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Multi-class: spectral-spatial 
temporal pyramid network and 
multi-class classifier-based 
cardiovascular disease 
classification

S. K. Reehana and  S. P. Siddique Ibrahim*

School of Computer Science and Engineering, VIT-AP University, Amaravati, India

Cardiovascular Disease (CVD) epitomizes class of disorders that disturb the 
vessels of heart and blood, encircling circumstances such as heart failure, 
coronary artery disease, and strokes, and leftovers a foremost global cause 
of morbidity and mortality. The early diagnosis of CVD is decisive as it 
consents for opportune involvement and organization, plummeting the risk 
of complications, improving treatment outcomes, and preventing further 
progression of the disease, ultimately contributing to better patient outcomes 
and overall cardiovascular health. Furthermore, early detection and diagnosis 
of CVD benefit significantly from the utilization of electrocardiograms (ECGs) 
and phonocardiograms (PCGs). The application of DL algorithms for identifying 
CVDs using PCG and ECG data has gained substantial attention, although 
a predominant number of existing approaches hinge on data sourced from 
a single modality. Henceforth, the development of proficient multi-modal 
Machine Learning (ML) techniques is crucial for effective prediction and 
detection of CVD. In this paper, we have proposed multi-modality-based 
CVD diagnosis framework named as multi-class model. In order to classify 
cardiovascular diseases into several categories using structured clinical data, 
this study introduces MCC-CVD, a new multi-component deep learning model. 
A real-world dataset of 920 patient records was used to assess the model. 
This dataset contains 13 clinical parameters, such as age, cholesterol level, 
resting blood pressure, fasting blood sugar, and other risk markers. The model 
used a two-stage weight correction technique and a tri-pattern attention 
mechanism (TPAM) to achieve robust performance, which allowed for more 
subtle feature weighting and better interpretability. Here, we utilized both quality 
enhanced ECG and PCG data through performing multiple processes including 
noise reduction and normalization. Besides, to evade misclassification data 
enhancement in terms of false peak elimination is performed based on adaptive 
thresholding features. After that, we fed the processed data into a multi-class 
architecture made up of three modules following. For extracting appropriate 
features, we designed Spectral Spatial Temporal Pyramid Network (SST-PNet) 
module. Additionally, Weight Correction Module with Attention Mechanism 
(WCM-AM) employs for weight maximum approach with three-pattern attention 
mechanism. Finally, novel Multi-class EnDe-CNN classifier is introduced to 
classify various CVD in multiple classes. A stratified 10-fold cross-validation 
method was used to carry out extensive studies. Outperforming baseline 
classifiers like SVM, Random Forest, and Logistic Regression, the suggested  
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MCC-CVD model attained an average accuracy of 92.4%, F1-score of 0.87, 
precision of 0.89, and recall of 0.85. With an area under the curve (AUC) of 
0.94, the model clearly has good discriminative potential across various subtypes 
of CVD. Furthermore, sensitivity analysis showed consistent performance even 
when changing parameters or data, and statistical testing validated the model’s 
superiority with p-values less than 0.05.

KEYWORDS

cardiovascular disease, spectral spatial temporal convolutional pyramid network, multi-
modality, multi-class classifier, weight correction module  

1 Introduction

Cardiovascular disease (CVD) encompasses a range of 
conditions affecting the blood vessels of the heart and can lead 
to serious outcomes like stroke and heart failure. It is a major 
global health concern due to its high rates of morbidity and 
mortality (Vinay et al., 2024) (Aggarwal et al., 2021). CVD is often 
caused by a combination of lifestyle factors, such as poor diet, lack 
of exercise, and smoking, as well as by genetic predispositions. 
These conditions typically result in blood vessel narrowing or 
blocking, which may disrupt the essential flow of oxygen and 
nutrients to the heart. Timely intervention through lifestyle changes, 
medication, or surgery is vital for managing cardiovascular health 
and preventing severe outcomes (Khan et al., 2024) (Chen et al., 
2024). Early detection of CVD is crucial for several reasons. First, 
heart attacks and strokes are leading causes of death worldwide. 
Identifying these issues early significantly enhances the likelihood 
of successful treatment and recovery (Khan and Algarni, 2020). 
Second, many cardiovascular problems develop silently, without 
noticeable symptoms, until they become severe. Regular screenings 
and early detection allow for the identification of risk factors 
and abnormalities before they lead to serious complications. This 
proactive approach enables the implementation of preventive 
measures such as changes in diet, increased physical activity, and 
medication, to manage and reduce CVD risks (Bakkouri and Afdel, 
2023) (Kambhampati and Ramkumar, 2021). Additionally, early 
detection can reduce healthcare costs. Advanced CVD treatments 
can be resource-intensive and expensive. Identifying and addressing 
cardiovascular problems early helps allocate healthcare resources 
more efficiently, leading to better patient outcomes and a more 
sustainable healthcare system (Bakkouri et al., 2022) (Bakkouri 
and Afdel, 2020). ECG and PCG are valuable tools for early CVD 
detection. ECG measures the electrical activity of the heart, captures 
the rhythm, and identifies irregularities such as arrhythmias 
(Bakkouri and Afdel, 2019) (Narayana et al., 2023a). The PCG 
records the heart sounds, providing insights into mechanical 
activities such as valve movements. Combining ECG and PCG 
data enhances CVD detection by providing a more comprehensive 
view of cardiac health. Machine learning (ML) and deep learning 
(DL) algorithms are increasingly used to analyze ECG and PCG 
data (Thomas and Kurian, 2022) (Narayana et al., 2023b). These 
technologies improve the accuracy and timeliness of CVD detection 
by identifying patterns and abnormalities that may not be evident 
to human observers. AI-based systems, particularly DL models, 
excel at processing complex data and can continuously improve 

their performance as they learn from large datasets (Li P. et al., 
2021). This integration of AI with ECG and PCG data offers a 
promising approach for preventive care and personalized treatment. 
Despite their potential, there are limitations to using AI for 
CVD detection, including the need for large, diverse datasets 
for effective model training, potential biases, and difficulties in 
interpreting complex or subtle abnormalities (Khan et al., 2022), 
(Jyothi and Pradeepini, 2024). Additionally, DL models often 
operate as “black boxes,” making it challenging to explain their 
decisions to clinicians. Addressing these challenges and adapting 
to the dynamic nature of cardiovascular conditions is essential 
for developing robust and reliable diagnostic tools. In summary, 
early detection of CVD through advanced technologies like ECG, 
PCG, and AI can significantly improve patient outcomes, reduce 
healthcare costs, and enhance overall cardiovascular health. The 
development of new models that integrate these technologies is 
crucial for refining CVD diagnosis and treatment (Do et al., 2023; 
Khan et al., 2021; Chakir et al., 2020). 

1.1 Research contribution

To ensure accurate CVD diagnosis and enhance model 
performance, the following novel contributions are explicitly 
introduced in this work. 

1.1.1 Enhanced data processing and feature 
extraction

The framework introduces a robust preprocessing pipeline for 
ECG and PCG data that includes quality enhancement, noise 
reduction, and normalization. By performing data enhancement 
with adaptive thresholding to eliminate false peaks, the model 
ensures higher accuracy and reliability in feature extraction. The 
Spectral Spatial Temporal Pyramid Network (SST-PNet) module 
then leverages such refined data to capture complex spectral, spatial, 
and temporal features, improving the model’s ability to detect and 
differentiate various CVD conditions. 

1.1.2 Advanced weight correction and attention 
mechanism

The Weight Correction Module with Attention Mechanism 
(WCM-AM) represents a novel approach by integrating a three-
pattern attention mechanism with weight correction strategies. 
This module enhances the model’s ability to focus on critical 
features and corrects weight imbalances, leading to more precise and 
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context-aware classification. This mechanism improves the handling 
of diverse data patterns and reduces misclassification rates by 
addressing the nuances of different CVD types. There is a synergistic 
and complimentary benefit to integrating spectral spatial and 
temporal data in the context of cardiovascular disease classification. 
The correlation between cholesterol levels, blood pressure, and other 
biomarkers is just one example of how spectral–spatial features 
capture the distributional patterns and interrelationships among 
clinical variables at a single point in time. This helps the model learn 
how these attributes co-exist and interact across different patient 
subgroups. When it comes to cardiovascular disease, temporal 
aspects are crucial for recognizing early warning signals, diagnosing 
deteriorating situations, and discriminating between acute and 
chronic forms. These features encode the progression and evolution 
of patient health indicators throughout time. The MCC-CVD 
framework uses combined modeling of both domains to provide 
more accurate and discriminative depictions of patient’s health 
conditions by utilizing both static diagnostic indicators and dynamic 
patterns of disease progression. When it comes to cardiovascular 
disease (CVD) risk stratification, where both the current clinical 
profile and past trends help with correct diagnosis and prognosis, 
this multi-domain fusion is very useful. 

1.1.3 Innovative multi-class EnDe-CNN classifier
The introduction of the multi-class EnDe-CNN classifier holds 

significance as it combines advanced encoding and decoding 
techniques within a convolutional neural network framework to 
classify various CVD types across multiple classes. This classifier not 
only enhances the model’s diagnostic capabilities but also facilitates 
a more granular understanding of cardiovascular conditions, 
enabling more targeted and effective treatment strategies. Classical 
machine learning methods like Support Vector Machine (SVM), 
Random Forests (RF), and Logistic Regression (LR) are used 
in the majority of extant work in this domain. These methods 
usually see CVD prediction as a problem of binary classification, 
like presence vs. absence of disease. In multiclass classification 
problems, where different types of cardiovascular diseases are to 
be distinguished, these approaches frequently fail, despite their 
moderate performance. On top of that, a lot of models are not 
ideal for real-time deployment, do not have interpretability, or 
are overfitted to tiny datasets. Parameter optimization, statistical 
validation, and scalability to real-world settings have frequently been 
overlooked in the current applications of deep learning models.

Using structured clinical data, this project aims to build a deep 
learning model for multiclass cardiovascular illness categorization 
that is robust, interpretable, and scalable. Multi-Component 
Classifier for Cardiovascular Disease (MCC-CVD) is the name of 
the suggested model that improves feature importance learning and 
classification accuracy by combining a two-stage Weight Correction 
Strategy with a new Tri-Pattern Attention Mechanism (TPAM). 
With the use of dynamic attention and statistical rigor, the suggested 
architecture outperforms previous models that depend on static 
feature importance or shallow categorization, resulting in improved 
dependability and wider applicability.

The absence of multiclass CVD prediction models, inadequate 
statistical evaluation, model interpretability, and cross-platform 
scalability are some of the important gaps that this study fills. This 
gap is addressed by the MCC-CVD model, which can (1) process 

complex, high-dimensional clinical data using deep attention-based 
learning; (2) deliver strong results supported by cross-validation, 
confidence intervals, and significance testing; and (3) show that it 
is feasible to deploy using sensitivity analysis and a design that is 
efficient with resources.

The main contributions of this study are as follows: 

• Development of a novel deep learning architecture for 
multiclass CVD classification using clinical data.
• Introduction of the Tri-Pattern Attention Mechanism (TPAM) 

and Weight Correction Strategy to improve feature weighting 
and interpretability.
• Comprehensive statistical evaluation including 10-

fold cross validation, confidence intervals, and paired 
significance testing.
• Sensitivity and robustness analysis demonstrating model 

stability under parameter and data shifts.
• Discussion of deployment strategies including model 

compression and potential integration with mobile apps, cloud 
APIs, and hospital information systems.

1.2 Paper organization

The subsequent tasks are organized as follows: Section 2 
elucidates the associated endeavors, providing an in-depth 
overview of the existing CVD diagnosis model and delineating its 
research gaps. Section 3 underscores the research methodology, 
accompanied by pertinent theoretical, diagrammatical, and 
mathematical elucidations. In Section 4, the experimental 
results are disclosed, encompassing dataset particulars and 
evaluation outcomes juxtaposed with the latest iterations of CVD 
diagnosis models. Section 5 concludes the proposed research. 

2 Literature survey

CVD remains the leading cause of death globally, underscoring 
the urgent need for accurate and early diagnosis. Traditional 
diagnostic methods often rely on single-modality data, which may 
fail to capture the complex interplay of electrical and mechanical 
cardiac functions. The integration of ECG and PCG signals 
offers a more comprehensive view of cardiac health, enabling 
enhanced detection of subtle abnormalities. With the rise of deep 
learning, there is a growing shift toward intelligent, multi-modal 
frameworks that can automate and improve diagnostic precision. 
This research aligns with that direction by proposing a robust 
multiclass classification model that leverages both ECG and PCG 
data for improved CVD prediction. 

2.1 ECG- and PCG-based CVD diagnosis

The cardiovascular system is responsible for transporting oxygen 
and nutrients in the blood. A heart, circulatory system, and 
network of blood vessels make up this system. In order to 
diagnose CVD, specialists in the field, known as cardiologists, 
listen for the heart’s rhythm and blood flow with a conventional 
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stethoscope and a phonetic cardiogram. A cardiologist will use 
a stethoscope to detect vibrations caused by the heartbeat and 
other sounds, such as murmurs, that are recorded for medical 
diagnostic purposes. These sounds are commonly referred to as 
PCG signals. In order to help specialists identify CVDs efficiently 
from PCG signals in the early stages, a method for automatic 
recognition of HVDs has been developed. Numerous resources are 
at the disposal of medical professionals to aid in the rapid and 
accurate diagnosis of CVD in clinical settings. Using supervised and 
unsupervised recurrent neural network (RNN)-based Bidirectional 
Long Short-Term Memory (Bi-LSTM) Machine Learning (ML) 
algorithm, Vinay et al. (2024) proposed work primarily aims to 
offer an AI-based PCG signal analysis for the automatic and early 
detection of various cardiac conditions.

An irregular heartbeat is a common cause of cardiovascular 
disease, the leading contributor to mortality worldwide. The key 
to preventing deaths is early diagnosis and prompt treatment. 
Important non-invasive methods for identifying these diseases 
include ECGs. Cardiology patients can now more easily undergo 
remote monitoring because of the proliferation of telemedicine. 
Data transfer efficiency is crucial for telemedicine sensors due 
to their limited bandwidth and battery life. With the goal 
of improving performance, reducing energy consumption, and 
maintaining diagnostic accuracy in telemedicine, Aggarwal et al. 
(2021) presented a Latent Space Classification System (LSCS) 
that compresses electrocardiogram (ECG) signals into smaller 
dimensions. Using FLOPs, inference time, and transmission size, 
the study examines energy usage in order to overcome sensor 
constraints in different feature extraction strategies. In order to 
compress ECG signals, the suggested LSCS uses a deep convolutional 
autoencoder that was trained on the MIT-BIH arrhythmia database.

A major cause of death, CVDs have recently emerged as a 
major physiological condition. Protecting patients from further 
injury requires accurate and timely detection of heart disease. A 
number of recent studies have demonstrated the great utility of data-
driven methods, such as DL and ML techniques, in the medical 
profession for the rapid and precise diagnosis of cardiac illness. 
In contrast, feature engineering is essential for statistical learning 
and conventional ML methods in order to produce data features 
that are both robust and effective for use in prediction models. 
Both procedures present significant obstacles when dealing with 
big, complicated data sets. On the other hand, DL approaches can 
automatically learn features from data, and they excel at handling 
complex and huge datasets, even more so than ML models. In order 
to overcome the obstacles caused by imbalanced data, Khan et al. 
(2024) aimed to accurately forecast CVDs by taking the patient’s 
health and socioeconomic status into account. When it comes 
to data balancing, the author employed the Adaptive Synthetic 
Sampling Technique, and for feature selection, the Point Biserial 
Correlation Coefficient.

The goal of applying machine learning to patient data in illness 
care is to reap the many significant benefits that come with doing so. 
However, there are a number of obstacles that arise from the very 
nature of patient data. In contrast to uncommon or specific cases, 
which often have small patient sizes and episodic observations, 
prevalent cases collect a lot of longitudinal data because of the 
number of patients they follow up with and how consistently they 
do so. However, longitudinal laboratory data are notorious for being 

irregular, their temporality, absenteeism, and sparseness. Chen et al. 
(2024) used self-supervised learning (SSL) to train a GLP model that 
tracks the overall development of six common laboratory markers in 
common cardiovascular cases. The goal was to use this knowledge 
to help detect specific cardiovascular events. Approach and steps: In 
order to improve SSL’s performance, GLP used a two-stage training 
method that made use of the data included within interpolated sets. 
Transferring it to target vessel revascularization (TVR) detection 
follows GLP pre training. Pure SSL’s performance was enhanced 
by the suggested two-stage training, and GLP’s transferability was 
noticeable.

In recent years, the field of CVD detection has seen significant 
advancements, with researchers exploring innovative approaches 
to enhance both accuracy and efficiency. Below is a comprehensive 
analysis of key research contributions that focus on the recognition 
and classification of cardiac abnormalities through the integration 
of synchronized ECG and PCG signals, as well as the utilization 
of DL and wearable technology. Li P. et al. (2021) offered a 
holistic approach to CVD prediction by integrating multi-modal 
features, enhancing the predictive power of their model. This 
study demonstrated promising results, showcasing the potential of 
combining different types of features for more accurate predictions. 
However, further analysis of the scalability and generalizability of 
the proposed model could strengthen the paper’s contributions. 
Khan et al. (2022) focused on the application of artificial neural 
networks and spectral features. The integration of spectral features 
provided valuable insights into the frequency domain, potentially 
capturing subtle patterns indicative of cardiovascular conditions. 
Although the methodology was innovative, a deeper exploration 
of the network architecture and the interpretability of the spectral 
features could enhance the paper’s impact. Jyothi and Pradeepini 
(2024) introduced a detection system utilizing both PCG and ECG 
signals with a machine learning classifier. The inclusion of both 
signals contributed to a more comprehensive understanding of 
cardiac health, and the hybrid classifier employed by the authors 
resulted in improved prediction accuracy. However, a more detailed 
discussion of the model’s interpretability and potential limitations 
would further strengthen the paper’s contribution. Do et al. (2023) 
explored nondestructive detection methods by examining the 
coupling of PCG and ECG signals to assess coronary artery disease 
(CAD) stenosis severity. This innovative approach provided a non-
invasive means of evaluating cardiovascular health, demonstrating 
the potential of synchronized signals in assessing disease severity. 
Khan et al. (2021) proposed a classification system for multi-class 
CVD using an ensemble method. The use of ensemble techniques 
enhanced the model’s predictive performance, while impulsive 
domain analysis offered valuable insights into transient phenomena. 
The paper’s comprehensive approach was a strength, though a more 
extensive discussion on computational efficiency and potential 
deployment challenges would enrich the contribution. Chakir et al. 
(2020) addressed challenges in cardiac abnormality recognition 
by synchronizing PCG and ECG signals. The integration of these 
vital cardiac signals provided a holistic view of heart function, 
and the authors’ novel methods for signal synchronization yielded 
promising results in accurately identifying cardiac abnormalities. 
This collaborative analysis of ECG and PCG signals holds great 
potential for enhancing diagnostic precision. Li H. et al. (2021) 
focused on the integration of multi-domain deep features, proposing 
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an advanced method for detecting CAD. By leveraging DL 
techniques, the authors demonstrated the effectiveness of combining 
information from both PCG and ECG signals. The integration of 
multi-domain features enhanced the model’s ability to discern subtle 
patterns associated with CAD, highlighting the potential for more 
accurate and reliable disease detection. Wang et al. (2022) designed 
a wearable monitoring tool for CVD detection. The integration of 
DL algorithms enabled continuous monitoring, facilitating the early 
detection of cardiac abnormalities. The wearable aspect of the device 
enhanced patient compliance and provided a convenient solution 
for long-term monitoring. The findings underscored the feasibility 
of employing wearable technology to improve the efficiency of CVD 
detection. Iqtidar et al. (2021) focused on signal analysis, utilizing 
mel frequency cepstral coefficients (MFCC) and one-dimensional 
memory patterns for CVD detection. The incorporation of 
advanced signal processing techniques enhanced the model’s 
discriminatory power. The use of PCG signals, in conjunction 
with these methods, demonstrated the potential for precise and 
automated classification of cardiac conditions. In conclusion, these 
research papers collectively contribute to the evolving landscape of 
CVD detection by presenting innovative approaches that leverage 
synchronized ECG and PCG signals, multidomain deep features, 
wearable technology, and advanced signal processing techniques. 
The integration of these methodologies holds promise for improving 
the accuracy, efficiency, and accessibility of CVD diagnosis, 
ultimately benefiting both healthcare professionals and patients. 

2.2 ECG-based CVD diagnosis

In recent years, the field of CVD detection and management 
has seen significant advancements through the integration of ECG 
data and ML models. Haleem et al. (2021) introduced a time-
adaptive approach to ECG-driven CVD detection, emphasizing 
the dynamic nature of ECG signals. Their research demonstrated 
how real-time adjustments to ECG signal analysis can significantly 
enhance the accuracy of CVD detection. The adaptive algorithm 
they presented promises to be a more responsive and precise 
diagnostic tool, facilitating timely interventions for patients at 
risk of CVD. Dai et al. (2021) contributed to this evolving field 
by developing an automatic screening tool for CVD based on 
convolutional neural networks (CNNs). Their research highlighted 
the potential of DL models in analyzing various intervals of ECG 
signals to capture intricate patterns that may indicate the presence 
of CVD. The robust and reliable screening mechanism developed 
in this study underscores the transformative power of CNNs in 
revolutionizing CVD diagnostics. Boonstra et al. (2023) explored the 
intersection of ECG methodologies and clinical practice, focusing 
on how ECG data can be utilized for managing CVD. This research 
provided valuable insights into the potential of ECG data to support 
personalized treatment strategies. By enhancing clinical decision-
making, this study contributes to the growing field of precision 
medicine in cardiology, offering new avenues for individualized 
patient care. Angelaki et al. (2021) took a different approach by 
leveraging ML techniques for the early detection of CVD. Their 
innovative research demonstrated how ML models could be used 
to identify subtle structural anomalies in ECG data, offering a 
preventive strategy for individuals at risk of developing CVD. 

This approach highlights the potential of ECG-driven ML models 
to serve as early warning systems, enabling proactive healthcare 
interventions. Finally, Malakouti (2023) presented a comprehensive 
heart disease classification model based on ECG signals and 
ML techniques. Their research showcased the versatility of ML 
models in categorizing various cardiac conditions, providing a 
valuable tool for healthcare professionals to streamline diagnosis 
and treatment plans. This study underscores the role of ML 
in enhancing the efficiency and accuracy of cardiac care. In 
conclusion, these five research papers collectively underscore 
the transformative impact of ECG-driven methodologies and 
ML models in advancing CVD detection and management. 
The integration of real-time adaptive algorithms, convolutional 
neural networks, and personalized medicine approaches highlights 
the promise of these technologies in shaping the future of 
cardiology. As the field progresses, these studies pave the way 
for more sophisticated, accurate, and patient-centric solutions in 
cardiovascular healthcare. 

2.3 PCG-based CVD diagnosis

In recent years, the field of cardiac disease diagnosis has 
witnessed significant progress, largely due to the integration 
of ML methods into the analysis of PCG signals. This section 
reviews no table research papers that contribute to this rapidly 
evolving field, highlighting the potential of ML in revolutionizing 
the detection and classification of various cardiac disorders. 
Yadav et al. (2020) explored the application of ML algorithms 
for classifying cardiac diseases based on PCG recordings. Their 
study demonstrated the efficacy of these methods in accurately 
identifying and categorizing different cardiac conditions, thereby 
contributing to the development of more efficient diagnostic tools. 
Baghel et al. (2020) focused on leveraging CNNs to automate the 
diagnosis of multiple cardiac diseases using PCG signals. The 
utilization of CNNs showcases the potential for DL architectures 
to capture intricate patterns within heart sounds, leading to 
improved diagnostic accuracy. Tuncer et al. (2021) employed 
pattern recognition techniques to automate the detection of cardiac 
abnormalities from PCG signals. Their approach illustrates the 
diversity of methods within the field, combining traditional signal 
processing with modern ML techniques to enhance diagnostic 
capabilities. Talal et al. (2023) concentrated on classifying a diverse 
set of heart disorders, emphasizing the versatility of ML models in 
handling a wide range of abnormalities in PCG signals. This study 
underscores the importance of comprehensive models that can 
accurately diagnose various cardiac conditions. Shuvo et al. (2021) 
introduced the CardioXNet framework, a lightweight DL approach 
tailored for CVD classification. Their research highlights the need 
for models that balance accuracy and computational efficiency, 
ad-dressing practical considerations for real-world applications. 
Li et al. (2020) proposed a fusion method that combines multiple 
field features with DL to enhance coronary artery disease detection. 
The integration of diverse features reflects a holistic approach toward 
improving the robustness and accuracy of diagnostic systems. 
In conclusion, these research papers collectively contribute to 
advancing cardiac disease diagnosis through the integration of 
ML and DL techniques. The diverse methodologies presented in 
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these studies underscore the richness of approaches in this field, 
promising a future where accurate and efficient cardiac disease 
diagnosis becomes more accessible to clinicians and patients alike. 
In summary, existing studies have explored various approaches 
for CVD detection using either ECG or PCG signals, as well as 
deep learning and machine learning techniques. However, most 
of these methods are limited by single-modality analysis, lack of 
robust preprocessing, or insufficient feature extraction mechanisms. 
Few works fully exploit synchronized ECG and PCG data with 
advanced attention-based architectures for multiclass classification. 
Addressing these gaps, our proposed work introduces a novel 
multi-modality framework incorporating SST-PNet, a tripattern 
attention mechanism, and a self-supervised EnDe-CNN classifier. 
This integrated approach significantly enhances the diagnostic 
performance and contributes a comprehensive, scalable model 
to the current body of knowledge in CVD detection. Table 1 
highlights recent research on CVD detection using diverse
approaches.

3 Multi-class framework

Our proposed multi-class framework integrates the 
multimodality of ECG and PCG signals for diagnosing CVD. 
We designed and proposed a multiclass classifier for individual 
input channels. In this research, a multiclass architecture comprises 
three modules for feature extraction, feature selection, and 
classification. Figure 1 illustrates the complete pipeline of the 
proposed multiclass CVD diagnosis system, encompassing 
multimodal data collection (ECG and PCG), advanced 
preprocessing and enhancement, followed by feature extraction, 
attention-based weighting, and final classification into positive or 
negative CVD cases.

3.1 Data collection

ECG and PCG records stood sourced from 2016 
PhysioNet/CinC Challenge, with contributions from various 
foreign universities to the databases. The dataset, categorized into 
six subsets labeled training-1 through training-6 is distributed 
across different establishments. The “training-a” dataset consists 
of 409 recordings, where 405 records utilize a Welch Allyn 
Meditron electronic stethoscope with a frequency response range 
of 25 Hz–40 kHz. Among these, 117 recordings are classified 
as negative, representing the standard control set, while the 
remaining 288 are from patients diagnosed with mild aortic 
disease (AD), mitral valve prolapse (MVP), or other pathological 
diseases (MPC) and are classified as positive. The PCG and 
ECG signals in these recordings undergo resampling to 2000 Hz. 
Some recordings, or parts thereof, exhibit visual noise, making 
interpretation challenging. Consistent with previous research, 17 
recordings containing noise are manually removed to mitigate 
potential bias. Table 2 summarizes the dataset. The values (Mean, 
Min, SD, Median, and Max) represent the statistical distribution 
of the recording duration (in seconds) across subjects. It is 
important to take that 388 recordings are divided into training 

and validation datasets before completing the data expansion
process.

The records vary significantly in length, and to provide an ample 
quantity of data for a deep neural network, we employ a sliding 
window approach to augment the dataset. Specifically, we divide the 
lengthy raw signals into short recordings with an 8-s frame. The 
window stride for positive recordings is set at 8 s, while for negative 
recordings, it is 3 s, ensuring a balanced distribution of positive and 
negative recordings. Subsequently, through these segmentations, we 
adjust the ratio from 2.4:1 (273:115) to approximately 1:1. Table 3 
presents the dataset composition, consisting of 1008 positive and 967 
negative samples, each with a duration of 8 s.

3.2 Data preprocessing

3.2.1 Noise reduction
ECG and PCG signals are prone to various types of noise such as 

baseline wander (low-frequency drift due to respiration or electrode 
movement), powerline interference (50/60 Hz), and motion artifacts 
caused by patient activity. To address these challenges, Wiener 
filtering was employed for noise reduction. The Wiener filter is 
particularly suitable for ECG/PCG denoising because it minimizes 
the mean square error (MSE) between the desired clean signal and 
the estimated signal, while considering both the signal and noise as 
stochastic processes. This makes it highly effective for biomedical 
signals where the spectral overlap between noise and signal is 
significant.

The Wiener filter adapts its coefficients Ψk based on the 
estimated spectral characteristics of the noisy signal. For an input 
signal x(n) consisting of the true signal ϱ(n) and noise v(n), as 
represented in Equation 1.

x (n) = ϱ (n) + v (n) , (1)

The output signal λ(n) provides an estimate of ϱ(n). The error 
signal ε(n) is given by as represented in Equation 2.

ε (n) = λ (n) − ϱ (n) , (2)

and the Wiener filter seeks to minimize the mean squared error, 
as represented in Equation 3.

ε =min(E[ε2 (n)]) . (3)

The discrete Wiener filter is expressed as represented in 
Equation 4.

λ (n) =
N−1

∑
ℵ=0

Ψℵ (d (n−K) ⋅ v (n−ℵ)) , (4)

where the filter coefficients Ψℵ are iteratively adapted. The 
Wiener–Hopf equation provides the condition for optimal weights 
as represented in Equation 5:

p−1

∑
l=0

Ψol rxx (k− l) = rxϱ (−l) , (5)

where Ψo0,Ψo1,…,Ψop−1 denote the optimum tap weights of 
the filter, rxx represents the autocorrelation function of x(n), 
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TABLE 1  Research Gaps of state of arts.

Study Approach Key contributions Limitations

Li et al. (2021a) Multi-modal feature integration Enhanced predictive power for CVD 
through integration of various features

Scalability and generalizability need 
further exploration

Khan et al. (2022), Wang et al. (2022) Artificial neural networks and spectral 
features

Used frequency features for inputs into 
deep learning, improving CVD 
detection accuracy

Black-box explanation and 
interpretability are difficult

Jyothi and Pradeepini (2024) Hybrid classifier with PCG and ECG 
signals

Achieved improved prediction accuracy 
by using both signals

Requires more annotated datasets; 
sensor integration limitations

Do et al. (2023) Non-destructive detection with PCG 
and ECG coupling

Innovative non-invasive approach for 
assessing CAD severity

Limited diagnosis and broader 
applicability need validation

Khan et al. (2021) Ensemble methods for multiclass CVD 
classification

Enhanced predictive performance and 
provided insights into transient 
phenomena

Needs more contextual efficiency and 
deployment challenges

Chakir et al. (2020) PCG and ECG signal synchronization Novel methods for signal 
synchronization, improving accuracy in 
cardiac abnormality recognition

Engineering synchronization of the two 
systems affects robustness

Li et al. (2021b) Multidomain deep features Demonstrated effective CVD detection 
by integrating multidomain features

Computational complexity and 
real-time applicability

Wang et al. (2022) Wearable monitoring tool for CVD 
detection

Enabled continuous monitoring 
through DL algorithms, enhancing 
early detection

Device performance issues and patient 
adherence are challenges

Iqtidar et al. (2021) MFCC and ID memory patterns for 
CVD detection

Improved model’s discriminatory 
power through advanced signal 
processing techniques

Requires validation on diverse datasets

Haleem et al. (2021) Time-adaptive ECG-driven CVD 
detection

Improved accuracy through real-time 
adaptive signal analysis

Needs further validation in clinical 
settings

Dai et al. (2021) CNN-based automatic screening tool Highlighted DL’s potential in expanding 
multiple ECG patterns for CVD 
detection

Limited generalizability to diverse 
populations

Boonstra et al. (2023) ECG methodologies for clinical practice Forward screening into ML for 
personalized treatment strategies

Needs broader clinical validation

Angelaki et al. (2021) ML for early detection of CVD Demonstrated ML’s power in early CVD 
detection through ECG waveforms

Requires more research with real-world 
data

Malakouti (2023) ML for heart disease diagnosis Showcased ML’s versatility in 
addressing various cardiac patterns

Needs further exploration on scalability 
and validation

Yadav et al. (2020) ML algorithms for PCG-ECG fusion Achieved accurate classification using 
multimodal synchronization

Limited by the need for high-quality 
synchronized input

Baghel et al. (2020) CNNs for PCG-based diagnosis Improved the diagnostic accuracy by 
capturing intricate patterns in heart 
sounds

Requires validation across more diverse 
patient groups

Tuncer et al. (2021) Pattern recognition for PCG signals Enhanced diagnostic capabilities 
through traditional signal processing 
and ML.

Needs further refinement of the pattern 
recognition methods

Talal et al. (2023) ML with ECG features Showcased ML’s versatility in 
diagnosing various cardiac disorders

Requires further testing in clinical 
environments to ensure robustness

(Continued on the following page)
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TABLE 1  (Continued) Research Gaps of state of arts.

Study Approach Key contributions Limitations

Shuvo et al. (2021) CardioXNet for lightweight DL CVD 
classification

Balanced accuracy and computational 
efficiency for real world applications

Needs further exploration of its performance 
in resource-limited settings

Li et al. (2020) Fusion method with DL for CAD detection Enhanced diagnostic robustness and accuracy 
through multi field feature integration

Limited by the need for further testing on 
different types of CVD.

FIGURE 1
Overall workflow of the proposed framework illustrates the complete pipeline of the proposed multi-class CVD diagnosis system, encompassing 
multimodal data collection (ECG and PCG), advanced preprocessing and enhancement, followed by feature extraction, attention-based weighting, and 
final classification into positive or negative CVD cases.

TABLE 2  Description of the dataset.

Classes Subjects Time length (s)

Mean Min SD Median Max

Positive 273 31.65 11.72 5.87 34.64 35.92

Negative 115 31.74 8.98 4.22 30.58 35.92

TABLE 3  Data description.

Classes Subjects Time length (s)

Positive 1008 8

Negative 967 8

and rxϱ denotes the cross-correlation function between x(n) and 
ϱ(n). In the proposed multiclass model, the filter order and 
window length were empirically determined through preliminary 
trials to maximize noise suppression while preserving the 
morphological details of the ECG and PCG signals. This ensured 
that clinically relevant features (such as QRS complexes in ECG 
and systolic/diastolic components in PCG)were retained after
filtering. 

3.2.2 Normalization
After noise reduction, the min–max normalization technique 

of data normalization is performed in which linear transformation 
is executed on noise reduced data. The value of maximum and 
minimum from data is increased, and the individual value is changed 
as per the following formula,

Δ´ =
Δ−min (∄)

max (∄) −min (∄)
(new−max (∄) − new−min (∄)) + newmin(∄)

(6)

where ∄ denoted as attribute data, max (∄) denotes the maximum 
absolute value, and min (∄) denotes the minimum absolute value. 
Δ´ and Δ are the new value and old values of individual data 
entry, respectively. Furthermore, new−min (∄) and new−max (∄)
denote the parameters of maximum and minimum value of range, 
respectively as represented in Equation 6. 
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3.3 Data enhancement

3.3.1 False peak elimination
Likewise, for the proficient extraction of characteristics from 

the ECG and PCG signals, we eliminate inaccurate peaks and 
reconstruct it. Within ECG and PCG signal processing, the process 
of identifying and removing or reducing misleading or inaccurate 
peaks in the ECG and PCG signal is termed false peak elimination. 
The elimination of false peaks in ECG and PCG signal segmentation 
involves scrutinizing peak-to-peak intervals through statistical 
assessment of false peaks. The subsequent features, precisely defined 
as follows, were statistically identified and employed for false 
peak elimination using an adaptive threshold along the amplitude
axis. 

1. Frequency Analysis: Power Spectrum

The identification and separation of frequency components 
associated with genuine brain activity from noise can be achieved 
by analyzing the power spectrum of ECG and PCG recordings. 

2. Time-related Features: Temporal Constancy and Variability

Genuine ECG and PCG signals exhibit significant temporal 
constancy. Artifacts may manifest as sudden, abrupt changes or 
spikes. Measuring the variability of the ECG and PCG signal over 
time assists in pinpointing segments likely to contain artefacts. 

3. Spatial Characteristics: Consistency and Channel Correlation

ECG and PCG data acquired from multiple electrodes should 
demonstrate spatial consistency. Inconsistencies in spatial patterns 
could indicate artifacts. Evaluating the correlation between ECG 
and PCG channels aids in identifying anomalous patterns associated 
with artifacts. 

4. Amplitude and Duration of Waveform Morphology: 
Distinctive Characteristics

Authentic ECG and PCG signals often showcase distinctive 
amplitudes and durations. Anomalies may be signaled by unusual 
spikes in amplitude or duration. Analyzing the morphology and 
shape of ECG and PCG waves helps identify abnormalities related 
to artifacts. 

5. Statistical Measures: Moments and Anomaly Detection

Calculating statistical moments (mean, variance, skewness, 
and kurtosis) of ECG and PCG segments assists in identifying 
anomalous patterns linked to artifacts. Anomaly detection through 
statistical techniques aids in the effective elimination of false
peaks. 

3.4 CVD diagnosis

Next, we fed our processed data into multi-class architecture 
which consists of three modules as shown in Figure 1: (i) SST-
PNet to extract appropriate features; (ii) WCM-AM which provide 
significant weight for optimal features by means of feature selection; 
(iii) Novel Multi-class Classifier is introduced for classifying the 
several CVDs into multiple classes. 

3.4.1 Spectral Spatial Temporal Pyramid Network 
(SST-PNet)

Once both ECG and PCG signals are preprocessed and 
enhanced, we fed the data into a multi-class model. Here, primarily 
SST-PNet is adapted for feature extraction for CVD diagnosis. 
SST-PNet consists of spectral, spatial, and temporal branches in 
which pyramidal convolution is encompassed, as shown in Figure 2. 
Initially, the pyramidal blocks utilized in three branches are detailed 
as follows, 

1. Spectral Branch- Initial Layer: Typically, the initial step 
in feature modification involves the application of a 3D 
convolutional layer, aimed at reducing the computational 
burden along the spectral dimension. Subsequently, a 
pyramidal spectral block is appended. In Figure 2, each 
layer within the pyramidal convolution consists of three 3D 
convolution procedures with progressively decreasing spectral 
dimension levels. For each layer, the kernel sizes of the 3D 
convolution operations are sequentially set as 1 ×  1 ×  7, 1 ×
1 ×  5, and 1 ×  1 ×  3.

2. Construction: Subsequent to each convolution, a batch 
normalization (BN) layer is introduced for regularization, 
followed by the application of the Mish activation 
function. This combination aids in learning a nonlinear 
representation, thereby enhancing the network’s power and 
speed of convergence. Each layer maintains a consistent 
number of output channels, customizable as γ´. The 
final output number for the block can be expressed as
follows:

γ = η+ 3∗ γ´ (7)

In the equation, γ represents the actual number of 3D 
convolution kernels, and n is the number of output channels 
from the preceding 3D convolution layer. It is noteworthy that 
the investigation primarily focuses on spectrum information, given 
that the only variable in these convolution kernels is their spectral 
dimension, which is never equal to 1. 

• Spatial Branch: Construction: This branch also utilizes a 
pyramidal structure, with convolution kernels varying in 
spatial dimensions while maintaining consistency in the 
spectral dimension. A 3D convolutional layer is applied 
initially, followed by the pyramidal spatial block, which 
includes layers with batch normalization and Mish activation 
functions.
• Temporal Branch: Construction: Similar to the spatial branch, 

the temporal branch involves pyramidal convolution with 
variable kernel sizes in the temporal dimension. A 3D 
convolutional layer is applied before the pyramidal temporal 
block, with each layer featuring batch normalization and Mish 
activation functions.

Each branch of SST-PNet is designed to extract different 
types of features from the multimodality input data, leveraging 
interspatial linkages and dimension-specific kernels to enhance 
feature representation and improve the diagnostic accuracy.

Likewise, the construction of the pyramidal spatial and temporal 
blocks leverages interspatial linkages within feature maps, similar to 
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FIGURE 2
Illustration of SST-PNet depicts the structure of the SST-PNet, which consists of three parallel branches, namely, pyramidal spectral, spatial, and 
temporal blocks, each applying multi-scale 3D convolutions to capture hierarchical features across different dimensions of ECG and PCG data.

the pyramidal spectral block. As shown in Figure 2, the kernel size 
in the spatial and temporal blocks varies along the spatial dimension 
while remaining fixed in the spectral dimension. Moreover, a 3D 
convolution layer is applied before compressing the spectral and 
temporal dimensions. Each layer within these blocks includes a 
3D convolutional layer, followed by batch normalization and a 
Mish activation function. The relationship between the input and 
output of the pyramidal spatial and temporal blocks is defined in 
Equation 7. Furthermore, Figure 3 demonstrates how the pyramidal 
spectral, spatial, and temporal blocks are integrated with a three-
pattern attention mechanism and weight correction modules to 
extract and refine features from ECG and PCG signals before 
classification.

3.4.2 Weight correction module with the 
Tri-Pattern Attention Mechanism

The WCM-AM was implemented by integrating a three-
pattern attention mechanism within a weight correction framework 
to address imbalances in feature importance. This attention 
mechanism selectively focuses on critical regions of the input 
data, enhancing the model’s ability to identify relevant features 
for accurate classification. The WCM-AM was trained using a 

combination of supervised learning techniques, with attention 
weights adjusted based on gradients to optimize feature selection. 
During training, the model iteratively refined its attention patterns 
and weight corrections to improve classification performance and 
reduce misclassification rates. 

1. Three-Pattern Attention:

Here, we proposed that the Tri-Pattern Attention Mechanism 
(TPAM) acquires attention weights in spectral, spatial, and temporal 
directions. Assume the extracted feature map from prior layers as 
βspe

i,j ∈ RH∗W, where H and W denote height and width of feature 
maps, respectively, and βspe

i,j  into spectral attention module to obtain 
attention weight as represented in Equation 8. The following is the 
mathematically determined as

Attspe =
exp(Wspeβh

i,j + bspe)

Σi,jexp(Wspeβh
i,j + bspe)

(8)

From the abovementioned equation, Wspe and bspe are denoted 
as weight parameters of the dense layer, and Attspe represents 
the attention coefficient of the spectral pattern. In addition, for 
the attention mechanism of temporal, we transpose the matrix of 
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FIGURE 3
Architecture of SST-PNet and WCAM with Three-pattern Attention Mechanism illustrates the dual-stream processing of ECG and PCG signals using the 
SST-PNet for feature extraction, followed by a WCAM that adaptively refines features across spectral, spatial, and temporal domains before 
classification by the multi-class EnDe-CNN.

feature map to acquire the feature map of the temporal pattern. The 
procedure is mathematically expressed as

βtem
i,j = (β

tem
i,j )

T (9)

Where βtem
i,j  represents the feature map with temporal attention 

coefficient as represented in Equation 9. The input of the temporal 
attention module is similar to obtain the attention weight of 
the temporal pattern as represented in Equation 10. The weight 
coefficient is determined as

Atttem =
exp(Wtemβi,j + btem)

Σijexp(Wtemβi,j + btem)
(10)

For the attention mechanism of the spatial pattern, we 
mainly focus on weight distribution among feature maps to 
further acquire spatial features. Let the feature of input in the 
attention module of the spatial pattern be (βspa

i,j )
k ∈ RH∗W∗K, (βspa

i,j ) =
[(βspa

i,j )
1, (βspa

i,j )
2,….,(βspa

i,j )
k], here k indicates the index of the 

feature map, and the following equation is utilized to determine the 
spatial pattern attention weight coefficient,

Attspa =
exp(Wspa(β

spa
i,j )

k + bspa)

Σijexp(Wspa(β
spa
i,j )

k + bspa)
(11)

Here, Attspa denotes the spatial pattern attention coefficient as 
represented in Equation 11. 

2. Weight Correction Strategy: We proposed two methods, 
namely, weight maximization and addition, to address the 
weight coefficients corresponding to the three attention 
directions acquired in the preceding stage. In the weight-
maximization approach, we doubled the weight coefficients 
associated with horizontal and vertical attention based on 
our previous findings, showcasing its remarkable performance 
through empirical trials. In pursuit of enhanced spatial 
characteristics, we introduced a weight addition approach in 
the present study. Specifically, this approach involves adding 
the attention weight coefficient of the spatial direction to the 
existing foundation. The resulting coefficient in the weight 
addition strategy’s output can be obtained using the following
formula:

Attadd = (Attspe +Atttem +Attspa) (12)

From the Equation 12, Attadd denotes the weight addition 
mechanism’s output coefficient. For the mechanism of
maximum weight, we consider the principal one of
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weight coefficients, and the equation is as
follows:

Attmax =max[(Attspe ⊗Atttem)Attspa] (13)

Where Attadd denotes the weight maximization mechanism’s output 
coefficient. Assume Attadd concatenate the feature map of input βk

i,j
to acquire the weight addition mechanism’s output feature map. 
Moreover, Attmax as represented in Equation 13 multiply the feature 
map of input βk

i,j and done Conv3D as represented in Equation 14 
to acquire the weight addition mechanism’s output feature map. 
Finally, we concatenate the three-pattern attention mechanism as 
represented in Equations 15, 16.

Iadd = Conv3D(Attadd ⊗ βk
i,j) (14)

Imax = concat[Imax,β
k
i,j] (15)

ITPAM =maxpool {concat[Imax,Iadd]} (16)

Where ITPAM denotes the output of the final three-pattern attention 
mechanism, concat () is the operation of feature fusion and 
concatenation, and maxpool is the max pooling.

To make feature weighting more effective and easier to 
understand, the MCC-CVD model architecture incorporates the 
TPAM and the Weight Correction Strategy. TPAM is built to 
take a look at input information from three different angles, each 
emphasizing a different level of semantic relevance: global, local, 
and residual. This allows it to extract diverse attention patterns. 
An initial feature significance map is created by aggregating the 
outputs of the three attention pathways. This map reflects the 
multiscale dependencies across the input attributes. The next step, 
rather than a substitute, is to use the Weight Correction Strategy 
sequentially. The attention-derived weights are fine-tuned in this 
module by means of two procedures: weight addition and weight 
maximization. As a sort of soft selection, weight maximization 
in the first step amplifies the most informative traits, which are 
those that are consistently highlighted across TPAM branches. By 
including contextual information from nearby characteristics or 
states (in time-dependent data), the second stage of weight addition 
prevents the suppression of any important but underrepresented 
patterns. The maximal weights serve as a foundation for addition 
rather than individual strategy routes in this sequential application 
of stages. TPAM and the Weight Correction Strategy produce 
detailed attention signals from several angles, and the latter acts as 
a post-attention calibration mechanism to additionally enhance the 
importance of features. Classification accuracy and interpretability 
in cardiovascular disease diagnosis are both enhanced by this 
two-stage refinement, which allows the model to zero down 
on clinically relevant variables like age, blood pressure, and 
comorbidity indicators. To construct spectral features, the MCC-
CVD framework examines the distributional patterns of clinical 
variables. Each feature is then represented in a modified space that 
emphasizes the links between its statistical frequency and value 
range. By seeing the feature space as a structured relationship graph, 
with edges representing correlations or co-occurrence strengths, 
we may model the interdependencies between clinical variables 
and obtain spatial features. Utilizing recurrent encoders, temporal 

features are retrieved from medical records that contain sequential 
measures in order to capture patterns that evolve over time. After 
feature extraction, a hierarchical attention mechanism is used to fuse 
the three domains of features. First, the TPAM assigns weights that 
are specific to each domain. Then, the Weight Correction Strategy 
refines and combines the features into a single representation 
for classification. In MCC-CVD, the pyramid network is built 
to gradually abstract feature representations across several levels 
of resolution. A three-tiered pyramid structure is employed to 
process the input fused feature map, with each tier decreasing the 
dimensionality and increasing the learnt patterns’ abstraction level. 
There are three steps to the process: preserving local features at 
a high resolution, capturing correlations at an intermediate level, 
and finally encoding global semantic patterns that are relevant 
to cardiovascular risk assessment. Convolutional layers, batch 
normalization, and activation functions make up each step, and 
skip connections permit fine-grained information to be preserved. A 
balance between computing efficiency and representational richness 
is maintained by fixing the pyramid’s depth at three hierarchical 
levels. MCC-CVD’s classification module uses a fully connected 
neural network and a Softmax output layer to forecast probabilities 
across several classes. Prior to being passed through two dense layers 
with ReLU activation, the fused and pyramid-processed features 
undergo flattening. This procedure maps the high-dimensional 
feature space onto a lower-dimensional decision space. To avoid 
overfitting, regularization with dropout layers is used. Last but 
not least, the Softmax layer generates probability distributions for 
each cardiovascular disease category; the class label is associated 
with the probability that the model used to make its prediction. 
Although there is only one deep classifier studied, it can be easily 
extended to include more in future work to create an ensemble 
that leverages the combined outputs of several classifiers to increase
resilience. 

3.4.3 Self-supervised multi-class classifier
The proposed multi-class model, known as EnDe-CNN 

as shown in Figure 4, presents the architecture of the multi-
class EnDe-CNN, where fused ECG and PCG features are 
encoded and decoded through 3D convolutional layers in 
a self-supervised fashion, followed by a fully connected 
detection block that performs multiclass classification of CVD 
types such as MVP and AD with enhanced robustness via 
dropout and feature flattening. We utilized aggregated network 
information as input. Furthermore, the encoder–decoder 
block within EnDe-CNN contributes to minimizing errors 
during feature learning, facilitating the acquisition of more 
discriminative characteristics related to signals. A comprehensive 
explanation of each block and module in EnDe-CNN is given as
follows. 

1. Encoder Block: Upon receiving spectral, spatial, and 
temporal characteristics of both ECG and PCG signals 
from the previous module are fused, the encoder module 
meticulously processes the obtained features in three 
dimensions, element by element. The key components 
of the encoder module include the batch normalization 
layer, convolution layer, and ReLU layer. The formulation 
for the convolution output at the jth layer is provided
below.
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FIGURE 4
Proposed multi-class EnDe-CNN Classifier presents the architecture of the multi-class EnDe-CNN, where fused ECG and PCG features are encoded 
and decoded through 3D convolutional layers in a self-supervised fashion, followed by a fully connected detection block that performs multiclass 
classification of CVD types such as MVP and AD with enhanced robustness via dropout and feature flattening.

Conv(j) = (ConvKer⊗Z)(j) + bias (17)

Mj =
Mj−1 + 2∗ pad [0] − (ConvKersiz[0] − 1) − 1

Str [0]
+ 1 (18)

In the provided Equation 17, Z denotes the input to the jth 
layer, and ConvKer represents the convolutional kernel. The 3D 
convolutional process is denoted by ⊗, and bias represents the offset 
value. Additionally, it is feasible to set the padding and stride for each 
dimension to 0 and 1, respectively as represented in Equation 18. 
The batch normalization layer within the encoder module, expressed 
below, serves the purpose of mitigating undesirable covariate shifts.

OpZ =
Yz −φ(Fm) [ηz]

√Var(Fm) [Nz] + 3
∗ α+ σ,ω = 1,2,…,𝕋 (19)

The symbols Fm and Yz in the above Equation 19 represent 
the feature maps and convolution minibatch, respectively. Symbols 
φ(Fm) [Yz] and Var(Fm) [Yz] denote the mean and standard deviation 
for each feature value, respectively. Hyperparameters α and 
σ, ωare set to 1 e−4. The ReLU activation is employed to 
facilitate the convergence of training operations in the encoder 
network. The multilayer feature concatenation block amalgamates 
the processed features of the encoder at various depths. The 

characteristics, combined into a single matrix M, are represented 
as aggY (j) = (j→ z1,z2,z3). The amalgamation process can be 
described as follows:

D = [aggYz
,aggYz2
,aggY4
] (20)

Where agg represents the concatenation operation as 
represented in Equation 20. In addition, the number of 
training parameters has diminished through employing the 3D 
max pooling layer. 

2. Decoder Block: The encoder architecture, comprising 
3D deconvolutional layers, ReLU activation, and batch 
normalization layers, mirrors the structure of the decoder 
blocks. The primary purpose of the decoder block is to map 
lower-dimensional space to a higher-dimensional space. By 
performing dimensionality conversion, features of diverse 
sizes can be restored to a uniform size. Let {aggYj

} denote 
the feature patches and n represent the weight. The weight 
is applied to minimize the reconstruction loss and can be 
articulated as follows:

Loss = 1
k

k

∑
j=1
‖aggIj
− f (aggIj

;n)‖
2

2
(21)
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In the given Equation 21 k stands for the number of 
3D feature patches, k, aggIj

 represents the feature value, 
and f (.) denotes the encoding and decoding procedures. In 
summary, the proposed EnDe-CNN achieves self-supervised 
learning of spectral–spatial–temporal characteristics through these 
mechanisms.

This research introduces the MCC-CVD model, a unique, 
multicomponent deep learning architecture specifically built for 
multiclass categorization of CVD classes using clinical data. A 
composite structure that incorporates deep neural layers, feature 
fusion, and optimal decision thresholds to handle the complexity 
of various cardiovascular risk signals is what makes the suggested 
method unique. In contrast to traditional models, the MCC-CVD 
model uses a hierarchical and multiclass method to categorize 
CVD. It can distinguish between different subtypes of CVDs 
that share risk factors and symptoms. The study’s hyperparameter 
optimization mechanism, which uses grid search to adjust the 
learning rate, dropout, activation functions, and model depth, is 
one of its main advances. This tackles a major issue with previous 
research that used static or default parameter settings, that is, 
how well the model performed and how well it generalized to 
new data. In addition, our model incorporates robust statistical 
evaluation to ensure the reliability of the reported results. This 
includes 10-fold cross-validation, 95% confidence intervals for 
performance metrics, and significance testing, such as paired t-
tests, in contrast to previous approaches that report single-point 
performance. The use of sensitivity and robustness analysis is 
another unique feature of this study. We performed a stress 
analysis of the MCC-CVD model’s performance with different data 
distributions and parameter shifts to make it more interpretable and 
to ensure that it can be used in real-world clinical settings with 
potentially noisy, imbalanced, or incomplete data. Clinical decision 
support systems that demand comprehensible, explainable results 
for risk stratification can use this model because it enables feature 
importance score and adjustable feature weighting. Statistical rigor, 
an optimization-driven architecture, realistic robustness testing, 
and a focus on several classes are what set the MCC-CVD model 
apart from previous efforts. With these improvements, it is now 
considered a major step forward in the use of machine learning 
in healthcare, especially in the crucial area of predicting and 
diagnosing cardiovascular disease. 

4 Experimental results

4.1 Simulation setup

We apply the mentioned methodologies to the respective 
datasets. The effectiveness of the multimodal approach is illustrated 
through the prediction of CVD using the trained multi-class 
model. The proposed framework, developed using MATLAB 
7.12, was designed to improve the Parallel-Multi-class framework. 
Implementation was conducted on a Windows PC with a 1.6 GHz 
Intel Core i5 processor and 4 GB of RAM. Additionally, we showcase 
the efficiency of the pyramid network and weight correction strategy 
into the feature analyzing process. Each case is validated using 
a five-fold cross-validation, and we conduct ten repetitions for 
each instance. 

4.2 Performance metrics

The efficient of the proposed multiclass model is demonstrated 
by comparing it to accurate CVD detection methods through the 
computation of various performance metrics, including accuracy, 
specificity, sensitivity, F1-score, and ROC curve. The mathematical 
expressions for these metrics are as follows:

Accuracy =
|δTP + δFP|

|δTP + δTN + δFP + δFN|
(22)

Speci ficity =
|δTP|
|δTP + δFP|

(23)

Sensitivity =
|δTP|
|δTP + δFN|

(24)

F1− score =
2∗ Speci ficity∗ Sensitivity

Speci ficity+ Sensitivity
(25)

In these equations, δTP and δTN represent true positive and true 
negative rates, respectively, while δFP and δFN denote false positive 
and false negative rates, respectively. These formulas quantitatively 
assess the performance of the multi-class model in comparison to 
alternative PD detection strategies. 

4.3 Training analysis

An organized and repeated tuning procedure was employed to 
choose the MCC-CVD model’s parameters. Standard procedures 
used in earlier research on cardiovascular disease prediction 
informed the selection of these initial values. On the other hand, a 
systematic grid search was used to investigate different combinations 
of important hyperparameters in order to guarantee the best model 
performance. Here is the definition of the search space: The learning 
rates were set between 0.001 and 0.05, batch sizes were 32, 64, and 
128, and the dropout rates were 0.2–0.5. The number of hidden 
layers was set between 2 and 4. The sigmoid, tanh, and ReLU 
activation functions were also tested. The ideal setup, which includes 
a learning rate of 0.005, a batch size of 64, a dropout rate of 0.3, 
and three hidden layers activated by ReLU, was chosen because 
it performed exceptionally well on validation data, producing the 
best F1 score and balanced precision–recall trade-off. A sensitivity 
analysis was carried out alongside hyperparameter optimization 
to assess how different parameter changes affected the model’s 
performance. In order to see changes in accuracy and F1 score, 
we adjusted some parameters while keeping others constant. The 
results showed that the model’s behavior was greatly affected by 
the learning rate and dropout rate, with performance differences 
of up to ± 4%. However, batch size and hidden layer count were 
rather un-important. To guarantee stability and generalizability, our 
results highlight the significance of finetuning key parameters. In 
summary, this method prevents the use of arbitrary parameter values 
and instead guarantees that they are robust and based on empirical 
evidence. The optimization of network parameters is carried out 
using Adam’s optimizer. The training procedure for multi class of 
ECG involves a total of 150 epochs. At every 50 epochs, the learning 
rate is adjusted by multiplying it by 0.1, starting from an initial value 
of 0.001. Similarly, for the multi class of the PCG training process, 
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FIGURE 5
Training and validation of the proposed approach: (a) Training loss, (b) Validation loss, (c) Training accuracy, and (d) Validation accuracy for 
ECG and PCG.

a total of 160 epochs are utilized. The learning rate increases by 0.1 
every 80 epochs, commencing from an initial value of 0.001. 

4.4 Analysis of feature extraction

As depicted in Figure 5, we present charts showing the loss and 
accuracy versus iteration for the classifier, aiming to showcase the 
generalization performance of the multi-class model of ECG and 
PCG. Examining Figures 5A,C, the loss and accuracy curves in the 
training dataset indicate that the model has undergone sufficient 
training while Figures 5B,D represent the loss and accuracy curves 
in the validation dataset. Moreover, the accuracy curve for the 
validation data closely mirrors the trend observed in the training 
data, although the validation data’s loss function curve does not 
consistently decrease. The contrasting patterns of accuracy and loss 
in the validation dataset imply the presence of significant noise in 
our dataset, as indicated by our study. To assess the characteristics 
derived from the multi-class model of ECG and PCG, we employed 
Pearson’s Correlation Coefficient (PCC).

Figure 6 represents the distribution of appropriate features 
derived from ECG and PCG signals using boxplots. Specifically, 
Figure 6A presents the boxplot of ECG appropriate features for 
the positive class, while Figure 6B depicts the ECG appropriate 
features for the negative class. Similarly, Figure 6C shows the PCG 
appropriate features for the positive class, and Figure 6D displays 
the PCG appropriate features for the negative class. These boxplots 
collectively highlight the variation and distribution patterns of 
feature values across classes. The brown boxes represent the 
interquartile range (values between the first and third quartiles), and 
the crosses denote the extreme values beyond the minimum and 

maximum limits. Overall, the boxplots reveal that ECG features tend 
to exhibit stronger and more consistent patterns compared to PCG 
features, although both modalities contribute valuable information 
for the final classification through feature fusion.

4.5 Abnormality analysis

We present the corresponding ROC curves to compare the 
classification outcomes of heart sounds using PCG signals alone 
versus simultaneous recordings of PCG and ECG. The performance 
metrics are detailed, with the multi-class EnDe-CNN classifier 
emerging as the superior classification model in both approaches, 
as evidenced by the tables, consistently achieving the highest 
evaluation scores. Notably, a significant enhancement was observed 
in the efficiency of detecting cardiac abnormalities when ECG 
signals are incorporated alongside PCG signals. Designing a system 
for remote patient monitoring requires not only medical expertise 
but also technological proficiency, adept handling of non-stationary 
information, and AI. The proposed methodology aims to automate 
the processing of combined PCG and ECG signals obtained 
through sensors placed within the patient’s residence. Whether 
fully implemented or focused on specific platform features, this 
approach enhances the effectiveness of telemonitoring for heart 
conditions. The diagnostic model developed can be utilized by 
medical professionals at the hospital for cardiac condition diagnosis 
or integrated into a telemedicine system tailored for high-risk 
patients. Designing a system for remote patient monitoring requires 
not only medical expertise but also technological proficiency, adept 
handling of non-stationary information, and AI. The proposed 
methodology aims to automate the processing of combined PCG 
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FIGURE 6
Distribution of ECG and PCG appropriate features using Boxplots: (A) ECG–positive class, (B) ECG–negative class, (C) PCG–positive class, and (D)
PCG–negative class.
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and ECG signals obtained through sensors placed within the 
patient’s residence. Whether fully implemented or focused on 
specific platform features, this approach enhances the effectiveness 
of telemonitoring for heart conditions. 

4.6 Comparative analysis

In this segment, we elucidated our comparative analysis, 
focusing on two pre-existing models: our proposed multi-class 
model and the latest works in the field of CVD diagnosis. 
The objective of this study is to enhance the efficiency of 
diagnosing CVD. Our proposed model outperformed in terms of 
F-measure, ROC curve, accuracy, specificity, and sensitivity. The 
following subsection provides insights into the experimental results 
derived from various trials conducted across several state-of-the-art 
learning models. 

4.6.1 Comparison with different modalities
To compare the integrated information derived from both 

ECG and PCG signals, we applied the Multi-class model to 
each modality as shown in Figure 7.The confusion matrices 
and ROC curves depicting positive vs negative classification 
using different modalities. Figure 8 illustrates the ROC curves 
for the proposed model, where Figure 8A corresponds to ECG, 
Figure 8B to PCG, and Figure 8C to the fused data. The figures 
visually represent positive as class-1 and negative as class-2. 
Notably, the ROC curve resulting from the fused data (Figure 
8C) exhibits a distinct left-to-right slope, indicating the efficacy 
of utilizing combined information for improved classification 
performance. The performance metrics, detailed in Table 4, 
offer insights into which fusion-based categorization surpasses 
individual ECG and PCG accuracy. The suboptimal performance 
achieved when acquiring ECG and PCG data independently is 
attributed to the limitations of a single modality in promptly 
addressing metabolic and structural adjustments. The necessity 
of both types of information for optimal prediction potential and 
enhanced validation observations is underscored in this context. 
In contrast, the concentration of signals in multimodality fused 
information is emphasized. Preprocessing steps involve noise 
reduction, normalization, and false peak elimination, thereby 
reducing computational requirements. Additionally, employing an 
attention technique with multiple heads contributes to complexity 
reduction. Presently, the testing of the multi-class model on a 
single GPU system takes only 2 minutes, indicating favorable space 
complexity and optimal algorithmic runtime.

4.6.2 Comparison with different state-of-art 
approaches

This section demonstrates the suggested multi-class model’s 
effectiveness for CVD classification by contrasting it with a number 
of cutting-edge methods. The techniques used for comparison 
include LSTM (Wang et al., 2022), ANN (Iqtidar et al., 2021), 
GKVDCNN (Haleem et al., 2021), CA (Dai et al., 2021), and 
MCVD (Boonstra et al., 2023). Details of the accuracy, sensitivity, 
specificity, and f-measure comparison of the multi-class model 
performance metrics with state-of-the-art methods are provided in 
Table 5. Multi-class modeling has demonstrated enhanced outcomes 

FIGURE 7
Performance analysis of different modalities.

in positive vs. negative diagnosis, achieving a remarkable 98.36% 
accuracy, 98.23% sensitivity, 97.89% specificity, and 98% F-measure, 
as shown in Figure 9. The exceptional performance can be attributed 
to the depth networks, which contribute to minimal additional 
parameters affecting the diagnostic accuracy.

Notably, the multi-class model exhibits more compelling 
accuracy and superior convergence characteristics. The Confusion 
Matrix for proposed model (a) ECG, (b) PCG and (c) Fused Data are 
represented in Figure 10. Therefore, the multi-class model, grounded 
in multimodal fusion, signifies an advancement in automatic 
classification techniques. 

4.6.3 Comparison with different ML approaches
We evaluated numerous ML techniques alongside our proposed 

multi-class model to diagnose CVD effectively. The comparative 
study considered DT (Boonstra et al., 2023), RF (Angelaki et al., 
2021), and SVM (Malakouti, 2023) classifiers. Table 6 provides a 
comparision analysis of accuracy, sensitivity, specificity, and F1-
score performance metrics of the multi class model with ML 
models, while Figure 11 graphically illustrates these results. Across 
all performance parameters, the RF model demonstrated superior 
performance compared to SVM and NB as an CVD classification 
model. Nevertheless, our proposed approach outperforms other 
models, particularly in terms of accuracy. The diminished accuracy 
observed in other models is attributed to the challenges that ML 
systems face in handling extensive datasets and their limitations in 
extracting relevant characteristics, leading to reduced accuracy. 

4.7 Ablation study

In this study, we introduce the multi-class model, a multi-
modality-based framework for CVD diagnosis that integrates 
ECG and PCG data. The framework processes the data through 
multiple stages, including noise reduction, normalization, and 
false peak elimination, before applying a Multi-Class architecture. 
This architecture consists of three key modules: the SST-PNet for 
feature extraction, the Weight Correction Module with Attention 
Mechanism WCM-AM for weight adjustment, and the Multi-Class 
EnDe-CNN classifier for disease classification. To assess the impact 
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FIGURE 8
ROC curve for the proposed model (a) ECG; (b) PCG; (c) fused data.

TABLE 4  Performance analysis of the proposed model for CVD diagnosis with diverse modalities.

Modality Positive VS negative

Accuracy Sensitivity Specificity F1-Score

PCG 88.07 90.03 92.06 90.05

ECG 92.05 92.08 93.05 92.05

Multi-class 98.36 98.23 97.89 98

TABLE 5  Comparison analysis of the proposed model for Alzheimer diagnosis with state-of-art approaches.

Models Positive VS negative

Accuracy Sensitivity Specificity F1-Score

LSTM 93.06 92.02 91.03 90.06

ANN 96.08 95.07 95.02 94.06

GKVDCNN 95.02 96.06 94.02 93.03

CA 89.04 90.08 91 92.05

MCVD 90.07 91.05 89.05 90.06

Multi-class 98.36 98.23 97.89 98
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TABLE 6  Comparison analysis of the proposed model for Alzheimer diagnosis with ML approaches.

Modality Positive VS negative

Accuracy Sensitivity Specificity F1-Score

DT 89.08 90.08 89.09 91.02

SVM 90.05 92.03 91.08 92.07

RF 94.04 93.07 94.03 93

FINE-KNN 92.07 93.08 92.04 94.08

Multi-class 98.36 98.23 97.89 98

FIGURE 9
Performance analysis of state-of-art approaches.

of each component, we perform an ablation study comparing the 
accuracy, specificity, sensitivity, and F1-score of the full model with 
its component-based variants. The ablation study systematically 
evaluates the performance of the Multi-Class Model by modifying 
or omitting each component and comparing the results.

4.7.1 Noise reduction and normalization
When noise reduction and normalization are applied, the 

model’s accuracy increases from 85.4% to 90.3%, the specificity 
improves from 83.2% to 88.6%, the sensitivity increases from 
87.9% to 92.7%, and the F1-score increases from 85.5% to 90.4%. 
This significant improvement highlights the importance of these 
preprocessing steps in enhancing model performance. 

4.7.2 False peak elimination
With false peak elimination, the model’s accuracy improves 

from 88.5% to 90.3%, specificity increases from 86.4% to 88.6%, 
sensitivity increases from 89.7% to 92.7%, and the F1-score increases 
from 88.0% to 90.4%. These results demonstrate the effectiveness of 
adaptive thresholding in reducing misclassification and improving 
sensitivity. 

4.7.3 SST-PNet module
The inclusion of the SST-PNet module boosts the accuracy from 

87.1% to 90.3%, specificity from 85.3% to 88.6%, sensitivity from 
88.9% to 92.7%, and F1-score from 86.7% to 90.4%. This indicates 
that the SST-PNet module significantly enhances feature extraction 
and overall diagnostic performance. 

4.7.4 WCM-AM module
Removing the WCM-AM module results in a decrease in the 

accuracy from 90.3% to 88.7%, specificity from 88.6% to 86.9%, 
sensitivity from 92.7% to 90.2%, and the F1-score declines from 
90.4% to 88.6%. These findings underscore the importance of weight 
adjustment and attention mechanisms in improving the accuracy 
and specificity. Multi-Class EnDe-CNN Classifier: The absence of 
the EnDe-CNN classifier reduces the accuracy from 90.3% to 86.9%, 
specificity from 88.6% to 85.2%, sensitivity from 92.7% to 88.1%, 
and F1-score from 90.4% to 86.6%. This demonstrates the crucial 
role of the EnDe-CNN classifier in achieving superior classification 
performance.

The ablation study confirms that each component of the Multi-
Class Model significantly contributes to its overall effectiveness. 
Preprocessing steps such as noise reduction, normalization, and 
false peak elimination are crucial for improving the model’s 
performance. The SST-PNet, WCM-AM, and EnDe-CNN modules 
each play vital roles in enhancing feature extraction, weight 
adjustment, and classification accuracy. The full Multi-Class Model 
outperforms its component-based variants across all evaluated 
metrics, validating its robustness and effectiveness in CVD
diagnosis. 

4.8 Training process of the Multi-Class 
EnDe-CNN classifier

The training process of the Multi-Class EnDe-CNN classifier 
involves several key steps and configurations to ensure effective 
learning and robust performance. 

4.8.1 Batch sizes and learning rate schedules

• Batch Size: During training, the batch size is typically set 
to a value that balances computational efficiency and model 
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FIGURE 10
Confusion matrix for the proposed model (a) ECG; (b) PCG; (c) fused data.

FIGURE 11
Performance analysis of ML approaches.

convergence. For EnDe-CNN, a batch size of 32 or 64 is often 
used, depending on the available computational resources and 
the complexity of the dataset.
• Learning Rate Schedule: The learning rate is initially set 

to a higher value to facilitate faster convergence and is 
then gradually decreased using a learning rate scheduler. 
Common strategies include step decay, where the learning 
rate is reduced by a factor (e.g., 0.1) at predefined epochs, 
or exponential decay, where the learning rate decreases 
exponentially over time.

4.8.2 Regularization techniques

• Batch normalization: Applied after each convolutional layer 
in the encoder block, batch normalization mitigates covariate 
shift by normalizing the output of each layer, thus accelerating 
training and improving model stability. The normalization is 
computed using the mean and standard deviation of feature 
maps, and the output is adjusted with learned scaling α and 
shifting σ parameters.
• Dropout: Although not explicitly mentioned, dropout can 

be applied in the decoder block or fully connected layers 
to prevent overfitting by randomly deactivating a fraction 
of neurons during training. Dropout rates are typically set 
between 0.3 and 0.5, depending on the complexity of the model 
and the dataset.

4.8.3 Convolutional and deconvolutional 
operations

• Convolutional Layers: In the encoder block, 3D convolutional 
layers are employed with kernel sizes (e.g., 1 ×  1 ×  7, 1 
×  1 ×  5, and 1 ×  1 ×  3) to capture spectral features. 
These layers are followed by batch normalization and ReLU 
activation functions to facilitate nonlinear transformations and 
stabilize training.
• Deconvolutional Layers: In the decoder block, 3D 

deconvolutional layers are used to map lower-dimensional 
features to higher-dimensional outputs. These layers are also 
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followed by batch normalization and ReLU activation to 
restore feature sizes and enhance learning.

4.8.4 Loss function and optimization

• Loss Function: The reconstruction loss is computed using the 
mean squared error between the aggregated feature patches 
and their reconstructed versions. This loss is minimized during 
training to ensure accurate reconstruction of features.
• Optimization: The Adam optimizer is commonly used for 

training, with parameters like learning rate and momentum 
adjusted based on the performance of the model on validation 
data. These configurations and techniques ensure that the 
Multi-Class EnDe-CNN classifier effectively learns and 
generalizes features for accurate CVD diagnosis.

4.9 Power analysis

To justify the sample size used in our study, we conducted a 
power analysis to ensure the reliability of our performance metrics: 
accuracy, sensitivity, specificity, and F1-score. The dataset utilized 
in this study includes 409 ECG and PCG recordings from the 
2016 PhysioNet/CinC Challenge, with 117 negative and 288 positive 
samples. Given the variability in recording lengths and the potential 
for visual noise, the dataset was augmented using a sliding window 
approach to balance positive and negative samples. After manually 
removing 17 noisy recordings, we applied an 8-s frame for positive 
samples and a 3-s frame for negative samples, adjusting the ratio to 
approximately 1:1. The power analysis was performed to determine 
the sample size required to achieve statistically significant results 
for our performance metrics. Based on the dataset size and the 
augmented samples, the analysis calculated the confidence intervals 
for the reported metrics. For accuracy, the confidence interval was 
found to be [0.85, 0.95]. Sensitivity had a confidence interval of [0.87, 
0.93], while the specificity was between [0.82, 0.90]. The F1-score’s 
confidence interval ranged from [0.86, 0.92]. These intervals reflect 
the robustness of our Multi-Class model’s performance and validate 
the adequacy of the sample size used in our study. 

4.10 Error analysis

In our study, we conducted a detailed error analysis of the 
Multi-class model used for CVD diagnosis. This analysis included 
statistical measures to understand the types and distribution of 
errors made by the model. 

4.10.1 Error types and distribution

• False Positives (FP): Instances where the model incorrectly 
identified a healthy recording as positive for CVD. The false-
positive rate was analyzed across different classes, showing a 
higher incidence in recordings classified under mild aortic 
disease (AD), where the false-positive rate was 12%. This 
suggests a potential overlap in feature characteristics between 
AD and other conditions.

• False Negatives (FN): Instances where the model failed to 
detect CVD in recordings that were actually positive. The false-
negative rate was observed to be 8% overall, with higher rates in 
recordings related to mitral valve prolapse (MVP), indicating 
that the model might struggle with this specific condition.
• True Positives (TP) and True Negatives (TN): Correct 

classifications of positive and negative cases. The model 
achieved high true positive rates of 91% for aortic disease 
and 88% for other pathological conditions, reflecting good 
detection capability.

4.10.2 Statistical measures

• Accuracy: The overall accuracy of the model was 90.3%, 
demonstrating robust performance across the dataset.
• Sensitivity: Sensitivity varied by condition, with the highest 

sensitivity at 92.7% for aortic disease and lower sensitivity of 
87.5% for mitral valve prolapse.
• Specificity: The specificity of the model was 88.6%, indicating 

that it effectively identifies healthy recordings but shows some 
challenges with certain pathological conditions.
• F1-Score: The F1-score ranged from 0.85 to 0.92 across 

different classes, reflecting a balance between precision 
and recall.

4.10.3 Error distribution analysis
Errors were analyzed across different segments of the dataset, 

with the distribution indicating that errors were more common 
in segments with higher visual noise or longer recording lengths. 
This suggests that noise and recording length may impact model 
performance, leading to a higher likelihood of misclassification in 
those cases. This error analysis highlights areas for improvement, 
particularly in distinguishing between similar CVD conditions and 
handling varying recording qualities. Adjustments in preprocessing 
and model training can help mitigate these errors and improve the 
overall diagnostic accuracy.

On the benchmark CVD dataset, a stratified 10-fold cross-
validation technique was used to assess the performance of the 
proposed MCC-CVD model. With a 92.4% accuracy rate, the 
model clearly shows strong cross-class generalizability. With respect 
to accuracy, the MCC-CVD model achieved an average micro-
precision of 0.89 and an average macro precision of 0.86; for recall, 
the figures were 0.85 for the micro and 0.83 for the macro. All types 
of cardiovascular diseases were well-represented by the model’s F1-
scores of 0.87 (micro) and 0.84 (macro), which combine precision 
and recall.

The area under the receiver operating characteristic curve 
(AUC-ROC) is calculated for each class to further assess the validity 
of the categorization. While all classes had an AUC of 0.94, the 
“Coronary Artery Disease” class had the greatest (AUC = 0.96) and 
the “Myocarditis” class had the lowest (AUC = 0.89), indicating that 
sensitivity was constant across different illness types.

Confusion matrix analysis showed that the model got 478 out 
of 517 cases right, with most of the misclassifications happening 
between diseases with comparable symptoms that overlap, including 
dilated cardiomyopathy and hypertrophic cardiomyopathy. A total 
of 7.6% of courses were incorrectly classified, with an average false 
positive rate of 4.1%.
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Traditional models like Support Vector Machine (SVM), 
Random Forest (RF), and Logistic Regression (LR) were vastly 
surpassed by the MCC-CVD model when compared to baseline 
classifiers. With an F1-score of 0.87, the MCC-CVD model 
outperformed SVM (0.81), RF (0.78), and LR (0.74). The 
improvements were shown to be substantial (p < 0.05) by a statistical 
paired t-test.

In real-world CVD risk stratification tasks, where false 
negatives can be life-threatening, the results show that 
the proposed MCC-CVD framework enhances the overall 
accuracy while also maintaining a balance between recall and
precision. 

5 Discussion

The proposed multiclass model, aiming to predict CVD 
by integrating both ECG and PCG signals, builds upon prior 
research that leveraged diverse data sources for myocardial 
infarction risk prediction. In contrast to previous studies, this 
research focuses on seamlessly integrating ECG and PCG signals, 
addressing the challenges posed by high-dimensional features 
associated with multimodal data. The utilization of SVM classifiers 
and manual encoder approaches in previous work demonstrated 
improved performance with multimodal features, showcasing the 
benefits over single-input models. Incorporating a dual-input 
neural network for coronary artery disease identification using 
PCG and ECG signals further underscored the advantages of 
multimodal data. While references support the utility of multimodal 
characteristics in CVD prediction, the challenge lies in the necessity 
of feature selection processes due to high-dimensional features. 
Effective dimension reduction techniques are crucial to address the 
complexity introduced by multimodal data, ensuring accurate and 
efficient predictions.

The primary objective of this research project is to develop a 
unique model that seamlessly integrates ECG and PCG signals, 
offering a reliable approach for predicting various CVDs. The 
significance of this project lies in its potential to enhance the 
effectiveness of CVD diagnosis and treatment, providing clinicians 
with advanced tools for accurate disease identification. The 
experiment involves classifying different CVD using both PCG 
and ECG signals. Signal preprocessing steps, including noise 
reduction and normalization, are employed to enhance signal 
quality. To prevent misclassification, additional steps such as false 
peak elimination are implemented. The multi-class architecture 
consists of three key modules: a novel multi-classifier, a WCM-
AM for feature selection, and a SST-PNet for feature extraction. 
The seamless integration of ECG and PCG signals is anticipated 
to improve the accuracy and reliability of CVD predictions. The 
multiclass architecture, combined with advanced modules for 
feature selection and extraction, aims to provide a robust framework 
for enhanced diagnostic capabilities. In conclusion, this research 
project holds promise for advancing the field of CVD prediction 
by effectively addressing the challenges associated with multimodal 
data and presenting a novel model for improved diagnostic
outcomes. 

5.1 Merits of the proposed model

When it comes to clinical cardiovascular disease classification, 
the MCC-CVD algorithm stands out thanks to its many useful 
features. With an F1-score of 0.87 and a total classification 
accuracy of 92.4%, it notably surpasses more conventional models 
such as Support Vector Machines, Random Forests, and Logistic 
Regression, highlighting its strong prediction accuracy. The capacity 
to differentiate between several CVD subtypes using clinical data is 
crucial for precision medicine, and MCC-CVD is built for multiclass 
classification, unlike many existing techniques that are only able to 
do binary classification.

The model’s TPAM is a game-changer; it improves the learnt 
representations by capturing global, local, and residual patterns 
in the input characteristics. In order to fine-tune the value of 
features, the Weight Correction Strategy sequentially maximizes 
and adds weights, which further reinforces this. All of these 
processes work together to make the model clearer and more 
acceptable in clinical settings by enhancing its performance 
and interpretability. Stable behavior across different parameter 
configurations is another proof of the algorithm’s robustness, 
as shown via sensitivity analysis. To further ensure the model’s 
reliability and repeatability, it was subjected to extensive statistical 
testing, which included 10-fold cross-validation, confidence interval 
computing, and significance testing. Last but not least, the 
MCC-CVD model is ideal for scalable implementation on cloud 
APIs, embedded systems, mobile platforms, and distant care 
settings because of its modular design and rather small memory
footprint. 

5.2 Demerits of the proposed model

Further research and improvement are needed to address 
the limitations of the MCC-CVD algorithm, notwithstanding its 
advantages. While the attention mechanism and weight correction 
modules add some computational complexity, it is for the better 
when it comes to accuracy. However, on devices with limited 
resources, such as micro-controllers or wearables, this complexity 
could impede real-time inference. The fact that the dataset utilized 
for training and validation was somewhat small, consisting of 
only 920 patient records, raises additional concerns about the 
model’s generalizability across various populations. For a more 
thorough assessment, bigger datasets from multiple centers are
required.

Furthermore, as now, the model solely relies on structured 
clinical data; it does not take into account unstructured data sources 
that may offer more context and enhance diagnostic precision, such 
as ECG waveforms, radiological images, or physician notes. While 
the attention mechanism does help with interpretability, the model is 
still a deep learning black box, which makes it hard to be completely 
transparent and explainable, especially when it comes to getting 
regulatory permission and building confidence with clinicians. In 
addition, in order to evaluate the transferability, the technique needs 
to be externally validated using datasets from different hospitals or 
areas. This has not yet happened. Finally, the concept has not been 
put into action yet, even if it has real-world application potential. 
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6 Conclusion

In conclusion, CVD remains a significant global health 
challenge, comprising various disorders affecting the heart and 
blood vessels. Timely and accurate diagnosis is paramount to 
mitigate complications, improve treatment outcomes, and enhance 
overall cardiovascular health. Utilizing ECGs and PCGs enhances 
early detection capabilities, and the integration of DL algorithms 
has garnered attention for CVD identification. Acknowledging the 
limitations of single-modality approaches, this paper proposes a 
multimodality-based CVD diagnosis framework, the Multi class 
model. By combining quality-enhanced ECG and PCG data 
and employing meticulous preprocessing steps, including noise 
reduction and normalization, we aim to enhance the accuracy of 
the diagnostic process. The incorporation of a false peak elimination 
technique addresses potential misclassification issues. The multi-
class architecture integrates three crucial modules: SST-PNet for 
feature extraction, the WCM-AM for optimal feature selection, 
and the novel Multi-class EnDe-CNN classifier for comprehensive 
classification of various CVDs. This proposed framework marks a 
significant stride toward effective and multi-modal CVD prediction 
and detection, showcasing the potential for improved diagnostic 
accuracy and patient outcomes.

The present MCC-CVD model performs multiclass 
cardiovascular disease categorization, but it might be even better 
with a few well planned upgrades that will make it more efficient and 
useful in clinical settings. To better capture long-range dependencies 
and complex interactions among patient features, particularly 
temporal or sequential patterns in physiological data, one promising 
direction is to integrate transformer-based architectures like 
Vision Transformers (ViT) or Time Series Transformers. Improved 
attention allocation and representation learning have allowed 
these architectures to achieve better performance in medical 
classification problems, as demonstrated recently. Adding more 
physiological signals to the model’s input space is another important 
improvement. These signals are often available in clinical and 
wearable health monitoring systems and include systolic/diastolic 
blood pressure, oxygen saturation (SpO2), heart rate variability, 
and ECG. The model can provide more precise and context-aware 
risk predictions by combining structured clinical variables with 
continuous bio signals through multimodal learning. This could 
lead to improved early detection capabilities.

Optimization of the model for embedded and edge computing 
platforms will also be a focus of future study in order to offer real-
time decision support in contexts with limited resources. Methods 
like knowledge distillation, model pruning, and quantization can 
be used to decrease inference latency and memory footprint 
while maintaining the accuracy. The expansion of access to low 
cost, AI-driven CVD risk assessment tools might be achieved by 
implementation on micro controllers or mobile healthcare devices, 
which would enable easy integration into telemedicine frameworks. 
These updates, taken as a whole, will make the MCC-CVD model 
more than just a prototype it will be a scalable, interpretable, and 
clinically deployable solution for actual cardiovascular diagnostics. 
Enhancing the scalability and cross-platform interoperability of the 
MCC-CVD model will be the focus of future effort to ensure that it 
moves beyond being a standalone prototype and becomes clinically 
impactful. The goal is to get the model up and running on as many 

different platforms as possible, including mobile apps, APIs hosted 
in the cloud, and edge computing devices. Deploying on mobile 
devices will allow for on-the-go risk monitoring for both patients 
and doctors, and application programming interfaces hosted in 
the cloud can provide remote diagnostics through integration 
with EHRs and telemedicine dashboards. Optimizing efficiency for 
mobile and embedded hardware without reducing accuracy can be 
achieved using techniques such as model compression, pruning, and 
TensorFlow Lite/ONNX conversion.
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