coupling, as typically
seen at higher speeds (Tester et al., 2012), whereas the Cueing
system enforced it by delivering rhythmic arm vibrations in
synchrony with the contralateral heel strike (Noghani et al,
2021; Noghani et al., 2023; Khiyara et al., 2025). This precise
synchronization likely strengthened the interlimb coupling that
contributed to the observed increases in alpha- and low beta-band
coherence.

The significant, though visually small, gamma increase with Fast
(but not Cue) suggests that high-frequency neural coupling is more
influenced by the effort and focus needed for faster walking than
by the timing effects of external cueing. Gamma-band coherence
is typically observed during rapid or changing movements and is
thought to reflect brief, task-specific bursts of corticospinal drive
(Mima et al., 2000; Brown et al., 1998; Borhanazad et al., 2024). The
greater gamma coherence in the Fast condition likely reflects the
additional corticospinal engagement required for rapid, voluntary
gait adjustments. For older adults, this heightened neural demand
may have contributed to the greater physical and cognitive effort of
walking faster without cueing, whereas rhythmic cueing may have
reduced reliance on such high-frequency drive by shifting control
toward alpha-band mechanisms, thereby lowering the perceived
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difficulty. This interpretation aligns with prior work showing that
greater task difficulty is associated with increased higher-band
coherence (Da Silva Costa et al., 2024; De Freitas et al., 2025).

Overall, these band-specific changes suggest a distributed
control framework in which spinal and brainstem circuits (including
CPGs and reticulospinal pathways) provide rhythmic patterning and
interlimb coupling, while corticospinal contributions scale with the
demands of speed and external timing, consistent with established
evidence of arm-leg coupling during gait (Weersink et al., 2021a;
Kerkman et al., 2020; De Freitas et al., 2025).

When looking at specific muscle pairs (Supplementary Figures
S1-S3), significant changes clustered in contralateral (diagonal)
shoulder-leg combinations: Left AD-Right RF (a: Fast > Baseline,
Cue > Baseline; p < 0.05), Right AD-Left BF (y: Fast > Baseline;
P <0.05), Left PD-Right BF (a: Fast > Baseline, p < 0.01; Cue >
Baseline, p < 0.05), and Right PD-Left BF (f: Fast > Baseline;
p <0.05). Only one ipsilateral effect was observed: Left AD-Left
RF (f3: Fast > Baseline; p < 0.05). This contralateral predominance
(i.e., 4 contralateral cases out of 5 significant cases) is consistent
with diagonal interlimb coupling in human gait and with proposed
propriospinal cervical-lumbar linkages and reticulospinal drive
coordinating arm-leg rhythms (Weersink et al., 2021a; Zehr and
Duysens, 2004; Dietz, 2003). Notably, the two significant effects
involving cueing occurred in the alpha band (Left AD-Right RE, Cue
> Baseline, p < 0.05; Left PD-Right BE, Cue > Baseline, p < 0.05),
suggesting that rhythmic haptic cueing appears to preferentially
augment subcortical/spinal shared drive across diagonals. Speed-
related effects were also present in the alpha band (Left AD-Right
RE, Fast > Baseline, p < 0.05; Left PD-Right BE, Fast > Baseline,
p <0.01), but in addition extended into the beta- and gamma bands
(Right PD-Left BE, f: Fast > Baseline, p < 0.05; Left AD-Left RF,
B: Fast > Baseline, p < 0.05; Right AD-Left BE, y: Fast > Baseline,
p <0.05), consistent with greater corticospinal engagement under
higher demand.

Across all conditions, the posterior deltoid (PD) muscle showed
a consistent (but non-significant) trend toward higher alpha-
band coherence with proximal leg muscles compared to the
anterior deltoid (AD) muscle. This contrasts with findings from
Weersink et al. (2021a); Weersink (2021), who showed comparable
coherence values between AD and PD with proximal leg muscles
in older adults, suggesting a similar level of neural coupling.
Our results instead suggest a preferential coupling between the
PD and leg muscles, particularly in the alpha-band range, which
may reflect greater reliance on subcortical pathways. Given the
biomechanical role in shoulder extension during the backward
swing phase of gait and its function as a postural stabilizer
(Pontzer et al., 2009; Barthelemy and Nielsen, 2010; La Scaleia et al.,
2014), the stronger coherence with leg muscles may reflect enhanced
interlimb coordination via reticulospinal pathways. This supports
the interpretation of our results that the PD contributes more
substantially than the AD to rhythmic interlimb coordination
during steady-state walking. Given that the present AD-PD
contrasts did not reach significance (a: p =0.1588-0.2000), this
interpretation should be considered as hypothesis-generating,
pending future work with greater power and targeted comparisons
(PD-leg vs. AD-leg). In the  and y bands, AD and PD coherence
appeared similar, consistent with the lack of clear visual separation.
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4.4 Directional coherence

The decomposition of coherence into directional components
revealed distinct differences in neural influence between the
Baseline, Fast, and Cueing conditions. A prominent zero-lag
component was consistently observed across all shoulder-leg muscle
pairs, suggesting a shared presynaptic drive likely originating
from both subcortical sources (e.g., reticulospinal pathways) and
cortical contributions (Weersink et al., 2021a). This pattern supports
the role of common neural input, possibly stemming from
the CPGs, reticulospinal pathways, and cortical (corticospinal)
contributions, in coordinating rhythmic upper and lower-limb
activity during gait. Because this zero-lag component reflects shared
rather than directional influence, no statistical comparisons were
performed on it, and the analysis instead focused on the directional
forward- and reverse-lag components, following the approach of
Weersink et al. (Weersink et al., 2021a).

During the Baseline condition (Figure 6), forward-lag coherence
(arm — leg) exceeded reverse-lag coherence (leg — arm) in a
limited number of shoulder-leg muscle pairs, with significant
effects emerging primarily in the beta and gamma frequency
bands. These findings indicate a modest top-down influence
from arm to leg muscles during steady-state gait, consistent with
previous research (Weersink et al., 2021a), which reported forward-
directed coherence in specific muscle combinations, particularly
involving the right deltoid, and attributed this pattern to both
subcortical and cortical contributions.

Both increasing walking speed and applying rhythmic vibration
cueing enhanced forward-lag coherence (arm — leg) compared
to Baseline, indicating a stronger top-down influence from the
upper to lower limbs. In the Fast condition, forward-lag coherence
was greater than reverse-lag coherence in all shoulder-leg muscle
pairs, with at least one frequency band (@, f3, or y) reaching
significance for each pair. This suggests that faster walking increases
the influence of arm swing on leg muscles, likely because higher
gait speeds demand more precise step timing and foot clearance,
requiring stronger phase-specific cortical control (Petersen et al.,
2012). While previous lower-limb studies have found limited
or inconsistent effects of speed on within-limb synchronization
(Halliday et al., 2003; Charalambous and Hadjipapas, 2022), our
findings indicate that upper-lower limb directionality is more
sensitive to speed, possibly because interlimb coordination needs to
increase when gait becomes faster.

In the Cueing condition, forward-lag coherence was also greater
than reverse-lag coherence for nearly all muscle pairs, with only
one pair (left AD-right BF) not reaching significance. Compared
to Baseline, Cueing increased the number of significant pairs and
produced effects in the alpha, beta, and gamma band. This pattern
likely reflects the combined contributions of bilateral subcortical
drive, providing a shared rhythmic signal between arms and
legs, and phase-specific cortical adjustments that fine-tune muscle
activation during the gait cycle (Charalambous and Hadjipapas,
2022; Weersink et al., 2021a; Grosse and Brown, 2003; Conway et al.,
1995; Salenius et al., 1997; Fisher et al., 2012). The vibration-based
rhythm may help synchronize arm swing more precisely, reinforcing
the shared rhythmic drive while enhancing the accuracy of swing-
phase.
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Across both Fast and Cueing conditions, forward-lag coherence
increased in the alpha, beta, and gamma bands, indicating the
parallel involvement of complementary descending pathways.
This pattern suggests that increasing walking speed or applying
rhythmic haptic cueing strengthens top-down arm-to-leg drive
by simultaneously enhancing subcortical pathways (alpha-
band coherence) and cortical pathways (beta-/gamma-band
coherence). The alpha-band coherence is associated with bilateral,
automatic drive from corticoreticulospinal and reticulospinal
projections (Charalambous and Hadjipapas, 2022; Weersink et al.,
2021a) and may also reflect coordinated output from spinal
CPGs that link cervical and lumbar locomotor networks via
propriospinal connections (Zehr and Duysens, 2004; Dietz, 2003;
Klarner and Zehr, 2018). Beta-/gamma-band coherence reflects
corticospinal contributions for phase-specific, goal-directed control
(Petersen et al., 2012; Fisher et al., 2012; Lemon, 2008). These
pathways work together during walking, with alpha-band and
CPG-related drives providing a bilateral framework for rhythmic
coordination, and beta/gamma-band activity refining movement
precision. Weersink et al. (2021a) reported this coexistence of
alpha and beta coherence during normal walking. In our study,
this pattern was present at Baseline but was amplified in the Fast
and Cueing conditions, with greater magnitude and broader spatial
distribution, suggesting that increasing walking speed or providing
rhythmic arm swing stimulation can enhance both the shared
rhythmic drive and the precise cortical modulation that together
coordinate upper-lower limb interactions.

Reverse-lag coherence did not statistically exceed forward-
lag coherence in any pair or frequency band in either condition.
This asymmetry supports the interpretation of a predominantly
descending neural influence from the arm to leg muscles.
Weersink et al. (2021a) similarly found no cases where reverse-
lag coherence significantly exceeded forward-lag coherence
and reported comparable forward and reverse coherence in
some muscle combinations during normal walking—consistent
with our Baseline results. Our results build on these findings
by showing that speed and externally modulated arm swing
increase forward-directed coherence. These results reinforce
the notion that upper-limb motion is not merely a passive
component of gait but can actively drive lower-limb activity
through distributed neural circuits involving both the brainstem
and motor cortex (Weersink et al., 2021a).

4.5 Relationship between gait metrics and
intermuscular coherence

To place these neural effects in behavioral context, cueing
elicited the largest increase in arm swing, 40.6% relative to
Baseline and an additional 16.5% relative to Fast, and the largest
increase in alpha-band intermuscular coherence, consistent
with stronger sensory inputs that modulates spinal locomotor
circuits (Dietz, 2003; Zehr and Duysens, 2004; Weersink et al.,
2021a). Both Fast and Cueing conditions increased arm range
of motion, which paralleled increases in forward-lag coherence,
indicating a stronger top-down influence from arms to legs. Both
conditions also increased gait speed and beta-band coherence,
whereas only the Fast condition increased gamma-band coherence,

frontiersin.org


https://doi.org/10.3389/fphys.2025.1657092
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Khiyara et al.

suggesting that high-frequency coupling relates more to the effort
of voluntary speeding than to speed alone (De Freitas et al,
2025; Da Silva Costa et al., 2024; Kerkman et al., 2020). Overall,
cueing may alter the mechanism by which speed is achieved,
favoring subcortical/spinal common drive (higher «) and enhancing
directional arm-to-leg influence, rather than broadly upscaling
higher-frequency coupling. While these findings highlight potential
parallel changes in movement kinematics and neural coupling,
we did not examine across-participant correlations between
behavioral changes and intermuscular coherence, as the study
was not explicitly designed or powered for such analyses;
future work with larger, dedicated designs should address these
associations.

4.6 Clinical and rehabilitation implications

The directional coherence findings carry important implications
for gait rehabilitation in older adults and individuals with
neurological disorders such as Parkinson’s disease. Cueing that
reduces arm swing CT can enhance interlimb neural coupling
and increase gait speed without requiring conscious control of
walking speed, making it a promising intervention for individuals
with fatigue or impaired motor control. Previous studies have
shown that passive or externally guided arm swing can improve
gait initiation and coordination in individuals with Parkinsonian
gait (Weersink et al., 2020; Weersink et al., 2021b; Weersink et al.,
2022a; Weersink et al., 2022b; Kawashima et al., 2008). Moreover,
the observed increases in beta- and gamma-band coherence
suggest that rhythmic cueing may engage cortical pathways and
promote neuroplasticity. These findings raise the possibility that
long-term cueing interventions could yield lasting improvements
in motor control, an area that warrants further investigation in
future research.

This dual engagement of subcortical and cortical pathways
has important implications for rehabilitation strategies. Rhythmic
cueing interventions may be effective precisely because they
engage multiple levels of the motor hierarchy simultaneously,
potentially facilitating both immediate motor adjustments and
longer-term motor learning. In clinical populations with impaired
cortical function, the preservation of subcortical responses to
rhythmic cues may provide an alternative pathway for motor
rehabilitation.

4.7 Limitations and future directions

Despite the promising findings, several limitations should be
acknowledged. The sample size (N = 17) could limit statistical
power, especially for detecting subtle effects in arm swing symmetry.
The participants only underwent a short period of walking,
completing one lap around the track (200 m) while receiving haptic
stimuli during the Cueing condition. In the present study, we
focused on upper and proximal lower limb muscles (AD, PD,
BE RF), consistent with prior work by Weersink et al. (2021a),
Weersink et al. (2022b), which reported the strongest coherence
in these upper-lower limb muscle pairs. This selection of proximal
lower-limb muscles was further based on studies employing
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arm-thigh kinematic coupling to investigate interlimb coordination
during gait (Hejrati et al., 2017; Carpinella et al., 2010). However,
future work should also examine distal lower-limb muscles, such
as the medial gastrocnemius (MG) and tibialis anterior (TA), to
provide a more comprehensive view of gait control. Moreover, while
EMG analysis offers indirect evidence of neural coupling, it cannot
localize specific neural generators. Integrating EEG and EMG could
provide greater specificity in identifying cortical contributions.
Additionally, this study focused on the acute effects of rhythmic
cueing; future work should evaluate the long-term effects of such
cueing on gait parameters, neuromuscular coordination, and fall
risk. Exploring individual differences in responsiveness to cueing
may also support the development of adaptive, personalized gait
training systems.

It is worth noting that the distinction between subcortical
and cortical contributions based solely on frequency bands
should be interpreted with caution. While alpha-band activity
is predominantly subcortical, and beta/gamma activity is
predominantly cortical, there is likely considerable overlap and
interaction between these systems that may not be fully captured by
frequency-domain analysis alone.

5 Conclusion

Rhythmic haptic cueing that targets arm swing cycle time
enhances arm range of motion, gait speed, and interlimb
neural coupling in older adults. These behavioral and neural
improvements support the incorporation of upper limb-focused
cueing systems into gait rehabilitation protocols. While our
previous study (Khiyara et al., 2025) demonstrated the benefit of
arm swing training in older adults in terms of key spatiotemporal
gait parameters, the current study investigated the underlying
neural mechanism to explain those improvements. The observed
increase in alpha- and beta-band coherence and forward-lag
directional influence highlights the active role of the arms in driving
coordinated lower-limb activity, advancing our understanding
of interlimb neural dynamics during walking. Collectively, these
results support the hypothesis that rhythmic arm movement actively
contributes to gait coordination through coupled subcortical
and corticospinal mechanisms. Targeting this interlimb coupling
through rhythmic arm cueing offers a promising rehabilitation
strategy for improving gait performance and stability, particularly
in older adults and individuals with gait impairments.
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