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Background: Kidney fibrosis (KF) represents a critical pathological alteration in
the end stage of chronic kidney disease (CKD) and is the ultimate cause of
mortality. Lipid metabolism plays a significant role in the pathogenesis of KF.
Therefore, biomarkers associated with lipid metabolism will be identified to
guide the treatment and management of CKD.

Methods: Three datasets obtained from the GEO database, along with 760
lipid metabolism-related genes sourced from two databases, were utilized to
identify lipid metabolism-associated differentially expressed genes (LMDEGs) in
KF. Subsequently, we performed GO, KEGG and ssGSEA enrichment analysis
to elucidate the characteristics of LMDEGs. Then, machine learning was
applied to identify core LMDEGs, Least Absolute Shrinkage and Selection
Operator (LASSO) was utilized to construct a diagnostic model, and Receiver
Operation Curve (ROC) was operated to evaluate the diagnostic performance.
We used unsupervised hierarchical clustering to identify subtypes of KF
associated with lipid metabolism and employed Gene Set Variation Analysis
(GSVA) to examine differences among clusters. Finally, transcription factor and
mMiRNA regulatory networks upstream of core LMDEGs were constructed using
Cytoscape software.

Results: We identified 54 LMDEGs and constructed a six core LMDEGs
(UGCG, SFRP1A6, OSBPL6, INPP5J, PNPLA3, and GK) predictive model
by LASSO regression, achieving area under the curve (AUC) values
ranging from 0.723 to 0.774. ssGSEA confirmed that these six core
LMDEGs exhibited significant positive or negative correlations with
immune cell infiltration. Based on the expression profiles of these core
LMDEGs, KF samples were categorized into three distinct subtypes. One
subtype is predominantly characterized by enhanced lipid and energy
metabolism, another exhibits features of inflammation and immune
response activation, while the third displays an intermediate pattern
between the two extremes. Moreover, the regulatory network of these
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core LMDEGs shared several common transcription factors, suggesting a
potential interplay between lipid metabolism and immune responses in the

pathogenesis of KF.

Conclusion: We have identified six core LMDEGs that are significantly associated
with KF. Based on this, we have established three distinct clusters related to lipid
metabolism in KF, which may provide valuable insights into the treatment and
management of CKD.

kidney fibrosis, lipid metabolism, machine learning, immune infiltration, chronic kidney

disease

1 Introduction

Chronic kidney disease (CKD) is defined as the presence of
structural or functional abnormalities in the kidneys persisting
for more than 3 months, resulting in adverse effects on overall
health. Clinically, CKD is diagnosed when the estimated
glomerular filtration rate (eGFR) falls below 60 mL/min/1.73 m?
(ACR)
or exceeds 30 mg/g. Current data indicate that the global
prevalence of CKD is estimated to range from 10% to 14%

or when the albumin-to-creatinine ratio reaches

(Chen et al., 2019). However, due to the asymptomatic nature
of early-stage CKD, the true prevalence may be substantially
underestimated. Irrespective of etiology, CKD progresses through
a series of molecular mechanisms including apoptosis, chronic
inflammation, oxidative stress, fibrosis, and metabolic disturbances,
culminating in irreversible loss of nephrons, microvascular
damage, end-stage renal disease (ESRD), and premature
mortality (GBD Chronic Kidney Disease Collaboration, 2020; Ruiz-
Ortega et al., 2020). Projections indicate that by 2040, CKD will
rank as the fifth leading cause of death globally (Foreman et al.,
2018), posing a significant challenge to public health systems and
necessitating heightened awareness and substantial investment in
research (Francis et al., 2024; Jadoul et al., 2024).

KF represents a ubiquitous pathological progression and
ultimate manifestation of chronic kidney disease, characterized
by glomerular sclerosis, tubular atrophy, chronic interstitial
inflammation, fibrogenesis, and vascular rarefaction (Yuan et al,
2022). Researches has elucidated that the pathogenesis of renal
fibrosis is multifaceted, involving interactions among various cell
types including mesenchymal cells, immune cells, and specific
tubular epithelial cells (Li et al., 2022; Kuppe et al, 2021), as
well as multiple signaling pathways such as Notch, Wnt, and
Hedgehog (Huang et al., 2023). Moreover, with advancements
in epigenetic studies, the mechanisms underlying the interaction
between aberrant gene expression and environmental changes have
been progressively uncovered, emerging as a novel focus for the
prevention, diagnosis, and therapeutic targets of renal fibrosis
(Feinberg, 2018). Despite some anti-fibrotic agents (Huang et al.,
2023), including RAS blockers, SGLT2 inhibitors, vasopressin
receptor 2 antagonists, and non-steroidal anti-mineralocorticoids,
being capable of delaying the progression of chronic kidney disease
to a certain extent, they are unable to reverse the established
pathological outcomes of renal fibrosis.

Lipid metabolism encompasses a series of biochemical

processes, including synthesis, degradation, transport, and
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storage of lipids within the body. These processes are crucial
for maintaining cell membrane integrity, energy storage, and
signal transduction. Disruptions in lipid metabolism have been
implicated in the pathogenesis and progression of various
diseases, such as cancer (Terry and Hay, 2024), cardiovascular
and cerebrovascular disorders (Sakers et al., 2022), and non-
alcoholic fatty liver disease (Scorle et al., 2022). Research has
demonstrated that excessive lipid accumulation and lipid-induced
toxicity are frequently associated with CKD and fibrosis (Chen et al.,
2022). This pathological process can be effectively mitigated by
enhancing fatty acid oxidation in renal tubular epithelial cells
or inhibiting fatty acid transporters (Li et al., 2025; Chen et al,,
2020). Consequently, an in-depth investigation into the specific
mechanisms of lipid metabolism in KF and the exploration of
potential intervention targets could facilitate the development
of novel therapeutic strategies, ultimately benefiting patients
with CKD. However, current research predominantly focuses
on analyzing differences in lipid metabolism markers in KF or
examining it as a complication of other diseases, while studies
targeting lipid metabolism pathways specifically for diagnosing
or treating KF remain relatively limited.

Based on this, we employed bioinformatics tools to identify
potential targets associated with lipid metabolism that influence
the occurrence and progression of KE Initially, three transcriptome
datasets were retrieved from the GEO database for analysis. After
identifying DEGs using sva, we intersected these DEGs with a
previously reported set of 760 lipid metabolism-related genes to
obtain LMDEGs. Subsequently, GO functional analysis and KEGG
pathway enrichment analysis were performed on the LMDEGs.
Importantly, through various machine learning algorithms, we
identified six biomolecules with diagnostic significance: UGCG,
SERPINA6, OSBPL6, INPP5], PNPLA3, and GK, which were
subsequently validated. To further elucidate the role of these
six core lipid metabolism-related genes in KF development, we
conducted immune infiltration analysis, gene correlation analysis,
REACTOME pathway enrichment analysis, and constructed
their upstream regulatory networks. Additionally, based on
these six core genes, unsupervised clustering was performed
using ConsensusClusterPlus on all samples, resulting in three
distinct clusters, for which pathway scores were calculated.
In conclusion, our study has revealed lipid metabolism genes
implicated in the progression of renal fibrosis, which may
serve as potential targets for guiding clinical diagnosis and
treatment.
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2 Methods

2.1 Data sources and data processing
methodologies

Raw gene expression data for patients with kidney fibrosis
were obtained from three datasets (GSE76882, GSE22459, and
GSE65326) available in the GEO database (www.ncbi.nlm.nih.gov/
geo/). The GSE76882 dataset, collected using the Affymetrix
HT HG-U133+ PM Array Plate (GPL13158), includes 175
samples from kidney fibrosis cases and 99 samples from normal
kidney tissues (Modena et al, 2016). The GSE22459 dataset
provides information on 40 kidney fibrosis and 25 healthy
kidney RNA samples, utilizing the Affymetrix Human Genome
U133 Plus 2.0 Array (GPL570) (Park et al, 2010). Lastly, the
GSE65326 dataset, which employed the Illumina HumanHT-
12 v4.0 Expression BeadChip (GPL10558), contains 16 kidney
fibrosis and 6 normal samples, after excluding one sample due
to incomplete data (Toki et al., 2014). In the machine learning
model described subsequently, we selected GSE76882 as the
training dataset, while the other two datasets were chosen for
validation purposes.

2.2 |Identification and screening of DEGs

Gene expression profiles were generated by normalizing
the data and batch-correcting the expression values using the
limma and sva packages in R. This normalization was performed
after merging the three datasets, resulting in a consolidated
dataset comprising 14,326 genes and 361 samples. Principal
Component Analysis (PCA) was conducted using the FactoMineR
and factoextra packages to visualize the adjustments through
three-dimensional scatter plots. Following data homogenization,
the Linear Models for Microarray Data (LIMMA) package
was utilized to identify DEGs between the kidney fibrosis and
control groups. To enhance the reliability of DEGs identification,
probe sets with an adjusted p-value <0.05 and [logFC| > 0.5
were designated as significantly differentially expressed. The
identified DEGs were visually represented using a volcano plot
and a heatmap.

2.3 Functional analysis of DEGs and GSEA

To elucidate the biological functions of DEGs, we employed
the ClusterProfiler package
analyses. These analyses encompassed GO and KEGG pathway

for comprehensive functional
enrichment. GO annotations were categorized into three main
aspects: biological process (BP), molecular function (MF),
and cellular component (CC). To account for multiple testing,
the Benjamini-Hochberg method was applied to adjust p-
values, resulting in false discovery rate (FDR) corrections. A
significance threshold of FDR <0.05 was established. Additionally,
GSEA was conducted using the ClusterProfiler package to
calculate the enrichment scores of pathways associated with the
identified DEGs.
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2.4 ldentification and analysis of DEGs
associated with lipid metabolism

We defined differentially expressed lipid metabolism-related genes
as LMDEGs, which were identified by intersecting lipid metabolism-
related genes with DEGs. Prior to this, lipid metabolism-related genes
were sourced from two reputable databases: Reactome Metabolism
of Lipids (http://www.gsea-msigdb.org/gsea/msigdb/human/geneset/
REACTOME_METABOLISM_OF_LIPIDS)and WP lipid metabolism
pathway  (http://www.gsea-msigdb.org/gsea/msigdb/human/geneset/
WE_LIPID_METABOLISM_PATHWAY). Subsequently, LMDEGs
were subjected to GO and KEGG enrichment analyses as previously
described. Finally, a hot plot and a heatmap were generated to illustrate
the differential expression levels of LMDEGs between the KF and control
groups. To further elucidate the characteristics of LMDEGs, a box plot
was created using the ggplot2 package in R.

2.5 Identification and selection of core
LMDEGs

After intersecting with the list of lipid metabolism-related
genes, 54 candidate genes were subsequently analyzed using
machine learning algorithms for feature selection. We integrated ten
classical algorithms: Random Survival Forest (RSF), Least Absolute
Shrinkage and Selection Operator (LASSO), Gradient Boosting
Machine (GBM), Survival Support Vector Machine (Survival-
SVM), Supervised Principal Components Analysis (SuperPC),
Ridge Regression, Partial Least Squares Regression for Cox models
(plsRcox), CoxBoost, Stepwise Cox, and Elastic Net (Enet). Notably,
RSE, LASSO, CoxBoost, and Stepwise Cox possess dimensionality
reduction and variable screening capabilities, which we combined
with other algorithms to form various machine-learning algorithm
ensembles. Based on the AUC metric, five top-performing machine
learning algorithms—namely Stepglm [backward] + GBM, Stepglm
[both] + GBM, LASSO + GBM, GBM, and Stepglm [backward] +
RF—were selected to identify the core LMDEGs from a pool of
54 candidate genes. The diagnostic efficacy of these models was
evaluated using ROC curves and their corresponding AUC values.

2.6 Comprehensive analysis of immune cell
infiltration

ssGSEA was conducted to evaluate immune infiltration based
on the expression profiles of 29 immunity-related signatures. The
analyses encompassed the interrelationships among various types
of immune cells, the differences in immune infiltration between
fibrotic and healthy kidneys, as well as the correlations between
immune cells and key LMDEGs.

2.7 Unsupervised hierarchical clustering
analysis

The normalized expression microarray data for each patient

were collected and subsequently analyzed using unsupervised
hierarchical clustering via the ConsensusClusterPlus package in R.
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2.8 Conducting pathway enrichment
analysis

The HALLMARK, KEGG, and REACTOME pathways were
retrieved from the MSigDB database to serve as the reference
set. The GSVA scores for each pathway were computed using the
ssGSEA function in the GSVA package within R. These GSVA scores
represent the absolute enrichment levels of the respective gene sets.
Subsequently, the GSVA scores were compared across two clusters
utilizing the limma package.

2.9 Development and analysis of a
regulatory network

Regulatory data pertaining to miRNAs and transcription
factors were retrieved from the RegNetwork database (https://
regnetworkweb.org/) for the upstream prediction of core LMDEGs.
Subsequently, the regulatory network was constructed utilizing
Cytoscape software.

2.10 Statistical analysis

All statistical analyses were conducted using R version 4.2.2.
Heatmaps were generated utilizing the R package pheatmap.
Lasso analysis was carried out with the R package glmnet. Box
plots, lollipop plots, and volcano plots were created using the R
package ggplot2.

3 Results

3.1 DEGs were identified and subjected to
GO and KEGG enrichment analyses

We have organized this study and its methodology as illustrated
in Figure 1. The three kidney fibrosis datasets (GSE76882,
GSE22459, GSE65326) were incorporated into the study and merged
using the limma and sva algorithms to eliminate batch effects.
Distribution patterns of the fibrotic cases, both before and after
normalization, were visualized using PCA (Figures 2A,B) and box
plots (Figures 2C,D). Following normalization, all samples were
subjected to variance analysis using the limma package. Distinct
gene expression patterns between healthy and fibrotic kidneys
were identified based on the criteria of an adjusted p-value 0.05.
We identified 943 DEGs, comprising 583 upregulated and 360
downregulated genes associated with KF, as illustrated in the volcano
plot and heatmap (Figures 2E,F).

Subsequently, we conducted pathway enrichment analyses on
the DEGs associated with KF. GO analysis indicated that these
DEGs were significantly enriched in fibrotic processes, including
the cytokine-mediated signaling pathway, collagen-containing
extracellular matrix, and receptor-ligand activity (Figures 3A-C).
Additionally, KEGG analysis underscored their involvement in
the phagosome, chemokine signaling pathway, and cell adhesion
molecules (Figure 3D). The enrichment of these pathways suggests
that the DEGs are linked to chemokine signaling and the excessive
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production of extracellular matrix, both of which contribute to the
progression of KE

3.2 Lipid metabolism was intricately
associated with the pathogenesis and
progression of KF

The 943 DEGs identified using the limma package were
intersected with 760 lipid metabolism genes, resulting in the
identification of 54 differential genes associated with lipid
metabolism. This subset comprises 14 upregulated genes and 40
downregulated genes (Figures 4A,B). Subsequently, we conducted
GO annotation and KEGG pathway enrichment analyses to
explore the characteristics of these 54 LMDEGs. The results of the
GO annotation analysis indicated that these genes are enriched
in processes related to lipid metabolism and oxidative stress,
including the fatty acid metabolic process, lipid catabolic process,
steroid metabolism, peroxisomal matrix, peroxisome, microbody
lumen, and the incorporation or reduction of molecular oxygen
(Figures 4C-E). Furthermore, the KEGG analysis revealed that
these genes are involved in the PPAR signaling pathway, arachidonic
acid metabolism, steroid hormone biosynthesis, primary bile acid
biosynthesis, and peroxisome pathways (Figure 4F). These findings
suggested that lipid metabolism disorders and oxidative stress may
represent significant pathological mechanisms contributing to the
occurrence and progression of KF.

To further elucidate the expression levels of 54 LMDEGs in
KF (Figure 5A), we compared the KF group to the control group.
Our findings revealed that 14 genes, including UGCG, GGTS5,
PTGS1, CH25H, CYP1BI, FHL2, TBXASI1, TNFAIP8L2, ALOX5AP,
TNFAIPS, and ACSL5, exhibited high expression levels in the kidney
fibrosis group. Conversely, 40 genes, such as GC, CPNE6, HMGCS2,
HSD11B2, INPP5]J, OSBPL6, and CYP46A1, showed low expression
levels in the same group (Figures 5B,C). These outcomes suggested
that these genes may play a significant role in the progression of KE

3.3 ldentification and validation of core
LMDEGs

To further investigate characteristic lipid metabolism regulators
associated with kidney fibrosis, the 54 LMDEGs identified across
three datasets were incorporated into our machine learning-based
integrative model to establish a consensus KF signature.

We performedatotal of 113 prediction models using the GSE76882
dataset through 10-fold cross-validation, calculating AUC value for
each model across all validations, including GSE22459, GSE65326
and merged dataset. These combined models were then ranked across
all datasets according to their AUC values, from highest to lowest
(Figure 6A). Based on this ranking, the top five combined machine
learning models selected for subsequent key LMDEGs screening were
Stepglm [backward]+GBM, Stepglm [both]+GBM, LASSO + GBM,
GBM, and Stepglm [backward]+RF (Figure 6B).

Following the application of five machine learning methods,
six core LMDEGs were identified: UGCG, SERPINA6, OSBPL6,
INPP5], PNPLA3, and GK (Figure 6C). Notably, these genes
exhibited significant positive and negative correlations. Specifically,
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FIGURE 1
Flow chart of the study.

UGCG demonstrated a negative correlation with the other
five core LMDEGs. Apart from OSBPL6 and INPP5], which
show no correlation, the remaining LMDEGs exhibited positive
correlations with each other. Subsequently, we constructed a LASSO
regression model based on these core LMDEGs and evaluated their
predictive performance using the ROC curve. The AUC values
for each LMDEGs were as follows: UGCG (0.738), SERPINA6
(0.774), OSBPL6 (0.740), INPP5]J (0.723), PNPLA3 (0.760), and
GK (0.734) (Figure 6D).

3.4 The six core LMDEGs significantly
influenced immune infiltration during the
progression of KF

Numerous studies have demonstrated that the inflammatory
response plays a critical role in the progression of KE. Consequently,
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we investigated immune infiltration in fibrotic kidneys and found
that a diverse array of immune cells established a complex
immune microenvironment during this pathological process
(Figure 7A). Activated B cells exhibited strong correlations with
pro-inflammatory cells such as activated CD4" T cells, CD8" T
cells, macrophages, and mast cells. Additionally, there was a
significant association between activated B cells and immune
regulatory cells, including myeloid-derived suppressor cells
(MDSCs), regulatory T cells, and Thl cells. Furthermore, the
infiltration of immune cells undergone distinct changes throughout
the progression of KF (Figure 7B). Compared to the control group,
our findings indicated that, apart from immature dendritic cells
and regulatory T17 cells, all other immune cell types, including
activated B cells, T cells, macrophages, and regulatory T cells,
were markedly upregulated during the progression of KE More
importantly, apart from UGCG, which exhibited a consistently
positive correlation with various immune cells, the other five core

frontiersin.org


https://doi.org/10.3389/fphys.2025.1652513
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Caoetal. 10.3389/fphys.2025.1652513

A B
1 1
1 o
: - .
| 100{ o -
1
1
1
100 :
1
! 50
1
1
3 | g
N < °
< ! [ o
1
o~ o
£ : £ of--- -
a : a
1
o 1
1
8 1
A ! -50
o 1
- it Immmm s m e m e m e —m e m—mmm——— 1
1
: Groups | roups
H GSE i GSE22459
i GSE i GSE65326
\ GSE7 az -100 T GSE76882
1 i}
0 100 -150 -100 -50 0 50 100
Dim1 (67.4%) Dim1 (14.8%)
C D

E F
25- 1 [
E E ® |||m T m , IH’\SAIR;IDFI,_, I Gmgmrol
b T I i l T i WMIH 8
: ;. |IIH ‘ “ il HSERPINAS 1
*1 / a ) n” Ml \‘ \N i ‘ ‘ ‘ ”‘|||”|\u“ i '\ I \‘CXCLQ 0
1 | | CXCL13 -
} ype ' ‘H \ il \[‘ ”\ \‘ i ‘u Lz »
! P | ‘u | | it mv \] uv b l
. 15= none significant ]L ‘ ‘ ‘ | ”
5 Sl verealated J“ {0 “ ‘ H ‘ 0052
o
A ‘u.u
- = U 1 LR
Fe o' \" it ’1'\ T =2
1.0
| o il M\ A \I)?h%m;&
® H\| ”\ “‘HIH“ |’u H\‘H “ ’| Kiki
: ‘ ) LA WO Trivso
5- | \H‘\ | ‘HI LT I L VI RDH12
Il H R A e
! il '\‘ Ll S
il H 1l u il \h\ SosT
_________ ‘ | PLG
g ‘ RS
o
1 1 PRODH2
i S N S — A ‘ I ‘ | ‘ SLC22A8
2 -1 0 1 2 | ‘ I [l ALB
log2(FC) Il I |”| ‘ | e,
FIGURE 2

Identification and analysis of differentially expressed genes (DEGs) from the integrated expression profiles of the GSE76882, GSE22457, and GSE65326
datasets. Principal Component Analysis (PCA) plots showing 361 samples from aforementioned three databases prior to (A) and subsequent to (B)
batch effect removal. Sample distribution prior to (C) and following (D) the homogenization of the datasets. (E,F) A volcano plot illustrating upregulated
genes as red points and downregulated genes as blue points (E). The heatmap visualizing clusters of genes with distinct expression patterns between
the control group and kidney fibrosis samples (F).

LMDEGs demonstrated a consistently negative correlation with ~ GK showed the strongest association with mast cells, OSBPL6
these cells (Figure 7C). Specifically, Type 1 T helper cells were most ~ with activated dendritic cells, and UGCG with natural killer T
closely associated with INPP5], PNPLA3, and SERPINAG6, while  cells. In summary, the immune cells that are closely related to
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GO annotation and KEGG enrichment analyses of DEGs. (A—C) GO annotation of DEGs in association with annotated biological process (BP), cellular
component (CC), and molecular function (MF). (D) Demonstration of KEGG enrichment analysis results. Pathways are ranked based on their GeneRatio,
with the size bubbles indicating the number of enriched genes and the colors representing the p-values.

KF were also significantly associated with the LMDEGs. These
findings suggested that both immune infiltration and the selected
lipid metabolism-related differential genes play crucial roles in
the progression of KF, influencing changes in the proportions of
immune cells.

Frontiers in Physiology

3.5 The phenotyping capacity of the six
core LMDEGs in KF

In order to catalog kidney fibrosis with core LMDEGs, we
screened genes notably related to each core LMDEG (Figure 8),
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FIGURE 5
Differential expression profiles of 54 LMDEGs between control and kidney fibrosis groups. (A) A volcano plot showing upregulated genes as red points
and downregulated genes as blue points. (B,C) A heatmap and a box plot visually displaying the expression patterns of 54 LMDEGs between healthy
and fibrotic kidneys. ns denotes no significant difference, *denotes p < 0.05, **denotes p < 0.01, ***denotes p < 0.001.

which were sequentially subjected to GSEA (Figure 9). Per the
aforementioned results that these LMDEGs were linked to immune
infiltration in KF (Figure 7), genes screened by their relationship
with core LMDEGs were enriched in pathways involving energy
metabolism and immune responses including fatty acid metabolism,
the citric acid (TCA) cycle and respiratory electron transport,
peroxisomal lipid metabolism, protein localization, interferon
alpha/beta signaling and immunoregulatory interactions between
a lymphoid and a non-lymphoid cell. It is important to highlight
that UGCG exhibited a significant positive correlation exclusively
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with immune-related signaling pathways, whereas the other five
core LMDEGs demonstrated notable negative correlations with
these pathways. Specifically, the interferon alpha/beta signaling
and immunoregulatory interactions between lymphoid and non-
lymphoid cells pathways were particularly affected. Consequently,
GK, OSBPL6, INPP5], PNPLA3, and SERPINAG6 played crucial
roles in regulating lipid metabolic responses during KF progression.
Meanwhile, UGCG, along with the aforementioned five genes,
orchestrated the intricate immune microenvironment involved in
this process.
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FIGURE 6
Identification and validation of key genes from 54 LMDEGs using the machine learning-based integrative model. (A) A comprehensive evaluation of 113
prediction models was conducted using a 10-fold cross-validation framework and calculated AUC values for each model across all datasets. (B) The six
key LMDEGs were identified through the application of the top five machine learning algorithms. (C) Positive (represented by the red line) or negative
(represented by the green line) correlation between the six core genes. (D) ROC curves of the six key LMDEGs in predicting kidney fibrosis were plotted
using the pROC package in R.
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FIGURE 10
Unsupervised clustering of kidney fibrosis samples was performed based on the six key LMDEGs. (A) Consensus clustering analysis of kidney fibrosis
samples based on profiles of LMDEGs. (B) A box plot illustrating the differential expression levels of the LMDEGs across the three clusters. ***denotes p
< 0.001. (C) A heatmap showing the associations between the LMDEGs and the three clusters. The gradient transitioning from red to blue represents
enrichment scores.

To further investigated the convergence of KF samples in the
context of the six core LMDEGs, we conducted unsupervised
clustering on 231 kidney fibrosis samples obtained from three
databases (Figure 10A). Specifically, Cluster A was characterized
by the lowest expression level of UGCG and the highest expression
levels of the remaining five genes. Conversely, Cluster B exhibited
opposite expression patterns compared to Cluster A, while
Cluster C displayed intermediate expression levels for all six
genes (Figures 10B,C). Subsequently, GSVA pathway analysis was
performed (Figure 11). The results indicated that Clusters A and
B were predominantly enriched in lipid metabolism pathways,
including FATTY_ACID_METABOLISM and PEROXISOMAL_
LIPID_METABOLISM, with minor enrichment in immune-related
pathways. In contrast, Clusters B and C were primarily enriched
in immune-related pathways such as INTERFERON_GAMMA _
RESPONSE and INFLAMMATORY_RESPONSE. These findings
suggested that fibrotic kidneys exhibit both distinct and overlapping
characteristics, and classification into three clusters may facilitated
the differentiation of different phenotypes.
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3.6 Upstream regulators influencing the
expression of the six core LMDEGs

To elucidate the upstream regulatory molecules of the six
core LMDEGs, we constructed a regulatory network using
the RegNetwork database (https://regnetworkweb.org/) and
Cytoscape software (Figure12). A total of 106 regulatory
molecules were identified, with miRNAs comprising more
than half of these regulators. GK was found to be regulated
by the largest number of molecules, whereas SERPINA6 had
the fewest regulators, specifically FOXAl, FOXA2, PPARG,
and RXRA transcription factors. Additionally, several common
transcription factors were observed among the core LMDEGs,
including SP1, AHR, ARNT, CREB1, FOXA2, hsa-miR-27a,
hsa-miR-27b, hsa-miR-340, hsa-miR-520h, hsa-miR-548a-5p,
hsa-miR-548b-5p, hsa-miR-548¢c-5p, and hsa-miR-548d-5p.
Therefore, the core LMDEGs sharing common transcription
factors may exerted synergistic or antagonistic effects on the
progression of KE.
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FIGURE 11

Differences in pathway enrichment among pairwise comparisons of the three clusters were shown. Heatmaps depicting the enrichment results of

Hallmark, KEGG, and Reactome pathways, with each row of three heatmaps corresponding to a pair of clusters above. A gradient transitioning from red

to blue represents enrichment scores.
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FIGURE 12

The upstream regulatory network of the six key LMDEGs. The regulatory network constructed includes the LMDEGs (represented by red bubbles) and
their predicted upstream regulators (represented by blue bubbles).

4 Discussion along with oxidative damage (Lee et al.,, 2024; Afshinnia et al,
2018). Therefore, fatty acid metabolic disorders are crucial in the

The incidence of CKD and the overall progression rate to  progression of KF, and targeted modulation of lipid metabolism
ESRD have been rising annually (Romagnani et al., 2025). Tissue  holds promise as a novel strategy for reversing this condition. A
fibrosis, a common and critical pathological pathway leading  deeper investigation into its underlying mechanisms will not only
to ESRD, represents an ideal focus for clinical and scientific ~ provide a robust theoretical foundation for the development of
research teams aiming to address the challenges of delaying or  specific drugs but also facilitate breakthroughs in clinical treatment.
reversing its progression (Miguel et al., 2024). To date, current However, there are currently no well-defined targets or
treatments primarily aim to slow the progression of KE, manage the  established therapeutic mechanisms for KF in the context of lipid
underlying disease and associated complications (Ruiz-Ortega et al., metabolism (Chen et al., 2022; Wei et al., 2023). Consequently, we
2022), while no specific drug has been developed to reverse  performed a bioinformatics analysis to investigate the correlation
this process (Chen et al,, 2019). Research has demonstrated that = between lipid metabolism and KE The analysis revealed that
fatty acid oxidation, which generates over three times the energy  in KF tissues, a total of 54 LMDEGs exhibited differential
produced by aerobic glucose metabolism, serves as the predominant  expression, including 14 upregulated genes such as UGCG and
energy-obtaining pathway for renal tubules (Noels et al, 2021; 40 downregulated genes such as INPP5]. Further investigation
Mitrofanova et al., 2023). However, in CKD, fatty acid oxidation =~ demonstrated that these genes are closely associated with fatty acid
is reduced, resulting in diminished energy acquisition, fat  oxidation, lipid synthesis, and immune-inflammatory responses.
accumulation, and subsequent infiltration of inflammatory cells  Their aberrant expression not only disrupts energy metabolism but
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also facilitates immune cell infiltration, thereby exacerbating the
progression of KF. Using the top five machine-learning algorithms,
the six core LMDEGs were identified. Subsequent ROC analysis
of these genes yielded AUC values exceeding 0.7, indicating high
diagnostic and predictive accuracy.

Lipid metabolism disorders influence multiple critical pathways
in KF, including extracellular matrix deposition and inflammatory
responses (Qu and Jiao, 2023), sharing analogous mechanisms with
fibrotic diseases such as diabetic nephropathy and hypertensive
nephropathy (Kurano et al., 2023; Tanaka et al., 2022). A total of
six core LMDEGs were identified: UGCG, SERPINA6, OSBPL6,
INPP5], PNPLA3, and GK. These genes exhibit close associations
with the infiltration of immune cells, such as mast cells, activated
dendritic cells, type 1 T helper cells, and natural killer T cells,
and participate in the activation of immune signaling pathways,
including interferon alpha/beta signaling, immunoregulatory
interactions between lymphoid and non-lymphoid cells, and
cytokine signaling in the immune system. This suggests that
abnormal expression of these core LMDEGs promote the infiltration
of inflammatory cells and extracellular matrix deposition, thereby
accelerating the progression of KF. Literature supports that similar
mechanisms are observed in other fibrotic diseases, such as diabetic
nephropathy, hepatofibrosis (Horn and Tacke, 2024; Zhong et al.,
2024). Notably, five core genes—SERPINA6, OSBPL6, INPP5],
PNPLA3, and GK—are negatively correlated with cells and
pathways involved in the inflammatory response, whereas
UGCG demonstrates a positive correlation trend, implying its
potentially complex role in modulating the inflammatory response.
Considering inflammatory responses, we hypothesize that UGCG
exerts antagonistic effects or forms feedback regulatory mechanisms
with one or more of the other five inflammatory suppressor
molecules, which contributes to the worsening of inflammatory
reactions during KF progression.

SERPINAG is the gene encoding corticosteroid-binding globulin
(CBG), which plays a crucial role in maintaining corticosteroid
homeostasis in the plasma. Research indicates that CBG influences
the negative feedback regulation of glucocorticoid receptors by
modulating corticosterone availability in the adrenal glands of
rodents. This function supports the normal growth, development,
and functional integrity of the adrenal glands in females,
highlighting its significance in sexual dimorphism (Toews et al.,
2022; Yasmine Nei and rijnck, 2022). In the context of inflammation,
CBG serves as a link between lipid metabolism dysregulation
and inflammatory responses. Mice deficient in KLF15 exhibit a
marked decrease in CBG levels, reduced plasma corticosteroid
binding capacity, and increased mortality under inflammatory
stress conditions, such as lipopolysaccharide (LPS) exposure. These
abnormalities can be fully corrected by CBG supplementation,
suggesting that KLF15 primarily contributes to the regulation of
plasma corticosteroid homeostasis and inflammatory responses
through its modulation of CBG expression (Zhen et al., 2022).
INPP5] is a critical tumor suppressor that primarily inhibits
tumor cell proliferation through the regulation of cellular signaling
pathways. Research has demonstrated that both the mRNA and
protein expression levels of INPP5] are markedly reduced in
ovarian cancer (Zhu et al., 2015), breast cancer (Toker and Rameh,
2015), and pancreatic cancer (Zhou et al., 2024). Targeting and
modulating INPP5] expression have been shown to effectively
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suppress tumor cell growth, indicating its potential therapeutic
significance in cancer treatment. Herold, C etal. performed a
family-based genome-wide association analysis and meta-analysis
involving approximately 3,500 individuals. Utilizing a multivariate
phenotype that integrates disease status and age at onset and
identified a significant association between genetic variation in
OSBPL6 (rs1347297) and the risk of Alzheimer’s disease (AD). These
results underscore the potential involvement of lipid metabolism in
the pathogenesis of AD (Herold et al., 2016). Metabolic-associated
fatty liver disease (MAFLD) is closely related to PNPLA3 gene
variations. The risk of developing ESRD in MAFLD patients is more
than twice that of non-MAFLD patients (Chen et al., 2023). Studies
(Targher et al., 2019)have shown that children and adolescents
with the PNPLA3 15738409 G/G genotype have significantly lower
eGFR than those with G/C and C/C genotypes, and their 24-h urine
protein excretion also significantly increases. These changes are
independent of the severity of liver disease. Therefore, PNPLA3
gene variations not only increase the risk of ESRD in patients
with MAFLD, but also may promote renal lipid accumulation
and fibrosis, directly participating in the process of kidney injury
(Chen et al,, 2023; Mantovani and Targher, 2024). In this study,
the patients with renal fibrosis included may carry a genetic
variant of PNPLA3, which could influence the measured AUC
value associated with PNPLA3. Therefore, future experimental
studies should aim to disentangle the effect of the PNPLA3 variant
and clarify its interaction with KF. UGCG is one of the key
molecules involved in metabolic remodeling and has become a key
therapeutic target in tumors and cardiovascular diseases, driving
clinical drug development. After B-cell receptor (BCR) activation,
UGCG expression is promoted. UGCG catalyzes the conversion
of pro-apoptotic ceramide to anti-apoptotic glucosylceramide,
which mediates chemotherapy resistance in chronic lymphocytic
leukemia (CLL) (Schwamb et al., 2012). Moreover, in highly
malignant melanoma, studies have shown that UGCG significantly
inhibits tumor cell apoptosis induced by autophagy-lysosome
inhibitors by increasing the level of sphingolipids (Jain et al., 2023).
Notably, the absence of UGCG leads to the impairment of pI-
adrenergic receptor (f1-AR) endocytosis in cardiomyocytes and
disrupts retrograde transport from the endoplasmic reticulum to
lysosomes in transgenic mice. These defects result in impaired B-
adrenergic signal transduction, decreased myocardial contractility,
and ultimately the development of dilated cardiomyopathy and
premature death (Andersson et al, 2021). There is evidence
suggesting that the expression of UGCG is upregulated in diabetic
nephropathy and is associated with the downregulation of kidney-
protecting genes. Especially in the condition where Fabry disease
and diabetes coexist, the high expression of UGCG may lead to
more severe kidney phenotypes. This indicates that UGCG may also
play a certain role in kidney fibrosis, but the specific mechanism still
requires further study (Sanchez-Nino et al., 2023).

In addition, within the interaction network, UGCG exhibits
significant interactions with transcription factors such as PAXS5,
GATA2, and CUXI, as well as miRNAs including miR-374a and
miR-374b. Notably, miR-374b regulates both UGCG and GK
simultaneously. It may upregulate one gene (e.g., by promoting
its expression) while downregulating the other (e.g., by inhibiting
its expression), thereby demonstrating its bidirectional regulatory
effects on UGCG and GK. This dual regulation disrupts lipid
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homeostasis in patients with CKD, either by reducing fatty acid
oxidation or accelerating lipid synthesis, which subsequently
activates inflammatory responses, promotes extracellular matrix
deposition, and exacerbates KFE. In glomerular podocyte injury
(Luo et al, 2024), lipid accumulation leads to cytoskeleton
rearrangement, insulin resistance, mitochondrial oxidative stress,
and inflammatory activation. These processes, in turn, promote
glomerular sclerosis and fibrosis. The Klotho gene exerts a protective
effect on chronic kidney disease by reducing inflammatory
responses and improving lipid metabolism (Liu et al, 2024).
However, during the progression of CKD to KE lipid metabolism
disorders and inflammatory responses do not have a simple
cause-and-effect relationship. Instead, they may present a cyclic
relationship, where the dominant role—either lipid metabolism
disorder or inflammatory response—alternates at different stages
of disease progression and progresses in a synergistic manner. This
understanding offers a new direction for the clinical management
of chronic kidney disease. Early intervention targeting these core
LMDEGs and their regulatory networks could potentially inhibit or
delay the fibrotic process, offering novel therapeutic targets for the
management of CKD.

From the results of GO and KEGG enrichment analysis of DEGs,
we identified multiple biological signaling pathways that are closely
associated with CKD and KF. These include cytokine-mediated
signaling pathways, collagen-containing extracellular matrices,
leukocyte-mediated immunity, and regulation of cell-cell adhesion.
These findings are consistent with the current understanding of
the pathogenesis of KF (Jia et al., 2025). Notably, pathways such
as Phagosome and vesicle lumen suggest that intercellular signal
interactions may play a pivotal role in the progression of renal
fibrosis, warranting further in-depth investigation (Eirin et al.,
2017; Liu et al., 2020). Moreover, the GSEA results demonstrated
that DEGs were significantly enriched in pathways associated with
immune infiltration, including the T cell activation pathway and B
cell receptor signaling pathway. Furthermore, all six core LMDEGs
exhibited significant correlations with immune cell infiltration.
Specifically, UGCG was primarily enriched in natural killer T cells
and natural killer cells, showing a positive correlation with immune
signaling pathways such as cytokine signaling in immune system and
interferon Alpha/Beta signaling. This suggests that UGCG plays a
pro-inflammatory role in the progression of KF. The remaining five
core LMDEGs (SERPINA6, OSBPL6, INPP5J, PNPLA3, and GK)
displayed negative correlations with immune signaling pathways,
such as interferon Alpha/Beta signaling, while being positively
correlated with lipid metabolism pathways, including the citric
acid (TCA) cycle and respiratory electron transport. These findings
indicate that these core LMDEGs may contribute to promoting fatty
acid metabolism, correcting lipid metabolic disorders, inhibiting
inflammatory cells, and counteracting immune infiltration reactions
during KFE. Through the analysis of the aforementioned results, we
have drawn the conclusion that immune infiltration is intricately
involved in the entire progression of KE Furthermore, genes
associated with lipid metabolism exert regulatory effects on immune
infiltration (He et al., 2024), indicating a potential correlation
between immune infiltration and lipid metabolic disorders, both
of which collectively influence the process of KF. This area will
constitute one of our key research focuses in the future. Additionally,
we have observed certain conclusions from other studies that are
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inconsistent with our findings. For instance, some pathways were
not significantly enriched in our study, which may be attributable
to variations in sample selection, experimental conditions, or
analytical methodologies and thus warrant further investigation and
consideration.

The unsupervised clustering analysis identified three distinct
molecular subtypes of KE each with potential therapeutic
implications. Cluster B, marked by elevated UGCG expression
and activation of immune-related pathways, may represent an
“inflammatory” subtype that could potentially benefit from
immunomodulatory therapies. In contrast, the lipid metabolism-
dominant signature of Cluster A suggests a possible responsiveness
to PPAR agonists or other lipid-modulating agents. The intermediate
phenotype of Cluster C might necessitate combination therapies
targeting both metabolic and inflammatory pathways. These
findings are consistent with the emerging paradigm of precision
medicine in KE, where molecular subtyping could inform therapy
selection. However, the clinical significance of these subtypes
remains unclear without longitudinal data linking them to disease
progression or treatment response. Furthermore, the underlying
biological mechanisms driving these subtype distinctions warrant
further investigation, particularly to determine whether they reflect
distinct disease etiologies or different stages along a common
pathogenic continuum.

Despite the robust bioinformatics methodologies utilized
in this study, several limitations must be acknowledged. First,
the findings lack experimental validation via functional assays
such as gene knockout or overexpression models, which are
essential for establishing causal relationships between the identified
LMDEGs (particularly UGCG and SERPINAG6) and fibrotic
progression. Second, although the machine learning models
exhibited strong predictive performance (AUC 0.723-0.774), the
relatively small sizes of the validation cohorts (GSE22459: n = 65;
GSE65326: n = 22) and potential batch effects, even after sva/limma
correction, may constrain their generalizability. Third, the absence of
longitudinal clinical data prevents an evaluation of whether the three
molecular subtypes demonstrate differential prognostic outcomes
or therapeutic responses. Future studies should integrate single-
cell RNA sequencing to elucidate immune-metabolic crosstalk at a
cellular level and validate subtype-specific treatment strategies in
preclinical models.

5 Conclusion

This study identifies the dysregulation of the lipid metabolism-
immune network as a hallmark feature of KE with UGCG
functioning as a central pro-inflammatory hub. Furthermore, genes
such as SERPINA6 and OSBPL6, along with other LMDEGs,
play modulatory roles in lipid metabolic pathways. The six-
gene signature derived from machine learning not only stratifies
patients into clinically relevant subtypes—characterized by lipid-
dominant versus immune-dominant phenotypes—but also reveals
shared transcriptional regulators, including PPAR and the miR-27
family, which may coordinately drive fibrotic progression. These
findings provide a foundational framework for the development
of precision therapeutics targeting specific components of the
LMDEG-immune axis. However, translational applications will
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require validation in larger, prospectively collected cohorts with
matched histopathological and functional data.
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Glossary

KF
CKD
eGFR
ACR
ESRD
DEGs
LMDEGs
GO
GEO
KEGG
LASSO
ssGSEA
GSVA
PCA
LIMMA
RSF
GBM
Survival-SVM
SuperPC
plsRcox
Enet
AUC
ROC
BP

MF

CcC
FDR
MDSCs
CBG
AD
MAFLD
BCR
CLL

B1-AR

kidney fibrosis

chronic kidney disease

estimated glomerular filtration rate
albumin-to-creatinine ratio

end-stage renal disease

the differentially expressed genes

lipid metabolism-associated DEGs

Gene Ontology

Gene Expression Omnibus

Kyoto Encyclopedia of Genes and Genomes
Least Absolute Shrinkage and Selection Operator
lingle-sample Gene Set Enrichment Analysis
Gene Set Variation Analysis

Principal Component Analysis

Linear Models for Microarray Data
Random Survival Forest

Gradient Boosting Machine

Survival Support Vector Machine
Supervised Principal Components Analysis
Partial Least Squares Regression for Cox models
Elastic Net

area under the curve

receiver operating characteristic

biological process

molecular function

cellular component

false discovery rate

myeloid-derived suppressor cells
corticosteroid-binding globulin
Alzheimer’s disease

metabolic-associated fatty liver disease
b-cell receptor

chronic lymphocytic leukemia

B1-adrenergic receptor
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