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Background: Kidney fibrosis (KF) represents a critical pathological alteration in 
the end stage of chronic kidney disease (CKD) and is the ultimate cause of 
mortality. Lipid metabolism plays a significant role in the pathogenesis of KF. 
Therefore, biomarkers associated with lipid metabolism will be identified to 
guide the treatment and management of CKD.
Methods: Three datasets obtained from the GEO database, along with 760 
lipid metabolism-related genes sourced from two databases, were utilized to 
identify lipid metabolism-associated differentially expressed genes (LMDEGs) in 
KF. Subsequently, we performed GO, KEGG and ssGSEA enrichment analysis 
to elucidate the characteristics of LMDEGs. Then, machine learning was 
applied to identify core LMDEGs, Least Absolute Shrinkage and Selection 
Operator (LASSO) was utilized to construct a diagnostic model, and Receiver 
Operation Curve (ROC) was operated to evaluate the diagnostic performance. 
We used unsupervised hierarchical clustering to identify subtypes of KF 
associated with lipid metabolism and employed Gene Set Variation Analysis 
(GSVA) to examine differences among clusters. Finally, transcription factor and 
miRNA regulatory networks upstream of core LMDEGs were constructed using 
Cytoscape software.
Results: We identified 54 LMDEGs and constructed a six core LMDEGs 
(UGCG, SFRP1A6, OSBPL6, INPP5J, PNPLA3, and GK) predictive model 
by LASSO regression, achieving area under the curve (AUC) values 
ranging from 0.723 to 0.774. ssGSEA confirmed that these six core 
LMDEGs exhibited significant positive or negative correlations with 
immune cell infiltration. Based on the expression profiles of these core 
LMDEGs, KF samples were categorized into three distinct subtypes. One 
subtype is predominantly characterized by enhanced lipid and energy 
metabolism, another exhibits features of inflammation and immune 
response activation, while the third displays an intermediate pattern 
between the two extremes. Moreover, the regulatory network of these
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core LMDEGs shared several common transcription factors, suggesting a 
potential interplay between lipid metabolism and immune responses in the 
pathogenesis of KF.
Conclusion: We have identified six core LMDEGs that are significantly associated 
with KF. Based on this, we have established three distinct clusters related to lipid 
metabolism in KF, which may provide valuable insights into the treatment and 
management of CKD.

KEYWORDS

kidney fibrosis, lipid metabolism, machine learning, immune infiltration, chronic kidney 
disease 

1 Introduction

Chronic kidney disease (CKD) is defined as the presence of 
structural or functional abnormalities in the kidneys persisting 
for more than 3 months, resulting in adverse effects on overall 
health. Clinically, CKD is diagnosed when the estimated 
glomerular filtration rate (eGFR) falls below 60 mL/min/1.73 m2

or when the albumin-to-creatinine ratio (ACR) reaches 
or exceeds 30 mg/g. Current data indicate that the global 
prevalence of CKD is estimated to range from 10% to 14% 
(Chen et al., 2019). However, due to the asymptomatic nature 
of early-stage CKD, the true prevalence may be substantially 
underestimated. Irrespective of etiology, CKD progresses through 
a series of molecular mechanisms including apoptosis, chronic 
inflammation, oxidative stress, fibrosis, and metabolic disturbances, 
culminating in irreversible loss of nephrons, microvascular 
damage, end-stage renal disease (ESRD), and premature 
mortality (GBD Chronic Kidney Disease Collaboration, 2020; Ruiz-
Ortega et al., 2020). Projections indicate that by 2040, CKD will 
rank as the fifth leading cause of death globally (Foreman et al., 
2018), posing a significant challenge to public health systems and 
necessitating heightened awareness and substantial investment in 
research (Francis et al., 2024; Jadoul et al., 2024).

KF represents a ubiquitous pathological progression and 
ultimate manifestation of chronic kidney disease, characterized 
by glomerular sclerosis, tubular atrophy, chronic interstitial 
inflammation, fibrogenesis, and vascular rarefaction (Yuan et al., 
2022). Researches has elucidated that the pathogenesis of renal 
fibrosis is multifaceted, involving interactions among various cell 
types including mesenchymal cells, immune cells, and specific 
tubular epithelial cells (Li et al., 2022; Kuppe et al., 2021), as 
well as multiple signaling pathways such as Notch, Wnt, and 
Hedgehog (Huang et al., 2023). Moreover, with advancements 
in epigenetic studies, the mechanisms underlying the interaction 
between aberrant gene expression and environmental changes have 
been progressively uncovered, emerging as a novel focus for the 
prevention, diagnosis, and therapeutic targets of renal fibrosis 
(Feinberg, 2018). Despite some anti-fibrotic agents (Huang et al., 
2023), including RAS blockers, SGLT2 inhibitors, vasopressin 
receptor 2 antagonists, and non-steroidal anti-mineralocorticoids, 
being capable of delaying the progression of chronic kidney disease 
to a certain extent, they are unable to reverse the established 
pathological outcomes of renal fibrosis.

Lipid metabolism encompasses a series of biochemical 
processes, including synthesis, degradation, transport, and 

storage of lipids within the body. These processes are crucial 
for maintaining cell membrane integrity, energy storage, and 
signal transduction. Disruptions in lipid metabolism have been 
implicated in the pathogenesis and progression of various 
diseases, such as cancer (Terry and Hay, 2024), cardiovascular 
and cerebrovascular disorders (Sakers et al., 2022), and non-
alcoholic fatty liver disease (Scorle et al., 2022). Research has 
demonstrated that excessive lipid accumulation and lipid-induced 
toxicity are frequently associated with CKD and fibrosis (Chen et al., 
2022). This pathological process can be effectively mitigated by 
enhancing fatty acid oxidation in renal tubular epithelial cells 
or inhibiting fatty acid transporters (Li et al., 2025; Chen et al., 
2020). Consequently, an in-depth investigation into the specific 
mechanisms of lipid metabolism in KF and the exploration of 
potential intervention targets could facilitate the development 
of novel therapeutic strategies, ultimately benefiting patients 
with CKD. However, current research predominantly focuses 
on analyzing differences in lipid metabolism markers in KF or 
examining it as a complication of other diseases, while studies 
targeting lipid metabolism pathways specifically for diagnosing 
or treating KF remain relatively limited.

Based on this, we employed bioinformatics tools to identify 
potential targets associated with lipid metabolism that influence 
the occurrence and progression of KF. Initially, three transcriptome 
datasets were retrieved from the GEO database for analysis. After 
identifying DEGs using sva, we intersected these DEGs with a 
previously reported set of 760 lipid metabolism-related genes to 
obtain LMDEGs. Subsequently, GO functional analysis and KEGG 
pathway enrichment analysis were performed on the LMDEGs. 
Importantly, through various machine learning algorithms, we 
identified six biomolecules with diagnostic significance: UGCG, 
SERPINA6, OSBPL6, INPP5J, PNPLA3, and GK, which were 
subsequently validated. To further elucidate the role of these 
six core lipid metabolism-related genes in KF development, we 
conducted immune infiltration analysis, gene correlation analysis, 
REACTOME pathway enrichment analysis, and constructed 
their upstream regulatory networks. Additionally, based on 
these six core genes, unsupervised clustering was performed 
using ConsensusClusterPlus on all samples, resulting in three 
distinct clusters, for which pathway scores were calculated. 
In conclusion, our study has revealed lipid metabolism genes 
implicated in the progression of renal fibrosis, which may 
serve as potential targets for guiding clinical diagnosis and 
treatment. 
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2 Methods

2.1 Data sources and data processing 
methodologies

Raw gene expression data for patients with kidney fibrosis 
were obtained from three datasets (GSE76882, GSE22459, and 
GSE65326) available in the GEO database (www.ncbi.nlm.nih.gov/
geo/). The GSE76882 dataset, collected using the Affymetrix 
HT HG-U133+ PM Array Plate (GPL13158), includes 175 
samples from kidney fibrosis cases and 99 samples from normal 
kidney tissues (Modena et al., 2016). The GSE22459 dataset 
provides information on 40 kidney fibrosis and 25 healthy 
kidney RNA samples, utilizing the Affymetrix Human Genome 
U133 Plus 2.0 Array (GPL570) (Park et al., 2010). Lastly, the 
GSE65326 dataset, which employed the Illumina HumanHT-
12 v4.0 Expression BeadChip (GPL10558), contains 16 kidney 
fibrosis and 6 normal samples, after excluding one sample due 
to incomplete data (Toki et al., 2014). In the machine learning 
model described subsequently, we selected GSE76882 as the 
training dataset, while the other two datasets were chosen for 
validation purposes. 

2.2 Identification and screening of DEGs

Gene expression profiles were generated by normalizing 
the data and batch-correcting the expression values using the 
limma and sva packages in R. This normalization was performed 
after merging the three datasets, resulting in a consolidated 
dataset comprising 14,326 genes and 361 samples. Principal 
Component Analysis (PCA) was conducted using the FactoMineR 
and factoextra packages to visualize the adjustments through 
three-dimensional scatter plots. Following data homogenization, 
the Linear Models for Microarray Data (LIMMA) package 
was utilized to identify DEGs between the kidney fibrosis and 
control groups. To enhance the reliability of DEGs identification, 
probe sets with an adjusted p-value <0.05 and |logFC| > 0.5 
were designated as significantly differentially expressed. The 
identified DEGs were visually represented using a volcano plot 
and a heatmap. 

2.3 Functional analysis of DEGs and GSEA

To elucidate the biological functions of DEGs, we employed 
the ClusterProfiler package for comprehensive functional 
analyses. These analyses encompassed GO and KEGG pathway 
enrichment. GO annotations were categorized into three main 
aspects: biological process (BP), molecular function (MF), 
and cellular component (CC). To account for multiple testing, 
the Benjamini-Hochberg method was applied to adjust p-
values, resulting in false discovery rate (FDR) corrections. A 
significance threshold of FDR <0.05 was established. Additionally, 
GSEA was conducted using the ClusterProfiler package to 
calculate the enrichment scores of pathways associated with the 
identified DEGs. 

2.4 Identification and analysis of DEGs 
associated with lipid metabolism

We defined differentially expressed lipid metabolism-related genes 
as LMDEGs, which were identified by intersecting lipid metabolism-
related genes with DEGs. Prior to this, lipid metabolism-related genes 
were sourced from two reputable databases: Reactome Metabolism 
of Lipids (http://www.gsea-msigdb.org/gsea/msigdb/human/geneset/
REACTOME_METABOLISM_OF_LIPIDS) and WP lipid metabolism
pathway (http://www.gsea-msigdb.org/gsea/msigdb/human/geneset/
WE_LIPID_METABOLISM_PATHWAY). Subsequently, LMDEGs 
were subjected to GO and KEGG enrichment analyses as previously 
described. Finally, a hot plot and a heatmap were generated to illustrate 
the differential expression levels of LMDEGs between the KF and control 
groups. To further elucidate the characteristics of LMDEGs, a box plot 
was created using the ggplot2 package in R. 

2.5 Identification and selection of core 
LMDEGs

After intersecting with the list of lipid metabolism-related 
genes, 54 candidate genes were subsequently analyzed using 
machine learning algorithms for feature selection. We integrated ten 
classical algorithms: Random Survival Forest (RSF), Least Absolute 
Shrinkage and Selection Operator (LASSO), Gradient Boosting 
Machine (GBM), Survival Support Vector Machine (Survival-
SVM), Supervised Principal Components Analysis (SuperPC), 
Ridge Regression, Partial Least Squares Regression for Cox models 
(plsRcox), CoxBoost, Stepwise Cox, and Elastic Net (Enet). Notably, 
RSF, LASSO, CoxBoost, and Stepwise Cox possess dimensionality 
reduction and variable screening capabilities, which we combined 
with other algorithms to form various machine-learning algorithm 
ensembles. Based on the AUC metric, five top-performing machine 
learning algorithms—namely Stepglm [backward] + GBM, Stepglm 
[both] + GBM, LASSO + GBM, GBM, and Stepglm [backward] + 
RF—were selected to identify the core LMDEGs from a pool of 
54 candidate genes. The diagnostic efficacy of these models was 
evaluated using ROC curves and their corresponding AUC values. 

2.6 Comprehensive analysis of immune cell 
infiltration

ssGSEA was conducted to evaluate immune infiltration based 
on the expression profiles of 29 immunity-related signatures. The 
analyses encompassed the interrelationships among various types 
of immune cells, the differences in immune infiltration between 
fibrotic and healthy kidneys, as well as the correlations between 
immune cells and key LMDEGs. 

2.7 Unsupervised hierarchical clustering 
analysis

The normalized expression microarray data for each patient 
were collected and subsequently analyzed using unsupervised 
hierarchical clustering via the ConsensusClusterPlus package in R. 
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2.8 Conducting pathway enrichment 
analysis

The HALLMARK, KEGG, and REACTOME pathways were 
retrieved from the MSigDB database to serve as the reference 
set. The GSVA scores for each pathway were computed using the 
ssGSEA function in the GSVA package within R. These GSVA scores 
represent the absolute enrichment levels of the respective gene sets. 
Subsequently, the GSVA scores were compared across two clusters 
utilizing the limma package. 

2.9 Development and analysis of a 
regulatory network

Regulatory data pertaining to miRNAs and transcription 
factors were retrieved from the RegNetwork database (https://
regnetworkweb.org/) for the upstream prediction of core LMDEGs. 
Subsequently, the regulatory network was constructed utilizing 
Cytoscape software. 

2.10 Statistical analysis

All statistical analyses were conducted using R version 4.2.2. 
Heatmaps were generated utilizing the R package pheatmap. 
Lasso analysis was carried out with the R package glmnet. Box 
plots, lollipop plots, and volcano plots were created using the R 
package ggplot2. 

3 Results

3.1 DEGs were identified and subjected to 
GO and KEGG enrichment analyses

We have organized this study and its methodology as illustrated 
in Figure 1. The three kidney fibrosis datasets (GSE76882, 
GSE22459, GSE65326) were incorporated into the study and merged 
using the limma and sva algorithms to eliminate batch effects. 
Distribution patterns of the fibrotic cases, both before and after 
normalization, were visualized using PCA (Figures 2A,B) and box 
plots (Figures 2C,D). Following normalization, all samples were 
subjected to variance analysis using the limma package. Distinct 
gene expression patterns between healthy and fibrotic kidneys 
were identified based on the criteria of an adjusted p-value 0.05. 
We identified 943 DEGs, comprising 583 upregulated and 360 
downregulated genes associated with KF, as illustrated in the volcano 
plot and heatmap (Figures 2E,F).

Subsequently, we conducted pathway enrichment analyses on 
the DEGs associated with KF. GO analysis indicated that these 
DEGs were significantly enriched in fibrotic processes, including 
the cytokine-mediated signaling pathway, collagen-containing 
extracellular matrix, and receptor-ligand activity (Figures 3A–C). 
Additionally, KEGG analysis underscored their involvement in 
the phagosome, chemokine signaling pathway, and cell adhesion 
molecules (Figure 3D). The enrichment of these pathways suggests 
that the DEGs are linked to chemokine signaling and the excessive 

production of extracellular matrix, both of which contribute to the 
progression of KF.

3.2 Lipid metabolism was intricately 
associated with the pathogenesis and 
progression of KF

The 943 DEGs identified using the limma package were 
intersected with 760 lipid metabolism genes, resulting in the 
identification of 54 differential genes associated with lipid 
metabolism. This subset comprises 14 upregulated genes and 40 
downregulated genes (Figures 4A,B). Subsequently, we conducted 
GO annotation and KEGG pathway enrichment analyses to 
explore the characteristics of these 54 LMDEGs. The results of the 
GO annotation analysis indicated that these genes are enriched 
in processes related to lipid metabolism and oxidative stress, 
including the fatty acid metabolic process, lipid catabolic process, 
steroid metabolism, peroxisomal matrix, peroxisome, microbody 
lumen, and the incorporation or reduction of molecular oxygen 
(Figures 4C–E). Furthermore, the KEGG analysis revealed that 
these genes are involved in the PPAR signaling pathway, arachidonic 
acid metabolism, steroid hormone biosynthesis, primary bile acid 
biosynthesis, and peroxisome pathways (Figure 4F). These findings 
suggested that lipid metabolism disorders and oxidative stress may 
represent significant pathological mechanisms contributing to the 
occurrence and progression of KF.

To further elucidate the expression levels of 54 LMDEGs in 
KF (Figure 5A), we compared the KF group to the control group. 
Our findings revealed that 14 genes, including UGCG, GGT5, 
PTGS1, CH25H, CYP1B1, FHL2, TBXAS1, TNFAIP8L2, ALOX5AP, 
TNFAIP8, and ACSL5, exhibited high expression levels in the kidney 
fibrosis group. Conversely, 40 genes, such as GC, CPNE6, HMGCS2, 
HSD11B2, INPP5J, OSBPL6, and CYP46A1, showed low expression 
levels in the same group (Figures 5B,C). These outcomes suggested 
that these genes may play a significant role in the progression of KF. 

3.3 Identification and validation of core 
LMDEGs

To further investigate characteristic lipid metabolism regulators 
associated with kidney fibrosis, the 54 LMDEGs identified across 
three datasets were incorporated into our machine learning-based 
integrative model to establish a consensus KF signature.

We performed a total of 113 prediction models using the GSE76882 
dataset through 10-fold cross-validation, calculating AUC value for 
each model across all validations, including GSE22459, GSE65326 
and merged dataset. These combined models were then ranked across 
all datasets according to their AUC values, from highest to lowest 
(Figure 6A). Based on this ranking, the top five combined machine 
learning models selected for subsequent key LMDEGs screening were 
Stepglm [backward]+GBM, Stepglm [both]+GBM, LASSO + GBM, 
GBM, and Stepglm [backward]+RF (Figure 6B). 

Following the application of five machine learning methods, 
six core LMDEGs were identified: UGCG, SERPINA6, OSBPL6, 
INPP5J, PNPLA3, and GK (Figure 6C). Notably, these genes 
exhibited significant positive and negative correlations. Specifically, 
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FIGURE 1
Flow chart of the study.

UGCG demonstrated a negative correlation with the other 
five core LMDEGs. Apart from OSBPL6 and INPP5J, which 
show no correlation, the remaining LMDEGs exhibited positive 
correlations with each other. Subsequently, we constructed a LASSO 
regression model based on these core LMDEGs and evaluated their 
predictive performance using the ROC curve. The AUC values 
for each LMDEGs were as follows: UGCG (0.738), SERPINA6 
(0.774), OSBPL6 (0.740), INPP5J (0.723), PNPLA3 (0.760), and 
GK (0.734) (Figure 6D). 

3.4 The six core LMDEGs significantly 
influenced immune infiltration during the 
progression of KF

Numerous studies have demonstrated that the inflammatory 
response plays a critical role in the progression of KF. Consequently, 

we investigated immune infiltration in fibrotic kidneys and found 
that a diverse array of immune cells established a complex 
immune microenvironment during this pathological process 
(Figure 7A). Activated B cells exhibited strong correlations with 
pro-inflammatory cells such as activated CD4+ T cells, CD8+ T 
cells, macrophages, and mast cells. Additionally, there was a 
significant association between activated B cells and immune 
regulatory cells, including myeloid-derived suppressor cells 
(MDSCs), regulatory T cells, and Th1 cells. Furthermore, the 
infiltration of immune cells undergone distinct changes throughout 
the progression of KF (Figure 7B). Compared to the control group, 
our findings indicated that, apart from immature dendritic cells 
and regulatory T17 cells, all other immune cell types, including 
activated B cells, T cells, macrophages, and regulatory T cells, 
were markedly upregulated during the progression of KF. More 
importantly, apart from UGCG, which exhibited a consistently 
positive correlation with various immune cells, the other five core 
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FIGURE 2
Identification and analysis of differentially expressed genes (DEGs) from the integrated expression profiles of the GSE76882, GSE22457, and GSE65326 
datasets. Principal Component Analysis (PCA) plots showing 361 samples from aforementioned three databases prior to (A) and subsequent to (B)
batch effect removal. Sample distribution prior to (C) and following (D) the homogenization of the datasets. (E,F) A volcano plot illustrating upregulated 
genes as red points and downregulated genes as blue points (E). The heatmap visualizing clusters of genes with distinct expression patterns between 
the control group and kidney fibrosis samples (F).

LMDEGs demonstrated a consistently negative correlation with 
these cells (Figure 7C). Specifically, Type 1 T helper cells were most 
closely associated with INPP5J, PNPLA3, and SERPINA6, while 

GK showed the strongest association with mast cells, OSBPL6 
with activated dendritic cells, and UGCG with natural killer T 
cells. In summary, the immune cells that are closely related to 
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FIGURE 3
GO annotation and KEGG enrichment analyses of DEGs. (A–C) GO annotation of DEGs in association with annotated biological process (BP), cellular 
component (CC), and molecular function (MF). (D) Demonstration of KEGG enrichment analysis results. Pathways are ranked based on their GeneRatio, 
with the size bubbles indicating the number of enriched genes and the colors representing the p-values.

KF were also significantly associated with the LMDEGs. These 
findings suggested that both immune infiltration and the selected 
lipid metabolism-related differential genes play crucial roles in 
the progression of KF, influencing changes in the proportions of 
immune cells.

3.5 The phenotyping capacity of the six 
core LMDEGs in KF

In order to catalog kidney fibrosis with core LMDEGs, we 
screened genes notably related to each core LMDEG (Figure 8), 
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FIGURE 4
Identification of lipid metabolism-related genes from DEGs, followed by GO and KEGG enrichment analyses. Two Venn diagrams displaying the 
intersection of upregulated (A) and downregulated (B) DEGs with lipid metabolism-related genes derived from lipid metabolism datasets. (C–F) GO 
annotation, encompassing BP, CC, MF, and KEGG pathway enrichment analysis of 54 lipid metabolism-related DEGs that overlap with known lipid 
metabolism genes.
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FIGURE 5
Differential expression profiles of 54 LMDEGs between control and kidney fibrosis groups. (A) A volcano plot showing upregulated genes as red points 
and downregulated genes as blue points. (B,C) A heatmap and a box plot visually displaying the expression patterns of 54 LMDEGs between healthy 
and fibrotic kidneys. ns denotes no significant difference, ∗denotes p < 0.05, ∗∗denotes p < 0.01, ∗∗∗denotes p < 0.001.

which were sequentially subjected to GSEA (Figure 9). Per the 
aforementioned results that these LMDEGs were linked to immune 
infiltration in KF (Figure 7), genes screened by their relationship 
with core LMDEGs were enriched in pathways involving energy 
metabolism and immune responses including fatty acid metabolism, 
the citric acid (TCA) cycle and respiratory electron transport, 
peroxisomal lipid metabolism, protein localization, interferon 
alpha/beta signaling and immunoregulatory interactions between 
a lymphoid and a non−lymphoid cell. It is important to highlight 
that UGCG exhibited a significant positive correlation exclusively 

with immune-related signaling pathways, whereas the other five 
core LMDEGs demonstrated notable negative correlations with 
these pathways. Specifically, the interferon alpha/beta signaling 
and immunoregulatory interactions between lymphoid and non-
lymphoid cells pathways were particularly affected. Consequently, 
GK, OSBPL6, INPP5J, PNPLA3, and SERPINA6 played crucial 
roles in regulating lipid metabolic responses during KF progression. 
Meanwhile, UGCG, along with the aforementioned five genes, 
orchestrated the intricate immune microenvironment involved in 
this process.
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FIGURE 6
Identification and validation of key genes from 54 LMDEGs using the machine learning-based integrative model. (A) A comprehensive evaluation of 113 
prediction models was conducted using a 10-fold cross-validation framework and calculated AUC values for each model across all datasets. (B) The six 
key LMDEGs were identified through the application of the top five machine learning algorithms. (C) Positive (represented by the red line) or negative 
(represented by the green line) correlation between the six core genes. (D) ROC curves of the six key LMDEGs in predicting kidney fibrosis were plotted 
using the pROC package in R.
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FIGURE 7
Immune infiltration analysis in ssGSEA. (A) A correlation heatmap displaying the proportion of immune cell infiltration within kidney tissues across all 
samples. (B) Differences in immune cell infiltration between the control group and the kidney fibrosis group. ns denotes no significant 
different, ∗denotes p < 0.05, ∗∗denotes p < 0.01, ∗∗∗denotes p < 0.001. (C) Six lollipop plots illustrating the distinct associations between the degree of 
immune infiltration and each of the key LMDEGs individually. Immunocytes with p-values below 0.05 were visualized, using bubble sizes to reflect 
correlation coefficients and colors to denote significance levels.
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FIGURE 8
Correlation analysis between the six key LMDEGs and genomic variants. Correlation heatmaps depicting the associations between a single key LMDEG 
and the top 50 related genes.
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FIGURE 9
GSEA analysis of the six key LMDEGs for Reactome pathway enrichment. The ridge plots illustrating the top 20 pathways enriched in the lipid 
metabolism-related DEGs. Numbers on the X-axis are enrichment scores, where a value greater than zero indicates a positive correlation between a 
gene and a pathway, while a value less than zero indicates a negative correlation. The color indicates the corresponding p-value.
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FIGURE 10
Unsupervised clustering of kidney fibrosis samples was performed based on the six key LMDEGs. (A) Consensus clustering analysis of kidney fibrosis 
samples based on profiles of LMDEGs. (B) A box plot illustrating the differential expression levels of the LMDEGs across the three clusters. ∗∗∗denotes p 
< 0.001. (C) A heatmap showing the associations between the LMDEGs and the three clusters. The gradient transitioning from red to blue represents 
enrichment scores.

To further investigated the convergence of KF samples in the 
context of the six core LMDEGs, we conducted unsupervised 
clustering on 231 kidney fibrosis samples obtained from three 
databases (Figure 10A). Specifically, Cluster A was characterized 
by the lowest expression level of UGCG and the highest expression 
levels of the remaining five genes. Conversely, Cluster B exhibited 
opposite expression patterns compared to Cluster A, while 
Cluster C displayed intermediate expression levels for all six 
genes (Figures 10B,C). Subsequently, GSVA pathway analysis was 
performed (Figure 11). The results indicated that Clusters A and 
B were predominantly enriched in lipid metabolism pathways, 
including FATTY_ACID_METABOLISM and PEROXISOMAL_
LIPID_METABOLISM, with minor enrichment in immune-related 
pathways. In contrast, Clusters B and C were primarily enriched 
in immune-related pathways such as INTERFERON_GAMMA_
RESPONSE and INFLAMMATORY_RESPONSE. These findings 
suggested that fibrotic kidneys exhibit both distinct and overlapping 
characteristics, and classification into three clusters may facilitated 
the differentiation of different phenotypes.

3.6 Upstream regulators influencing the 
expression of the six core LMDEGs

To elucidate the upstream regulatory molecules of the six 
core LMDEGs, we constructed a regulatory network using 
the RegNetwork database (https://regnetworkweb.org/) and 
Cytoscape software (Figure 12). A total of 106 regulatory 
molecules were identified, with miRNAs comprising more 
than half of these regulators. GK was found to be regulated 
by the largest number of molecules, whereas SERPINA6 had 
the fewest regulators, specifically FOXA1, FOXA2, PPARG, 
and RXRA transcription factors. Additionally, several common 
transcription factors were observed among the core LMDEGs, 
including SP1, AHR, ARNT, CREB1, FOXA2, hsa-miR-27a, 
hsa-miR-27b, hsa-miR-340, hsa-miR-520h, hsa-miR-548a-5p, 
hsa-miR-548b-5p, hsa-miR-548c-5p, and hsa-miR-548d-5p. 
Therefore, the core LMDEGs sharing common transcription 
factors may exerted synergistic or antagonistic effects on the 
progression of KF.
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FIGURE 11
Differences in pathway enrichment among pairwise comparisons of the three clusters were shown. Heatmaps depicting the enrichment results of 
Hallmark, KEGG, and Reactome pathways, with each row of three heatmaps corresponding to a pair of clusters above. A gradient transitioning from red 
to blue represents enrichment scores.
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FIGURE 12
The upstream regulatory network of the six key LMDEGs. The regulatory network constructed includes the LMDEGs (represented by red bubbles) and 
their predicted upstream regulators (represented by blue bubbles).

4 Discussion

The incidence of CKD and the overall progression rate to 
ESRD have been rising annually (Romagnani et al., 2025). Tissue 
fibrosis, a common and critical pathological pathway leading 
to ESRD, represents an ideal focus for clinical and scientific 
research teams aiming to address the challenges of delaying or 
reversing its progression (Miguel et al., 2024). To date, current 
treatments primarily aim to slow the progression of KF, manage the 
underlying disease and associated complications (Ruiz-Ortega et al., 
2022), while no specific drug has been developed to reverse 
this process (Chen et al., 2019). Research has demonstrated that 
fatty acid oxidation, which generates over three times the energy 
produced by aerobic glucose metabolism, serves as the predominant 
energy-obtaining pathway for renal tubules (Noels et al., 2021; 
Mitrofanova et al., 2023). However, in CKD, fatty acid oxidation 
is reduced, resulting in diminished energy acquisition, fat 
accumulation, and subsequent infiltration of inflammatory cells 

along with oxidative damage (Lee et al., 2024; Afshinnia et al., 
2018). Therefore, fatty acid metabolic disorders are crucial in the 
progression of KF, and targeted modulation of lipid metabolism 
holds promise as a novel strategy for reversing this condition. A 
deeper investigation into its underlying mechanisms will not only 
provide a robust theoretical foundation for the development of 
specific drugs but also facilitate breakthroughs in clinical treatment.

However, there are currently no well-defined targets or 
established therapeutic mechanisms for KF in the context of lipid 
metabolism (Chen et al., 2022; Wei et al., 2023). Consequently, we 
performed a bioinformatics analysis to investigate the correlation 
between lipid metabolism and KF. The analysis revealed that 
in KF tissues, a total of 54 LMDEGs exhibited differential 
expression, including 14 upregulated genes such as UGCG and 
40 downregulated genes such as INPP5J. Further investigation 
demonstrated that these genes are closely associated with fatty acid 
oxidation, lipid synthesis, and immune-inflammatory responses. 
Their aberrant expression not only disrupts energy metabolism but 
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also facilitates immune cell infiltration, thereby exacerbating the 
progression of KF. Using the top five machine-learning algorithms, 
the six core LMDEGs were identified. Subsequent ROC analysis 
of these genes yielded AUC values exceeding 0.7, indicating high 
diagnostic and predictive accuracy.

Lipid metabolism disorders influence multiple critical pathways 
in KF, including extracellular matrix deposition and inflammatory 
responses (Qu and Jiao, 2023), sharing analogous mechanisms with 
fibrotic diseases such as diabetic nephropathy and hypertensive 
nephropathy (Kurano et al., 2023; Tanaka et al., 2022). A total of 
six core LMDEGs were identified: UGCG, SERPINA6, OSBPL6, 
INPP5J, PNPLA3, and GK. These genes exhibit close associations 
with the infiltration of immune cells, such as mast cells, activated 
dendritic cells, type 1 T helper cells, and natural killer T cells, 
and participate in the activation of immune signaling pathways, 
including interferon alpha/beta signaling, immunoregulatory 
interactions between lymphoid and non-lymphoid cells, and 
cytokine signaling in the immune system. This suggests that 
abnormal expression of these core LMDEGs promote the infiltration 
of inflammatory cells and extracellular matrix deposition, thereby 
accelerating the progression of KF. Literature supports that similar 
mechanisms are observed in other fibrotic diseases, such as diabetic 
nephropathy, hepatofibrosis (Horn and Tacke, 2024; Zhong et al., 
2024). Notably, five core genes—SERPINA6, OSBPL6, INPP5J, 
PNPLA3, and GK—are negatively correlated with cells and 
pathways involved in the inflammatory response, whereas 
UGCG demonstrates a positive correlation trend, implying its 
potentially complex role in modulating the inflammatory response. 
Considering inflammatory responses, we hypothesize that UGCG 
exerts antagonistic effects or forms feedback regulatory mechanisms 
with one or more of the other five inflammatory suppressor 
molecules, which contributes to the worsening of inflammatory 
reactions during KF progression.

SERPINA6 is the gene encoding corticosteroid-binding globulin 
(CBG), which plays a crucial role in maintaining corticosteroid 
homeostasis in the plasma. Research indicates that CBG influences 
the negative feedback regulation of glucocorticoid receptors by 
modulating corticosterone availability in the adrenal glands of 
rodents. This function supports the normal growth, development, 
and functional integrity of the adrenal glands in females, 
highlighting its significance in sexual dimorphism (Toews et al., 
2022; Yasmine Nei and rijnck, 2022). In the context of inflammation, 
CBG serves as a link between lipid metabolism dysregulation 
and inflammatory responses. Mice deficient in KLF15 exhibit a 
marked decrease in CBG levels, reduced plasma corticosteroid 
binding capacity, and increased mortality under inflammatory 
stress conditions, such as lipopolysaccharide (LPS) exposure. These 
abnormalities can be fully corrected by CBG supplementation, 
suggesting that KLF15 primarily contributes to the regulation of 
plasma corticosteroid homeostasis and inflammatory responses 
through its modulation of CBG expression (Zhen et al., 2022). 
INPP5J is a critical tumor suppressor that primarily inhibits 
tumor cell proliferation through the regulation of cellular signaling 
pathways. Research has demonstrated that both the mRNA and 
protein expression levels of INPP5J are markedly reduced in 
ovarian cancer (Zhu et al., 2015), breast cancer (Toker and Rameh, 
2015), and pancreatic cancer (Zhou et al., 2024). Targeting and 
modulating INPP5J expression have been shown to effectively 

suppress tumor cell growth, indicating its potential therapeutic 
significance in cancer treatment. Herold, C et al. performed a 
family-based genome-wide association analysis and meta-analysis 
involving approximately 3,500 individuals. Utilizing a multivariate 
phenotype that integrates disease status and age at onset and 
identified a significant association between genetic variation in 
OSBPL6 (rs1347297) and the risk of Alzheimer’s disease (AD). These 
results underscore the potential involvement of lipid metabolism in 
the pathogenesis of AD (Herold et al., 2016). Metabolic-associated 
fatty liver disease (MAFLD) is closely related to PNPLA3 gene 
variations. The risk of developing ESRD in MAFLD patients is more 
than twice that of non-MAFLD patients (Chen et al., 2023). Studies 
(Targher et al., 2019)have shown that children and adolescents 
with the PNPLA3 rs738409 G/G genotype have significantly lower 
eGFR than those with G/C and C/C genotypes, and their 24-h urine 
protein excretion also significantly increases. These changes are 
independent of the severity of liver disease. Therefore, PNPLA3 
gene variations not only increase the risk of ESRD in patients 
with MAFLD, but also may promote renal lipid accumulation 
and fibrosis, directly participating in the process of kidney injury 
(Chen et al., 2023; Mantovani and Targher, 2024). In this study, 
the patients with renal fibrosis included may carry a genetic 
variant of PNPLA3, which could influence the measured AUC 
value associated with PNPLA3. Therefore, future experimental 
studies should aim to disentangle the effect of the PNPLA3 variant 
and clarify its interaction with KF. UGCG is one of the key 
molecules involved in metabolic remodeling and has become a key 
therapeutic target in tumors and cardiovascular diseases, driving 
clinical drug development. After B-cell receptor (BCR) activation, 
UGCG expression is promoted. UGCG catalyzes the conversion 
of pro-apoptotic ceramide to anti-apoptotic glucosylceramide, 
which mediates chemotherapy resistance in chronic lymphocytic 
leukemia (CLL) (Schwamb et al., 2012). Moreover, in highly 
malignant melanoma, studies have shown that UGCG significantly 
inhibits tumor cell apoptosis induced by autophagy-lysosome 
inhibitors by increasing the level of sphingolipids (Jain et al., 2023). 
Notably, the absence of UGCG leads to the impairment of β1-
adrenergic receptor (β1-AR) endocytosis in cardiomyocytes and 
disrupts retrograde transport from the endoplasmic reticulum to 
lysosomes in transgenic mice. These defects result in impaired β-
adrenergic signal transduction, decreased myocardial contractility, 
and ultimately the development of dilated cardiomyopathy and 
premature death (Andersson et al., 2021). There is evidence 
suggesting that the expression of UGCG is upregulated in diabetic 
nephropathy and is associated with the downregulation of kidney-
protecting genes. Especially in the condition where Fabry disease 
and diabetes coexist, the high expression of UGCG may lead to 
more severe kidney phenotypes. This indicates that UGCG may also 
play a certain role in kidney fibrosis, but the specific mechanism still 
requires further study (Sanchez-Niño et al., 2023).

In addition, within the interaction network, UGCG exhibits 
significant interactions with transcription factors such as PAX5, 
GATA2, and CUX1, as well as miRNAs including miR-374a and 
miR-374b. Notably, miR-374b regulates both UGCG and GK 
simultaneously. It may upregulate one gene (e.g., by promoting 
its expression) while downregulating the other (e.g., by inhibiting 
its expression), thereby demonstrating its bidirectional regulatory 
effects on UGCG and GK. This dual regulation disrupts lipid 
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homeostasis in patients with CKD, either by reducing fatty acid 
oxidation or accelerating lipid synthesis, which subsequently 
activates inflammatory responses, promotes extracellular matrix 
deposition, and exacerbates KF. In glomerular podocyte injury 
(Luo et al., 2024), lipid accumulation leads to cytoskeleton 
rearrangement, insulin resistance, mitochondrial oxidative stress, 
and inflammatory activation. These processes, in turn, promote 
glomerular sclerosis and fibrosis. The Klotho gene exerts a protective 
effect on chronic kidney disease by reducing inflammatory 
responses and improving lipid metabolism (Liu et al., 2024). 
However, during the progression of CKD to KF, lipid metabolism 
disorders and inflammatory responses do not have a simple 
cause-and-effect relationship. Instead, they may present a cyclic 
relationship, where the dominant role—either lipid metabolism 
disorder or inflammatory response—alternates at different stages 
of disease progression and progresses in a synergistic manner. This 
understanding offers a new direction for the clinical management 
of chronic kidney disease. Early intervention targeting these core 
LMDEGs and their regulatory networks could potentially inhibit or 
delay the fibrotic process, offering novel therapeutic targets for the 
management of CKD.

From the results of GO and KEGG enrichment analysis of DEGs, 
we identified multiple biological signaling pathways that are closely 
associated with CKD and KF. These include cytokine-mediated 
signaling pathways, collagen-containing extracellular matrices, 
leukocyte-mediated immunity, and regulation of cell-cell adhesion. 
These findings are consistent with the current understanding of 
the pathogenesis of KF (Jia et al., 2025). Notably, pathways such 
as Phagosome and vesicle lumen suggest that intercellular signal 
interactions may play a pivotal role in the progression of renal 
fibrosis, warranting further in-depth investigation (Eirin et al., 
2017; Liu et al., 2020). Moreover, the GSEA results demonstrated 
that DEGs were significantly enriched in pathways associated with 
immune infiltration, including the T cell activation pathway and B 
cell receptor signaling pathway. Furthermore, all six core LMDEGs 
exhibited significant correlations with immune cell infiltration. 
Specifically, UGCG was primarily enriched in natural killer T cells 
and natural killer cells, showing a positive correlation with immune 
signaling pathways such as cytokine signaling in immune system and 
interferon Alpha/Beta signaling. This suggests that UGCG plays a 
pro-inflammatory role in the progression of KF. The remaining five 
core LMDEGs (SERPINA6, OSBPL6, INPP5J, PNPLA3, and GK) 
displayed negative correlations with immune signaling pathways, 
such as interferon Alpha/Beta signaling, while being positively 
correlated with lipid metabolism pathways, including the citric 
acid (TCA) cycle and respiratory electron transport. These findings 
indicate that these core LMDEGs may contribute to promoting fatty 
acid metabolism, correcting lipid metabolic disorders, inhibiting 
inflammatory cells, and counteracting immune infiltration reactions 
during KF. Through the analysis of the aforementioned results, we 
have drawn the conclusion that immune infiltration is intricately 
involved in the entire progression of KF. Furthermore, genes 
associated with lipid metabolism exert regulatory effects on immune 
infiltration (He et al., 2024), indicating a potential correlation 
between immune infiltration and lipid metabolic disorders, both 
of which collectively influence the process of KF. This area will 
constitute one of our key research focuses in the future. Additionally, 
we have observed certain conclusions from other studies that are 

inconsistent with our findings. For instance, some pathways were 
not significantly enriched in our study, which may be attributable 
to variations in sample selection, experimental conditions, or 
analytical methodologies and thus warrant further investigation and 
consideration.

The unsupervised clustering analysis identified three distinct 
molecular subtypes of KF, each with potential therapeutic 
implications. Cluster B, marked by elevated UGCG expression 
and activation of immune-related pathways, may represent an 
“inflammatory” subtype that could potentially benefit from 
immunomodulatory therapies. In contrast, the lipid metabolism-
dominant signature of Cluster A suggests a possible responsiveness 
to PPAR agonists or other lipid-modulating agents. The intermediate 
phenotype of Cluster C might necessitate combination therapies 
targeting both metabolic and inflammatory pathways. These 
findings are consistent with the emerging paradigm of precision 
medicine in KF, where molecular subtyping could inform therapy 
selection. However, the clinical significance of these subtypes 
remains unclear without longitudinal data linking them to disease 
progression or treatment response. Furthermore, the underlying 
biological mechanisms driving these subtype distinctions warrant 
further investigation, particularly to determine whether they reflect 
distinct disease etiologies or different stages along a common 
pathogenic continuum.

Despite the robust bioinformatics methodologies utilized 
in this study, several limitations must be acknowledged. First, 
the findings lack experimental validation via functional assays 
such as gene knockout or overexpression models, which are 
essential for establishing causal relationships between the identified 
LMDEGs (particularly UGCG and SERPINA6) and fibrotic 
progression. Second, although the machine learning models 
exhibited strong predictive performance (AUC 0.723–0.774), the 
relatively small sizes of the validation cohorts (GSE22459: n = 65; 
GSE65326: n = 22) and potential batch effects, even after sva/limma 
correction, may constrain their generalizability. Third, the absence of 
longitudinal clinical data prevents an evaluation of whether the three 
molecular subtypes demonstrate differential prognostic outcomes 
or therapeutic responses. Future studies should integrate single-
cell RNA sequencing to elucidate immune-metabolic crosstalk at a 
cellular level and validate subtype-specific treatment strategies in 
preclinical models. 

5 Conclusion

This study identifies the dysregulation of the lipid metabolism-
immune network as a hallmark feature of KF, with UGCG 
functioning as a central pro-inflammatory hub. Furthermore, genes 
such as SERPINA6 and OSBPL6, along with other LMDEGs, 
play modulatory roles in lipid metabolic pathways. The six-
gene signature derived from machine learning not only stratifies 
patients into clinically relevant subtypes—characterized by lipid-
dominant versus immune-dominant phenotypes—but also reveals 
shared transcriptional regulators, including PPAR and the miR-27 
family, which may coordinately drive fibrotic progression. These 
findings provide a foundational framework for the development 
of precision therapeutics targeting specific components of the 
LMDEG-immune axis. However, translational applications will
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require validation in larger, prospectively collected cohorts with 
matched histopathological and functional data.
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Glossary

KF kidney fibrosis

CKD chronic kidney disease

eGFR estimated glomerular filtration rate

ACR albumin-to-creatinine ratio

ESRD end-stage renal disease

DEGs the differentially expressed genes

LMDEGs lipid metabolism-associated DEGs

GO Gene Ontology

GEO Gene Expression Omnibus

KEGG Kyoto Encyclopedia of Genes and Genomes

LASSO Least Absolute Shrinkage and Selection Operator

ssGSEA lingle-sample Gene Set Enrichment Analysis

GSVA Gene Set Variation Analysis

PCA Principal Component Analysis

LIMMA Linear Models for Microarray Data

RSF Random Survival Forest

GBM Gradient Boosting Machine

Survival-SVM Survival Support Vector Machine

SuperPC Supervised Principal Components Analysis

plsRcox Partial Least Squares Regression for Cox models

Enet Elastic Net

AUC area under the curve

ROC receiver operating characteristic

BP biological process

MF molecular function

CC cellular component

FDR false discovery rate

MDSCs myeloid-derived suppressor cells

CBG corticosteroid-binding globulin

AD Alzheimer’s disease

MAFLD metabolic-associated fatty liver disease

BCR b-cell receptor

CLL chronic lymphocytic leukemia

β1-AR β1-adrenergic receptor
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