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Modulating arm swing via haptic 
cueing alters interlimb neural 
coupling in older adults
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Purpose: Age-related gait impairments are strongly associated with increased 
fall risk, disability, and mortality. While traditional rehabilitation focuses on the 
lower limbs, arm movements play a key role in stabilizing gait through interlimb 
neural coupling. This study investigates whether rhythmic haptic cueing of arm 
swing, which enhances gait, affects interlimb neuromuscular coordination in 
older adults.
Methods: Seventeen older adults (mean age = 73.2 ± 6.0 years) completed 
three walking conditions: Baseline walking, self-selected Fast walking, and 
walking while rhythmically receiving haptic cues (Cueing) to increase arm 
swing frequency and walking speed. Gait speed, arm range of motion (ROM), 
and intermuscular coherence were analyzed using inertial measurement units 
(IMUs) and surface Electromyography (sEMG). Coherence and directionality 
analyses were performed in the alpha (8–15 Hz), beta (15–30 Hz), and gamma 
(30–60 Hz) frequency bands to quantify neural coupling and intermuscular 
directionality.
Results: Rhythmic Cueing significantly increased arm ROM and gait speed 
compared to Baseline walking, with improvements comparable to Fast walking. 
Overall upper–lower limb coherence increased in the alpha and beta bands 
during Cueing compared to Baseline, with Cueing also exceeding Fast in 
the alpha band. In specific muscle pairings, significant alpha-band effects 
were observed in contralateral shoulder–leg pairs, specifically between the 
left anterior deltoid and right rectus femoris, and between the left posterior 
deltoid and right biceps femoris. Directionality analysis revealed dominant 
zero-lag coherence, reflecting shared subcortical and cortical drive in the 
alpha and beta/gamma bands, respectively, and greater forward-lag coherence 
during Cueing compared to Baseline, indicating enhanced cortical arm-to-leg 
influence.
Significance: These findings demonstrate that externally cued arm swing can 
modulate gait performance and potentially interlimb neural coupling, activating 
both subcortical and cortical pathways. Rhythmic haptic cueing shows promise 
as an intervention for older adults, supporting its potential integration into 
home-based gait rehabilitation programs.
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1 Introduction

Gait impairments are a significant concern in the aging 
population, as slow or unstable walking is strongly associated with an 
increased risk of falls, disability, and even mortality (Nonnekes et al., 
2025; Montero-Odasso et al., 2022; Verghese et al., 2006). Recent 
studies confirm that even small declines in gait speed or stability 
predict higher rates of hospitalization and loss of independence 
(Nonnekes et al., 2025; Montero-Odasso et al., 2022; Hardy et al., 
2007). A combination of musculoskeletal, sensory, and neural 
changes causes these impairments. Age-related neurodegeneration, 
including early changes that precede Alzheimer’s disease, is 
now recognized as a key contributor to gait decline even in 
the absence of overt cognitive symptoms (Ali et al., 2025; 
Allali et al., 2016). Age-related reductions in interlimb coordination 
and balance are well documented, with older adults exhibiting 
greater instability and slower recovery after perturbations, reflecting 
diminished neural control and adaptability (Krasovsky et al., 2012; 
Krasovsky et al., 2014; Bruijn et al., 2010; Van Hoornweder et al., 
2022; Rezaei et al., 2024; Noghani et al., 2025).

Traditional rehabilitation approaches primarily target the legs, 
but given the growing evidence that arm movements play a 
significant role in walking, integrating arm swing into gait 
rehabilitation warrants further investigation. Arm swing is not 
merely a passive result of trunk rotation; rather, it actively 
contributes to rhythm regulation, energy conservation, and body 
stabilization during gait (Meyns et al., 2013; Punt et al., 2015; 
Bruijn et al., 2010). Restricting arm swing has been shown to 
increase instability (Bloom and Hejrati, 2021), whereas enhancing 
it can improve gait stability and coordination, potentially reducing 
the risk of falls (Krasovsky et al., 2012; Lamontagne and Fung, 2004; 
Bruijn et al., 2010; Thompson et al., 2017).

Recent work shows that training interventions such as wearable 
devices can be used to drive arm swing with rhythmic haptic cues 
(Noghani et al., 2023). Our previous study using a wearable haptic 
cueing system to shorten arm swing cycle time (CT) by 20%, led 
to a 30.2% increase in arm range of motion (ROM) and an 18.2% 
increase in walking speed in older adults (Khiyara et al., 2025). 
These results suggest that cueing the arms can improve gait speed, 
symmetry, and perceived balance and coordination in older adults.

While these findings demonstrate the potential for external 
cueing to enhance arm swing and overall gait performance, the 
underlying neural mechanisms that mediate these improvements 
remain unclear. In particular, it is not yet known whether changes 
in arm movement directly influence leg motion through neural 
pathways or if both are modulated by a shared central drive. To 
investigate this, electromyography (EMG) can be used to explore the 
directionality and coordination of neural signals between the limbs 
during locomotion.

To better understand these potential neural pathways, 
directional coherence analysis of EMG signals offers a valuable 
tool. This technique not only assesses the frequency of muscle 
activation patterns but also identifies the directionality of neural 
influence between limbs. Specifically, coherence can be decomposed 
into three components: zero-lag coherence, indicating shared 
input; forward-lag coherence, suggesting arm-to-leg influence; and 
reverse-lag coherence, indicating leg-to-arm influence (Halliday, 
2015; Weersink et al., 2021a). This partitioning allows researchers 

to determine whether limb coordination arises from a common 
neural source or reflects directional drive between arms and legs. 
For example, Weersink et al. (2021a) demonstrated that during gait, 
forward-lag coherence from arm to leg muscles reflects top-down 
cortical influence, suggesting a potential mechanism by which arm 
movement could modulate leg activity during walking.

While our previous study (Khiyara et al., 2025) demonstrated 
the benefits of arm swing training in older adults in terms of key 
spatiotemporal gait parameters, the current study aims to investigate 
the underlying neural mechanisms that may explain these 
improvements. Prior work has shown that arm swing is neurally 
coupled with leg movement during walking, involving shared 
cortical and subcortical control pathways, and that gait-related arm 
swing can drive lower limb muscles, as demonstrated by significant 
alpha and beta/gamma intermuscular coherence between upper 
and lower limbs (Weersink et al., 2021a). Alpha-band coherence, in 
particular, is often linked to subcortical rhythmic control and may 
be enhanced through synchronized arm swing driven by rhythmic 
cueing. Moreover, challenging walking tasks have been reported 
to increase intermuscular coherence (Da Silva Costa et al., 2024; 
Hüche Larsen et al., 2024). For instance, beta-band intermuscular 
coherence increased during more complex balance tasks such as 
beam walking (da Silva Costa et al., 2024; De Freitas et al., 2025). 
Similarly, proprioceptively challenging or proactive locomotor 
conditions are associated with increased EMG-EMG coherence, 
indicating augmented functional coupling under heightened task 
demands (De Freitas et al., 2025; Da Silva Costa et al., 2024). 
In addition, Kerkman et al. (2020) found that intermuscular 
coherence in the 4–22 Hz range increases during 1:1 arm–leg 
coordination (Kerkman et al., 2020), a pattern associated with faster 
walking speeds. While increased task difficulty has been associated 
with elevated intermuscular coherence, the specific effect of walking 
speed alone remains unclear. Faster walking in older adults may itself 
represent a more demanding task, potentially recruiting additional 
neural resources that support enhanced interlimb coupling.

We therefore propose that a wearable haptic cueing system 
which can increase arm swing rhythm and amplitude, as well 
as promote faster walking may influence interlimb neural 
coordination, potentially enhancing intermuscular coherence, 
particularly in the alpha (8–15 Hz) and beta (15–30 Hz) frequency 
bands. We hypothesize that both rhythmic cueing and fast walking 
can enhance intermuscular coherence and forward-lag coherence 
(arm → leg), indicating top-down neural drive. This study leverages 
advanced signal processing and directional coherence analysis to 
determine whether gait improvements arise from strengthened 
subcortical pathways, increased cortical drive, or more efficient 
bidirectional coupling between the limbs. These findings will 
guide the development of more effective, mechanism-based gait 
rehabilitation interventions for the growing population of older 
adults at risk for falls and mobility decline. 

2 Methods

2.1 Participants

The data were collected during the human subject experiment 
previously reported in our study (Khiyara et al., 2025). Here, we 

Frontiers in Physiology 02 frontiersin.org

https://doi.org/10.3389/fphys.2025.1657092
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Khiyara et al. 10.3389/fphys.2025.1657092

analyzed the data of seventeen community-dwelling older adults (6 
males/11 females; mean ± standard deviation, age: 73.2 ± 6.0 years; 
range: 65–92 years; height: 168.7 ± 8.9 cm; mass: 73.1 ± 18.5 kg) 
who self-reported being right-handed. Participants were required 
to be able to walk independently for at least 20 min continuously to 
meet the inclusion criteria. Exclusion criteria included self-reported 
conditions affecting gait, muscle function, such as peripheral 
neuropathy, Parkinson’s disease, cerebral palsy, multiple sclerosis, 
and stroke, reported via an online screening questionnaire. All 
procedures were approved by the University of Maine Institutional 
Review Board (IRB 2019-04-15). Written informed consent was 
obtained from all participants, and data were anonymized to ensure 
confidentiality. 

2.2 Experimental protocol

Each participant completed four walking conditions on an 
indoor standard 200-m track: Baseline, Fast, and two trials with 
haptic cueing as previously described (Khiyara et al., 2025). The 
Baseline and Fast conditions were performed without any cueing. 
In the Baseline condition, participants walked at their self-selected 
comfortable pace. In the Fast condition, participants walked at 
their fastest comfortable pace without running. These two walking 
conditions were conducted on a straight 60-m segment of the track. 
The Cueing condition utilized a wearable vibrotactile system to 
deliver bilateral haptic cues, aimed at modulating the timing of arm 
swing. While there were two Cueing conditions, one to reduce and 
the other to increase arm swing cycle time (CT), here we focus on 
the condition to reduce CT by 20%. This condition aimed to increase 
the frequency of arm swing (i.e., equivalent to shortening the CT) 
and thereby increase walking speed in the older-adult participants. 
Participants were instructed to synchronize peak shoulder flexion 
with the onset of vibration on that arm. The Cueing condition was 
performed over a full 200-m lap around the indoor track, and the 
participants were familiarized with the rhythmic cueing on their 
arms before the experimental trial. 

2.3 Data collection

As shown in Figure 1a, each participant’s arm was equipped 
with a haptic cueing unit secured with Velcro straps on the lateral 
side of each brachium, positioned midway between the shoulder 
and elbow. The location was chosen because it sits on soft tissue, 
avoids joints, and allows the device to remain comfortable and stable 
during walking, consistent with previous work (Noghani et al., 2023; 
Khiyara et al., 2025). Each haptic electronic unit consisted of an 
ESP8266 microcontroller, a battery, and a custom circuit board, 
which was connected to a haptic cell containing three vibrotactors. 
The haptic cell was oriented toward the front of the arm to deliver 
cues aligned with the forward motion of arm swing (Figure 1a). 
The vibrotactors vibrated at 240 Hz, a frequency that falls within 
the optimal response range of Pacinian mechanoreceptors, making 
the vibrations easily detectable and producing a clear tactile 
sensation (Noghani et al., 2021; Noghani et al., 2023; Khiyara et al., 
2025; Sharafian et al., 2025). Each vibration cue lasted 100 ms, a 
duration previously shown to produce a distinct and easily perceived 

sensation during walking (Noghani et al., 2021; Noghani et al., 2023; 
Khiyara et al., 2025). An Inertial Measurement Unit (IMU) mounted 
on each arm recorded arm swing CT and arm range of motion 
(ROM). Additional IMUs, embedded in custom 3D-printed heel 
clips, were placed on the participants’ shoes to capture gait events 
such as heel strikes and toe-offs. Surface Electromyography (sEMG) 
sensors were placed on eight muscles (Figure 1b): the shoulder 
muscles [anterior (AD) and posterior deltoid (PD)] and the upper 
leg muscles [biceps femoris (BF), and rectus femoris (RF)] of both 
the left and right limbs, following SENIAM guidelines for electrode 
positioning (Hermens et al., 1999) and Delsys guidelines for sensor 
placement (Delsys Inc, 2025; D. Inc, 2023). These specific muscles 
were selected based on a prior work by Weersink et al. (2021a), who 
conducted intermuscular coherence analysis during gait between 
bilateral shoulder muscles (AD and PD) and both proximal and 
distal lower-limb muscles in healthy participants. They reported 
that the highest coherence values were observed between shoulder 
muscles and proximal leg muscles, specifically the BF and RF.

The rhythmic haptic cues were controlled by a custom Android 
application (Noghani et al., 2021; Noghani et al., 2023) that received 
real-time foot IMU data at 60 Hz and detected heel strikes based on 
sagittal foot angle trajectories. The application managed vibrotactor 
activation by calculating a delay D to maintain rhythmic alternation 
between arms, based on foot CT measured during the Baseline 
condition (Khiyara et al., 2025). This approach is based on 1:1 
frequency coupling between arms and legs during normal speed 
walking (Hejrati et al., 2017), in which arm and foot CTs were 
matched (Noghani et al., 2023; Hejrati et al., 2016). Cueing delay D
was computed using Equation 1, as defined by Noghani et al. (2023):

D = k×
CT f ,N

2
− t (1)

where CT f ,N is the foot CT from the Baseline condition, k is the cue 
coefficient for Cueing, which was 0.8 for this study, and t is a fixed 
delay of 100 ms. The target arm CT for the Cueing condition (CTc)
was given by Equation 2 (Noghani et al., 2023):

CTc = k×CT f ,N (2)

Coefficients k < 1 produced shorter arm CTs, while k ≥ 1
increased them. For example, if CT f ,N = 1000 ms, a k = 0.8 would 
result in CTc = 800 ms and D = 500 ms. After the 10th heel strike 
detection in each Cueing condition, the Android app transmitted 
the calculated D to the ESP8266 microcontrollers via HTTP, which 
then triggered alternating vibration sequences.

sEMG signals were recorded at a sampling rate of 1926 Hz 
using the Trigno Wireless Biofeedback System by D. Inc. (2023) 
with the manufacturer’s built-in 20–450 Hz band-pass filter. 
Although this setting attenuates sub-20 Hz power, coherence 
remains mathematically preserved when the same linear time-
invariant filter is applied to both channels used in analysis; therefore, 
α (8–15 Hz) and low-β (15–30 Hz) coherence are unaffected by 
the hardware filter (Chen et al., 2018; van Asseldonk et al., 2014; 
Chen et al., 2022). This system includes wireless sensors designed for 
high-fidelity EMG acquisition, ensuring precise capture of muscle 
activity during gait (D. Inc, 2023). Sensors were placed on cleaned 
skin surfaces and oriented parallel to the muscle fibers to optimize 
signal quality. The EMG signals were transmitted wirelessly to a 
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FIGURE 1
(a) Participant with the haptic cueing system, including arm sEMG/IMU sensors, electronics unit, haptic cell, and foot IMUs. (b) Schematic of EMG 
sensor placement on AD, PD, RF, and BF (bilaterally). (c) Grand-averaged EMG envelopes over one normalized gait cycle, all segmented by the right 
heel strike (RHS, 0%–100%) for Baseline, Fast, and Cueing conditions.

base station and stored on a laptop for subsequent analysis (D. Inc, 
2023). Kinematic signals were recorded separately using Xsens IMUs 
(Xsens Technologies B.V., Enschede, The Netherlands). After data 
collection, the EMG and IMU recordings were synchronized by 
cross-correlating their triaxial acceleration signals from the same 
body segment (upper arm) and shifting the EMG data accordingly. 
This procedure aligned both systems to a common time base, 
ensuring consistent gait event timing. Once synchronized, gait 
events such as heel strikes and toe-offs were identified from the 
IMU data and used to segment the EMG signals into individual 
gait cycles. 

2.4 Spatiotemporal and kinematic data 
processing

Kinematic parameters, including walking speed, arm ROM, and 
arm ROM symmetry ratio, were calculated from the IMU data 
recorded on the arms and feet. Sagittal plane angles of the upper 
limbs were derived from the arms’ IMUs. Arm ROM was computed 
as the angular difference between maximum shoulder flexion and 
extension within a gait cycle. Arm ROM symmetry was calculated as 
the ratio of right arm ROM divided by left arm ROM, where values 
greater than 1 indicate a larger right arm ROM, values less than 1 
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indicate a larger left arm ROM, and values closer to 1 indicate greater 
symmetry (Khiyara et al., 2025). Walking speed was calculated by 
integrating linear acceleration data from foot-mounted IMUs using 
a zero-velocity update algorithm (Dadashi et al., 2013; Hossain et al., 
2023). To ensure analysis of steady-state walking, the first 10 gait 
cycles of each walking condition were discarded, and the subsequent 
30 consecutive gait cycles were analyzed (Khiyara et al., 2025;
Noghani et al., 2023). 

2.5 Preprocessing EMG data

The preprocessing for intermuscular coherence and 
directionality analysis closely followed the process described by 
Weersink et al. (2021a), with adjustments to account for different 
experimental conditions and the implementation of algorithms 
using MATLAB 2024b (MathWorks Inc. 2024). The raw sEMG 
signals were first high-pass filtered at 5 Hz using a finite impulse 
response (FIR) filter. The FIR filters were selected for their stability 
and linear phase response, which preserves the temporal structure 
of the signal (Litwin, 2000). MATLAB’s designfilt and
filtfilt functions were used to implement the filter and ensure 
zero-phase distortion. This process effectively removed the low-
frequency noise, including baseline drift and movement artifacts 
commonly introduced during gait. Following filtering, the sEMG 
signals were rectified using full-wave rectification, which converted 
all negative values to positive (Konrad, 2005; Weersink et al., 2021a). 
The filtered and rectified signals were segmented into individual gait 
cycles based on right heel strikes identified from the Xsens IMU 
data, consistent with prior EMG studies that used right-heel-strike 
segmentation (Kim et al., 2016; Kwon et al., 2023; Weersink et al., 
2021a). The first 10 steps of each condition were excluded to 
ensure the analysis of steady-state walking, and 30 gait cycles were 
analyzed for each participant (Sharafian et al., 2025; Khiyara et al., 
2025). For consistency, the 30 analyzed gait cycles during the 
cueing condition were extracted from the same straight 60-
m portion of the 200-m track as used in the Baseline and
Fast conditions.

The duration of each gait cycle was calculated, and the sEMG 
data were time-warped using linear interpolation to align each 
cycle to the individual’s average gait cycle duration. The time-
warped sEMG envelopes were normalized by expressing them 
as a percentage of the mean activity of the individual within 
each condition (Weersink et al., 2021a). The normalized sEMG 
envelopes were smoothed using a moving average filter with a 
10-ms window to further refine the signal. This preprocessing 
pipeline, which included time-warping, normalization, and 
smoothing, was applied separately for each condition, exclusively 
for visualization purposes, to generate the grand-averaged EMG 
envelopes shown in Figure 1c. For intermuscular coherence 
analysis, only the sEMG signals high-pass filtered at 5 Hz and 
rectified were used (Weersink et al., 2021a; 2022a). The signals 
were segmented into individual gait cycles based on right 
heel strikes (Weersink et al., 2021a); no time-warping was applied, 
and all original gait cycle durations were retained to avoid frequency 
distortion. Time-warping to 0%–100% of the gait cycle was applied 
only after the spectral analysis, strictly for coherence heatmap 
visualization. 

2.6 Coherence and directionality analysis

Time-dependent intermuscular coherence was computed using 
a sliding-window Fourier analysis, following the framework of 
Halliday et al. (1995) as also implemented in more recent gait studies 
(Weersink et al., 2021a; Weersink et al., 2022a). The sEMG signals 
from the upper and lower limbs were segmented with a 200 ms 
window sliding in 50 ms steps across each gait cycle. This produced a 
series of time offsets (i.e., the window positions) relative to the heel-
strike event. For each offset, auto-spectral densities fxx(ω) and fyy(ω)
and the cross-spectral density fyx(ω) were estimated by averaging 
FFT-based periodograms across all gait cycles at that offset. The 
magnitude-squared coherence between signals x and y at frequency 
ω was then calculated using Equation 3 (Halliday et al. 1995):

|Ryx (ω) |2 =
| fyx (ω)|

2

fxx (ω) fyy (ω)
(3)

This procedure yields a time-dependent coherence spectrum 
at each offset, |Ryx(ω)|2, characterizing how intermuscular coupling 
strength varies over the gait cycle and across frequencies. Coherence 
values were estimated across three frequency bands: alpha 
(8–15 Hz), beta (15–30 Hz), and gamma (30–60 Hz), which are 
commonly associated with distinct neural sources. Specifically, 
alpha-band coherence is associated with subcortical drive, 
particularly from brainstem structures such as the reticulospinal 
tract, and is often linked to automatic control of rhythmic movement 
(Conway et al., 1995). In contrast, beta- and gamma-band coherence 
are both associated with corticospinal contributions from the 
sensorimotor cortex (Salenius et al., 1997; Baker and Baker, 2003; 
Borhanazad et al., 2024), but we analyzed them separately because 
they are thought to reflect different motor control processes. 
Beta coherence is typically stronger during steady, continuous 
movements and is linked to maintaining stable motor output 
and sustained sensorimotor integration (Baker and Baker, 2003; 
Borhanazad et al., 2024), whereas gamma coherence tends to 
appear during rapid or changing movements and may support 
brief, task-specific bursts of corticospinal drive (Mima et al., 2000; 
Brown et al., 1998; Borhanazad et al., 2024).

For each participant, coherence was computed individually 
and later pooled across participants to derive group-level 
coherence estimates. Coherence estimates were averaged over 
gait cycles and time offsets within each condition. Following 
the approach by Halliday et al. (Halliday et al., 1995) and 
Weersink et al. (Weersink et al., 2021a), significant coherence values 
(P < 0.05) were identified and prepared for visualization in the 
time-frequency heat maps.

To assess the directionality of coupling, we applied the 
non-parametric decomposition method (Halliday, 2015), 
which separates coherence into forward, reverse, and zero-lag 
components. First, the sEMG signals were pre-whitened to remove 
autocorrelation structure while preserving their coherence. Each 
signal’s Fourier transform was divided by its amplitude spectrum 
(i.e., the square root of its autospectrum), yielding whitened 
processes with flat unit spectra fw

xx(ω) = fw
yy(ω) = 1. The cross-

spectrum of the whitened signals, fw
yx(ω), is therefore equal in 

magnitude to the original coherence spectrum. We then performed 
an inverse Fourier transform on fw

yx(ω) to obtain the time-domain 
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cross-correlation function between the two signals, which is given 
by Equation 4 (Halliday, 2015):

ρyx (τ) =
1

2π
∫

π

−π
fw
yx (ω)e

iωτdω (4)

The resulting time-domain function, ρyx(τ), was separated 
into lag ranges corresponding to reverse-lag (negative lags), 
zero-lag, and forward-lag (positive lags) interactions. Each 
segment was individually transformed back into the frequency 
domain, producing three coherence components, as described in 
Equation 5 (Halliday, 2015):

|Ryx (ω) |2 = |R′yx;− (ω) |2 + |R
′
yx;0 (ω) |

2 + |R′yx;+ (ω) |2 (5)

These components reflect direction-specific coherence: forward-
lag indicates upper-limb influence on lower limb, reverse-lag 
indicates lower-limb influence on upper limb, and zero-lag reflects 
common input. Directional coherence was computed for each 
participant and condition, and the results were used to quantify task-
specific modulation of interlimb neural coupling. All computations 
were implemented in MATLAB 2024a. 

2.7 Statistical analysis

Walking speed, arm ROM, and arm ROM ratio were analyzed 
using linear mixed-effects models in SPSS v29 (IBM Corp., Armonk, 
NY, USA), similar to the statistical approach used in our previous 
work (Khiyara et al., 2025). Walking condition (Baseline, Fast, 
Cueing) was included as a fixed main effect, with participant ID 
as a random effect to account for repeated measurements within 
participants. Gender was modeled as a fixed factor, and age and 
BMI were included as covariates. BMI was calculated from measured 
height and body mass using the standard formula: body mass 
(kg) divided by height squared (m2). Two-way interaction terms 
between gender, age, and BMI were included in the models to 
assess potential moderating effects on gait outcomes. Post hoc 
pairwise comparisons between walking conditions were performed 
with Bonferroni-adjusted confidence intervals (CI) to control for 
multiple comparisons. All statistical analyses were conducted at 
a significance level of α = 0.05. Grand mean coherence values 
within each frequency band (alpha: 8–15 Hz, beta: 15–30 Hz, 
gamma: 30–60 Hz) were compared across walking conditions using 
non-parametric Friedman’s ANOVA for related samples. When a 
significant main effect was observed, post hoc Wilcoxon signed-
rank tests were performed for pairwise comparisons, and p-
values were adjusted using the Benjamini–Hochberg false discovery 
rate (FDR) procedure to control for multiple testing (Benjamini 
and Hochberg, 1995; Benjamini and Yekutieli, 2001). Statistical 
comparisons of forward and reverse coherence components were 
performed using Wilcoxon signed-rank tests on the area under 
the curve (AUC) within the alpha (8–15 Hz), beta (15–30 Hz), 
and gamma (30–60 Hz) frequency bands. To account for multiple 
comparisons and limit false positives, p-values were adjusted 
using the Benjamini–Hochberg FDR procedure (Benjamini and 
Hochberg, 1995; Benjamini and Yekutieli, 2001). A significance level 
of α = 0.05 was used for all tests. This statistical approach was based 
on the methods described by Weersink et al. (2021a). 

3 Results

3.1 Gait speed and arm swing metrics

Figure 2 shows group means and standard deviations for 
walking speed, arm ROM, and arm ROM ratio across the Baseline, 
Fast, and Cueing conditions. The pairwise comparison results are 
displayed in Figure 2, in the form of asterisks for the p value and 
a line connecting the significant bar plots. In Figure 2a, a significant 
main effect of condition was found for gait speed (F(2,32) = 25.33, 
p < 0.001, η2

p = 0.613). Pairwise comparisons revealed that gait speed 
was significantly higher in both Fast and Cueing compared to 
Baseline (p < 0.001 for both), with no significant difference between 
Fast and Cueing. These findings suggest that rhythmic cueing 
elicited a gait speed increase similar to that observed with self-
selected Fast walking.

As shown in Figure 2b, arm ROM was significantly affected by 
walking condition (F(2,32) = 11.02, p < 0.001, η2

p = 0.408). Pairwise 
comparisons revealed that arm ROM was significantly greater in 
the Cueing condition compared to Baseline walking (p < 0.001), 
with no significant differences between Baseline and Fast or 
between Fast and Cueing. Although not statistically significant, 
the average arm ROM during the Cueing condition was 16.5% 
higher than during the Fast condition. This trend suggests 
that rhythmic haptic cueing can increase arm swing amplitude 
beyond that achieved during voluntary Fast walking, aligning with 
previous findings (Khiyara et al., 2025).

Finally, as shown in Figure 2c, there was a trend indicating 
that walking condition may have affected the arm ROM ratio 
(F(2,32) = 3.13, p = 0.057, η2

p = 0.164), though this effect did not 
reach statistical significance. An arm ROM ratio value of 1 indicates 
perfect symmetry between the left and right arms. To assess the 
degree of symmetry in each condition, one-sample t-tests were 
performed against a reference ratio of 1. The Baseline condition 
(0.853± 0.390) was not significantly different from 1 (p = 0.139), 
nor were the Fast (1.027± 0.487, p = 0.821) and Cueing (0.989±
0.305, p = 0.881) conditions. Pairwise comparisons between walking 
conditions showed no statistically significant differences between 
Baseline, Fast, and Cueing after correction for multiple comparisons. 
Although the differences were not statistically significant, these 
results suggest that trends toward improved arm swing symmetry 
were observed in Fast and Cueing compared to Baseline. Consistent 
with our previous findings (Khiyara et al., 2025), some participants 
exhibited individual improvements in arm symmetry, underscoring 
the potential for personalized effects of rhythmic cueing even in the 
absence of statistically significant group-level differences. 

3.2 Intermuscular coherence

Time-dependent intermuscular coherence was computed 
between the anterior deltoid (AD) and posterior deltoid (PD) 
muscles (left and right), as well as the bilateral biceps femoris (BF) 
and rectus femoris (RF) muscles. Figures 3, 4 show time–frequency 
coherence heatmaps for the Baseline, Fast, and Cueing walking 
conditions. Coherence is plotted across the normalized gait cycle 
percentage.
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FIGURE 2
Group means and standard deviations for (a) gait speed, (b) arm ROM, and (c) arm ROM ratio across Baseline, Fast, and Cueing conditions. Significant 
pairwise differences are indicated by asterisks: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

FIGURE 3
Time–frequency coherence heatmaps between the left (a) and right (b) AD and bilateral lower-limb muscles (BF and RF) across three walking 
conditions: Baseline, Fast, and Cueing. Coherence is plotted over the normalized gait cycle based on the right heel strike (x-axis) and frequency range 
0–70 Hz (y-axis). Frequency bands are denoted by dashed lines: α (8–15 Hz), β (15–30 Hz), and γ (30–60 Hz). Color indicates coherence magnitude 
(0–0.15), with warmer colors representing stronger coupling.

For the left AD-leg muscle pairs (Figure 3a), coherence during 
Baseline walking was primarily confined to the α band (8–15 Hz; 
mean = 0.0449) with low magnitude. For the β (15–30 Hz; mean = 
0.0339) and γ band (30–60 Hz; mean = 0.0291), coherence values 
were minimal. During the Fast condition, α coherence increased 
slightly (mean = 0.0547) and extended over a larger portion of the 
gait cycle, accompanied by a small rise in β coherence (mean = 
0.0415) and γ coherence (mean = 0.0331). Cueing further increased 

α coherence (mean = 0.0571) and produced a modest gain in 
β coherence compared to Baseline (0.0372 vs. 0.0339), while γ
coherence showed only a small change from Baseline (0.0311 vs. 
0.0291) and remained low. Pairwise analysis of individual muscle 
combinations (Supplementary Figures S1–S3) indicated significant 
α-band increases from Baseline to Fast and from Baseline to 
Cueing for the Left AD–Right RF pairing (p < 0.05), and a β-
band increase from Baseline to Fast for the Left AD–Left RF 
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FIGURE 4
Time–frequency coherence heatmaps between the left (a) and right (b) PD and bilateral lower-limb muscles across Baseline, Fast, and Cueing 
conditions. Coherence is plotted over the normalized gait cycle (x-axis) and frequency range 0–70 Hz (y-axis). Frequency bands are denoted by dashed 
lines: α (8–15 Hz), β (15–30 Hz), and γ (30–60 Hz). Color indicates coherence magnitude (0–0.15), with warmer colors representing stronger coupling.

pairing (p < 0.05). For the right AD-leg muscle pairs (Figure 3b), 
Baseline α-band coherence was higher (mean = 0.0533) than for 
the left AD-leg muscle pairs. β (mean = 0.0352) and γ (mean 
= 0.0325) coherence remained low. In the Fast condition, α
coherence increased further (mean = 0.0558), β coherence rose 
to 0.0411, and γ coherence showed a small increase to 0.0320. 
Cueing produced the highest α coherence compared to Baseline 
(0.0610 vs. 0.0533) and Fast (0.0610 vs. 0.0558), and slightly elevated 
β coherence compared to Baseline (0.0402 vs. 0.0352), with γ
coherence remaining low and comparable to Baseline (0.0297 vs. 
0.0325). Pairwise results (Supplementary Figures S1–S3) revealed 
a significant γ-band increase from Baseline to Fast for the Right 
AD–Left BF pairing (p < 0.05).

For the left PD-leg muscle pairs (Figure 4a), coherence during 
Baseline walking was dominated by the α band (8–15 Hz; mean = 
0.0568) across most pairings; β- (15–30 Hz; mean = 0.0368) and 
γ-band (30–60 Hz; mean = 0.0279) coherence were minimal. In 
the Fast condition, α coherence increased (mean = 0.0660) and 
became more consistently distributed across the gait cycle. This 
was accompanied by a rise in β coherence (mean = 0.0418) and 
a slight increase in γ coherence (mean = 0.0297). Cueing further 
increased α coherence (mean = 0.0684) compared to Baseline 
(0.0568) and Fast (0.0660), while β coherence slightly decreased 
from Fast (0.0383 vs. 0.0418) and γ coherence remained low (mean = 
0.0292). Pairwise analysis (Supplementary Figures S1–S3) revealed 
significant α-band increases from Baseline to Fast for the Left 
PD–Right BF pairing (p < 0.01) and from Baseline to Cueing for the 
same pairing (p < 0.05). For the right PD (Figure 4b), Baseline α-
band coherence was strong (mean = 0.0582) similar to the coherence 
of the left PD. In both the β and γ bands, coherence was low 
(means = 0.0355 and 0.0290, respectively). In the Fast condition, 

α coherence increased to 0.0612, β coherence rose to 0.0377, and 
γ coherence to 0.0305. Cueing produced the highest α coherence 
compared to Baseline and Fast (0.0665 vs. 0.0582 and 0.0612), while 
β coherence was similar to Fast and above Baseline (0.0375 vs. 0.0377 
and 0.0355), and γ coherence remained low and close to Baseline 
(0.0291 vs. 0.0290). Coherence was generally higher between the 
right PD and contralateral leg muscles than with ipsilateral leg 
muscles. Pairwise results (Supplementary Figures S1–S3) indicated 
a significant β-band increase from Baseline to Fast for the Right 
PD–Left BF pairing (p < 0.05).

Across all conditions and frequency bands, PD–leg coherence 
values were consistently higher than AD–leg coherence, although 
none of these differences reached statistical significance. This trend 
was most apparent in the α band, where PD–leg coherence exceeded 
AD–leg coherence in Baseline (p = 0.1588), Fast (p = 0.1676), and 
Cue (p = 0.2000) conditions. In the β and γ bands, coherence values 
between AD and PD were similar, with no clear visual separation.

Finally, as shown in Figure 5, when coherence values across 
all upper–lower limb muscle pairs were analyzed using Friedman’s 
ANOVA, significant effects of walking condition were found in all 
three frequency bands. In the α band, coherence was significantly 
greater during Fast compared to Baseline (p < 0.01), during Cueing 
compared to Baseline (p < 0.001) and during Cueing compared to 
Fast (p < 0.01). In the β band, both Fast and Cueing conditions 
exhibited significantly higher coherence than Baseline (p < 0.01 with 
Cueing and p < 0.001 with Fast). In the γ band, coherence was 
significantly greater during Fast compared to Baseline (p < 0.001). 
These findings indicate that faster walking and rhythmic haptic 
cueing are associated with increased intermuscular coherence 
between the upper and lower limbs, with the largest relative increases 
observed in the α band.
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FIGURE 5
Intermuscular coherence between upper and lower limb muscle pairs 
within the α (8–15 Hz), β (15–30 Hz), and γ (30–60 Hz) frequency 
bands across walking conditions (Baseline, Fast, Cueing). Each box 
represents the median (horizontal line) and interquartile range (IQR), 
with whiskers indicating the true minimum and maximum values 
across all subject–pair combinations. Statistical differences were 
assessed using non-parametric Friedman’s ANOVA for related samples 
on the subject–pair data, followed by Wilcoxon signed-rank tests with 
Benjamini–Hochberg FDR correction for multiple comparisons. 
Significant pairwise differences are indicated by asterisks: ∗p <
0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 (after FDR correction).

3.3 Directionality coherence

To determine the direction of neural influence, coherence 
was decomposed into forward-lag (+; arm → leg), reverse-lag 
(−; leg → arm), and zero-lag (0; shared input) components 
using Halliday’s non-parametric directionality framework (Halliday, 
2015). Figures 6–8 illustrate the directional coherence spectra results 
between upper- and lower-limb muscles for the Baseline, Fast, 
and Cueing conditions, respectively, across alpha (8–15 Hz), beta 
(15–30 Hz), and gamma (30–60 Hz) frequency bands.

Each subplot shows a muscle pair with zero-lag (0, black 
line; shared neural drive), forward-lag (+, red line; arm-to-leg 
influence), and reverse-lag (–, blue line; leg-to-arm influence) 
coherence components. Shaded areas denote 95% CIs and the dotted 
horizontal line marks significance/confidence limit. Consistent with 
Weersink et al. (Weersink et al., 2021a), only the FDR-corrected 
Wilcoxon p-values for the forward versus reverse (+ ↔ −) area-
under-the-curve comparison are annotated. We did not perform 
statistical comparisons involving the zero-lag component, as it 
reflects shared (common) neural drive rather than directional 
influence; thus, we focused on comparing forward and reverse 
components only.

During the Baseline condition (Figure 6), zero-lag coherence 
was present in every shoulder–leg combination, confirming a strong 
shared drive. After FDR correction, the forward-lag component 
exceeded the reverse-lag component in several specific pairs, 
indicating a top-down arm → leg influence. The left AD–left BF pair 
showed significant beta- (p = 0.041) and gamma-band (p = 0.020)
coherence. Additional gamma-band shoulder-to-leg coupling was 

observed for the left PD–left BF (p = 0.032) and right PD–left BF 
(p = 0.041) pairs. In the alpha band (8–15Hz), a significant effect 
emerged for right PD–right BF (p = 0.041) and for right RF–left AD 
(p = 0.041); the latter pair also reached significance in the gamma 
band (p = 0.041). The right RF–left PD pair exhibited significant 
beta (p = 0.032) and gamma (p = 0.020) coherence, while right 
RF–right AD was significant in the beta band (p = 0.035). Reverse-
lag coherence never surpassed forward-lag for any shoulder–leg pair 
or frequency band.

In the Fast condition (Figure 7), forward-lag coherence 
consistently exceeded reverse-lag coherence for all shoulder–leg 
combinations, with significant effects occurring in at least one of the 
frequency bands (alpha, beta, or gamma) for each pair. In the Cueing 
condition (Figure 8), a larger number of shoulder–leg pairs reached 
significance in the forward-versus reverse-lag comparison compared 
to Baseline, further reflecting a strengthened top-down influence 
during rhythmic haptic cueing, which was used to synchronize arm 
swing to a target rhythm designed to increase walking speed and arm 
ROM. Significant forward-lag coherence was especially prevalent in 
the gamma band, with multiple ipsilateral and contralateral muscle 
pairings surpassing the confidence limit and showing statistical 
significance after correction. As shown in Figure 8, the detailed p-
values for all significant pairs indicate that rhythmic haptic cueing 
increases the number of muscle pairs exhibiting forward dominance 
and broadens the frequency range of this effect relative to the 
Baseline condition. One exception is the left AD–right BF pair, 
which, similar to Baseline, did not reach significance in the Cueing 
condition; in the Fast condition, this pair exhibited significant 
forward-lag coherence in both the alpha and beta bands.

For every subject–pair combination, the AUC of the zero-,
forward-, and reverse-lag spectra was integrated within each 
frequency band. Each AUC was then expressed as a percentage of 
the sum of the three components. These percentages were averaged 
across participants within a muscle pair and subsequently across all 
the pairs; the resulting grand means and standard deviations are 
reported in Table 1.

Across all conditions, zero-lag coherence accounted for 
approximately half of the total coherence, indicating that interlimb 
coupling was primarily driven by a common (zero-lag) input. 
Forward-lag coherence was consistently greater than reverse-lag 
coherence, reflecting a predominant arm → leg influence. In each 
condition, the zero-lag component increased from the alpha to 
the gamma band, while reverse-lag showed the opposite trend. 
Zero-lag coherence also showed a small but consistent increase 
from Baseline to Fast to Cueing across all frequency bands, with 
reverse-lag decreasing accordingly. These patterns suggest a modest 
strengthening of the common drive and a reduction in the leg → arm 
component with faster gait and rhythmic haptic cueing.

Building on the pair-level averages in Table 1; Figure 9 presents 
box plots including all participants’ data in each frequency across 
the conditions. For each participant, coherence values were averaged 
across all shoulder–leg pairs to provide an overall upper-versus 
lower-limb value in each frequency band and condition. Then, the 
data of all participants were used to calculate the box plots for 
each frequency band for each condition. Across all conditions, the 
separation between forward- and reverse-lag coherence was evident 
across all frequency bands. In Baseline, forward- and reverse-lag 
coherence were the closest, differing by less than 10% across all 
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FIGURE 6
Directional coherence spectra for Baseline between upper- and lower-limb muscles. Subplots (4×  4) show zero-lag (0, black), forward-lag (+, red), 
and reverse-lag (–, blue) coherence; shaded areas are 95% CIs, and the horizontal dotted line marks the 95% confidence threshold for significance, 
assuming the time series are uncorrelated. P-values for AUC comparisons (+vs. –) are annotated by (+↔ -) in each subplot.

frequency bands. In contrast, both Fast and Cueing showed a larger 
separation between forward and reverse components in every band, 
indicating a clearer predominance of arm → leg influence under 
these conditions. While forward-lag coherence was significantly 
greater than reverse-lag coherence in all conditions, the effect was 
particularly strong (p < 0.001) in all cases other than the Baseline 
α-band, where the difference was also significant (p < 0.01). These 
plots illustrate variability across individuals and confirm that the 
forward dominance observed in the averages was consistent at the 
individual level.

4 Discussion

4.1 Overview of findings

This study demonstrates that rhythmic haptic cueing of arm 
swing significantly influences gait performance and enhances 
neuromuscular coordination in older adults. Specifically, the Cueing 
condition, in which arm swing cycle time was reduced, resulted 
in a significant increase in arm range of motion (ROM) and a 
corresponding significant improvement in gait speed compared 
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FIGURE 7
Directional coherence spectra for Fast between upper- and lower-limb muscles. Subplots (4×  4) show zero-lag (0, black), forward-lag (+, red), and 
reverse-lag (–, blue) coherence; shaded areas are 95% CIs, and the dotted line marks significance. P-values for AUC comparisons (+vs. –) are 
annotated by (+↔ -) in each subplot.

to Baseline. A similar trend was observed in the Fast condition, 
where gait speed increased significantly, though increases in arm 
ROM did not reach significance. Although improvements in arm 
ROM ratio were not statistically significant at the group level, 
individual-level enhancements were observed. These behavioral 
improvements coincided with increased intermuscular coherence 
in the alpha and beta bands, and a notable presence of gamma-
band coherence in directionality analysis in the forward-lag (arm 
to leg) component. Together, these results suggest that the cueing 
intervention activated both subcortical and cortical pathways to 
enhance interlimb coordination. 

4.2 Interpretation of gait metrics

The significant increase in gait speed observed in the 
Cueing condition reinforces the hypothesis that modulating 
arm swing can influence lower-limb output through interlimb 
coupling, as reported previously (Khiyara et al., 2025). While Fast 
walking also increased gait speed, the Cueing condition achieved 
comparable improvements without consciously trying to walk faster, 
highlighting the potential of externally driven arm swing training for 
older adults with reduced mobility. The significant 40.6% increase in 
arm ROM during Cueing compared to Baseline, along with a 16.5% 
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FIGURE 8
Directional coherence spectra for Cueing between upper- and lower-limb muscles. Subplots (4×  4) show zero-lag (0, black), forward-lag (+, red), and 
reverse-lag (–, blue) coherence; shaded areas are 95% CIs, and the dotted line marks significance. P-values for AUC comparisons (+vs. –) are 
annotated by (+↔ -) in each subplot.

increase relative to Fast (not significant), suggests that rhythmic 
cueing can elicit greater upper-limb engagement than both normal 
and voluntary fast walking. Previous studies have highlighted the 
importance of arm swing amplitude in enhancing trunk stability 
and reducing energy expenditure during gait (Ortega et al., 2008; 
Meyns et al., 2013). Our findings are consistent with this body of 
research, supporting the view that increased arm swing amplitude 
contributes to both biomechanical and neuromuscular efficiency 
(Huang and Ferris, 2004; Umberger, 2008). Although changes 
in arm ROM ratio did not reach statistical significance at the 
group level (p = 0.057), inspection of individual data revealed 

that several participants moved closer to perfect symmetry in the 
Cueing condition. This suggests the potential of subject-specific 
responsiveness to rhythmic cueing, highlighting the need for further 
research into personalized cueing protocols. 

4.3 Intermuscular coherence

Intermuscular coherence is a neurophysiological measure that 
quantifies the correlation in the frequency domain between 
EMG signals recorded from two distinct muscles, reflecting the 
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TABLE 1  Grand mean ± SD from per-pair means for Baseline, Fast, and Cueing.

Condition Frequency band Zero-lag Forward-lag Reverse-lag

Baseline Alpha 48.4 ± 4.4 29.9 ± 4.4 21.8 ± 5.0

Baseline Beta 53.2 ± 5.5 28.6 ± 4.2 18.1 ± 4.2

Baseline Gamma 54.8 ± 4.9 27.5 ± 2.5 17.7 ± 3.7

Fast Alpha 48.8 ± 5.4 31.6 ± 3.2 19.7 ± 4.7

Fast Beta 54.3 ± 5.1 29.9 ± 3.1 15.9 ± 3.2

Fast Gamma 56.5 ± 4.6 27.8 ± 2.1 15.7 ± 3.3

Cueing Alpha 49.3 ± 6.6 31.6 ± 5.1 19.1 ± 4.3

Cueing Beta 55.3 ± 6.3 28.5 ± 4.6 16.2 ± 3.7

Cueing Gamma 58.3 ± 5.3 26.8 ± 2.5 14.9 ± 3.8

FIGURE 9
Proportion of forward (red) and reverse (blue) intermuscular coherence in the α-, β-, and γ-bands across walking conditions (Baseline, Fast, Cue). Data 
represent all muscle pairs combined to provide an overall comparison of upper-to lower-limb coherence direction. Box plots show the median, IQR, 
and whiskers from the true minimum to the maximum observed values, thereby illustrating variability across all participants. Significance bars indicate 
results of within-subject comparisons between directions for each condition (∗∗p < 0.01, ∗∗∗p < 0.001; paired Wilcoxon tests with Benjamini–Hochberg 
FDR correction).

common neural input shared between their motor unit pools 
(Dos Santos et al., 2020; De Freitas et al., 2025; Weersink, 2021). 
This shared neural input may originate from cortical, subcortical, 
or spinal pathways that collectively coordinate muscle activation 
during rhythmic tasks such as walking (Farmer et al., 1993; 
Grosse et al., 2004; Weersink et al., 2021a; De Freitas et al., 2025). 
Intermuscular coherence is typically stronger between muscle pairs 
with close anatomical and functional relationships, making it a 
valuable tool for exploring neural circuitry involved in motor control 
and detecting impairments in these pathways (Farina et al., 2004).

The present coherence results indicate that both normal walking 
(Baseline and Fast) and rhythmic haptic cueing engage multiple 
levels of the central nervous system. At the group level (Figure 5), 

walking condition significantly modulated intermuscular coherence 
between upper and lower limbs in all bands: in the alpha-band, 
coherence increased stepwise (Fast >  Baseline; Cue >  Baseline; 
Cue >  Fast); in the beta band, both Fast and Cue exceeded Baseline; 
and in the gamma band, Fast exceeded Baseline whereas Cue did 
not. These effects were quantified with Friedman’s ANOVA on the 
full set of subject–pair values, followed by Wilcoxon signed-rank 
tests with Benjamini–Hochberg FDR correction. The increase in 
alpha coherence with Fast, and most prominently with Cueing, 
is consistent with strengthened common subcortical drive and 
spinal patterning, likely mediated by reticulospinal pathways. This 
is supported by central pattern generators (CPGs) and propriospinal 
interlimb connections, which form long descending and ascending 
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pathways linking cervical (arm) and lumbar (leg) CPG networks to 
coordinate diagonal arm–leg movement during gait (Weersink et al., 
2021a; Zehr and Duysens, 2004; Dietz, 2003; Klarner and Zehr, 
2018). In practical terms, rhythmic haptic cueing can help 
synchronize the timing of arm and leg movements and modulate 
CPG output, and our results show that this could amplify the 
shared neural drive between upper and lower limbs more effectively 
than simply walking faster, as shown by the significantly higher 
alpha-band coherence in the Cueing condition (Figure 5). Past 
work has shown that CPG activity can be tuned by sensory input, 
including proprioceptive and cutaneous feedback (Dietz, 2003; 
Zehr and Duysens, 2004; Klarner and Zehr, 2018). In the present 
study, rhythmic vibration to the arm likely provided cutaneous 
afferents directly and proprioceptive afferents indirectly through 
larger and more regular arm swings, both of which could influence 
CPG output. Consistent with prior work, sensory-driven signals 
can modulate CPG activity via propriospinal pathways, adjusting 
rhythmic arm–leg coordination to meet task demands (Dietz, 
2003; Zehr and Duysens, 2004; Klarner and Zehr, 2018). Although 
CPG activity was not measured directly here, the band-specific 
intermuscular coherence patterns and established neuroanatomy 
support this interpretation. By enhancing the timing and amplitude 
of arm movements, cueing may have strengthened the sensory drive 
from the upper limbs to spinal circuits coordinating gait, which 
could help explain the greater alpha-band intermuscular coherence 
often associated with shared subcortical/spinal drive.

The beta-band increases observed in both Fast and Cue 
compared to Baseline are consistent with previous findings 
that more challenging or coordinated walking tasks increase 
EMG–EMG coherence. These beta-band effects likely reflect 
added corticospinal contributions for sensorimotor integration 
and adaptive control under higher demand and tighter timing 
constraints (De Freitas et al., 2025; Da Silva Costa et al., 2024; 
Kerkman et al., 2020). Similarly, Kerkman et al. (2020) reported 
increased intermuscular coherence in the alpha and lower beta 
bands during 1:1 arm–leg coordination. In our study, Fast 
walking likely promoted this natural 1:1 coupling, as typically 
seen at higher speeds (Tester et al., 2012), whereas the Cueing 
system enforced it by delivering rhythmic arm vibrations in 
synchrony with the contralateral heel strike (Noghani et al., 
2021; Noghani et al., 2023; Khiyara et al., 2025). This precise 
synchronization likely strengthened the interlimb coupling that 
contributed to the observed increases in alpha- and low beta-band 
coherence.

The significant, though visually small, gamma increase with Fast 
(but not Cue) suggests that high-frequency neural coupling is more 
influenced by the effort and focus needed for faster walking than 
by the timing effects of external cueing. Gamma-band coherence 
is typically observed during rapid or changing movements and is 
thought to reflect brief, task-specific bursts of corticospinal drive 
(Mima et al., 2000; Brown et al., 1998; Borhanazad et al., 2024). The 
greater gamma coherence in the Fast condition likely reflects the 
additional corticospinal engagement required for rapid, voluntary 
gait adjustments. For older adults, this heightened neural demand 
may have contributed to the greater physical and cognitive effort of 
walking faster without cueing, whereas rhythmic cueing may have 
reduced reliance on such high-frequency drive by shifting control 
toward alpha-band mechanisms, thereby lowering the perceived 

difficulty. This interpretation aligns with prior work showing that 
greater task difficulty is associated with increased higher-band 
coherence (Da Silva Costa et al., 2024; De Freitas et al., 2025).

Overall, these band-specific changes suggest a distributed 
control framework in which spinal and brainstem circuits (including 
CPGs and reticulospinal pathways) provide rhythmic patterning and 
interlimb coupling, while corticospinal contributions scale with the 
demands of speed and external timing, consistent with established 
evidence of arm–leg coupling during gait (Weersink et al., 2021a; 
Kerkman et al., 2020; De Freitas et al., 2025).

When looking at specific muscle pairs (Supplementary Figures
 S1–S3), significant changes clustered in contralateral (diagonal) 
shoulder–leg combinations: Left AD–Right RF (α: Fast >  Baseline, 
Cue >  Baseline; p < 0.05), Right AD–Left BF (γ: Fast >  Baseline; 
p < 0.05), Left PD–Right BF (α: Fast >  Baseline, p < 0.01; Cue >
Baseline, p < 0.05), and Right PD–Left BF (β: Fast >  Baseline; 
p < 0.05). Only one ipsilateral effect was observed: Left AD–Left 
RF (β: Fast >  Baseline; p < 0.05). This contralateral predominance 
(i.e., 4 contralateral cases out of 5 significant cases) is consistent 
with diagonal interlimb coupling in human gait and with proposed 
propriospinal cervical–lumbar linkages and reticulospinal drive 
coordinating arm–leg rhythms (Weersink et al., 2021a; Zehr and 
Duysens, 2004; Dietz, 2003). Notably, the two significant effects 
involving cueing occurred in the alpha band (Left AD–Right RF, Cue 
>  Baseline, p < 0.05; Left PD–Right BF, Cue >  Baseline, p < 0.05), 
suggesting that rhythmic haptic cueing appears to preferentially 
augment subcortical/spinal shared drive across diagonals. Speed-
related effects were also present in the alpha band (Left AD–Right 
RF, Fast >  Baseline, p < 0.05; Left PD–Right BF, Fast >  Baseline, 
p < 0.01), but in addition extended into the beta- and gamma bands 
(Right PD–Left BF, β: Fast >  Baseline, p < 0.05; Left AD–Left RF, 
β: Fast >  Baseline, p < 0.05; Right AD–Left BF, γ: Fast >  Baseline, 
p < 0.05), consistent with greater corticospinal engagement under 
higher demand.

Across all conditions, the posterior deltoid (PD) muscle showed 
a consistent (but non-significant) trend toward higher alpha-
band coherence with proximal leg muscles compared to the 
anterior deltoid (AD) muscle. This contrasts with findings from 
Weersink et al. (2021a); Weersink (2021), who showed comparable 
coherence values between AD and PD with proximal leg muscles 
in older adults, suggesting a similar level of neural coupling. 
Our results instead suggest a preferential coupling between the 
PD and leg muscles, particularly in the alpha-band range, which 
may reflect greater reliance on subcortical pathways. Given the 
biomechanical role in shoulder extension during the backward 
swing phase of gait and its function as a postural stabilizer 
(Pontzer et al., 2009; Barthelemy and Nielsen, 2010; La Scaleia et al., 
2014), the stronger coherence with leg muscles may reflect enhanced 
interlimb coordination via reticulospinal pathways. This supports 
the interpretation of our results that the PD contributes more 
substantially than the AD to rhythmic interlimb coordination 
during steady-state walking. Given that the present AD–PD 
contrasts did not reach significance (α: p = 0.1588–0.2000), this 
interpretation should be considered as hypothesis-generating, 
pending future work with greater power and targeted comparisons 
(PD–leg vs. AD–leg). In the β and γ bands, AD and PD coherence 
appeared similar, consistent with the lack of clear visual separation. 
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4.4 Directional coherence

The decomposition of coherence into directional components 
revealed distinct differences in neural influence between the 
Baseline, Fast, and Cueing conditions. A prominent zero-lag 
component was consistently observed across all shoulder–leg muscle 
pairs, suggesting a shared presynaptic drive likely originating 
from both subcortical sources (e.g., reticulospinal pathways) and 
cortical contributions (Weersink et al., 2021a). This pattern supports 
the role of common neural input, possibly stemming from 
the CPGs, reticulospinal pathways, and cortical (corticospinal) 
contributions, in coordinating rhythmic upper and lower-limb 
activity during gait. Because this zero-lag component reflects shared 
rather than directional influence, no statistical comparisons were 
performed on it, and the analysis instead focused on the directional 
forward- and reverse-lag components, following the approach of 
Weersink et al. (Weersink et al., 2021a).

During the Baseline condition (Figure 6), forward-lag coherence 
(arm → leg) exceeded reverse-lag coherence (leg → arm) in a 
limited number of shoulder–leg muscle pairs, with significant 
effects emerging primarily in the beta and gamma frequency 
bands. These findings indicate a modest top-down influence 
from arm to leg muscles during steady-state gait, consistent with 
previous research (Weersink et al., 2021a), which reported forward-
directed coherence in specific muscle combinations, particularly 
involving the right deltoid, and attributed this pattern to both 
subcortical and cortical contributions.

Both increasing walking speed and applying rhythmic vibration 
cueing enhanced forward-lag coherence (arm → leg) compared 
to Baseline, indicating a stronger top-down influence from the 
upper to lower limbs. In the Fast condition, forward-lag coherence 
was greater than reverse-lag coherence in all shoulder–leg muscle 
pairs, with at least one frequency band (α, β, or γ) reaching 
significance for each pair. This suggests that faster walking increases 
the influence of arm swing on leg muscles, likely because higher 
gait speeds demand more precise step timing and foot clearance, 
requiring stronger phase-specific cortical control (Petersen et al., 
2012). While previous lower-limb studies have found limited 
or inconsistent effects of speed on within-limb synchronization 
(Halliday et al., 2003; Charalambous and Hadjipapas, 2022), our 
findings indicate that upper–lower limb directionality is more 
sensitive to speed, possibly because interlimb coordination needs to 
increase when gait becomes faster.

In the Cueing condition, forward-lag coherence was also greater 
than reverse-lag coherence for nearly all muscle pairs, with only 
one pair (left AD–right BF) not reaching significance. Compared 
to Baseline, Cueing increased the number of significant pairs and 
produced effects in the alpha, beta, and gamma band. This pattern 
likely reflects the combined contributions of bilateral subcortical 
drive, providing a shared rhythmic signal between arms and 
legs, and phase-specific cortical adjustments that fine-tune muscle 
activation during the gait cycle (Charalambous and Hadjipapas, 
2022; Weersink et al., 2021a; Grosse and Brown, 2003; Conway et al., 
1995; Salenius et al., 1997; Fisher et al., 2012). The vibration-based 
rhythm may help synchronize arm swing more precisely, reinforcing 
the shared rhythmic drive while enhancing the accuracy of swing-
phase.

Across both Fast and Cueing conditions, forward-lag coherence 
increased in the alpha, beta, and gamma bands, indicating the 
parallel involvement of complementary descending pathways. 
This pattern suggests that increasing walking speed or applying 
rhythmic haptic cueing strengthens top-down arm-to-leg drive 
by simultaneously enhancing subcortical pathways (alpha-
band coherence) and cortical pathways (beta-/gamma-band 
coherence). The alpha-band coherence is associated with bilateral, 
automatic drive from corticoreticulospinal and reticulospinal 
projections (Charalambous and Hadjipapas, 2022; Weersink et al., 
2021a) and may also reflect coordinated output from spinal 
CPGs that link cervical and lumbar locomotor networks via 
propriospinal connections (Zehr and Duysens, 2004; Dietz, 2003; 
Klarner and Zehr, 2018). Beta-/gamma-band coherence reflects 
corticospinal contributions for phase-specific, goal-directed control 
(Petersen et al., 2012; Fisher et al., 2012; Lemon, 2008). These 
pathways work together during walking, with alpha-band and 
CPG-related drives providing a bilateral framework for rhythmic 
coordination, and beta/gamma-band activity refining movement 
precision. Weersink et al. (2021a) reported this coexistence of 
alpha and beta coherence during normal walking. In our study, 
this pattern was present at Baseline but was amplified in the Fast 
and Cueing conditions, with greater magnitude and broader spatial 
distribution, suggesting that increasing walking speed or providing 
rhythmic arm swing stimulation can enhance both the shared 
rhythmic drive and the precise cortical modulation that together 
coordinate upper–lower limb interactions.

Reverse-lag coherence did not statistically exceed forward-
lag coherence in any pair or frequency band in either condition. 
This asymmetry supports the interpretation of a predominantly 
descending neural influence from the arm to leg muscles. 
Weersink et al. (2021a) similarly found no cases where reverse-
lag coherence significantly exceeded forward-lag coherence 
and reported comparable forward and reverse coherence in 
some muscle combinations during normal walking—consistent 
with our Baseline results. Our results build on these findings 
by showing that speed and externally modulated arm swing 
increase forward-directed coherence. These results reinforce 
the notion that upper-limb motion is not merely a passive 
component of gait but can actively drive lower-limb activity 
through distributed neural circuits involving both the brainstem 
and motor cortex (Weersink et al., 2021a). 

4.5 Relationship between gait metrics and 
intermuscular coherence

To place these neural effects in behavioral context, cueing 
elicited the largest increase in arm swing, 40.6% relative to 
Baseline and an additional 16.5% relative to Fast, and the largest 
increase in alpha-band intermuscular coherence, consistent 
with stronger sensory inputs that modulates spinal locomotor 
circuits (Dietz, 2003; Zehr and Duysens, 2004; Weersink et al., 
2021a). Both Fast and Cueing conditions increased arm range 
of motion, which paralleled increases in forward-lag coherence, 
indicating a stronger top-down influence from arms to legs. Both 
conditions also increased gait speed and beta-band coherence, 
whereas only the Fast condition increased gamma-band coherence, 
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suggesting that high-frequency coupling relates more to the effort 
of voluntary speeding than to speed alone (De Freitas et al., 
2025; Da Silva Costa et al., 2024; Kerkman et al., 2020). Overall, 
cueing may alter the mechanism by which speed is achieved, 
favoring subcortical/spinal common drive (higher α) and enhancing 
directional arm-to-leg influence, rather than broadly upscaling 
higher-frequency coupling. While these findings highlight potential 
parallel changes in movement kinematics and neural coupling, 
we did not examine across-participant correlations between 
behavioral changes and intermuscular coherence, as the study 
was not explicitly designed or powered for such analyses; 
future work with larger, dedicated designs should address these 
associations. 

4.6 Clinical and rehabilitation implications

The directional coherence findings carry important implications 
for gait rehabilitation in older adults and individuals with 
neurological disorders such as Parkinson’s disease. Cueing that 
reduces arm swing CT can enhance interlimb neural coupling 
and increase gait speed without requiring conscious control of 
walking speed, making it a promising intervention for individuals 
with fatigue or impaired motor control. Previous studies have 
shown that passive or externally guided arm swing can improve 
gait initiation and coordination in individuals with Parkinsonian 
gait (Weersink et al., 2020; Weersink et al., 2021b; Weersink et al., 
2022a; Weersink et al., 2022b; Kawashima et al., 2008). Moreover, 
the observed increases in beta- and gamma-band coherence 
suggest that rhythmic cueing may engage cortical pathways and 
promote neuroplasticity. These findings raise the possibility that 
long-term cueing interventions could yield lasting improvements 
in motor control, an area that warrants further investigation in 
future research.

This dual engagement of subcortical and cortical pathways 
has important implications for rehabilitation strategies. Rhythmic 
cueing interventions may be effective precisely because they 
engage multiple levels of the motor hierarchy simultaneously, 
potentially facilitating both immediate motor adjustments and 
longer-term motor learning. In clinical populations with impaired 
cortical function, the preservation of subcortical responses to 
rhythmic cues may provide an alternative pathway for motor 
rehabilitation. 

4.7 Limitations and future directions

Despite the promising findings, several limitations should be 
acknowledged. The sample size (N = 17) could limit statistical 
power, especially for detecting subtle effects in arm swing symmetry. 
The participants only underwent a short period of walking, 
completing one lap around the track (200 m) while receiving haptic 
stimuli during the Cueing condition. In the present study, we 
focused on upper and proximal lower limb muscles (AD, PD, 
BF, RF), consistent with prior work by Weersink et al. (2021a), 
Weersink et al. (2022b), which reported the strongest coherence 
in these upper–lower limb muscle pairs. This selection of proximal 
lower-limb muscles was further based on studies employing 

arm–thigh kinematic coupling to investigate interlimb coordination 
during gait (Hejrati et al., 2017; Carpinella et al., 2010). However, 
future work should also examine distal lower-limb muscles, such 
as the medial gastrocnemius (MG) and tibialis anterior (TA), to 
provide a more comprehensive view of gait control. Moreover, while 
EMG analysis offers indirect evidence of neural coupling, it cannot 
localize specific neural generators. Integrating EEG and EMG could 
provide greater specificity in identifying cortical contributions. 
Additionally, this study focused on the acute effects of rhythmic 
cueing; future work should evaluate the long-term effects of such 
cueing on gait parameters, neuromuscular coordination, and fall 
risk. Exploring individual differences in responsiveness to cueing 
may also support the development of adaptive, personalized gait 
training systems.

It is worth noting that the distinction between subcortical 
and cortical contributions based solely on frequency bands 
should be interpreted with caution. While alpha-band activity 
is predominantly subcortical, and beta/gamma activity is 
predominantly cortical, there is likely considerable overlap and 
interaction between these systems that may not be fully captured by 
frequency-domain analysis alone. 

5 Conclusion

Rhythmic haptic cueing that targets arm swing cycle time 
enhances arm range of motion, gait speed, and interlimb 
neural coupling in older adults. These behavioral and neural 
improvements support the incorporation of upper limb-focused 
cueing systems into gait rehabilitation protocols. While our 
previous study (Khiyara et al., 2025) demonstrated the benefit of 
arm swing training in older adults in terms of key spatiotemporal 
gait parameters, the current study investigated the underlying 
neural mechanism to explain those improvements. The observed 
increase in alpha- and beta-band coherence and forward-lag 
directional influence highlights the active role of the arms in driving 
coordinated lower-limb activity, advancing our understanding 
of interlimb neural dynamics during walking. Collectively, these 
results support the hypothesis that rhythmic arm movement actively 
contributes to gait coordination through coupled subcortical 
and corticospinal mechanisms. Targeting this interlimb coupling 
through rhythmic arm cueing offers a promising rehabilitation 
strategy for improving gait performance and stability, particularly 
in older adults and individuals with gait impairments.
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