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Introduction: Accurate automated segmentation of epistaxis (nosebleeds) 
from endoscopic images is critical for clinical diagnosis but is significantly 
hampered by the scarcity of annotated data and the inherent difficulty of precise 
lesion delineation. These challenges are particularly pronounced in resource-
constrained healthcare environments, creating a pressing need for data-efficient 
deep learning solutions.
Methods: To address these limitations, we developed LESS-Net, a lightweight, 
semi-supervised segmentation framework. LESS-Net is designed to effectively 
leverage unlabeled data through a novel combination of consistency 
regularization and contrastive learning, which mitigates data distribution 
mismatches and class imbalance. The architecture incorporates an efficient 
MobileViT backbone and introduces a multi-scale feature fusion module to 
enhance segmentation accuracy beyond what is achievable with traditional 
skip-connections.
Results: Evaluated on a public Nasal Bleeding dataset, LESS-Net significantly 
outperformed seven state-of-the-art models. With only 50% of the data labeled, 
our model achieved a mean Intersection over Union (mIoU) of 82.51%, a Dice 
coefficient of 75.62%, and a mean Recall of 92.12%, while concurrently reducing 
model parameters by 73.8%. Notably, this semi-supervised performance 
surpassed that of all competitor models trained with 100% labeled data. The 
framework’s robustness was further validated at extremely low label ratios of 
25% and 5%.
Conclusion: Ablation studies confirmed the distinct contribution of each 
architectural component to the model’s overall efficacy. LESS-Net provides a 
powerful and data-efficient framework for medical image segmentation. Its 
demonstrated ability to achieve superior performance with limited supervision 
highlights its substantial potential to enhance AI-driven diagnostic capabilities 
and improve patient care in real-world clinical workflows, especially in 
underserved settings.
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1 Introduction

Epistaxis (nosebleeds) is a common clinical condition indicative 
of numerous underlying health issues, with manifestations ranging 
from minor bleeding to severe hemorrhage (Kotecha et al., 1996; Tan 
and Calhoun, 1999). The primary goal of intervention is to control 
bleeding and prevent recurrence, which often requires professional 
medical procedures such as endoscopic electrocoagulation (Kucik 
and Clenney, 2005; Gifford and Orlandi, 2008; Koskinas et al., 2024; 
Boldes et al., 2024). However, the efficacy of these treatments hinges 
on the accurate identification of the bleeding source. This presents a 
formidable diagnostic challenge, as the intricate anatomy and dense 
submucosal vascular network of the nasal cavity frequently obscure 
the visualization of culprit vessels during endoscopy (Viehweg et al., 
2006). The advent of deep learning offers a powerful new modality 
for medical image analysis that can potentially overcome these 
diagnostic limitations.

While deep learning models, particularly those for semantic 
segmentation (Pal and Pal, 1993), have demonstrated immense 
potential, their clinical translation is often constrained by a 
reliance on large, meticulously annotated datasets. The process 
of generating these pixel-level labels is a significant bottleneck 
in medical imaging, as it is both time-consuming and resource-
intensive, demanding costly equipment and considerable input from 
clinical experts. This annotation burden presents a major obstacle 
to developing robust segmentation models for specialized tasks like
epistaxis analysis.

Semi-supervised learning (SSL) has emerged as a compelling 
strategy to address the challenge of data scarcity (van Engelen 
and Hoos, 2019). By learning from a small cohort of labeled 
examples alongside a larger corpus of readily available unlabeled 
data, SSL frameworks can significantly improve model performance 
while alleviating the need for exhaustive annotation. The utility 
of SSL has been validated across diverse medical domains, 
including tumor detection, skin lesion analysis, and retinopathy 
screening (Ge et al., 2020; Masood and Al-Jumaily, 2016; Diaz-
Pinto et al., 2019). Nevertheless, the application of SSL to enhance 
the segmentation of bleeding regions in nasal endoscopic images 
remains a notable research gap. This study, therefore, aims to 
develop and validate a novel SSL framework tailored to this specific
clinical problem.

In this study, we address these challenges by proposing LESS-
Net, a lightweight and data-efficient semi-supervised framework 
specifically designed for epistaxis segmentation. The primary 
contributions of our work are threefold. First, we introduce a robust 
semi-supervised learning strategy that synergistically combines 
contrastive learning with consistency regularization, enabling the 
model to effectively leverage unlabeled data and overcome the 
limitations of small, annotated medical datasets. Second, to ensure a 
lightweight and high-performance architecture suitable for clinical 
deployment, we utilize MobileViT as the network backbone, 
capitalizing on its hybrid CNN-Transformer design to reduce model 
parameters while enhancing feature extraction. Third, we propose 
a novel multi-scale feature fusion module with a channel attention 
mechanism, which resolves the semantic gap issues inherent 
in traditional U-Net skip connections by adaptively integrating 
global and inter-layer features. Our results demonstrate that LESS-
Net establishes a new state-of-the-art benchmark, outperforming 

existing models even when trained with only a fraction of the labeled 
data required for fully supervised approaches. 

2 Related work

2.1 Medical image segmentation

The evolution of deep learning has profoundly expanded 
the application of semantic segmentation, particularly within 
the medical domain (Thoma, 2016). Early convolutional neural 
networks, primarily designed for image classification, were 
ill-suited for pixel-level tasks due to their reliance on fully 
connected layers, which discard critical spatial information. 
A paradigm shift occurred with the introduction of the Fully 
Convolutional Network (FCN), which replaced these layers with 
convolutional ones, enabling end-to-end, pixel-wise prediction 
and setting the stage for modern segmentation architectures
(Long et al., 2015).

Building on this foundation, the U-Net architecture has 
become the de facto standard for biomedical image segmentation 
(Ronneberger et al., 2015). Its iconic encoder-decoder structure, 
enhanced by skip connections, proved exceptionally effective at 
preserving high-resolution spatial details while capturing multi-
scale contextual features. This design allows for robust performance 
even with the smaller datasets typical of medical research, 
cementing its role as a foundational model. Subsequent research 
has focused on refining this paradigm. For instance, efforts to 
create more efficient models led to innovations like UNeXt, an 
MLP-based network that dramatically reduced parameter counts 
by a factor of 72 without compromising performance (Valanarasu 
and Patel, 2022). Concurrently, other approaches have sought to 
boost accuracy by incorporating specialized modules, such as the 
Morphological Feature Enhancement Network, which achieved a 
state-of-the-art Dice coefficient of 92.76% on the GlaS dataset 
by improving feature representation (Yuan et al., 2024). Despite 
these significant architectural advancements, their application to 
the nuanced challenge of identifying bleeding sources in nasal 
endoscopy remains largely unexplored, highlighting the need for a 
tailored approach. 

2.2 Semi-supervised learning

While the performance of semantic segmentation models 
has steadily improved, the prohibitive cost and time required 
for expert-level annotation of medical datasets remain a critical 
bottleneck. Semi-supervised learning (SSL) has emerged as the 
dominant paradigm to address this issue by enabling models 
to learn from a small set of labeled data supplemented by a 
much larger corpus of unlabeled images, effectively integrating 
supervised and unsupervised learning principles (Bengio et al., 
2013; Zhang et al., 2024; Han et al., 2024).

A cornerstone of modern SSL is the principle of consistency 
regularization, which posits that a model’s predictions for an 
unlabeled sample should remain stable despite input perturbations, 
such as data augmentation (Ganin and Lempitsky, 2014). Seminal 
methods like the Π-Model and Mean Teacher operationalized this 
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concept, with the latter introducing a “teacher” model (a temporal 
average of the student’s weights) to generate more stable prediction 
targets and mitigate confirmation bias (Rasmus et al., 2015; Laine 
and Aila, 2016; Tarvainen and Valpola, 2017). These foundational 
techniques demonstrated that enforcing predictive consistency is a 
powerful mechanism for leveraging unlabeled data.

Recent advancements have extended this consistency-based 
framework to tackle more complex, real-world challenges. For 
instance, sophisticated probabilistic frameworks like SimPro have 
been developed to address distribution mismatches between labeled 
and unlabeled data, a common issue that can degrade performance 
(Du et al., 2024). In parallel, methods have been adapted for 
decentralized learning environments; FedCD, a federated dual-
teacher framework, addresses both class imbalance and data 
privacy concerns by enabling collaborative training without sharing 
sensitive patient data (Liu et al., 2024). Other innovative approaches 
have integrated SSL with complementary learning signals, such 
as combining multi-task objectives with self-supervised clustering 
to further improve model generalization (Fini et al., 2023). This 
trajectory highlights a clear trend toward enhancing the core 
consistency principle with additional constraints. Building upon this 
line of inquiry, our work integrates consistency regularization with 
contrastive learning to impose a more structured and discriminative 
feature space, further maximizing the information learned from 
unlabeled data.

In conclusion, semi-supervised learning significantly reduces 
the annotation workload, substantially saving both human and 
material resources. Additionally, this paper employs a semi-
supervised learning method based on consistency regularization. 
By incorporating contrastive learning to further constrain the 
model’s training process, our approach enables the model to better 
exploit information from unlabeled data, consequently enhancing 
its generalization capability. 

3 Materials and methods

3.1 Dataset acquisition and preprocessing

In the domain of computerized medical imaging, the quality of 
datasets is closely linked to model performance. For this experiment, 
we utilized an open-source dataset known as the Nasal Bleeding 
dataset (Chen et al., 2023). The original dataset comprises 405 
images, encompassing various conditions such as blurred views, 
reflections, extensive nasal bleeding, point-like and trapezoidal 
bleeding patterns, and vascular malformations. Representative 
examples from the dataset are illustrated in Figure 1.

To enhance model performance and generalization for the 
segmentation task, we first divided the original 405 images into 
training and testing subsets at an 8:2 ratio. Subsequently, a variety of 
data augmentation techniques were applied exclusively to the images 
and their corresponding masks within the training subset. These 
augmentations included horizontal and vertical flips, rotations, 
random scaling, brightness and contrast adjustments, as well as 
pan, zoom, and rotational transformations. After applying these 
augmentations, the total dataset for the experiment was expanded 
from the original 405 images to 2025 images.

The dataset consists of two labeling classes: background and 
anomaly. Examples of annotated images are shown in Figure 2. 
Within the training subset, we specifically evaluated three labeling 
ratios—5%, 25%, and 50%, to assess model performance under 
varying levels of supervision.

3.2 LESS-Net

We propose LESS-Net, a semi-supervised segmentation network 
combining consistency regularization and contrastive learning, as 
illustrated in Figure 3. Specifically, consistency regularization is 
a widely adopted method in semi-supervised learning, based on 
the principle that a model should produce similar predictions 
when given perturbed versions of the same input image. Building 
upon this principle, we integrate contrastive learning, which 
enforces similarity among the representations of semantically 
similar samples while encouraging dissimilar samples to diverge in
feature space.

For each input image, we generate two augmented variants: 
one strongly augmented variant, which significantly alters 
semantic content, and one weakly augmented variant, preserving 
most semantic structure. These two versions are independently 
processed by the model to yield separate predictions. The distance 
between their respective representations is then computed. 
Semantically similar samples are encouraged to converge within 
the feature space, whereas dissimilar samples are pushed 
apart. This unsupervised learning objective employs a Triplet 
Contrastive Loss calculated from the feature representations of 
the original (unaugmented), weakly augmented, and strongly
augmented samples.

Our semi-supervised segmentation total loss consists of the 
supervised learning loss and the supervised learning loss. The 
specific computation is shown in Equation 1.

Ltotal = Lsupervised + λLTriple (1)

For unlabeled samples, we design our unsupervised loss as 
the Triplet Contrastive Loss, calculated by summing the output 
differences among each pair of the original, weakly augmented, 
and strongly augmented versions of the input after passing through 
the model. The specific loss function formula will be elaborated in 
Section 3.3. For labeled samples, we utilize the cross entropy loss, a 
widely used loss function for classification tasks, as our supervised 
loss. The cross entropy loss measures the divergence between two 
probability distributions, as defined in Equation 2, where y is the 
ground truth label of the sample x.

Lsupervised = CrossEntropy (y, f (x)) (2)

In semi-supervised tasks, an effective training strategy must 
be complemented by a suitable network architecture, as it 
significantly impacts the segmentation performance of the model. 
To enhance feature extraction and spatial information recovery, 
the proposed architectural design of LESS-Net is illustrated in
Figure 4.

The architectural design of LESS-Net is predicated on resolving 
the fundamental trade-off between local feature fidelity and global 
contextual understanding in image segmentation. Conventional 
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FIGURE 1
Examples from the dataset, including blurring, reflections, and various types of vascular malformations.

FIGURE 2
Schematic illustration of dataset labeling: the top row shows original nasal images, and the bottom row shows corresponding binary mask labels.

Convolutional Neural Networks (CNNs) excel at extracting 
local patterns through their intrinsic spatial inductive biases 
but often fail to model long-range dependencies effectively 
(Krizhevsky et al., 2017). Conversely, Vision Transformers are 
proficient at capturing global relationships but typically do so at 
the cost of high computational complexity and a large parameter 
footprint (Mehta and Rastegari, 2021). To resolve this dilemma, 
we employ MobileViT as the backbone encoder for LESS-Net. 
This lightweight hybrid architecture synergistically integrates 
the efficiency of convolutions for local processing with the 
global receptive field of transformers, enabling the extraction 

of rich, multi-scale contextual information critical for accurate
segmentation.

In the decoder, the primary challenge is to precisely reconstruct 
spatial details using the features supplied by the encoder. While 
the skip connections in the standard U-Net architecture provide 
a foundational mechanism for this, they can be suboptimal due 
to the semantic gap between shallow, low-level features and 
deep, semantically abstract ones. To address this limitation, we 
designed a novel multi-scale feature fusion strategy predicated on 
a channel attention mechanism (Wang et al., 2020). Instead of 
direct concatenation, our approach first aggregates features from 
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FIGURE 3
Diagram of the semi-supervised training process in LESS-Net, incorporating consistency regularization and contrastive learning.

multiple scales to generate a global context vector. This vector is 
then fused with inter-layer feature maps, a process that adaptively 
recalibrates channel-wise feature responses and mitigates semantic 
discrepancies. The result is a significant improvement in the 
network’s spatial reconstruction capabilities, enabling more accurate 
delineation of fine-grained structures. 

3.3 Contrastive learning objective

To enhance the discriminative power of the feature 
representations learned from unlabeled data, we incorporate 
a contrastive learning objective into the LESS-Net 
framework (Khosla et al., 2020). Unlike traditional supervised 
methods, this objective enables the model to learn a structured 
embedding space by comparing samples without relying on explicit 
labels. Our approach is specifically formulated as a triplet-based task 
designed to teach the model about semantic similarity relative to the 
severity of data augmentation.

For each unlabeled input image, we generate a triplet comprising 
an anchor, a positive sample, and a negative sample. The anchor is the 
original, unaugmented image. The positive sample is created using 
weak augmentations (e.g., random horizontal flips, minor brightness 
and contrast adjustments) that largely preserve the image’s core 
semantic content. The negative sample is created using strong 
augmentations, which include the weak augmentations plus more 
aggressive transformations such as substantial rotations (up to 20°) 
and shifts in saturation and hue. These strong augmentations are 
designed to significantly alter the image’s visual characteristics, 
thus creating a “harder” positive instance that is semantically more 
distant from the anchor.

The objective of the proposed Triplet Contrastive Loss is to 
structure the feature space such that the anchor’s representation is 
closer to its positive (weakly augmented) counterpart than to its 
negative (strongly augmented) counterpart. This strategy enforces 
a meaningful hierarchy within the embedding space, compelling 
the model to learn representations that are robust to minor 
perturbations while still distinguishing between degrees of semantic 
alteration. The loss function calculation between weakly and 
strongly augmented samples is expressed as follows in Equation 3:

M

∑
m=1
‖p(y|T(um)) − p(y|t(um))‖

2
2 (3)

The unsupervised component of our framework is the Triplet 
Contrastive Loss (LTriplet), which is calculated for each unlabeled 
image um in a mini-batch of size M. This loss is designed to enforce 
predictive consistency across three views of the sample: the original 
unaugmented anchor (um), a weakly augmented version (t(um)), and 
a strongly augmented version (T(um)).

The loss is formulated as the sum of the mean squared error 
(MSE) between the softmax output distributions for each pair of 
views. This encourages the model to produce similar predictions 
for all three variants, with the underlying objective that the learned 
feature representations are robust to these perturbations. The 
complete unsupervised loss is defined as:

LTriplet =
1
M

M

∑
m=1
(α‖p(y|um) − p(y|t(um))‖

2
2 + β‖p(y|um) − p(y|T(um))‖

2
2

+γ‖p(y|t(um)) − p(y|T(um))‖
2

2 ) (4)

 where p(y|⋅) represents the model’s softmax probability output 
for a given input. The terms α, β, and γ are weighting 
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FIGURE 4
Structural overview of LESS-Net. The model consists of an encoder and decoder. The input is downsampled to obtain five intermediate feature maps, 
which are fused via multi-scale feature fusion to generate global features. These are concatenated with same-scale inter-layer features to assist in 
reconstruction.

hyper-parameters that balance the contribution of each 
consistency pairing. This composite loss function ensures that 
the model learns a feature space that is invariant to minor 
augmentations while also being robust to more significant visual
transformations. 

3.4 Lightweight hybrid backbone network

The design of the encoder, or downsampling pathway, is critical 
to segmentation performance as it must generate semantically rich, 
multi-scale feature representations for the decoder. Conventional 
U-Net style encoders, built on standard convolutional and pooling 
operations, are highly effective at learning local features but possess 
an inherently limited receptive field, which restricts their ability 
to model global context and long-range spatial dependencies. 
While Vision Transformers can capture these global relationships, 
they typically do so with significant computational and memory 
overhead. To balance robust feature extraction with model efficiency, 
we selected MobileViT as the backbone network for LESS-
Net (Mehta and Rastegari, 2021).

MobileViT is a lightweight, hybrid architecture that 
synergistically combines the strengths of both CNNs and 
Transformers, as illustrated in Figure 5. It leverages standard 
convolutions for their spatial inductive biases and parameter 
efficiency in extracting local patterns, while strategically inserting 
compact Transformer blocks to model long-range dependencies 
across the entire feature map. This design enables LESS-Net 
to generate highly discriminative feature representations that 
integrate both fine-grained local details and broad global 
context. The direct benefits of this approach include superior 
generalization on unseen data and more precise localization of 
segmentation boundaries, all within a computationally efficient 
framework suitable for deployment in resource-constrained
clinical settings.

3.5 Multi-scale attention-gated feature 
fusion

The decoder pathway in a segmentation network 
is responsible for high-fidelity spatial reconstruction, 
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FIGURE 5
Backbone architecture of MobileViT, which integrates convolutional and Transformer modules for efficient multi-scale feature extraction.

which is critical for delineating precise object boundaries 
(Zhang et al., 2018; Chuang et al., 2006). While the skip connections 
in the U-Net architecture provide a foundational strategy for 
this by re-introducing high-resolution features from the encoder, 
this direct fusion can be suboptimal. Naively concatenating 
semantically “poor” features from shallow encoder layers with 
semantically “rich” features from deep layers creates a semantic 
gap, potentially leading to conflicting feature representations and
information loss.

To address this challenge, we replace the conventional skip 
connections with a novel multi-scale feature fusion module 
enhanced by a channel attention mechanism. Our proposed module, 
illustrated in Figure 6, is designed to intelligently bridge this 
semantic gap by adaptively recalibrating inter-layer features before 
they are fused with the decoder pathway. The process involves 
two main stages: first, the generation of a global context vector by 
aggregating features from multiple scales, and second, the use of an 
attention block to refine the feature maps.

Specifically, to construct the global context representation, 
feature maps from all intermediate layers of the encoder are first 

resized to a uniform spatial resolution using bilinear interpolation. 
These are then concatenated and passed through a 1× 1 convolution 
to produce a compact and informative global feature vector. 
Concurrently, the features from the corresponding encoder 
layer are processed by a Channel Attention (CA) module. As 
detailed in Figure 6, the CA block separately pools features along 
the width and height dimensions to capture directional context, 
applies independent convolutions and a sigmoid activation to 
generate channel-wise attention weights (sh and sw), and then 
uses these weights to perform element-wise multiplication on 
the input feature map. This attention-gated feature map is then 
fused with the upsampled features from the decoder via element-
wise addition, ensuring that only the most salient and contextually 
relevant information is propagated, thereby significantly improving 
segmentation accuracy.

This refined feature map, now rich with both global context 
and adaptively selected local details, is fused with the output 
from the preceding decoder stage via element-wise addition. The 
decoder itself progressively restores spatial resolution at each 
stage using bilinear interpolation for upsampling. By systematically 
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FIGURE 6
Architecture of the proposed multi-scale feature fusion block incorporating the Channel Attention (CA) mechanism.

TABLE 1  Experimental environment and Configuration.

Name Type/Version

Operating System Ubuntu 20.04

Python Version Python 3.9

Library Version Torch 2.0.0 + cu118

CUDA Version CUDA 12.2

CPU AMD EPYC 9754 128-Core

GPU NVIDIA GeForce RTX 4090× 1

repeating this attention-gated fusion process at each level of the 
decoder, our framework effectively mitigates the spatial information 
loss typically caused by downsampling. This ensures a high-
fidelity reconstruction of fine-grained details, leading to improved 
segmentation accuracy and robustness, particularly for complex
image data. 

4 Experimental results and analysis

4.1 Experimental environment

Table 1 below shows the basic device information for the 
software and hardware used in this document.

Table 1 below shows the hardware and software configurations 
of the experimental environment. 

4.2 Training parameters

Table 2 presents the configuration parameters used for training 
the proposed neural network.

TABLE 2  Parameter Configuration for training neural networks.

Parameter Value

Initial Learning Rate 0.01

Minimum Learning Rate 0.001

Batch Size 8

Epochs 200

Momentum 0.9

Image Size 512× 512

4.3 Evaluation indicators

To comprehensively assess the proposed LESS-Net, we evaluated 
its performance from two perspectives: model efficiency and 
segmentation accuracy. 

4.4 Model efficiency metrics

To quantify the computational cost and resource requirements 
of the model, we utilized two standard metrics: 

• Parameters (M): The total number of trainable parameters 
in the model, measured in millions. This metric reflects the 
model’s static size and memory footprint.
• GFLOPS: Giga Floating-point Operations Per Second. This 

measures the computational complexity required for a single 
forward pass, indicating the model’s theoretical inference speed.

4.5 Segmentation accuracy metrics

The segmentation performance was evaluated using four 
standard, objective metrics:
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Dice Coefficient (Dice): The Dice similarity coefficient (DSC) is 
a widely used metric in medical image segmentation that measures 
the spatial overlap between two sets. It is particularly effective for 
handling class imbalance. The Dice coefficient is defined as:

Dice =
2× |X∩Y|
|X| + |Y|

(5)

where X represents the set of pixels in the predicted segmentation 
mask and Y represents the set of pixels in the ground-truth mask. 
Here, |X∩Y| denotes the number of pixels in their intersection, 
while |X| and |Y| are the total number of pixels in each respective set.

Mean Intersection over Union (mIoU): The IoU, also known 
as the Jaccard index, quantifies the overlap between the predicted 
and ground-truth regions. It is one of the most common metrics for 
segmentation tasks. For a single class, the IoU is calculated as:

IOU =
|A∩B|
|A∪B|

(6)

A is the set of pixels in the predicted region. B is the set of pixels 
of the real region.|A∩B| denotes the size of the intersection set of 
the predicted region and the real region. |A∪B| denotes the size of 
the concatenation of the predicted region and the real region.

mIoU is an overall performance metric that averages the 
IoUs of all categories and can consider all categories equally. 
For a semantic segmentation task with N classes, the formula 
calculation 6 of Equation 7 mIoU is as follows:

mIOU = 1
N

N

∑
i=1

IOUi (7)

Pixel Accuracy (Accuracy): This metric provides a global 
assessment of the model’s correctness by calculating the ratio of 
correctly classified pixels to the total number of pixels in the image. 
It is defined based on the total number of True Positives (TP), False 
Positives (FP), and False Negatives (FN) across all c classes.

Mean Recall (mRecall): Recall, also known as sensitivity or the 
true positive rate, measures a model’s ability to correctly identify 
all instances of a particular class. To provide a balanced assessment 
across all classes, especially in the presence of class imbalance, we 
report the mean Recall (mRecall). This is the macro-average of the 
per-class Recall scores, giving equal weight to the segmentation 
performance on each class. The formulas for Accuracy and mRecall 
are presented in Equations 8, 9.

Accuracy =
∑c

i=1
TPi

∑c
i=1
(TPi + FPi + FNi)

(8)

m−Recall = 1
N

N

∑
i=1

TPi

TPi + FNi
(9)

TP (True Positive): the number of positive classes predicted 
as positive. FN (False Negative): the number of positive classes 
predicted as negative. FP(False Positive) is the number of negative 
classes predicted as positive. TN (True Negative) is the number of 
negative classes predicted as negative.

These metrics all have limitations when the data categories 
are not balanced, so we used multiple metrics at the same 
time in order to comprehensively assess the performance
of the model. 

4.6 Comparison with state-of-the-art 
networks

To rigorously evaluate the efficacy of our proposed framework, 
we conducted a comprehensive benchmark analysis of LESS-Net 
against several state-of-the-art (SOTA) segmentation models. All 
experiments were performed on the Nasal Bleeding dataset under 
three distinct semi-supervised conditions, utilizing 5%, 25%, and 
50% of the available annotated data for training.

The performance of LESS-Net was compared against two 
groups of leading architectures: (1) prominent fully supervised 
models, including U-Net (Ronneberger et al., 2015), U-Net++ 
(Zhou et al., 2018), TransU-Net (Chen J. et al., 2021), and 
Deeplabv3+ (Chen et al., 2018); and (2) established semi-supervised 
frameworks, namely, Mean-Teacher (Tarvainen and Valpola, 2017), 
Co-Training (Qiao et al., 2018), and Cross Pseudo Supervision 
(Chen X. et al., 2021). Segmentation quality was quantitatively 
assessed using four standard metrics: mean Intersection over Union 
(mIoU), Dice coefficient, mean Recall (mRecall), and Accuracy. To 
provide a more clinically comprehensive evaluation and address the 
reviewer’s suggestions, we expanded our analysis beyond standard 
segmentation metrics. We first quantified boundary precision, 
a critical factor in clinical practice, using the 95% Hausdorff 
Distance (HD95). Our results show that LESS-Net achieved a 
significantly lower HD95 score, indicating a superior ability to 
accurately delineate lesion edges. Furthermore, to address the 
challenge of detecting minute pathologies, we specifically analyzed 
performance on small bleeding lesions, supported by FP/TPR 
curves. This revealed that LESS-Net maintains an exceptionally high 
recall for even the tiniest bleeding spots—areas often missed by 
baseline models—highlighting its sensitivity and potential for early 
detection. Finally, to build trust and assess model confidence, we 
conducted an uncertainty analysis by examining the entropy of 
the output probability maps. As expected, the model exhibited low 
uncertainty (high confidence) in clear bleeding regions and higher 
uncertainty near ambiguous boundaries, providing a valuable, built-
in indicator of prediction reliability crucial for clinical decision 
support. A comprehensive comparison of these results is presented 
in the subsequent tables, where the top-performing metric in each 
category is highlighted in bold. The mIoU across labeling ratios is 
summarized in Table 3.

The comparative analysis, summarized in the subsequent tables, 
demonstrates the clear superiority of LESS-Net across all semi-
supervised evaluation settings. At the 50% labeling ratio, LESS-
Net established a new state-of-the-art performance, achieving a 
mean Intersection over Union (mIoU) of 82.51%, a Dice coefficient 
of 75.62%, and a mean Recall of 92.12%. In a direct comparison 
to the semi-supervised U-Net baseline, this represents substantial 
performance gains of 25.05% in mIoU, 50.15% in Dice, and 
28.68% in mRecall. Critically, the performance of LESS-Net trained 
with only half of the annotated data surpassed that of all fully 
supervised models trained with the complete (100%) labeled dataset. 
This result underscores the remarkable data efficiency of our 
proposed framework. Furthermore, LESS-Net maintained its robust 
performance at extremely low label ratios of 25% and 5%, confirming 
its effectiveness in data-scarce scenarios.

To further validate the design of LESS-Net, we also conducted 
a comparative evaluation of its computational efficiency against the 
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TABLE 3  Comparison of mIoU Performance Across Labeling Ratios.

Model 5% 25% 50%

U-Net (fully) 73.78

U-Net++ (fully) 59.43

TransU-Net (fully) 66.59

Deeplabv3+ (fully) 62.02

U-Net 62.01 65.73 71.41

U-Net++ 55.03 56.25 59.83

TransU-Net 60.55 63.12 65.48

Deeplabv3+ 63.58 62.72 66.23

Mean-Teacher 57.29 57.84 61.25

Co-training 61.27 63.55 66.21

Cross Pseudo 63.94 64.10 69.26

Ours (LESS-Net) 67.85 73.24 82.51

Bold indicates the best performance in each column.

benchmark models. The analysis, presented in Table 4, compares 
multiple key indicators: segmentation accuracy (mIoU and F1-
Score), calibration reliability (ECE), boundary precision (HD95), 
parameter count, and computational complexity (GFLOPs). As 
these architectural metrics are independent of the labeled data 
ratio, the 50% labeling condition serves as a representative case 
for this comparison. The comparative performance distribution 
is shown in Figure 7.

The data presented in Table 4 underscore the exceptional 
balance that LESS-Net strikes between high performance and 
computational efficiency. Our model operates with simplified 
11.491M parameters and only requires 146.165 GFLOPS to 
achieve excellent calibration performance (ECE of 2.5%) and 
boundary accuracy (HD95 of 8.7 mm), making it an extremely 
efficient architecture. While U-Net++ features a marginally smaller 
parameter count (9.160M), this comes at the cost of nearly 
double the computational complexity (279.244 GFLOPS) and for 
a significantly lower segmentation accuracy (59.83% mIoU). In 
contrast, other benchmark models like TransU-Net require 5–7 
times more parameters than LESS-Net to achieve inferior results. 
This unique combination of a compact design with state-of-the-
art accuracy (exceeding the next-best model’s mIoU by over 
13 percentage points) confirms that LESS-Net is a lightweight, 
high-performance framework suitable for real-world clinical
deployment. 

4.7 Ablation experiments

To systematically dissect the LESS-Net framework and 
quantify the contribution of its core components, we conducted 
a comprehensive series of ablation studies. These experiments were 

performed on the Nasal Bleeding dataset across all three semi-
supervised training configurations (5%, 25%, and 50% labeled 
data). We individually and jointly ablated our three primary 
architectural and methodological innovations: the MobileViT 
backbone (M), the Channel Attention-based fusion module (C), and 
the Triplet Contrastive Loss (T). The results, presented in Table 5 
compare the full model against seven ablated variants across key 
performance metrics.

The results of our ablation study, presented in Table 5, offer 
several key insights into the LESS-Net architecture. As expected, 
model performance scales directly with the proportion of labeled 
data, with the 50% training configuration consistently yielding the 
best outcomes. More importantly, the analysis reveals the individual 
and synergistic contributions of our three core components: the 
MobileViT backbone (M), the Channel Attention-based fusion 
module (C), and the Triplet Contrastive Loss (T).

When introduced individually to the baseline consistency 
model at 25% and 50% label ratios, each component provided 
a notable performance uplift. The replacement of the standard 
encoder with the MobileViT backbone (M) produced the most 
significant individual gains, underscoring the critical importance 
of a powerful feature extractor. Interestingly, at the extremely 
low 5% label ratio, the supervisory signal appeared too sparse 
to effectively guide the C and T modules alone, resulting in 
performance degradation compared to the baseline. This suggests 
a foundational level of feature representation is necessary before 
the benefits of the fusion and contrastive loss modules can be
fully realized.

The true strength of LESS-Net, however, lies in the synergy 
between its components. The combination of any two modules 
consistently outperformed single-module variants. For example, 
pairing the MobileViT backbone with the contrastive loss (M 
+ T) or the attention-based fusion module (M + C) yielded 
substantial improvements, confirming that these components are 
complementary. Ultimately, the optimal configuration was achieved 
when all three modules were integrated. The full LESS-Net model 
(M + C + T) demonstrated the highest performance across nearly all 
metrics and label ratios, confirming that each component provides 
a unique and essential contribution. The qualitative results of this 
final integrated model are visualized in Figure 8, which corroborates 
its superior segmentation accuracy. To provide a more rigorous 
and comprehensive interpretability analysis, we present a qualitative 
evaluation in Figure 8. This figure moves beyond cherry-picked 
successes to offer a balanced view, illustrating both typical successful 
and failure cases of LESS-Net, with direct comparisons to a state-
of-the-art (SOTA) baseline, U-Net++. In a representative success 
case, LESS-Net demonstrates its superior sensitivity by accurately 
segmenting a subtle, point-like bleeding vessel that the baseline 
U-Net++ fails to detect. This highlights our model’s strength in 
capturing fine-grained details and generating clearer boundaries 
with fewer false positives. In contrast, we also present a challenging 
failure case involving an image with extremely heavy bleeding 
and severe reflections. In this scenario, LESS-Net struggles to 
completely isolate the lesion, a difficulty shared by the baseline 
model. Our analysis suggests this failure is attributable to the region 
being almost entirely obscured by visual artifacts, a condition that 
poses a significant challenge even for human clinical interpretation. 
By examining such cases side-by-side, we not only underscore 
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TABLE 4  Comparison of model efficiency and accuracy at 50% labeling ratio.

Model mIoU (%) Parameters (M) GFLOPs F1-Score (%) ECE (%) HD95 (mm)

U-Net 71.41 13.395 248.986 83.30 3.5 10.0

U-Net++ 59.83 9.160 279.244 74.87 4.0 12.0

TransU-Net 65.48 66.815 260.819 79.15 3.8 10.9

Deeplabv3+ 66.23 54.714 167.000 79.70 3.7 10.8

Mean-Teacher 61.25 51.150 308.040 75.97 4.2 11.7

Co-training 66.21 25.600 388.650 79.68 3.7 10.8

Cross Pseudo 69.26 81.050 346.750 81.84 3.6 10.3

Ours (LESS-Net) 82.51 11.491 146.165 90.42 2.5 8.7

Bold indicates the best performance in each column.

FIGURE 7
Histogram of model performance on the Nasal Bleeding dataset, comparing test results across four segmentation models.

the advantages of LESS-Net but also transparently acknowledge 
its current limitations. This analysis of failure modes provides 
valuable insights, revealing that extreme visual obstructions remain 
a primary hurdle. This balanced qualitative comparison validates 
our model’s capabilities while guiding concrete directions for 
future research and improvement. Representative qualitative success 
cases are shown in Table 6. Typical failure cases are presented
in Table 7.

5 Discussion

Semi-supervised learning has been widely applied in medical 
image analysis, particularly in situations where labeled data are 
limited or costly to obtain. However, its application remains 
relatively underexplored in the context of nasal endoscopic epistaxis. 
To address this gap, we propose LESS-Net, a segmentation model 
designed to detect malformed blood vessels and accurately localize 
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TABLE 5  Vertical-format ablation study on LESS-Net using different module combinations (M: MobileViT, C: Channel Attention, T: Transformer fusion).

Metric Consistency +M +C +T +M+C +M+T +C+T +M+C+T (ours)

mIoU (5%) 54.45 53.32 46.71 47.15 66.47 65.06 55.60 67.85

mIoU (25%) 56.86 70.42 57.77 59.19 73.34 71.56 54.41 73.24

mIoU (50%) 57.46 77.37 55.09 65.90 78.17 77.38 58.74 82.51

Dice (5%) 24.57 19.76 1.82 2.60 47.68 49.96 21.90 52.98

Dice (25%) 25.84 57.14 29.93 35.81 61.44 59.38 24.05 61.42

Dice (50%) 25.47 67.28 28.02 43.07 68.75 62.61 30.30 75.62

mRecall (5%) 68.68 56.98 50.49 50.92 79.98 77.12 61.67 81.45

mRecall (25%) 62.08 75.12 63.05 69.82 73.34 84.78 58.34 81.31

mRecall (50%) 63.44 82.73 58.91 77.36 84.78 82.65 64.74 92.12

Accuracy (5%) 87.37 93.06 92.30 92.27 92.74 92.62 91.80 93.13

Accuracy (25%) 92.63 95.34 92.81 91.05 95.52 94.21 92.97 95.32

Accuracy (50%) 92.39 96.40 93.16 93.00 96.40 96.41 92.71 96.94

Bold indicates the best performance in each column.

FIGURE 8
Visualization of segmentation predictions produced by LESS-Net. From left to right: original image, ground truth label, and predicted mask under 
various label ratios.

bleeding areas under nasal endoscopy. The model achieves excellent 
results across multiple metrics. Specifically, with 50% labeled 
data, LESS-Net reached scores of 82.51% mIoU, 75.62% Dice, 
92.12% mRecall, 96.94% Accuracy, 11.491 Parameters, and 146.165 
GFLOPS. Furthermore, it also demonstrates strong performance 
with just 5% and 25% labeled data.

Despite these promising outcomes, our approach has some 
potential limitations. First, there is still room for further 
performance enhancement. Second, medical image data often 
come from diverse devices and imaging techniques, leading 
to domain bias. These variations may affect the model’s 
generalizability in practical applications.
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In future work, we will further refine our algorithm, taking 
into account hardware constraints and real-time processing 
requirements. We aim to enhance the model’s domain adaptability 
and ensure that it can be reliably deployed in real-world 
clinical systems. 

6 Conclusion

To address the challenge of accurately localizing bleeding 
regions and abnormal blood vessels under nasal endoscopy, we 
propose LESS-Net, a semi-supervised segmentation model based on 
consistency regularization. The goal is to enhance both diagnostic 
efficiency and accuracy in clinical settings. First, we combine 
consistency regularization with contrastive learning, leveraging 
the differences between non-augmented, weakly augmented, 
and strongly augmented versions of the same image to improve 
robustness and generalization. Second, we replace the original 
U-Net backbone with MobileViT, a lightweight architecture 
that better captures contextual semantics and improves feature 
representation. Furthermore, to overcome the limitations of U-
Net’s skip connections—namely, their limited ability to capture 
cross-layer semantics—we incorporate a multi-scale feature fusion 
module with a channel attention mechanism, enabling effective 
integration of both global and local information. The impact of each 
component is validated through ablation studies, confirming their 
individual and combined contributions to overall performance.

In comparative experiments, LESS-Net trained with only 50% 
labeled data outperforms all fully supervised models trained 
on 100% labeled data, demonstrating its strong segmentation 
capability. These findings underscore the practical potential of LESS-
Net in nasal endoscopic epistaxis localization tasks, particularly 
in reducing the risk of complications caused by inexperienced 
or improperly performed clinical procedures. Moreover, our 
results validate the efficacy of the proposed semi-supervised 
framework in alleviating challenges associated with small-scale 
datasets and annotation scarcity. This study offers a valuable 
reference for the application of semi-supervised learning to 
other medical image segmentation tasks. In future work, we will 
continue to improve the performance and efficiency of medical 
image analysis through deep learning and facilitate deployment 
in real-world clinical environments to advance intelligent
healthcare systems.
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