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Cardiovascular Disease (CVD) epitomizes class of disorders that disturb the
vessels of heart and blood, encircling circumstances such as heart failure,
coronary artery disease, and strokes, and leftovers a foremost global cause
of morbidity and mortality. The early diagnosis of CVD is decisive as it
consents for opportune involvement and organization, plummeting the risk
of complications, improving treatment outcomes, and preventing further
progression of the disease, ultimately contributing to better patient outcomes
and overall cardiovascular health. Furthermore, early detection and diagnosis
of CVD benefit significantly from the utilization of electrocardiograms (ECGs)
and phonocardiograms (PCGs). The application of DL algorithms for identifying
CVDs using PCG and ECG data has gained substantial attention, although
a predominant number of existing approaches hinge on data sourced from
a single modality. Henceforth, the development of proficient multi-modal
Machine Learning (ML) techniques is crucial for effective prediction and
detection of CVD. In this paper, we have proposed multi-modality-based
CVD diagnosis framework named as multi-class model. In order to classify
cardiovascular diseases into several categories using structured clinical data,
this study introduces MCC-CVD, a new multi-component deep learning model.
A real-world dataset of 920 patient records was used to assess the model.
This dataset contains 13 clinical parameters, such as age, cholesterol level,
resting blood pressure, fasting blood sugar, and other risk markers. The model
used a two-stage weight correction technique and a tri-pattern attention
mechanism (TPAM) to achieve robust performance, which allowed for more
subtle feature weighting and better interpretability. Here, we utilized both quality
enhanced ECG and PCG data through performing multiple processes including
noise reduction and normalization. Besides, to evade misclassification data
enhancement in terms of false peak elimination is performed based on adaptive
thresholding features. After that, we fed the processed data into a multi-class
architecture made up of three modules following. For extracting appropriate
features, we designed Spectral Spatial Temporal Pyramid Network (SST-PNet)
module. Additionally, Weight Correction Module with Attention Mechanism
(WCM-AM) employs for weight maximum approach with three-pattern attention
mechanism. Finally, novel Multi-class EnDe-CNN classifier is introduced to
classify various CVD in multiple classes. A stratified 10-fold cross-validation
method was used to carry out extensive studies. Outperforming baseline
classifiers like SVM, Random Forest, and Logistic Regression, the suggested
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MCC-CVD model attained an average accuracy of 92.4%, Fl-score of 0.87,
precision of 0.89, and recall of 0.85. With an area under the curve (AUC) of
0.94, the model clearly has good discriminative potential across various subtypes
of CVD. Furthermore, sensitivity analysis showed consistent performance even
when changing parameters or data, and statistical testing validated the model's
superiority with p-values less than 0.05.

cardiovascular disease, spectral spatial temporal convolutional pyramid network, multi-
modality, multi-class classifier, weight correction module

1 Introduction

Cardiovascular disease (CVD) encompasses a range of
conditions affecting the blood vessels of the heart and can lead
to serious outcomes like stroke and heart failure. It is a major
global health concern due to its high rates of morbidity and
mortality (Vinay et al., 2024) (Aggarwal et al., 2021). CVD is often
caused by a combination of lifestyle factors, such as poor diet, lack
of exercise, and smoking, as well as by genetic predispositions.
These conditions typically result in blood vessel narrowing or
blocking, which may disrupt the essential flow of oxygen and
nutrients to the heart. Timely intervention through lifestyle changes,
medication, or surgery is vital for managing cardiovascular health
and preventing severe outcomes (Khan et al., 2024) (Chen et al,,
2024). Early detection of CVD is crucial for several reasons. First,
heart attacks and strokes are leading causes of death worldwide.
Identifying these issues early significantly enhances the likelihood
of successful treatment and recovery (Khan and Algarni, 2020).
Second, many cardiovascular problems develop silently, without
noticeable symptoms, until they become severe. Regular screenings
and early detection allow for the identification of risk factors
and abnormalities before they lead to serious complications. This
proactive approach enables the implementation of preventive
measures such as changes in diet, increased physical activity, and
medication, to manage and reduce CVD risks (Bakkouri and Afdel,
2023) (Kambhampati and Ramkumar, 2021). Additionally, early
detection can reduce healthcare costs. Advanced CVD treatments
can be resource-intensive and expensive. Identifying and addressing
cardiovascular problems early helps allocate healthcare resources
more efficiently, leading to better patient outcomes and a more
sustainable healthcare system (Bakkouri et al., 2022) (Bakkouri
and Afdel, 2020). ECG and PCG are valuable tools for early CVD
detection. ECG measures the electrical activity of the heart, captures
the rhythm, and identifies irregularities such as arrhythmias
(Bakkouri and Afdel, 2019) (Narayana et al., 2023a). The PCG
records the heart sounds, providing insights into mechanical
activities such as valve movements. Combining ECG and PCG
data enhances CVD detection by providing a more comprehensive
view of cardiac health. Machine learning (ML) and deep learning
(DL) algorithms are increasingly used to analyze ECG and PCG
data (Thomas and Kurian, 2022) (Narayana et al., 2023b). These
technologies improve the accuracy and timeliness of CVD detection
by identifying patterns and abnormalities that may not be evident
to human observers. Al-based systems, particularly DL models,
excel at processing complex data and can continuously improve
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their performance as they learn from large datasets (LiP. et al.,
2021). This integration of AI with ECG and PCG data offers a
promising approach for preventive care and personalized treatment.
Despite their potential, there are limitations to using AI for
CVD detection, including the need for large, diverse datasets
for effective model training, potential biases, and difficulties in
interpreting complex or subtle abnormalities (Khan et al., 2022),
(Jyothi and Pradeepini, 2024). Additionally, DL models often
operate as “black boxes,” making it challenging to explain their
decisions to clinicians. Addressing these challenges and adapting
to the dynamic nature of cardiovascular conditions is essential
for developing robust and reliable diagnostic tools. In summary,
early detection of CVD through advanced technologies like ECG,
PCG, and AI can significantly improve patient outcomes, reduce
healthcare costs, and enhance overall cardiovascular health. The
development of new models that integrate these technologies is
crucial for refining CVD diagnosis and treatment (Do et al., 2023;
Khan et al., 2021; Chakir et al., 2020).

1.1 Research contribution

To ensure accurate CVD diagnosis and enhance model
performance, the following novel contributions are explicitly
introduced in this work.

1.1.1 Enhanced data processing and feature
extraction

The framework introduces a robust preprocessing pipeline for
ECG and PCG data that includes quality enhancement, noise
reduction, and normalization. By performing data enhancement
with adaptive thresholding to eliminate false peaks, the model
ensures higher accuracy and reliability in feature extraction. The
Spectral Spatial Temporal Pyramid Network (SST-PNet) module
then leverages such refined data to capture complex spectral, spatial,
and temporal features, improving the model’s ability to detect and
differentiate various CVD conditions.

1.1.2 Advanced weight correction and attention
mechanism

The Weight Correction Module with Attention Mechanism
(WCM-AM) represents a novel approach by integrating a three-
pattern attention mechanism with weight correction strategies.
This module enhances the model’s ability to focus on critical
features and corrects weight imbalances, leading to more precise and
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context-aware classification. This mechanism improves the handling
of diverse data patterns and reduces misclassification rates by
addressing the nuances of different CVD types. There is a synergistic
and complimentary benefit to integrating spectral spatial and
temporal data in the context of cardiovascular disease classification.
The correlation between cholesterol levels, blood pressure, and other
biomarkers is just one example of how spectral-spatial features
capture the distributional patterns and interrelationships among
clinical variables at a single point in time. This helps the model learn
how these attributes co-exist and interact across different patient
subgroups. When it comes to cardiovascular disease, temporal
aspects are crucial for recognizing early warning signals, diagnosing
deteriorating situations, and discriminating between acute and
chronic forms. These features encode the progression and evolution
of patient health indicators throughout time. The MCC-CVD
framework uses combined modeling of both domains to provide
more accurate and discriminative depictions of patient’s health
conditions by utilizing both static diagnostic indicators and dynamic
patterns of disease progression. When it comes to cardiovascular
disease (CVD) risk stratification, where both the current clinical
profile and past trends help with correct diagnosis and prognosis,
this multi-domain fusion is very useful.

1.1.3 Innovative multi-class EnDe-CNN classifier

The introduction of the multi-class EnDe-CNN classifier holds
significance as it combines advanced encoding and decoding
techniques within a convolutional neural network framework to
classify various CVD types across multiple classes. This classifier not
only enhances the model’s diagnostic capabilities but also facilitates
a more granular understanding of cardiovascular conditions,
enabling more targeted and effective treatment strategies. Classical
machine learning methods like Support Vector Machine (SVM),
Random Forests (RF), and Logistic Regression (LR) are used
in the majority of extant work in this domain. These methods
usually see CVD prediction as a problem of binary classification,
like presence vs. absence of disease. In multiclass classification
problems, where different types of cardiovascular diseases are to
be distinguished, these approaches frequently fail, despite their
moderate performance. On top of that, a lot of models are not
ideal for real-time deployment, do not have interpretability, or
are overfitted to tiny datasets. Parameter optimization, statistical
validation, and scalability to real-world settings have frequently been
overlooked in the current applications of deep learning models.

Using structured clinical data, this project aims to build a deep
learning model for multiclass cardiovascular illness categorization
that is robust, interpretable, and scalable. Multi-Component
Classifier for Cardiovascular Disease (MCC-CVD) is the name of
the suggested model that improves feature importance learning and
classification accuracy by combining a two-stage Weight Correction
Strategy with a new Tri-Pattern Attention Mechanism (TPAM).
With the use of dynamic attention and statistical rigor, the suggested
architecture outperforms previous models that depend on static
feature importance or shallow categorization, resulting in improved
dependability and wider applicability.

The absence of multiclass CVD prediction models, inadequate
statistical evaluation, model interpretability, and cross-platform
scalability are some of the important gaps that this study fills. This
gap is addressed by the MCC-CVD model, which can (1) process
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complex, high-dimensional clinical data using deep attention-based
learning; (2) deliver strong results supported by cross-validation,
confidence intervals, and significance testing; and (3) show that it
is feasible to deploy using sensitivity analysis and a design that is
efficient with resources.

The main contributions of this study are as follows:

e Development of a novel deep learning architecture for
multiclass CVD classification using clinical data.

e Introduction of the Tri-Pattern Attention Mechanism (TPAM)
and Weight Correction Strategy to improve feature weighting
and interpretability.

10-

fold cross validation, confidence intervals, and paired

e Comprehensive — statistical ~ evaluation including
significance testing.

e Sensitivity and robustness analysis demonstrating model
stability under parameter and data shifts.

e Discussion of deployment strategies including model
compression and potential integration with mobile apps, cloud

APIs, and hospital information systems.

1.2 Paper organization

The subsequent tasks are organized as follows: Section 2
elucidates the associated endeavors, providing an in-depth
overview of the existing CVD diagnosis model and delineating its
research gaps. Section 3 underscores the research methodology,
accompanied by pertinent theoretical, diagrammatical, and
the
results are disclosed, encompassing dataset particulars and

mathematical elucidations. In Section 4, experimental
evaluation outcomes juxtaposed with the latest iterations of CVD

diagnosis models. Section 5 concludes the proposed research.

2 Literature survey

CVD remains the leading cause of death globally, underscoring
the urgent need for accurate and early diagnosis. Traditional
diagnostic methods often rely on single-modality data, which may
fail to capture the complex interplay of electrical and mechanical
cardiac functions. The integration of ECG and PCG signals
offers a more comprehensive view of cardiac health, enabling
enhanced detection of subtle abnormalities. With the rise of deep
learning, there is a growing shift toward intelligent, multi-modal
frameworks that can automate and improve diagnostic precision.
This research aligns with that direction by proposing a robust
multiclass classification model that leverages both ECG and PCG
data for improved CVD prediction.

2.1 ECG- and PCG-based CVD diagnosis

The cardiovascular system is responsible for transporting oxygen
and nutrients in the blood. A heart, circulatory system, and
network of blood vessels make up this system. In order to
diagnose CVD, specialists in the field, known as cardiologists,
listen for the heart’s rhythm and blood flow with a conventional
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stethoscope and a phonetic cardiogram. A cardiologist will use
a stethoscope to detect vibrations caused by the heartbeat and
other sounds, such as murmurs, that are recorded for medical
diagnostic purposes. These sounds are commonly referred to as
PCG signals. In order to help specialists identify CVDs efficiently
from PCG signals in the early stages, a method for automatic
recognition of HVDs has been developed. Numerous resources are
at the disposal of medical professionals to aid in the rapid and
accurate diagnosis of CVD in clinical settings. Using supervised and
unsupervised recurrent neural network (RNN)-based Bidirectional
Long Short-Term Memory (Bi-LSTM) Machine Learning (ML)
algorithm, Vinay et al. (2024) proposed work primarily aims to
offer an Al-based PCG signal analysis for the automatic and early
detection of various cardiac conditions.

An irregular heartbeat is a common cause of cardiovascular
disease, the leading contributor to mortality worldwide. The key
to preventing deaths is early diagnosis and prompt treatment.
Important non-invasive methods for identifying these diseases
include ECGs. Cardiology patients can now more easily undergo
remote monitoring because of the proliferation of telemedicine.
Data transfer efficiency is crucial for telemedicine sensors due
to their limited bandwidth and battery life. With the goal
of improving performance, reducing energy consumption, and
maintaining diagnostic accuracy in telemedicine, Aggarwal et al.
(2021) presented a Latent Space Classification System (LSCS)
that compresses electrocardiogram (ECG) signals into smaller
dimensions. Using FLOPs, inference time, and transmission size,
the study examines energy usage in order to overcome sensor
constraints in different feature extraction strategies. In order to
compress ECG signals, the suggested LSCS uses a deep convolutional
autoencoder that was trained on the MIT-BIH arrhythmia database.

A major cause of death, CVDs have recently emerged as a
major physiological condition. Protecting patients from further
injury requires accurate and timely detection of heart disease. A
number of recent studies have demonstrated the great utility of data-
driven methods, such as DL and ML techniques, in the medical
profession for the rapid and precise diagnosis of cardiac illness.
In contrast, feature engineering is essential for statistical learning
and conventional ML methods in order to produce data features
that are both robust and effective for use in prediction models.
Both procedures present significant obstacles when dealing with
big, complicated data sets. On the other hand, DL approaches can
automatically learn features from data, and they excel at handling
complex and huge datasets, even more so than ML models. In order
to overcome the obstacles caused by imbalanced data, Khan et al.
(2024) aimed to accurately forecast CVDs by taking the patient’s
health and socioeconomic status into account. When it comes
to data balancing, the author employed the Adaptive Synthetic
Sampling Technique, and for feature selection, the Point Biserial
Correlation Coefficient.

The goal of applying machine learning to patient data in illness
care is to reap the many significant benefits that come with doing so.
However, there are a number of obstacles that arise from the very
nature of patient data. In contrast to uncommon or specific cases,
which often have small patient sizes and episodic observations,
prevalent cases collect a lot of longitudinal data because of the
number of patients they follow up with and how consistently they
do so. However, longitudinal laboratory data are notorious for being
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irregular, their temporality, absenteeism, and sparseness. Chen et al.
(2024) used self-supervised learning (SSL) to train a GLP model that
tracks the overall development of six common laboratory markers in
common cardiovascular cases. The goal was to use this knowledge
to help detect specific cardiovascular events. Approach and steps: In
order to improve SSLs performance, GLP used a two-stage training
method that made use of the data included within interpolated sets.
Transferring it to target vessel revascularization (TVR) detection
follows GLP pre training. Pure SSLs performance was enhanced
by the suggested two-stage training, and GLP’s transferability was
noticeable.

In recent years, the field of CVD detection has seen significant
advancements, with researchers exploring innovative approaches
to enhance both accuracy and efficiency. Below is a comprehensive
analysis of key research contributions that focus on the recognition
and classification of cardiac abnormalities through the integration
of synchronized ECG and PCG signals, as well as the utilization
of DL and wearable technology. LiP. et al. (2021) offered a
holistic approach to CVD prediction by integrating multi-modal
features, enhancing the predictive power of their model. This
study demonstrated promising results, showcasing the potential of
combining different types of features for more accurate predictions.
However, further analysis of the scalability and generalizability of
the proposed model could strengthen the paper’s contributions.
Khan et al. (2022) focused on the application of artificial neural
networks and spectral features. The integration of spectral features
provided valuable insights into the frequency domain, potentially
capturing subtle patterns indicative of cardiovascular conditions.
Although the methodology was innovative, a deeper exploration
of the network architecture and the interpretability of the spectral
features could enhance the paper’s impact. Jyothi and Pradeepini
(2024) introduced a detection system utilizing both PCG and ECG
signals with a machine learning classifier. The inclusion of both
signals contributed to a more comprehensive understanding of
cardiac health, and the hybrid classifier employed by the authors
resulted in improved prediction accuracy. However, a more detailed
discussion of the model’s interpretability and potential limitations
would further strengthen the paper’s contribution. Do et al. (2023)
explored nondestructive detection methods by examining the
coupling of PCG and ECG signals to assess coronary artery disease
(CAD) stenosis severity. This innovative approach provided a non-
invasive means of evaluating cardiovascular health, demonstrating
the potential of synchronized signals in assessing disease severity.
Khan et al. (2021) proposed a classification system for multi-class
CVD using an ensemble method. The use of ensemble techniques
enhanced the model’s predictive performance, while impulsive
domain analysis offered valuable insights into transient phenomena.
The paper’s comprehensive approach was a strength, though a more
extensive discussion on computational efficiency and potential
deployment challenges would enrich the contribution. Chakir et al.
(2020) addressed challenges in cardiac abnormality recognition
by synchronizing PCG and ECG signals. The integration of these
vital cardiac signals provided a holistic view of heart function,
and the authors’ novel methods for signal synchronization yielded
promising results in accurately identifying cardiac abnormalities.
This collaborative analysis of ECG and PCG signals holds great
potential for enhancing diagnostic precision. Li H. et al. (2021)
focused on the integration of multi-domain deep features, proposing
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an advanced method for detecting CAD. By leveraging DL
techniques, the authors demonstrated the effectiveness of combining
information from both PCG and ECG signals. The integration of
multi-domain features enhanced the model’s ability to discern subtle
patterns associated with CAD, highlighting the potential for more
accurate and reliable disease detection. Wang et al. (2022) designed
a wearable monitoring tool for CVD detection. The integration of
DL algorithms enabled continuous monitoring, facilitating the early
detection of cardiac abnormalities. The wearable aspect of the device
enhanced patient compliance and provided a convenient solution
for long-term monitoring. The findings underscored the feasibility
of employing wearable technology to improve the efficiency of CVD
detection. Igtidar et al. (2021) focused on signal analysis, utilizing
mel frequency cepstral coeflicients (MFCC) and one-dimensional
memory patterns for CVD detection. The incorporation of
advanced signal processing techniques enhanced the model’s
discriminatory power. The use of PCG signals, in conjunction
with these methods, demonstrated the potential for precise and
automated classification of cardiac conditions. In conclusion, these
research papers collectively contribute to the evolving landscape of
CVD detection by presenting innovative approaches that leverage
synchronized ECG and PCG signals, multidomain deep features,
wearable technology, and advanced signal processing techniques.
The integration of these methodologies holds promise for improving
the accuracy, efficiency, and accessibility of CVD diagnosis,
ultimately benefiting both healthcare professionals and patients.

2.2 ECG-based CVD diagnosis

In recent years, the field of CVD detection and management
has seen significant advancements through the integration of ECG
data and ML models. Haleem et al. (2021) introduced a time-
adaptive approach to ECG-driven CVD detection, emphasizing
the dynamic nature of ECG signals. Their research demonstrated
how real-time adjustments to ECG signal analysis can significantly
enhance the accuracy of CVD detection. The adaptive algorithm
they presented promises to be a more responsive and precise
diagnostic tool, facilitating timely interventions for patients at
risk of CVD. Dai et al. (2021) contributed to this evolving field
by developing an automatic screening tool for CVD based on
convolutional neural networks (CNNs). Their research highlighted
the potential of DL models in analyzing various intervals of ECG
signals to capture intricate patterns that may indicate the presence
of CVD. The robust and reliable screening mechanism developed
in this study underscores the transformative power of CNNs in
revolutionizing CVD diagnostics. Boonstra et al. (2023) explored the
intersection of ECG methodologies and clinical practice, focusing
on how ECG data can be utilized for managing CVD. This research
provided valuable insights into the potential of ECG data to support
personalized treatment strategies. By enhancing clinical decision-
making, this study contributes to the growing field of precision
medicine in cardiology, offering new avenues for individualized
patient care. Angelaki et al. (2021) took a different approach by
leveraging ML techniques for the early detection of CVD. Their
innovative research demonstrated how ML models could be used
to identify subtle structural anomalies in ECG data, offering a
preventive strategy for individuals at risk of developing CVD.

Frontiers in Physiology

05

10.3389/fphys.2025.1650134

This approach highlights the potential of ECG-driven ML models
to serve as early warning systems, enabling proactive healthcare
interventions. Finally, Malakouti (2023) presented a comprehensive
heart disease classification model based on ECG signals and
ML techniques. Their research showcased the versatility of ML
models in categorizing various cardiac conditions, providing a
valuable tool for healthcare professionals to streamline diagnosis
and treatment plans. This study underscores the role of ML
in enhancing the efficiency and accuracy of cardiac care. In
conclusion, these five research papers collectively underscore
the transformative impact of ECG-driven methodologies and
ML models in advancing CVD detection and management.
The integration of real-time adaptive algorithms, convolutional
neural networks, and personalized medicine approaches highlights
the promise of these technologies in shaping the future of
cardiology. As the field progresses, these studies pave the way
for more sophisticated, accurate, and patient-centric solutions in
cardiovascular healthcare.

2.3 PCG-based CVD diagnosis

In recent years, the field of cardiac disease diagnosis has
witnessed significant progress, largely due to the integration
of ML methods into the analysis of PCG signals. This section
reviews no table research papers that contribute to this rapidly
evolving field, highlighting the potential of ML in revolutionizing
the detection and classification of various cardiac disorders.
Yadav et al. (2020) explored the application of ML algorithms
for classifying cardiac diseases based on PCG recordings. Their
study demonstrated the efficacy of these methods in accurately
identifying and categorizing different cardiac conditions, thereby
contributing to the development of more efficient diagnostic tools.
Baghel et al. (2020) focused on leveraging CNNs to automate the
diagnosis of multiple cardiac diseases using PCG signals. The
utilization of CNNs showcases the potential for DL architectures
to capture intricate patterns within heart sounds, leading to
improved diagnostic accuracy. Tuncer et al. (2021) employed
pattern recognition techniques to automate the detection of cardiac
abnormalities from PCG signals. Their approach illustrates the
diversity of methods within the field, combining traditional signal
processing with modern ML techniques to enhance diagnostic
capabilities. Talal et al. (2023) concentrated on classifying a diverse
set of heart disorders, emphasizing the versatility of ML models in
handling a wide range of abnormalities in PCG signals. This study
underscores the importance of comprehensive models that can
accurately diagnose various cardiac conditions. Shuvo et al. (2021)
introduced the CardioXNet framework, a lightweight DL approach
tailored for CVD classification. Their research highlights the need
for models that balance accuracy and computational efficiency,
ad-dressing practical considerations for real-world applications.
Li et al. (2020) proposed a fusion method that combines multiple
field features with DL to enhance coronary artery disease detection.
The integration of diverse features reflects a holistic approach toward
improving the robustness and accuracy of diagnostic systems.
In conclusion, these research papers collectively contribute to
advancing cardiac disease diagnosis through the integration of
ML and DL techniques. The diverse methodologies presented in
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these studies underscore the richness of approaches in this field,
promising a future where accurate and efficient cardiac disease
diagnosis becomes more accessible to clinicians and patients alike.
In summary, existing studies have explored various approaches
for CVD detection using either ECG or PCG signals, as well as
deep learning and machine learning techniques. However, most
of these methods are limited by single-modality analysis, lack of
robust preprocessing, or insufficient feature extraction mechanisms.
Few works fully exploit synchronized ECG and PCG data with
advanced attention-based architectures for multiclass classification.
Addressing these gaps, our proposed work introduces a novel
multi-modality framework incorporating SST-PNet, a tripattern
attention mechanism, and a self-supervised EnDe-CNN classifier.
This integrated approach significantly enhances the diagnostic
performance and contributes a comprehensive, scalable model
to the current body of knowledge in CVD detection. Table 1
highlights recent research on CVD detection using diverse
approaches.

3 Multi-class framework

Our proposed multi-class framework integrates the
multimodality of ECG and PCG signals for diagnosing CVD.
We designed and proposed a multiclass classifier for individual
input channels. In this research, a multiclass architecture comprises
three modules for feature extraction, feature selection, and
classification. Figure 1 illustrates the complete pipeline of the
proposed multiclass CVD diagnosis system, encompassing
data (ECG and PCQG),
preprocessing and enhancement, followed by feature extraction,

multimodal collection advanced

attention-based weighting, and final classification into positive or
negative CVD cases.

3.1 Data collection

ECG and PCG
PhysioNet/CinC Challenge, with contributions from various

records stood sourced from 2016
foreign universities to the databases. The dataset, categorized into
six subsets labeled training-1 through training-6 is distributed
across different establishments. The “training-a” dataset consists
of 409 recordings, where 405 records utilize a Welch Allyn
Meditron electronic stethoscope with a frequency response range
of 25Hz-40kHz. Among these, 117 recordings are classified
as negative, representing the standard control set, while the
remaining 288 are from patients diagnosed with mild aortic
disease (AD), mitral valve prolapse (MVP), or other pathological
diseases (MPC) and are classified as positive. The PCG and
ECG signals in these recordings undergo resampling to 2000 Hz.
Some recordings, or parts thereof, exhibit visual noise, making
interpretation challenging. Consistent with previous research, 17
recordings containing noise are manually removed to mitigate
potential bias. Table 2 summarizes the dataset. The values (Mean,
Min, SD, Median, and Max) represent the statistical distribution
of the recording duration (in seconds) across subjects. It is
important to take that 388 recordings are divided into training
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and validation datasets before completing the data expansion
process.

The records vary significantly in length, and to provide an ample
quantity of data for a deep neural network, we employ a sliding
window approach to augment the dataset. Specifically, we divide the
lengthy raw signals into short recordings with an 8-s frame. The
window stride for positive recordings is set at 8 s, while for negative
recordings, it is 3 s, ensuring a balanced distribution of positive and
negative recordings. Subsequently, through these segmentations, we
adjust the ratio from 2.4:1 (273:115) to approximately 1:1. Table 3
presents the dataset composition, consisting of 1008 positive and 967
negative samples, each with a duration of 8 s.

3.2 Data preprocessing

3.2.1 Noise reduction

ECG and PCG signals are prone to various types of noise such as
baseline wander (low-frequency drift due to respiration or electrode
movement), powerline interference (50/60 Hz), and motion artifacts
caused by patient activity. To address these challenges, Wiener
filtering was employed for noise reduction. The Wiener filter is
particularly suitable for ECG/PCG denoising because it minimizes
the mean square error (MSE) between the desired clean signal and
the estimated signal, while considering both the signal and noise as
stochastic processes. This makes it highly effective for biomedical
signals where the spectral overlap between noise and signal is
significant.

The Wiener filter adapts its coefficients ¥, based on the
estimated spectral characteristics of the noisy signal. For an input
signal x(n) consisting of the true signal o(n) and noise v(n), as
represented in Equation 1.

x(n) =0 (n)+v(n), 1

The output signal A(n) provides an estimate of o(n). The error
signal e(n) is given by as represented in Equation 2.

e(n)=A(n)-o(n), )

and the Wiener filter seeks to minimize the mean squared error,
as represented in Equation 3.

e=min(E[e*(n)]). (3)

The discrete Wiener filter is expressed as represented in
Equation 4.

N-1

A(n) =Y Yy (d(n=-K)-v(n-N), (4)
R=0

where the filter coefficients ¥ are iteratively adapted. The
Wiener-Hopf equation provides the condition for optimal weights
as represented in Equation 5:

p-1
Z\Ijol Txx (k-1 = Txo (=D, (5)
=0

where ¥,,,%,;,..., ¥

©2 Sop-1
the filter, r,, represents the autocorrelation function of x(n),

denote the optimum tap weights of
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TABLE 1 Research Gaps of state of arts.

Study

Lietal. (2021a)

Approach

Multi-modal feature integration

Key contributions

Enhanced predictive power for CVD
through integration of various features

10.3389/fphys.2025.1650134

’ Limitations

Scalability and generalizability need
further exploration

Khan et al. (2022), Wang et al. (2022)

Artificial neural networks and spectral
features

Used frequency features for inputs into
deep learning, improving CVD
detection accuracy

Black-box explanation and
interpretability are difficult

Jyothi and Pradeepini (2024)

Hybrid classifier with PCG and ECG
signals

Achieved improved prediction accuracy
by using both signals

Requires more annotated datasets;
sensor integration limitations

Do et al. (2023)

Non-destructive detection with PCG
and ECG coupling

Innovative non-invasive approach for
assessing CAD severity

Limited diagnosis and broader
applicability need validation

Khan et al. (2021)

Ensemble methods for multiclass CVD
classification

Enhanced predictive performance and
provided insights into transient
phenomena

Needs more contextual efficiency and
deployment challenges

Chakir et al. (2020)

PCG and ECG signal synchronization

Novel methods for signal
synchronization, improving accuracy in
cardiac abnormality recognition

Engineering synchronization of the two
systems affects robustness

Lietal. (2021b)

Multidomain deep features

Demonstrated effective CVD detection
by integrating multidomain features

Computational complexity and
real-time applicability

Wang et al. (2022)

Wearable monitoring tool for CVD
detection

Enabled continuous monitoring
through DL algorithms, enhancing
early detection

Device performance issues and patient
adherence are challenges

Iqtidar et al. (2021)

MEFCC and ID memory patterns for
CVD detection

Improved model’s discriminatory
power through advanced signal
processing techniques

Requires validation on diverse datasets

Haleem et al. (2021)

Time-adaptive ECG-driven CVD
detection

Improved accuracy through real-time
adaptive signal analysis

Needs further validation in clinical
settings

Dai et al. (2021)

CNN-based automatic screening tool

Highlighted DLs potential in expanding
multiple ECG patterns for CVD
detection

Limited generalizability to diverse
populations

Boonstra et al. (2023)

ECG methodologies for clinical practice

Forward screening into ML for
personalized treatment strategies

Needs broader clinical validation

Angelaki et al. (2021)

ML for early detection of CVD

Demonstrated MLs power in early CVD
detection through ECG waveforms

Requires more research with real-world
data

Malakouti (2023)

ML for heart disease diagnosis

Showcased ML versatility in
addressing various cardiac patterns

Needs further exploration on scalability
and validation

Yadav et al. (2020)

ML algorithms for PCG-ECG fusion

Achieved accurate classification using
multimodal synchronization

Limited by the need for high-quality
synchronized input

Baghel et al. (2020)

CNNs for PCG-based diagnosis

Improved the diagnostic accuracy by
capturing intricate patterns in heart
sounds

Requires validation across more diverse
patient groups

Tuncer et al. (2021)

Pattern recognition for PCG signals

Enhanced diagnostic capabilities
through traditional signal processing
and ML.

Needs further refinement of the pattern
recognition methods

Talal et al. (2023)

ML with ECG features

Showcased ML versatility in
diagnosing various cardiac disorders

Requires further testing in clinical
environments to ensure robustness
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TABLE 1 (Continued) Research Gaps of state of arts.

Study ‘ Approach

Shuvo et al. (2021) CardioXNet for lightweight DL CVD

classification

‘ Key contributions

Balanced accuracy and computational
efficiency for real world applications

10.3389/fphys.2025.1650134

‘ Limitations

Needs further exploration of its performance
in resource-limited settings

Li et al. (2020) Fusion method with DL for CAD detection

Enhanced diagnostic robustness and accuracy

Limited by the need for further testing on

through multi field feature integration different types of CVD.
Data Collection
Data Preprocessing
Data Enhancement
Noise Reduction
ECG Signal P—————
— False peak elimination
Normalization
PCG Signal
Weight correction module Spectral spatial

Novel Multi-class
classifier for CVD «
diagnosis

with attention
mechanism(WCM-AM)
for dimensionality reduction

temporal pyramid
network(SST-PNET)for
feature extraction

FIGURE 1
Overall workflow of the proposed framework illustrates the complete pipeline of the proposed multi-class CVD diagnosis system, encompassing

multimodal data collection (ECG and PCG), advanced preprocessing and enhancement, followed by feature extraction, attention-based weighting, and
final classification into positive or negative CVD cases.

TABLE 2 Description of the dataset.

Classes Subjects Time length (s)
Mean Median
Positive 273 31.65 11.72 5.87 34.64 35.92
Negative 115 31.74 8.98 422 30.58 35.92
TABLE 3 Data description. 3.2.2 Normalization
. . After noise reduction, the min-max normalization technique

Classes Subjects ’ Time length (s) o . o q
of data normalization is performed in which linear transformation

Positive 1008 8 is executed on noise reduced data. The value of maximum and
minimum from data is increased, and the individual value is changed

Negative 967 8 as per the following formula,

= A—m—m(E (new_max (3) — new_min () + new,i,z)

" max(3) - min(3)
(6)

’

and r,, denotes the cross-correlation function between x(n) and
o(n). In the proposed multiclass model, the filter order and
window length were empirically determined through preliminary ~ where 7 denoted as attribute data, max(#) denotes the maximum
trials to maximize noise suppression while preserving the  absolute value, and min(#) denotes the minimum absolute value.

morphological details of the ECG and PCG signals. This ensured A" and A are the new value and old values of individual data

that clinically relevant features (such as QRS complexes in ECG
and systolic/diastolic components in PCG)were retained after
filtering.

Frontiers in Physiology

entry, respectively. Furthermore, new_min(#) and new_max(?)
denote the parameters of maximum and minimum value of range,
respectively as represented in Equation 6.
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3.3 Data enhancement

3.3.1 False peak elimination

Likewise, for the proficient extraction of characteristics from
the ECG and PCG signals, we eliminate inaccurate peaks and
reconstruct it. Within ECG and PCG signal processing, the process
of identifying and removing or reducing misleading or inaccurate
peaks in the ECG and PCG signal is termed false peak elimination.
The elimination of false peaks in ECG and PCG signal segmentation
involves scrutinizing peak-to-peak intervals through statistical
assessment of false peaks. The subsequent features, precisely defined
as follows, were statistically identified and employed for false
peak elimination using an adaptive threshold along the amplitude
axis.

1. Frequency Analysis: Power Spectrum

The identification and separation of frequency components
associated with genuine brain activity from noise can be achieved
by analyzing the power spectrum of ECG and PCG recordings.

2. Time-related Features: Temporal Constancy and Variability

Genuine ECG and PCG signals exhibit significant temporal
constancy. Artifacts may manifest as sudden, abrupt changes or
spikes. Measuring the variability of the ECG and PCG signal over
time assists in pinpointing segments likely to contain artefacts.

3. Spatial Characteristics: Consistency and Channel Correlation

ECG and PCG data acquired from multiple electrodes should
demonstrate spatial consistency. Inconsistencies in spatial patterns
could indicate artifacts. Evaluating the correlation between ECG
and PCG channels aids in identifying anomalous patterns associated
with artifacts.

4. Amplitude
Distinctive Characteristics

and Duration of Waveform Morphology:

Authentic ECG and PCG signals often showcase distinctive
amplitudes and durations. Anomalies may be signaled by unusual
spikes in amplitude or duration. Analyzing the morphology and
shape of ECG and PCG waves helps identify abnormalities related
to artifacts.

5. Statistical Measures: Moments and Anomaly Detection

Calculating statistical moments (mean, variance, skewness,
and kurtosis) of ECG and PCG segments assists in identifying
anomalous patterns linked to artifacts. Anomaly detection through
statistical techniques aids in the effective elimination of false
peaks.

3.4 CVD diagnosis

Next, we fed our processed data into multi-class architecture
which consists of three modules as shown in Figure 1: (i) SST-
PNet to extract appropriate features; (i) WCM-AM which provide
significant weight for optimal features by means of feature selection;
(iii) Novel Multi-class Classifier is introduced for classifying the
several CVDs into multiple classes.
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3.4.1 Spectral Spatial Temporal Pyramid Network
(SST-PNet)

Once both ECG and PCG signals are preprocessed and
enhanced, we fed the data into a multi-class model. Here, primarily
SST-PNet is adapted for feature extraction for CVD diagnosis.
SST-PNet consists of spectral, spatial, and temporal branches in
which pyramidal convolution is encompassed, as shown in Figure 2.
Initially, the pyramidal blocks utilized in three branches are detailed
as follows,

1. Spectral Branch- Initial Layer: Typically, the initial step
in feature modification involves the application of a 3D
convolutional layer, aimed at reducing the computational
burden along the spectral dimension. Subsequently, a
pyramidal spectral block is appended. In Figure 2, each
layer within the pyramidal convolution consists of three 3D
convolution procedures with progressively decreasing spectral
dimension levels. For each layer, the kernel sizes of the 3D
convolution operations are sequentially setas 1 x 1 x 7,1 x
I x5and1 x 1 x 3.

. Construction: Subsequent to each convolution, a batch
normalization (BN) layer is introduced for regularization,
followed by the application of the Mish activation

function. This combination aids in learning a nonlinear
representation, thereby enhancing the network’s power and
speed of convergence. Each layer maintains a consistent
number of output channels, customizable as y’. The
final output number for the block can be expressed as
follows:

y=n+3xy’ (7)

In the equation, y represents the actual number of 3D
convolution kernels, and n is the number of output channels
from the preceding 3D convolution layer. It is noteworthy that
the investigation primarily focuses on spectrum information, given
that the only variable in these convolution kernels is their spectral
dimension, which is never equal to 1.

e Spatial Branch: Construction: This branch also utilizes a
pyramidal structure, with convolution kernels varying in
spatial dimensions while maintaining consistency in the
spectral dimension. A 3D convolutional layer is applied
initially, followed by the pyramidal spatial block, which
includes layers with batch normalization and Mish activation
functions.

e Temporal Branch: Construction: Similar to the spatial branch,
the temporal branch involves pyramidal convolution with
variable kernel sizes in the temporal dimension. A 3D
convolutional layer is applied before the pyramidal temporal
block, with each layer featuring batch normalization and Mish
activation functions.

Each branch of SST-PNet is designed to extract different
types of features from the multimodality input data, leveraging
interspatial linkages and dimension-specific kernels to enhance
feature representation and improve the diagnostic accuracy.

Likewise, the construction of the pyramidal spatial and temporal
blocks leverages interspatial linkages within feature maps, similar to
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FIGURE 2
Illustration of SST-PNet depicts the structure of the SST-PNet, which consists of three parallel branches, namely, pyramidal spectral, spatial, and
temporal blocks, each applying multi-scale 3D convolutions to capture hierarchical features across different dimensions of ECG and PCG data.

the pyramidal spectral block. As shown in Figure 2, the kernel size
in the spatial and temporal blocks varies along the spatial dimension
while remaining fixed in the spectral dimension. Moreover, a 3D
convolution layer is applied before compressing the spectral and
temporal dimensions. Each layer within these blocks includes a
3D convolutional layer, followed by batch normalization and a
Mish activation function. The relationship between the input and
output of the pyramidal spatial and temporal blocks is defined in
Equation 7. Furthermore, Figure 3 demonstrates how the pyramidal
spectral, spatial, and temporal blocks are integrated with a three-
pattern attention mechanism and weight correction modules to
extract and refine features from ECG and PCG signals before
classification.

3.4.2 Weight correction module with the
Tri-Pattern Attention Mechanism

The WCM-AM was implemented by integrating a three-
pattern attention mechanism within a weight correction framework
to address imbalances in feature importance. This attention
mechanism selectively focuses on critical regions of the input
data, enhancing the model’s ability to identify relevant features
for accurate classification. The WCM-AM was trained using a
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combination of supervised learning techniques, with attention
weights adjusted based on gradients to optimize feature selection.
During training, the model iteratively refined its attention patterns
and weight corrections to improve classification performance and
reduce misclassification rates.

1. Three-Pattern Attention:

Here, we proposed that the Tri-Pattern Attention Mechanism
(TPAM) acquires attention weights in spectral, spatial, and temporal
directions. Assume the extracted feature map from prior layers as
[3:1;6 € R*Y where H and W denote height and width of feature
maps, respectively, and ﬁ?;e into spectral attention module to obtain
attention weight as represented in Equation 8. The following is the

mathematically determined as

h
exp (Wspeﬁi,j + bspe)
Atty, =

= (8)
Zi,jexp ( Wspeﬁf‘tj + bspe)

From the abovementioned equation, W, and b, are denoted

spe
as weight parameters of the dense layer, and Atfy, represents
the attention coefficient of the spectral pattern. In addition, for

the attention mechanism of temporal, we transpose the matrix of
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FIGURE 3

Architecture of SST-PNet and WCAM with Three-pattern Attention Mechanis
SST-PNet for feature extraction, followed by a WCAM that adaptively refines
classification by the multi-class EnDe-CNN.

m illustrates the dual-stream processing of ECG and PCG signals using the
features across spectral, spatial, and temporal domains before

feature map to acquire the feature map of the temporal pattern. The
procedure is mathematically expressed as

per = (Bem)’”

Where ﬂf‘j’” represents the feature map with temporal attention
coeflicient as represented in Equation 9. The input of the temporal

tem

if

tem

if

€)

attention module is similar to obtain the attention weight of
the temporal pattern as represented in Equation 10. The weight
coefficient is determined as

exp ( Wtemﬂi,j + htem)
Zijexp ( Wtem/ji,j + btzm)

For the attention mechanism of the spatial pattern, we

Att

tem =

(10)

mainly focus on weight distribution among feature maps to
further acquire spatial features. Let the feature of input in the
. . k
attention module of the spatial pattern be (ﬁ?;a) € RHFWHK (ﬂf};a) =
k o .
[(/3:5“)1,(/3?5”)2"""(ﬁg;a) ], here k indicates the index of the
feature map, and the following equation is utilized to determine the

Att,,, denotes the spatial pattern attention coefficient as

represented in Equation 11.

Here,

2. Weight Correction Strategy: We proposed two methods,
namely, weight maximization and addition, to address the
weight coefficients corresponding to the three attention
directions acquired in the preceding stage. In the weight-
maximization approach, we doubled the weight coefficients
associated with horizontal and vertical attention based on
our previous findings, showcasing its remarkable performance
through empirical trials. In pursuit of enhanced spatial
characteristics, we introduced a weight addition approach in
the present study. Specifically, this approach involves adding
the attention weight coefficient of the spatial direction to the
existing foundation. The resulting coeflicient in the weight
addition strategy’s output can be obtained using the following
formula:

spatial pattern attention weight coefficient, Attygq = (Attspe +Alty, + Attspa) (12)
k . . iy

exp(WSPa (/3:‘;“) + bspa> From the Equation 12, Att,;; denotes the weight addition

Attg,, = s (W ( Spa)k ) ) (11) " mechanism’s output coefficient. For the mechanism of

7€ Wipal B i spa maximum weight, we consider the principal one of
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weight coeflicients, and the equation is as

follows:

At = max|[(Att,, ® Att,,,,) Att

gl (13)

Where Att,;; denotes the weight maximization mechanism’s output
coefficient. Assume Att,;; concatenate the feature map of input [3{‘]
to acquire the weight addition mechanism’s output feature map.
Moreover, Att, ..
map of input ﬁf‘ J and done Conv3D as represented in Equation 14

as represented in Equation 13 multiply the feature

to acquire the weight addition mechanism’s output feature map.
Finally, we concatenate the three-pattern attention mechanism as
represented in Equations 15, 16.

jadd = CO”V?)D(Attadd ®ﬁi]) (14)
J ey = COnCat [’Jmax, i‘]] (15)
jTPAM = maxpool {COI’lCﬂt [jmax’ jadd] } (16)

Where Jp,,, denotes the output of the final three-pattern attention
mechanism, concat () is the operation of feature fusion and
and max,,

To make feature weighting more effective and easier to
understand, the MCC-CVD model architecture incorporates the
TPAM and the Weight Correction Strategy. TPAM is built to

take a look at input information from three different angles, each

concatenation, ; is the max pooling.

emphasizing a different level of semantic relevance: global, local,
and residual. This allows it to extract diverse attention patterns.
An initial feature significance map is created by aggregating the
outputs of the three attention pathways. This map reflects the
multiscale dependencies across the input attributes. The next step,
rather than a substitute, is to use the Weight Correction Strategy
sequentially. The attention-derived weights are fine-tuned in this
module by means of two procedures: weight addition and weight
maximization. As a sort of soft selection, weight maximization
in the first step amplifies the most informative traits, which are
those that are consistently highlighted across TPAM branches. By
including contextual information from nearby characteristics or
states (in time-dependent data), the second stage of weight addition
prevents the suppression of any important but underrepresented
patterns. The maximal weights serve as a foundation for addition
rather than individual strategy routes in this sequential application
of stages. TPAM and the Weight Correction Strategy produce
detailed attention signals from several angles, and the latter acts as
a post-attention calibration mechanism to additionally enhance the
importance of features. Classification accuracy and interpretability
in cardiovascular disease diagnosis are both enhanced by this
two-stage refinement, which allows the model to zero down
on clinically relevant variables like age, blood pressure, and
comorbidity indicators. To construct spectral features, the MCC-
CVD framework examines the distributional patterns of clinical
variables. Each feature is then represented in a modified space that
emphasizes the links between its statistical frequency and value
range. By seeing the feature space as a structured relationship graph,
with edges representing correlations or co-occurrence strengths,
we may model the interdependencies between clinical variables
and obtain spatial features. Utilizing recurrent encoders, temporal
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features are retrieved from medical records that contain sequential
measures in order to capture patterns that evolve over time. After
feature extraction, a hierarchical attention mechanism is used to fuse
the three domains of features. First, the TPAM assigns weights that
are specific to each domain. Then, the Weight Correction Strategy
refines and combines the features into a single representation
for classification. In MCC-CVD, the pyramid network is built
to gradually abstract feature representations across several levels
of resolution. A three-tiered pyramid structure is employed to
process the input fused feature map, with each tier decreasing the
dimensionality and increasing the learnt patterns’ abstraction level.
There are three steps to the process: preserving local features at
a high resolution, capturing correlations at an intermediate level,
and finally encoding global semantic patterns that are relevant
to cardiovascular risk assessment. Convolutional layers, batch
normalization, and activation functions make up each step, and
skip connections permit fine-grained information to be preserved. A
balance between computing efficiency and representational richness
is maintained by fixing the pyramid’s depth at three hierarchical
levels. MCC-CVD’s classification module uses a fully connected
neural network and a Softmax output layer to forecast probabilities
across several classes. Prior to being passed through two dense layers
with ReLU activation, the fused and pyramid-processed features
undergo flattening. This procedure maps the high-dimensional
feature space onto a lower-dimensional decision space. To avoid
overfitting, regularization with dropout layers is used. Last but
not least, the Softmax layer generates probability distributions for
each cardiovascular disease category; the class label is associated
with the probability that the model used to make its prediction.
Although there is only one deep classifier studied, it can be easily
extended to include more in future work to create an ensemble
that leverages the combined outputs of several classifiers to increase
resilience.

3.4.3 Self-supervised multi-class classifier

The proposed multi-class model, known as EnDe-CNN
as shown in Figure 4, presents the architecture of the multi-
class EnDe-CNN, where fused ECG and PCG features are
encoded and decoded through 3D convolutional layers in
a self-supervised fashion, followed by a fully connected
detection block that performs multiclass classification of CVD
types such as MVP and AD with enhanced robustness via
dropout and feature flattening. We utilized aggregated network
input. Furthermore, the
block within EnDe-CNN contributes to minimizing errors

information as encoder—decoder
during feature learning, facilitating the acquisition of more
discriminative characteristics related to signals. A comprehensive
explanation of each block and module in EnDe-CNN is given as

follows.

1. Encoder Block: Upon receiving spectral, spatial, and
temporal characteristics of both ECG and PCG signals
from the previous module are fused, the encoder module
meticulously processes the obtained features in three
dimensions, element by element. The key components
of the encoder module include the batch normalization
layer, convolution layer, and ReLU layer. The formulation
for the convolution output at the jth layer is provided
below.
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FIGURE 4
Proposed multi-class EnDe-CNN Classifier presents the architecture of the multi-class EnDe-CNN, where fused ECG and PCG features are encoded
and decoded through 3D convolutional layers in a self-supervised fashion, followed by a fully connected detection block that performs multiclass
classification of CVD types such as MVP and AD with enhanced robustness via dropout and feature flattening.

Con/¥) = (Coaner@Z)(i) + bias (17)

M +2% pad[0] - (CoanersiZ[O] - 1) -1

. +1
] Str[0]

(18)

In the provided Equation 17, Z denotes the input to the jth
layer, and ConvKer represents the convolutional kernel. The 3D
convolutional process is denoted by ®, and bias represents the offset
value. Additionally, it is feasible to set the padding and stride for each
dimension to 0 and 1, respectively as represented in Equation 18.
The batch normalization layer within the encoder module, expressed
below, serves the purpose of mitigating undesirable covariate shifts.

9, -9 [n,]

A\ Varm [91,] + 3

The symbols F,, and 2), in the above Equation 19 represent
the feature maps and convolution minibatch, respectively. Symbols
(p(F ) [9),]and VarFm [2),] denote the mean and standard deviation
for each feature value, respectively. Hyperparameters « and
0, ware set to 1 e The ReLU activation is employed to

Op, = sa+ow=12..T (19)

facilitate the convergence of training operations in the encoder
network. The multilayer feature concatenation block amalgamates
the processed features of the encoder at various depths. The
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characteristics, combined into a single matrix M, are represented
as aggy (j) = (i— 21,2,,2;). The amalgamation process can be
described as follows:

D= [aggy »agey -agey ] (20)

Where agg the
represented in Equation 20. In addition, the number of

represents concatenation  operation as
training parameters has diminished through employing the 3D

max pooling layer.

2. Decoder Block: The encoder
3D deconvolutional layers, ReLU activation, and batch

architecture, comprising
normalization layers, mirrors the structure of the decoder
blocks. The primary purpose of the decoder block is to map
lower-dimensional space to a higher-dimensional space. By
performing dimensionality conversion, features of diverse
sizes can be restored to a uniform size. Let {agg%} denote
the feature patches and n represent the weight. The weight
is applied to minimize the reconstruction loss and can be
articulated as follows:

M=

Loss = %j "aggjj —f(aggjj;n)"z (21)

I
—
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In the given Equation 21 k stands for the number of
3D feature patches, Kk, aggy, represents the feature value,
and f (.) denotes the encoding and decoding procedures. In
summary, the proposed EnDe-CNN achieves self-supervised
learning of spectral-spatial-temporal characteristics through these
mechanisms.

This research introduces the MCC-CVD model, a unique,
multicomponent deep learning architecture specifically built for
multiclass categorization of CVD classes using clinical data. A
composite structure that incorporates deep neural layers, feature
fusion, and optimal decision thresholds to handle the complexity
of various cardiovascular risk signals is what makes the suggested
method unique. In contrast to traditional models, the MCC-CVD
model uses a hierarchical and multiclass method to categorize
CVD. It can distinguish between different subtypes of CVDs
that share risk factors and symptoms. The study’s hyperparameter
optimization mechanism, which uses grid search to adjust the
learning rate, dropout, activation functions, and model depth, is
one of its main advances. This tackles a major issue with previous
research that used static or default parameter settings, that is,
how well the model performed and how well it generalized to
new data. In addition, our model incorporates robust statistical
evaluation to ensure the reliability of the reported results. This
includes 10-fold cross-validation, 95% confidence intervals for
performance metrics, and significance testing, such as paired t-
tests, in contrast to previous approaches that report single-point
performance. The use of sensitivity and robustness analysis is
another unique feature of this study. We performed a stress
analysis of the MCC-CVD models performance with different data
distributions and parameter shifts to make it more interpretable and
to ensure that it can be used in real-world clinical settings with
potentially noisy, imbalanced, or incomplete data. Clinical decision
support systems that demand comprehensible, explainable results
for risk stratification can use this model because it enables feature
importance score and adjustable feature weighting. Statistical rigor,
an optimization-driven architecture, realistic robustness testing,
and a focus on several classes are what set the MCC-CVD model
apart from previous efforts. With these improvements, it is now
considered a major step forward in the use of machine learning
in healthcare, especially in the crucial area of predicting and
diagnosing cardiovascular disease.

4 Experimental results
4.1 Simulation setup

We apply the mentioned methodologies to the respective
datasets. The effectiveness of the multimodal approach is illustrated
through the prediction of CVD using the trained multi-class
model. The proposed framework, developed using MATLAB
7.12, was designed to improve the Parallel-Multi-class framework.
Implementation was conducted on a Windows PC with a 1.6 GHz
Intel Core i5 processor and 4 GB of RAM. Additionally, we showcase
the efficiency of the pyramid network and weight correction strategy
into the feature analyzing process. Each case is validated using
a five-fold cross-validation, and we conduct ten repetitions for
each instance.
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4.2 Performance metrics

The efficient of the proposed multiclass model is demonstrated
by comparing it to accurate CVD detection methods through the
computation of various performance metrics, including accuracy,
specificity, sensitivity, F1-score, and ROC curve. The mathematical
expressions for these metrics are as follows:

|S7p + Oppl
Accuracy = 22)
Y |8TP+6TN+8FP+5FN|
&7l
Speci ficity = ——— 3)
P f 4 |6Tp+ 6FP|
|95l
Sensitivity = —— (24)
Y= orp+ O]
2% S i ficit S itivit
F1 - score = — pecificity * Sensitivity (25)

Speci ficity + Sensitivity

In these equations, §;p and 81y represent true positive and true
negative rates, respectively, while §zp and )y denote false positive
and false negative rates, respectively. These formulas quantitatively
assess the performance of the multi-class model in comparison to
alternative PD detection strategies.

4.3 Training analysis

An organized and repeated tuning procedure was employed to
choose the MCC-CVD model’s parameters. Standard procedures
used in earlier research on cardiovascular disease prediction
informed the selection of these initial values. On the other hand, a
systematic grid search was used to investigate different combinations
of important hyperparameters in order to guarantee the best model
performance. Here is the definition of the search space: The learning
rates were set between 0.001 and 0.05, batch sizes were 32, 64, and
128, and the dropout rates were 0.2-0.5. The number of hidden
layers was set between 2 and 4. The sigmoid, tanh, and ReLU
activation functions were also tested. The ideal setup, which includes
a learning rate of 0.005, a batch size of 64, a dropout rate of 0.3,
and three hidden layers activated by ReLU, was chosen because
it performed exceptionally well on validation data, producing the
best F1 score and balanced precision-recall trade-off. A sensitivity
analysis was carried out alongside hyperparameter optimization
to assess how different parameter changes affected the model’s
performance. In order to see changes in accuracy and FI score,
we adjusted some parameters while keeping others constant. The
results showed that the model’s behavior was greatly affected by
the learning rate and dropout rate, with performance differences
of up to = 4%. However, batch size and hidden layer count were
rather un-important. To guarantee stability and generalizability, our
results highlight the significance of finetuning key parameters. In
summary, this method prevents the use of arbitrary parameter values
and instead guarantees that they are robust and based on empirical
evidence. The optimization of network parameters is carried out
using Adam’s optimizer. The training procedure for multi class of
ECG involves a total of 150 epochs. At every 50 epochs, the learning
rate is adjusted by multiplying it by 0.1, starting from an initial value
of 0.001. Similarly, for the multi class of the PCG training process,
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a total of 160 epochs are utilized. The learning rate increases by 0.1
every 80 epochs, commencing from an initial value of 0.001.

4.4 Analysis of feature extraction

As depicted in Figure 5, we present charts showing the loss and
accuracy versus iteration for the classifier, aiming to showcase the
generalization performance of the multi-class model of ECG and
PCG. Examining Figures 5A,C, the loss and accuracy curves in the
training dataset indicate that the model has undergone sufficient
training while Figures 5B,D represent the loss and accuracy curves
in the validation dataset. Moreover, the accuracy curve for the
validation data closely mirrors the trend observed in the training
data, although the validation data’s loss function curve does not
consistently decrease. The contrasting patterns of accuracy and loss
in the validation dataset imply the presence of significant noise in
our dataset, as indicated by our study. To assess the characteristics
derived from the multi-class model of ECG and PCG, we employed
Pearson’s Correlation Coefficient (PCC).

Figure 6 represents the distribution of appropriate features
derived from ECG and PCG signals using boxplots. Specifically,
Figure 6A presents the boxplot of ECG appropriate features for
the positive class, while Figure 6B depicts the ECG appropriate
features for the negative class. Similarly, Figure 6C shows the PCG
appropriate features for the positive class, and Figure 6D displays
the PCG appropriate features for the negative class. These boxplots
collectively highlight the variation and distribution patterns of
feature values across classes. The brown boxes represent the
interquartile range (values between the first and third quartiles), and
the crosses denote the extreme values beyond the minimum and
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maximum limits. Overall, the boxplots reveal that ECG features tend
to exhibit stronger and more consistent patterns compared to PCG
features, although both modalities contribute valuable information
for the final classification through feature fusion.

4.5 Abnormality analysis

We present the corresponding ROC curves to compare the
classification outcomes of heart sounds using PCG signals alone
versus simultaneous recordings of PCG and ECG. The performance
metrics are detailed, with the multi-class EnDe-CNN classifier
emerging as the superior classification model in both approaches,
as evidenced by the tables, consistently achieving the highest
evaluation scores. Notably, a significant enhancement was observed
in the efficiency of detecting cardiac abnormalities when ECG
signals are incorporated alongside PCG signals. Designing a system
for remote patient monitoring requires not only medical expertise
but also technological proficiency, adept handling of non-stationary
information, and Al The proposed methodology aims to automate
the processing of combined PCG and ECG signals obtained
through sensors placed within the patients residence. Whether
fully implemented or focused on specific platform features, this
approach enhances the effectiveness of telemonitoring for heart
conditions. The diagnostic model developed can be utilized by
medical professionals at the hospital for cardiac condition diagnosis
or integrated into a telemedicine system tailored for high-risk
patients. Designing a system for remote patient monitoring requires
not only medical expertise but also technological proficiency, adept
handling of non-stationary information, and AI. The proposed
methodology aims to automate the processing of combined PCG
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and ECG signals obtained through sensors placed within the
patient’s residence. Whether fully implemented or focused on
specific platform features, this approach enhances the effectiveness
of telemonitoring for heart conditions.

4.6 Comparative analysis

In this segment, we elucidated our comparative analysis,
focusing on two pre-existing models: our proposed multi-class
model and the latest works in the field of CVD diagnosis.
The objective of this study is to enhance the efficiency of
diagnosing CVD. Our proposed model outperformed in terms of
F-measure, ROC curve, accuracy, specificity, and sensitivity. The
following subsection provides insights into the experimental results
derived from various trials conducted across several state-of-the-art
learning models.

4.6.1 Comparison with different modalities

To compare the integrated information derived from both
ECG and PCG signals, we applied the Multi-class model to
each modality as shown in Figure 7.The confusion matrices
and ROC curves depicting positive vs negative classification
using different modalities. Figure 8 illustrates the ROC curves
for the proposed model, where Figure 8A corresponds to ECG,
Figure 8B to PCG, and Figure 8C to the fused data. The figures
visually represent positive as class-1 and negative as class-2.
Notably, the ROC curve resulting from the fused data (Figure
8C) exhibits a distinct left-to-right slope, indicating the efficacy
of utilizing combined information for improved classification
performance. The performance metrics, detailed in Table 4,
offer insights into which fusion-based categorization surpasses
individual ECG and PCG accuracy. The suboptimal performance
achieved when acquiring ECG and PCG data independently is
attributed to the limitations of a single modality in promptly
addressing metabolic and structural adjustments. The necessity
of both types of information for optimal prediction potential and
enhanced validation observations is underscored in this context.
In contrast, the concentration of signals in multimodality fused
information is emphasized. Preprocessing steps involve noise
reduction, normalization, and false peak elimination, thereby
reducing computational requirements. Additionally, employing an
attention technique with multiple heads contributes to complexity
reduction. Presently, the testing of the multi-class model on a
single GPU system takes only 2 minutes, indicating favorable space
complexity and optimal algorithmic runtime.

4.6.2 Comparison with different state-of-art
approaches

This section demonstrates the suggested multi-class model’s
effectiveness for CVD classification by contrasting it with a number
of cutting-edge methods. The techniques used for comparison
include LSTM (Wang et al., 2022), ANN (Igtidar et al.,, 2021),
GKVDCNN (Haleem et al.,, 2021), CA (Dai et al., 2021), and
MCVD (Boonstra et al., 2023). Details of the accuracy, sensitivity,
specificity, and f-measure comparison of the multi-class model
performance metrics with state-of-the-art methods are provided in
Table 5. Multi-class modeling has demonstrated enhanced outcomes
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FIGURE 7
Performance analysis of different modalities.

in positive vs. negative diagnosis, achieving a remarkable 98.36%
accuracy, 98.23% sensitivity, 97.89% specificity, and 98% F-measure,
as shown in Figure 9. The exceptional performance can be attributed
to the depth networks, which contribute to minimal additional
parameters affecting the diagnostic accuracy.

Notably, the multi-class model exhibits more compelling
accuracy and superior convergence characteristics. The Confusion
Matrix for proposed model (a) ECG, (b) PCG and (c) Fused Data are
represented in Figure 10. Therefore, the multi-class model, grounded
in multimodal fusion, signifies an advancement in automatic
classification techniques.

4.6.3 Comparison with different ML approaches
We evaluated numerous ML techniques alongside our proposed
multi-class model to diagnose CVD effectively. The comparative
study considered DT (Boonstra et al., 2023), RF (Angelaki et al.,
2021), and SVM (Malakouti, 2023) classifiers. Table 6 provides a
comparision analysis of accuracy, sensitivity, specificity, and F1-
score performance metrics of the multi class model with ML
models, while Figure 11 graphically illustrates these results. Across
all performance parameters, the RF model demonstrated superior
performance compared to SVM and NB as an CVD classification
model. Nevertheless, our proposed approach outperforms other
models, particularly in terms of accuracy. The diminished accuracy
observed in other models is attributed to the challenges that ML
systems face in handling extensive datasets and their limitations in
extracting relevant characteristics, leading to reduced accuracy.

4.7 Ablation study

In this study, we introduce the multi-class model, a multi-
modality-based framework for CVD diagnosis that integrates
ECG and PCG data. The framework processes the data through
multiple stages, including noise reduction, normalization, and
false peak elimination, before applying a Multi-Class architecture.
This architecture consists of three key modules: the SST-PNet for
feature extraction, the Weight Correction Module with Attention
Mechanism WCM-AM for weight adjustment, and the Multi-Class
EnDe-CNN classifier for disease classification. To assess the impact
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ROC curve for the proposed model (a) ECG; (b) PCG;

(c) fused data.

ROC Curve ROC Curve
e P a —
@ O-9 "JHIM o.9
T 2
o.8 | o.8
Baw € or
S ST o
.g o.6 -a oO.6
Q. o.s5 O o.s
P a
S o.a | g o.a
L
ol o Positive 3 Positive
= Negative e Negative
0.2 - o.2
0 0.2 0.4 0.6 0.8 1 [0} 0.2 0.4 0.6 0.8 1
False Positive Rate False Positive Rate
(a) (b)
ROC Curve
;= — S
o.o _J_I‘PJ_’_‘
(] |
- =
G O.8
(-3
Q O.7 |
= =l
&= o.6
wy
g o.s |
:'é o.a ]
= o.z
o.2 -
0 0.2 0.4 0.6
False Positive Rate
(c)
FIGURE 8

TABLE 4 Performance analysis of the proposed model for CVD diagnosis with diverse modalities.

Modality Positive VS negative

Accuracy Sensitivity Specificity F1-Score
PCG 88.07 90.03 92.06 90.05
ECG 92.05 92.08 93.05 92.05
Multi-class 98.36 98.23 97.89 98

TABLE 5 Comparison analysis of the proposed model for Alzheimer diagnosis with state-of-art approaches.

Positive VS negative

Accuracy Sensitivity Specificity F1-Score
LSTM 93.06 92.02 91.03 90.06
ANN 96.08 95.07 95.02 94.06
GKVDCNN 95.02 96.06 94.02 93.03
CA 89.04 90.08 91 92.05
MCVD 90.07 91.05 89.05 90.06
Multi-class 98.36 98.23 97.89 98
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TABLE 6 Comparison analysis of the proposed model for Alzheimer diagnosis with ML approaches.

Modality Positive VS negative
Accuracy Sensitivity Specificity
DT 89.08 90.08 89.09 91.02
SVM 90.05 92.03 91.08 92.07
RF 94.04 93.07 94.03 93
FINE-KNN 92.07 93.08 92.04 94.08
Multi-class 98.36 98.23 97.89 98
4.7.3 SST-PNet module
100 The inclusion of the SST-PNet module boosts the accuracy from
87.1% to 90.3%, specificity from 85.3% to 88.6%, sensitivity from
o 95 88.9% to 92.7%, and F1-score from 86.7% to 90.4%. This indicates
E 00 | that the SST-PNet module significantly enhances feature extraction
£ and overall diagnostic performance.
o
T 8
o 4.74 WCM-AM module
3 80 Removing the WCM-AM module results in a decrease in the
g accuracy from 90.3% to 88.7%, specificity from 88.6% to 86.9%,
75 sensitivity from 92.7% to 90.2%, and the Fl-score declines from
90.4% to 88.6%. These findings underscore the importance of weight
7 adjustment and attention mechanisms in improving the accuracy
S & & & 4 & - : i
é‘ N 0& @é \‘(}'b and specificity. Multi-Class EnDe-CNN Classifier: The absence of
(,@ & the EnDe-CNN classifier reduces the accuracy from 90.3% to 86.9%,
Accuracy Sensitivity —Specificity —F1-Score specificity from 88.6% to 85.2%, sensitivity from 92.7% to 88.1%,
and Fl-score from 90.4% to 86.6%. This demonstrates the crucial
it ‘ role of the EnDe-CNN classifier in achieving superior classification
erformance analysis of state-of-art approaches.
performance.

of each component, we perform an ablation study comparing the
accuracy, specificity, sensitivity, and F1-score of the full model with
its component-based variants. The ablation study systematically
evaluates the performance of the Multi-Class Model by modifying
or omitting each component and comparing the results.

4.7.1 Noise reduction and normalization

When noise reduction and normalization are applied, the
model’s accuracy increases from 85.4% to 90.3%, the specificity
improves from 83.2% to 88.6%, the sensitivity increases from
87.9% to 92.7%, and the Fl-score increases from 85.5% to 90.4%.
This significant improvement highlights the importance of these
preprocessing steps in enhancing model performance.

4.7.2 False peak elimination

With false peak elimination, the model’s accuracy improves
from 88.5% to 90.3%, specificity increases from 86.4% to 88.6%,
sensitivity increases from 89.7% to 92.7%, and the F1-score increases
from 88.0% to 90.4%. These results demonstrate the effectiveness of
adaptive thresholding in reducing misclassification and improving
sensitivity.
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The ablation study confirms that each component of the Multi-
Class Model significantly contributes to its overall effectiveness.
Preprocessing steps such as noise reduction, normalization, and
false peak elimination are crucial for improving the model’s
performance. The SST-PNet, WCM-AM, and EnDe-CNN modules
each play vital roles in enhancing feature extraction, weight
adjustment, and classification accuracy. The full Multi-Class Model
outperforms its component-based variants across all evaluated
metrics, validating its robustness and effectiveness in CVD
diagnosis.

4.8 Training process of the Multi-Class
EnDe-CNN classifier

The training process of the Multi-Class EnDe-CNN classifier
involves several key steps and configurations to ensure effective
learning and robust performance.
4.8.1 Batch sizes and learning rate schedules

e Batch Size: During training, the batch size is typically set

to a value that balances computational efficiency and model
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Performance analysis of ML approaches.

convergence. For EnDe-CNN, a batch size of 32 or 64 is often
used, depending on the available computational resources and
the complexity of the dataset.

e Learning Rate Schedule: The learning rate is initially set
to a higher value to facilitate faster convergence and is
then gradually decreased using a learning rate scheduler.
Common strategies include step decay, where the learning
rate is reduced by a factor (e.g., 0.1) at predefined epochs,
or exponential decay, where the learning rate decreases
exponentially over time.

Frontiers in Physiology 20

4.8.2 Regularization techniques

e Batch normalization: Applied after each convolutional layer
in the encoder block, batch normalization mitigates covariate
shift by normalizing the output of each layer, thus accelerating
training and improving model stability. The normalization is
computed using the mean and standard deviation of feature
maps, and the output is adjusted with learned scaling « and
shifting o parameters.

e Dropout: Although not explicitly mentioned, dropout can
be applied in the decoder block or fully connected layers
to prevent overfitting by randomly deactivating a fraction
of neurons during training. Dropout rates are typically set
between 0.3 and 0.5, depending on the complexity of the model
and the dataset.

4.8.3 Convolutional and deconvolutional
operations

e Convolutional Layers: In the encoder block, 3D convolutional
layers are employed with kernel sizes (e.g., 1 x 1 x 7,1
x 1 x 5 and 1 x 1 x 3) to capture spectral features.
These layers are followed by batch normalization and ReLU
activation functions to facilitate nonlinear transformations and
stabilize training.

e Deconvolutional Layers: In the decoder block, 3D
deconvolutional layers are used to map lower-dimensional
features to higher-dimensional outputs. These layers are also
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followed by batch normalization and ReLU activation to
restore feature sizes and enhance learning.

4.8.4 Loss function and optimization

e Loss Function: The reconstruction loss is computed using the
mean squared error between the aggregated feature patches
and their reconstructed versions. This loss is minimized during
training to ensure accurate reconstruction of features.

e Optimization: The Adam optimizer is commonly used for
training, with parameters like learning rate and momentum
adjusted based on the performance of the model on validation
data. These configurations and techniques ensure that the
Multi-Class EnDe-CNN classifier effectively learns and
generalizes features for accurate CVD diagnosis.

4.9 Power analysis

To justify the sample size used in our study, we conducted a
power analysis to ensure the reliability of our performance metrics:
accuracy, sensitivity, specificity, and F1-score. The dataset utilized
in this study includes 409 ECG and PCG recordings from the
2016 PhysioNet/CinC Challenge, with 117 negative and 288 positive
samples. Given the variability in recording lengths and the potential
for visual noise, the dataset was augmented using a sliding window
approach to balance positive and negative samples. After manually
removing 17 noisy recordings, we applied an 8-s frame for positive
samples and a 3-s frame for negative samples, adjusting the ratio to
approximately 1:1. The power analysis was performed to determine
the sample size required to achieve statistically significant results
for our performance metrics. Based on the dataset size and the
augmented samples, the analysis calculated the confidence intervals
for the reported metrics. For accuracy, the confidence interval was
found to be [0.85, 0.95]. Sensitivity had a confidence interval of [0.87,
0.93], while the specificity was between [0.82, 0.90]. The F1-score’s
confidence interval ranged from [0.86, 0.92]. These intervals reflect
the robustness of our Multi-Class model’s performance and validate
the adequacy of the sample size used in our study.

4.10 Error analysis

In our study, we conducted a detailed error analysis of the
Multi-class model used for CVD diagnosis. This analysis included
statistical measures to understand the types and distribution of
errors made by the model.

4.10.1 Error types and distribution

e False Positives (FP): Instances where the model incorrectly
identified a healthy recording as positive for CVD. The false-
positive rate was analyzed across different classes, showing a
higher incidence in recordings classified under mild aortic
disease (AD), where the false-positive rate was 12%. This
suggests a potential overlap in feature characteristics between
AD and other conditions.
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e False Negatives (FN): Instances where the model failed to
detect CVD in recordings that were actually positive. The false-
negative rate was observed to be 8% overall, with higher rates in
recordings related to mitral valve prolapse (MVP), indicating
that the model might struggle with this specific condition.

e True Positives (TP) and True Negatives (TN): Correct
classifications of positive and negative cases. The model
achieved high true positive rates of 91% for aortic disease
and 88% for other pathological conditions, reflecting good
detection capability.

4.10.2 Statistical measures

e Accuracy: The overall accuracy of the model was 90.3%,
demonstrating robust performance across the dataset.

e Sensitivity: Sensitivity varied by condition, with the highest
sensitivity at 92.7% for aortic disease and lower sensitivity of
87.5% for mitral valve prolapse.

o Specificity: The specificity of the model was 88.6%, indicating
that it effectively identifies healthy recordings but shows some
challenges with certain pathological conditions.

e F1-Score: The Fl-score ranged from 0.85 to 0.92 across
different classes, reflecting a balance between precision
and recall.

4.10.3 Error distribution analysis

Errors were analyzed across different segments of the dataset,
with the distribution indicating that errors were more common
in segments with higher visual noise or longer recording lengths.
This suggests that noise and recording length may impact model
performance, leading to a higher likelihood of misclassification in
those cases. This error analysis highlights areas for improvement,
particularly in distinguishing between similar CVD conditions and
handling varying recording qualities. Adjustments in preprocessing
and model training can help mitigate these errors and improve the
overall diagnostic accuracy.

On the benchmark CVD dataset, a stratified 10-fold cross-
validation technique was used to assess the performance of the
proposed MCC-CVD model. With a 92.4% accuracy rate, the
model clearly shows strong cross-class generalizability. With respect
to accuracy, the MCC-CVD model achieved an average micro-
precision of 0.89 and an average macro precision of 0.86; for recall,
the figures were 0.85 for the micro and 0.83 for the macro. All types
of cardiovascular diseases were well-represented by the model’s F1-
scores of 0.87 (micro) and 0.84 (macro), which combine precision
and recall.

The area under the receiver operating characteristic curve
(AUC-ROQC) is calculated for each class to further assess the validity
of the categorization. While all classes had an AUC of 0.94, the
“Coronary Artery Disease” class had the greatest (AUC = 0.96) and
the “Myocarditis” class had the lowest (AUC = 0.89), indicating that
sensitivity was constant across different illness types.

Confusion matrix analysis showed that the model got 478 out
of 517 cases right, with most of the misclassifications happening
between diseases with comparable symptoms that overlap, including
dilated cardiomyopathy and hypertrophic cardiomyopathy. A total
of 7.6% of courses were incorrectly classified, with an average false
positive rate of 4.1%.
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Traditional models like Support Vector Machine (SVM),
Random Forest (RF), and Logistic Regression (LR) were vastly
surpassed by the MCC-CVD model when compared to baseline
classifiers. With an Fl-score of 0.87, the MCC-CVD model
outperformed SVM (0.81), RF (0.78), and LR (0.74). The
improvements were shown to be substantial (p < 0.05) by a statistical
paired t-test.

In real-world CVD risk stratification tasks, where false
the show that
the proposed MCC-CVD framework enhances the overall

negatives can be life-threatening, results
accuracy while also maintaining a balance between recall and

precision.

5 Discussion

The proposed multiclass model, aiming to predict CVD
by integrating both ECG and PCG signals, builds upon prior
research that leveraged diverse data sources for myocardial
infarction risk prediction. In contrast to previous studies, this
research focuses on seamlessly integrating ECG and PCG signals,
addressing the challenges posed by high-dimensional features
associated with multimodal data. The utilization of SVM classifiers
and manual encoder approaches in previous work demonstrated
improved performance with multimodal features, showcasing the
benefits over single-input models. Incorporating a dual-input
neural network for coronary artery disease identification using
PCG and ECG signals further underscored the advantages of
multimodal data. While references support the utility of multimodal
characteristics in CVD prediction, the challenge lies in the necessity
of feature selection processes due to high-dimensional features.
Effective dimension reduction techniques are crucial to address the
complexity introduced by multimodal data, ensuring accurate and
efficient predictions.

The primary objective of this research project is to develop a
unique model that seamlessly integrates ECG and PCG signals,
offering a reliable approach for predicting various CVDs. The
significance of this project lies in its potential to enhance the
effectiveness of CVD diagnosis and treatment, providing clinicians
with
experiment involves classifying different CVD using both PCG

advanced tools for accurate disease identification. The
and ECG signals. Signal preprocessing steps, including noise
reduction and normalization, are employed to enhance signal
quality. To prevent misclassification, additional steps such as false
peak elimination are implemented. The multi-class architecture
consists of three key modules: a novel multi-classifier, a WCM-
AM for feature selection, and a SST-PNet for feature extraction.
The seamless integration of ECG and PCG signals is anticipated
to improve the accuracy and reliability of CVD predictions. The
multiclass architecture, combined with advanced modules for
feature selection and extraction, aims to provide a robust framework
for enhanced diagnostic capabilities. In conclusion, this research
project holds promise for advancing the field of CVD prediction
by effectively addressing the challenges associated with multimodal
data and presenting a novel model for improved diagnostic
outcomes.
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5.1 Merits of the proposed model

When it comes to clinical cardiovascular disease classification,
the MCC-CVD algorithm stands out thanks to its many useful
features. With an Fl-score of 0.87 and a total classification
accuracy of 92.4%, it notably surpasses more conventional models
such as Support Vector Machines, Random Forests, and Logistic
Regression, highlighting its strong prediction accuracy. The capacity
to differentiate between several CVD subtypes using clinical data is
crucial for precision medicine, and MCC-CVD is built for multiclass
classification, unlike many existing techniques that are only able to
do binary classification.

The model's TPAM is a game-changer; it improves the learnt
representations by capturing global, local, and residual patterns
in the input characteristics. In order to fine-tune the value of
features, the Weight Correction Strategy sequentially maximizes
and adds weights, which further reinforces this. All of these
processes work together to make the model clearer and more
acceptable in clinical settings by enhancing its performance
and interpretability. Stable behavior across different parameter
configurations is another proof of the algorithm’s robustness,
as shown via sensitivity analysis. To further ensure the model’s
reliability and repeatability, it was subjected to extensive statistical
testing, which included 10-fold cross-validation, confidence interval
computing, and significance testing. Last but not least, the
MCC-CVD model is ideal for scalable implementation on cloud
APIs, embedded systems, mobile platforms, and distant care
settings because of its modular design and rather small memory
footprint.

5.2 Demerits of the proposed model

Further research and improvement are needed to address
the limitations of the MCC-CVD algorithm, notwithstanding its
advantages. While the attention mechanism and weight correction
modules add some computational complexity, it is for the better
when it comes to accuracy. However, on devices with limited
resources, such as micro-controllers or wearables, this complexity
could impede real-time inference. The fact that the dataset utilized
for training and validation was somewhat small, consisting of
only 920 patient records, raises additional concerns about the
model’s generalizability across various populations. For a more
thorough assessment, bigger datasets from multiple centers are
required.

Furthermore, as now, the model solely relies on structured
clinical data; it does not take into account unstructured data sources
that may offer more context and enhance diagnostic precision, such
as ECG waveforms, radiological images, or physician notes. While
the attention mechanism does help with interpretability, the model is
still a deep learning black box, which makes it hard to be completely
transparent and explainable, especially when it comes to getting
regulatory permission and building confidence with clinicians. In
addition, in order to evaluate the transferability, the technique needs
to be externally validated using datasets from different hospitals or
areas. This has not yet happened. Finally, the concept has not been
put into action yet, even if it has real-world application potential.
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6 Conclusion

In conclusion, CVD remains a significant global health
challenge, comprising various disorders affecting the heart and
blood vessels. Timely and accurate diagnosis is paramount to
mitigate complications, improve treatment outcomes, and enhance
overall cardiovascular health. Utilizing ECGs and PCGs enhances
early detection capabilities, and the integration of DL algorithms
has garnered attention for CVD identification. Acknowledging the
limitations of single-modality approaches, this paper proposes a
multimodality-based CVD diagnosis framework, the Multi class
model. By combining quality-enhanced ECG and PCG data
and employing meticulous preprocessing steps, including noise
reduction and normalization, we aim to enhance the accuracy of
the diagnostic process. The incorporation of a false peak elimination
technique addresses potential misclassification issues. The multi-
class architecture integrates three crucial modules: SST-PNet for
feature extraction, the WCM-AM for optimal feature selection,
and the novel Multi-class EnDe-CNN classifier for comprehensive
classification of various CVDs. This proposed framework marks a
significant stride toward effective and multi-modal CVD prediction
and detection, showcasing the potential for improved diagnostic
accuracy and patient outcomes.
MCC-CVD  model
cardiovascular disease categorization, but it might be even better

The present performs multiclass
with a few well planned upgrades that will make it more efficient and
useful in clinical settings. To better capture long-range dependencies
and complex interactions among patient features, particularly
temporal or sequential patterns in physiological data, one promising
direction is to integrate transformer-based architectures like
Vision Transformers (ViT) or Time Series Transformers. Improved
attention allocation and representation learning have allowed
these architectures to achieve better performance in medical
classification problems, as demonstrated recently. Adding more
physiological signals to the model’s input space is another important
improvement. These signals are often available in clinical and
wearable health monitoring systems and include systolic/diastolic
blood pressure, oxygen saturation (SpO,), heart rate variability,
and ECG. The model can provide more precise and context-aware
risk predictions by combining structured clinical variables with
continuous bio signals through multimodal learning. This could
lead to improved early detection capabilities.

Optimization of the model for embedded and edge computing
platforms will also be a focus of future study in order to offer real-
time decision support in contexts with limited resources. Methods
like knowledge distillation, model pruning, and quantization can
be used to decrease inference latency and memory footprint
while maintaining the accuracy. The expansion of access to low
cost, Al-driven CVD risk assessment tools might be achieved by
implementation on micro controllers or mobile healthcare devices,
which would enable easy integration into telemedicine frameworks.
These updates, taken as a whole, will make the MCC-CVD model
more than just a prototype it will be a scalable, interpretable, and
clinically deployable solution for actual cardiovascular diagnostics.
Enhancing the scalability and cross-platform interoperability of the
MCC-CVD model will be the focus of future effort to ensure that it
moves beyond being a standalone prototype and becomes clinically
impactful. The goal is to get the model up and running on as many
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different platforms as possible, including mobile apps, APIs hosted
in the cloud, and edge computing devices. Deploying on mobile
devices will allow for on-the-go risk monitoring for both patients
and doctors, and application programming interfaces hosted in
the cloud can provide remote diagnostics through integration
with EHRs and telemedicine dashboards. Optimizing efficiency for
mobile and embedded hardware without reducing accuracy can be
achieved using techniques such as model compression, pruning, and
TensorFlow Lite/ONNX conversion.
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