:' frontiers ‘ Frontiers in Physiology

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Qingli Li,

East China Normal University, China
REVIEWED BY

Huang Sheng Yao,

Chang Gung University, Taiwan

Jiayin Lei,

South China University of Technology, China

*CORRESPONDENCE
Jun Li,
lijun@sicau.edu.cn

"These authors share first authorship

RECEIVED 11 June 2025
ACCEPTED 19 September 2025
PUBLISHED 29 October 2025

CITATION

Lai M, Chen J, Huang Y, Wang X, Xu N, Zhou S,

Zhu X, Wu Y, Yang B, Chen G and Li J (2025)
LESS-Net: a lightweight network for epistaxis
image segmentation using similarity-based
contrastive learning.

Front. Physiol. 16:1644589.

doi: 10.3389/fphys.2025.1644589

COPYRIGHT

© 2025 Lai, Chen, Huang, Wang, Xu, Zhou,
Zhu, Wu, Yang, Chen and Li. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is
permitted which does not comply with
these terms.

Frontiers in Physiology

TYPE Original Research
PUBLISHED 29 October 2025
pol 10.3389/fphys.2025.1644589

LESS-Net: a lightweight network
for epistaxis image segmentation
using similarity-based
contrastive learning

Mengzhen Lai't, Junyang Chen?, Yutong Huang?,
Xianyao Wang?, Nanbo Xu?, Shengxiang Zhou?, Xiangsen Zhu?,
Yunhan Wu?, Bing Yang®, Guanyu Chen' and Jun Li****

!College of Information Engineering, Sichuan Agricultural University, Ya'an, China, ?Southeast
University School of Computer Science and Engineering, Nanjing, Jiangsu, China, *Agriculture
Information Engineer Higher Institution Key Laboratory of Sichuan Province, Ya'an, China, *Ya'an
Digital Agricultural Engineering Technology Research Center, Ya'an, China

Introduction: Accurate automated segmentation of epistaxis (nosebleeds)
from endoscopic images is critical for clinical diagnosis but is significantly
hampered by the scarcity of annotated data and the inherent difficulty of precise
lesion delineation. These challenges are particularly pronounced in resource-
constrained healthcare environments, creating a pressing need for data-efficient
deep learning solutions.

Methods: To address these limitations, we developed LESS-Net, a lightweight,
semi-supervised segmentation framework. LESS-Net is designed to effectively
leverage unlabeled data through a novel combination of consistency
regularization and contrastive learning, which mitigates data distribution
mismatches and class imbalance. The architecture incorporates an efficient
MobileViT backbone and introduces a multi-scale feature fusion module to
enhance segmentation accuracy beyond what is achievable with traditional
skip-connections.

Results: Evaluated on a public Nasal Bleeding dataset, LESS-Net significantly
outperformed seven state-of-the-art models. With only 50% of the data labeled,
our model achieved a mean Intersection over Union (mloU) of 82.51%, a Dice
coefficient of 75.62%, and a mean Recall of 92.12%, while concurrently reducing
model parameters by 73.8%. Notably, this semi-supervised performance
surpassed that of all competitor models trained with 100% labeled data. The
framework's robustness was further validated at extremely low label ratios of
25% and 5%.

Conclusion: Ablation studies confirmed the distinct contribution of each
architectural component to the model's overall efficacy. LESS-Net provides a
powerful and data-efficient framework for medical image segmentation. Its
demonstrated ability to achieve superior performance with limited supervision
highlights its substantial potential to enhance Al-driven diagnostic capabilities
and improve patient care in real-world clinical workflows, especially in
underserved settings.
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1 Introduction

Epistaxis (nosebleeds) is a common clinical condition indicative
of numerous underlying health issues, with manifestations ranging
from minor bleeding to severe hemorrhage (Kotecha et al., 1996; Tan
and Calhoun, 1999). The primary goal of intervention is to control
bleeding and prevent recurrence, which often requires professional
medical procedures such as endoscopic electrocoagulation (Kucik
and Clenney, 2005; Gifford and Orlandi, 2008; Koskinas et al., 2024;
Boldes et al., 2024). However, the efficacy of these treatments hinges
on the accurate identification of the bleeding source. This presents a
formidable diagnostic challenge, as the intricate anatomy and dense
submucosal vascular network of the nasal cavity frequently obscure
the visualization of culprit vessels during endoscopy (Viehweg et al.,
2006). The advent of deep learning offers a powerful new modality
for medical image analysis that can potentially overcome these
diagnostic limitations.

While deep learning models, particularly those for semantic
segmentation (Pal and Pal, 1993), have demonstrated immense
potential, their clinical translation is often constrained by a
reliance on large, meticulously annotated datasets. The process
of generating these pixel-level labels is a significant bottleneck
in medical imaging, as it is both time-consuming and resource-
intensive, demanding costly equipment and considerable input from
clinical experts. This annotation burden presents a major obstacle
to developing robust segmentation models for specialized tasks like
epistaxis analysis.

Semi-supervised learning (SSL) has emerged as a compelling
strategy to address the challenge of data scarcity (van Engelen
and Hoos, 2019). By learning from a small cohort of labeled
examples alongside a larger corpus of readily available unlabeled
data, SSL frameworks can significantly improve model performance
while alleviating the need for exhaustive annotation. The utility
of SSL has been validated across diverse medical domains,
including tumor detection, skin lesion analysis, and retinopathy
screening (Ge et al., 2020; Masood and Al-Jumaily, 2016; Diaz-
Pinto et al., 2019). Nevertheless, the application of SSL to enhance
the segmentation of bleeding regions in nasal endoscopic images
remains a notable research gap. This study, therefore, aims to
develop and validate a novel SSL framework tailored to this specific
clinical problem.

In this study, we address these challenges by proposing LESS-
Net, a lightweight and data-efficient semi-supervised framework
specifically designed for epistaxis segmentation. The primary
contributions of our work are threefold. First, we introduce a robust
semi-supervised learning strategy that synergistically combines
contrastive learning with consistency regularization, enabling the
model to effectively leverage unlabeled data and overcome the
limitations of small, annotated medical datasets. Second, to ensure a
lightweight and high-performance architecture suitable for clinical
deployment, we utilize MobileViT as the network backbone,
capitalizing on its hybrid CNN-Transformer design to reduce model
parameters while enhancing feature extraction. Third, we propose
a novel multi-scale feature fusion module with a channel attention
mechanism, which resolves the semantic gap issues inherent
in traditional U-Net skip connections by adaptively integrating
global and inter-layer features. Our results demonstrate that LESS-
Net establishes a new state-of-the-art benchmark, outperforming
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existing models even when trained with only a fraction of the labeled
data required for fully supervised approaches.

2 Related work
2.1 Medical image segmentation

The evolution of deep learning has profoundly expanded
the application of semantic segmentation, particularly within
the medical domain (Thoma, 2016). Early convolutional neural
networks, primarily designed for image classification, were
ill-suited for pixel-level tasks due to their reliance on fully
connected layers, which discard critical spatial information.
A paradigm shift occurred with the introduction of the Fully
Convolutional Network (FCN), which replaced these layers with
convolutional ones, enabling end-to-end, pixel-wise prediction
and setting the stage for modern segmentation architectures
(Long et al., 2015).

Building on this foundation, the U-Net architecture has
become the de facto standard for biomedical image segmentation
(Ronneberger et al., 2015). Its iconic encoder-decoder structure,
enhanced by skip connections, proved exceptionally effective at
preserving high-resolution spatial details while capturing multi-
scale contextual features. This design allows for robust performance
even with the smaller datasets typical of medical research,
cementing its role as a foundational model. Subsequent research
has focused on refining this paradigm. For instance, efforts to
create more efficient models led to innovations like UNeXt, an
MLP-based network that dramatically reduced parameter counts
by a factor of 72 without compromising performance (Valanarasu
and Patel, 2022). Concurrently, other approaches have sought to
boost accuracy by incorporating specialized modules, such as the
Morphological Feature Enhancement Network, which achieved a
state-of-the-art Dice coefficient of 92.76% on the GlaS dataset
by improving feature representation (Yuan et al., 2024). Despite
these significant architectural advancements, their application to
the nuanced challenge of identifying bleeding sources in nasal
endoscopy remains largely unexplored, highlighting the need for a
tailored approach.

2.2 Semi-supervised learning

While the performance of semantic segmentation models
has steadily improved, the prohibitive cost and time required
for expert-level annotation of medical datasets remain a critical
bottleneck. Semi-supervised learning (SSL) has emerged as the
dominant paradigm to address this issue by enabling models
to learn from a small set of labeled data supplemented by a
much larger corpus of unlabeled images, effectively integrating
supervised and unsupervised learning principles (Bengio et al.,
2013; Zhang et al., 2024; Han et al., 2024).

A cornerstone of modern SSL is the principle of consistency
regularization, which posits that a model’s predictions for an
unlabeled sample should remain stable despite input perturbations,
such as data augmentation (Ganin and Lempitsky, 2014). Seminal
methods like the TI-Model and Mean Teacher operationalized this
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concept, with the latter introducing a “teacher” model (a temporal
average of the student’s weights) to generate more stable prediction
targets and mitigate confirmation bias (Rasmus et al., 2015; Laine
and Aila, 2016; Tarvainen and Valpola, 2017). These foundational
techniques demonstrated that enforcing predictive consistency is a
powerful mechanism for leveraging unlabeled data.

Recent advancements have extended this consistency-based
framework to tackle more complex, real-world challenges. For
instance, sophisticated probabilistic frameworks like SimPro have
been developed to address distribution mismatches between labeled
and unlabeled data, a common issue that can degrade performance
(Du et al, 2024). In parallel, methods have been adapted for
decentralized learning environments; FedCD, a federated dual-
teacher framework, addresses both class imbalance and data
privacy concerns by enabling collaborative training without sharing
sensitive patient data (Liu et al., 2024). Other innovative approaches
have integrated SSL with complementary learning signals, such
as combining multi-task objectives with self-supervised clustering
to further improve model generalization (Fini et al., 2023). This
trajectory highlights a clear trend toward enhancing the core
consistency principle with additional constraints. Building upon this
line of inquiry, our work integrates consistency regularization with
contrastive learning to impose a more structured and discriminative
feature space, further maximizing the information learned from
unlabeled data.

In conclusion, semi-supervised learning significantly reduces
the annotation workload, substantially saving both human and
material resources. Additionally, this paper employs a semi-
supervised learning method based on consistency regularization.
By incorporating contrastive learning to further constrain the
model’s training process, our approach enables the model to better
exploit information from unlabeled data, consequently enhancing
its generalization capability.

3 Materials and methods
3.1 Dataset acquisition and preprocessing

In the domain of computerized medical imaging, the quality of
datasets is closely linked to model performance. For this experiment,
we utilized an open-source dataset known as the Nasal Bleeding
dataset (Chen et al, 2023). The original dataset comprises 405
images, encompassing various conditions such as blurred views,
reflections, extensive nasal bleeding, point-like and trapezoidal
bleeding patterns, and vascular malformations. Representative
examples from the dataset are illustrated in Figure 1.

To enhance model performance and generalization for the
segmentation task, we first divided the original 405 images into
training and testing subsets at an 8:2 ratio. Subsequently, a variety of
data augmentation techniques were applied exclusively to the images
and their corresponding masks within the training subset. These
augmentations included horizontal and vertical flips, rotations,
random scaling, brightness and contrast adjustments, as well as
pan, zoom, and rotational transformations. After applying these
augmentations, the total dataset for the experiment was expanded
from the original 405 images to 2025 images.
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The dataset consists of two labeling classes: background and
anomaly. Examples of annotated images are shown in Figure 2.
Within the training subset, we specifically evaluated three labeling
ratios—5%, 25%, and 50%, to assess model performance under
varying levels of supervision.

3.2 LESS-Net

We propose LESS-Net, a semi-supervised segmentation network
combining consistency regularization and contrastive learning, as
illustrated in Figure 3. Specifically, consistency regularization is
a widely adopted method in semi-supervised learning, based on
the principle that a model should produce similar predictions
when given perturbed versions of the same input image. Building
upon this principle, we integrate contrastive learning, which
enforces similarity among the representations of semantically
similar samples while encouraging dissimilar samples to diverge in
feature space.

For each input image, we generate two augmented variants:
one strongly augmented variant, which significantly alters
semantic content, and one weakly augmented variant, preserving
most semantic structure. These two versions are independently
processed by the model to yield separate predictions. The distance
between their respective representations is then computed.
Semantically similar samples are encouraged to converge within
the feature space, whereas dissimilar samples are pushed
apart. This unsupervised learning objective employs a Triplet
Contrastive Loss calculated from the feature representations of
the original (unaugmented), weakly augmented, and strongly
augmented samples.

Our semi-supervised segmentation total loss consists of the
supervised learning loss and the supervised learning loss. The
specific computation is shown in Equation 1.

1)

Ltotal = Lsupervised + /\LTriple

For unlabeled samples, we design our unsupervised loss as
the Triplet Contrastive Loss, calculated by summing the output
differences among each pair of the original, weakly augmented,
and strongly augmented versions of the input after passing through
the model. The specific loss function formula will be elaborated in
Section 3.3. For labeled samples, we utilize the cross entropy loss, a
widely used loss function for classification tasks, as our supervised
loss. The cross entropy loss measures the divergence between two
probability distributions, as defined in Equation 2, where y is the
ground truth label of the sample x.

Lsupervised = CrOSSEntropy (}’> f(x)) (2)

In semi-supervised tasks, an effective training strategy must
be complemented by a suitable network architecture, as it
significantly impacts the segmentation performance of the model.
To enhance feature extraction and spatial information recovery,
the proposed architectural design of LESS-Net is illustrated in
Figure 4.

The architectural design of LESS-Net is predicated on resolving
the fundamental trade-off between local feature fidelity and global
contextual understanding in image segmentation. Conventional
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FIGURE 1
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Examples from the dataset, including blurring, reflections, and various types of vascular malformations.

%
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X

FIGURE 2
Schematic illustration of dataset labeling: the top row shows original nasal images, and the bottom row shows corresponding binary mask labels.

Convolutional Neural Networks (CNNs) excel at extracting
local patterns through their intrinsic spatial inductive biases
but often fail to model long-range dependencies effectively
(Krizhevsky et al,, 2017). Conversely, Vision Transformers are
proficient at capturing global relationships but typically do so at
the cost of high computational complexity and a large parameter
footprint (Mehta and Rastegari, 2021). To resolve this dilemma,
we employ MobileViT as the backbone encoder for LESS-Net.
This lightweight hybrid architecture synergistically integrates
the efficiency of convolutions for local processing with the
global receptive field of transformers, enabling the extraction
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of rich, multi-scale contextual information critical for accurate
segmentation.

In the decoder, the primary challenge is to precisely reconstruct
spatial details using the features supplied by the encoder. While
the skip connections in the standard U-Net architecture provide
a foundational mechanism for this, they can be suboptimal due
to the semantic gap between shallow, low-level features and
deep, semantically abstract ones. To address this limitation, we
designed a novel multi-scale feature fusion strategy predicated on
a channel attention mechanism (Wang et al., 2020). Instead of
direct concatenation, our approach first aggregates features from
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FIGURE 3

Diagram of the semi-supervised training process in LESS-Net, incorporating consistency regularization and contrastive learning.

multiple scales to generate a global context vector. This vector is
then fused with inter-layer feature maps, a process that adaptively
recalibrates channel-wise feature responses and mitigates semantic
discrepancies. The result is a significant improvement in the
network’s spatial reconstruction capabilities, enabling more accurate
delineation of fine-grained structures.

3.3 Contrastive learning objective

To enhance the discriminative power of the feature
representations learned from unlabeled data, we incorporate
a  contrastive learning objective into the LESS-Net

framework (Khosla et al, 2020). Unlike traditional supervised
methods, this objective enables the model to learn a structured
embedding space by comparing samples without relying on explicit
labels. Our approach is specifically formulated as a triplet-based task
designed to teach the model about semantic similarity relative to the
severity of data augmentation.

For each unlabeled input image, we generate a triplet comprising
an anchor, a positive sample, and a negative sample. The anchor is the
original, unaugmented image. The positive sample is created using
weak augmentations (e.g., random horizontal flips, minor brightness
and contrast adjustments) that largely preserve the image’s core
semantic content. The negative sample is created using strong
augmentations, which include the weak augmentations plus more
aggressive transformations such as substantial rotations (up to 20°)
and shifts in saturation and hue. These strong augmentations are
designed to significantly alter the image’s visual characteristics,
thus creating a “harder” positive instance that is semantically more
distant from the anchor.

Frontiers in Physiology

05

The objective of the proposed Triplet Contrastive Loss is to
structure the feature space such that the anchor’s representation is
closer to its positive (weakly augmented) counterpart than to its
negative (strongly augmented) counterpart. This strategy enforces
a meaningful hierarchy within the embedding space, compelling
the model to learn representations that are robust to minor
perturbations while still distinguishing between degrees of semantic
alteration. The loss function calculation between weakly and
strongly augmented samples is expressed as follows in Equation 3:

M
2 e OIT () = P (1)), ®)
m=1

The unsupervised component of our framework is the Triplet
Contrastive Loss (Lyyp)e)> Which is calculated for each unlabeled
image u,, in a mini-batch of size M. This loss is designed to enforce
predictive consistency across three views of the sample: the original
unaugmented anchor (u,,), a weakly augmented version (#(u,,)), and
a strongly augmented version (T(u,,)).

The loss is formulated as the sum of the mean squared error
(MSE) between the softmax output distributions for each pair of
views. This encourages the model to produce similar predictions
for all three variants, with the underlying objective that the learned
feature representations are robust to these perturbations. The
complete unsupervised loss is defined as:

Liyipter = 1\% Z_l(vtllp(ylum)—p(ylt(um))llzz+ﬁ||p(ylum)—p(le(um))Ilz2
e (1t () = p AT (w))l,7) (4)

where p(y|-) represents the model’s softmax probability output
for a given input. The terms «, f, and y are weighting
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FIGURE 4
Structural overview of LESS-Net. The model consists of an encoder and decoder. The input is downsampled to obtain five intermediate feature maps,
which are fused via multi-scale feature fusion to generate global features. These are concatenated with same-scale inter-layer features to assist in
reconstruction.

that balance the contribution of each

consistency pairing. This composite loss function ensures that

hyper-parameters

the model learns a feature space that is invariant to minor
augmentations while also being robust to more significant visual
transformations.

3.4 Lightweight hybrid backbone network

The design of the encoder, or downsampling pathway, is critical
to segmentation performance as it must generate semantically rich,
multi-scale feature representations for the decoder. Conventional
U-Net style encoders, built on standard convolutional and pooling
operations, are highly effective at learning local features but possess
an inherently limited receptive field, which restricts their ability
to model global context and long-range spatial dependencies.
While Vision Transformers can capture these global relationships,
they typically do so with significant computational and memory
overhead. To balance robust feature extraction with model efficiency,
we selected MobileViT as the backbone network for LESS-
Net (Mehta and Rastegari, 2021).
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MobileViT is lightweight, hybrid architecture that
synergistically combines the strengths of both CNNs and

Transformers, as illustrated in Figure 5. It leverages standard

a

convolutions for their spatial inductive biases and parameter
efficiency in extracting local patterns, while strategically inserting
compact Transformer blocks to model long-range dependencies
across the entire feature map. This design enables LESS-Net
to generate highly discriminative feature representations that
integrate both fine-grained local details and broad global
context. The direct benefits of this approach include superior
generalization on unseen data and more precise localization of
segmentation boundaries, all within a computationally efficient
framework suitable for deployment in resource-constrained
clinical settings.

3.5 Multi-scale attention-gated feature
fusion

The decoder
responsible

pathway in a network

for  high-fidelity

segmentation

is spatial  reconstruction,
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FIGURE 5

Backbone architecture of MobileViT, which integrates convolutional and Transformer modules for efficient multi-scale feature extraction.

which is critical for delineating precise object boundaries
(Zhang et al., 2018; Chuang et al., 2006). While the skip connections
in the U-Net architecture provide a foundational strategy for
this by re-introducing high-resolution features from the encoder,
this direct fusion can be suboptimal. Naively concatenating
semantically “poor” features from shallow encoder layers with
semantically “rich” features from deep layers creates a semantic
gap, potentially leading to conflicting feature representations and
information loss.

To address this challenge, we replace the conventional skip
connections with a novel multi-scale feature fusion module
enhanced by a channel attention mechanism. Our proposed module,
illustrated in Figure 6, is designed to intelligently bridge this
semantic gap by adaptively recalibrating inter-layer features before
they are fused with the decoder pathway. The process involves
two main stages: first, the generation of a global context vector by
aggregating features from multiple scales, and second, the use of an
attention block to refine the feature maps.

Specifically, to construct the global context representation,
feature maps from all intermediate layers of the encoder are first
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resized to a uniform spatial resolution using bilinear interpolation.
These are then concatenated and passed through a 1 x 1 convolution
to produce a compact and informative global feature vector.
Concurrently, the features from the corresponding encoder
layer are processed by a Channel Attention (CA) module. As
detailed in Figure 6, the CA block separately pools features along
the width and height dimensions to capture directional context,
applies independent convolutions and a sigmoid activation to
generate channel-wise attention weights (s, and s,), and then
uses these weights to perform element-wise multiplication on
the input feature map. This attention-gated feature map is then
fused with the upsampled features from the decoder via element-
wise addition, ensuring that only the most salient and contextually
relevant information is propagated, thereby significantly improving
segmentation accuracy.

This refined feature map, now rich with both global context
and adaptively selected local details, is fused with the output
from the preceding decoder stage via element-wise addition. The
decoder itself progressively restores spatial resolution at each
stage using bilinear interpolation for upsampling. By systematically
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FIGURE 6
Architecture of the proposed multi-scale feature fusion block incorporating the Channel Attention (CA) mechanism.

TABLE 1 Experimental environment and Configuration.

TABLE 2 Parameter Configuration for training neural networks.

Name Type/Version Parameter Value
Operating System Ubuntu 20.04 Initial Learning Rate 0.01
Python Version Python 3.9 Minimum Learning Rate 0.001
Library Version Torch 2.0.0 + cull8 Batch Size 8
CUDA Version CUDA 12.2 Epochs 200
CPU AMD EPYC 9754 128-Core Momentum 0.9
GPU NVIDIA GeForce RTX 4090 x 1 Image Size 512x512

repeating this attention-gated fusion process at each level of the
decoder, our framework effectively mitigates the spatial information
loss typically caused by downsampling. This ensures a high-
fidelity reconstruction of fine-grained details, leading to improved
segmentation accuracy and robustness, particularly for complex
image data.

4 Experimental results and analysis
4.1 Experimental environment

Table 1 below shows the basic device information for the
software and hardware used in this document.

Table 1 below shows the hardware and software configurations
of the experimental environment.

4.2 Training parameters

Table 2 presents the configuration parameters used for training
the proposed neural network.

Frontiers in Physiology

4.3 Evaluation indicators

To comprehensively assess the proposed LESS-Net, we evaluated
its performance from two perspectives: model efficiency and
segmentation accuracy.

4.4 Model efficiency metrics

To quantify the computational cost and resource requirements
of the model, we utilized two standard metrics:

e Parameters (M): The total number of trainable parameters
in the model, measured in millions. This metric reflects the
model’s static size and memory footprint.

e GFLOPS: Giga Floating-point Operations Per Second. This
measures the computational complexity required for a single
forward pass, indicating the model’s theoretical inference speed.

4.5 Segmentation accuracy metrics
The segmentation performance was evaluated using four

standard, objective metrics:
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Dice Coeflicient (Dice): The Dice similarity coefficient (DSC) is
a widely used metric in medical image segmentation that measures
the spatial overlap between two sets. It is particularly effective for
handling class imbalance. The Dice coefficient is defined as:

_2x|XnY]

Dice = —— (5)
|X]+1Y]

where X represents the set of pixels in the predicted segmentation
mask and Y represents the set of pixels in the ground-truth mask.
Here, | XNY| denotes the number of pixels in their intersection,
while | X| and | Y] are the total number of pixels in each respective set.
Mean Intersection over Union (mlIoU): The IoU, also known
as the Jaccard index, quantifies the overlap between the predicted
and ground-truth regions. It is one of the most common metrics for
segmentation tasks. For a single class, the IoU is calculated as:

_|AnB|

10U =
|AUB|

(6)

A is the set of pixels in the predicted region. B is the set of pixels
of the real region.|A N B| denotes the size of the intersection set of
the predicted region and the real region. |A UB| denotes the size of
the concatenation of the predicted region and the real region.

mloU is an overall performance metric that averages the
IoUs of all categories and can consider all categories equally.
For a semantic segmentation task with N classes, the formula
calculation 6 of Equation 7 mIoU is as follows:

N
mIOU = I%ZIOUi )
i=1

Pixel Accuracy (Accuracy): This metric provides a global
assessment of the model’s correctness by calculating the ratio of
correctly classified pixels to the total number of pixels in the image.
It is defined based on the total number of True Positives (TP), False
Positives (FP), and False Negatives (FN) across all ¢ classes.

Mean Recall (mRecall): Recall, also known as sensitivity or the
true positive rate, measures a model’s ability to correctly identify
all instances of a particular class. To provide a balanced assessment
across all classes, especially in the presence of class imbalance, we
report the mean Recall (mRecall). This is the macro-average of the
per-class Recall scores, giving equal weight to the segmentation
performance on each class. The formulas for Accuracy and mRecall
are presented in Equations 8, 9.

c

TP,
Accuracy = —: = (8)
Y (TP, +FP,+FN)
N
1 TP;
“Recall= £y —1 9
e NZTPi+FNi ©)

i=1

TP (True Positive): the number of positive classes predicted
as positive. FN (False Negative): the number of positive classes
predicted as negative. FP(False Positive) is the number of negative
classes predicted as positive. TN (True Negative) is the number of
negative classes predicted as negative.

These metrics all have limitations when the data categories
are not balanced, so we used multiple metrics at the same
time in order to comprehensively assess the performance
of the model.
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4.6 Comparison with state-of-the-art
networks

To rigorously evaluate the efficacy of our proposed framework,
we conducted a comprehensive benchmark analysis of LESS-Net
against several state-of-the-art (SOTA) segmentation models. All
experiments were performed on the Nasal Bleeding dataset under
three distinct semi-supervised conditions, utilizing 5%, 25%, and
50% of the available annotated data for training.

The performance of LESS-Net was compared against two
groups of leading architectures: (1) prominent fully supervised
models, including U-Net (Ronneberger et al., 2015), U-Net++
(Zhou et al., 2018), TransU-Net (Chen]. et al., 2021), and
Deeplabv3+ (Chen et al., 2018); and (2) established semi-supervised
frameworks, namely, Mean-Teacher (Tarvainen and Valpola, 2017),
Co-Training (Qiao et al., 2018), and Cross Pseudo Supervision
(Chen X. et al., 2021). Segmentation quality was quantitatively
assessed using four standard metrics: mean Intersection over Union
(mIoU), Dice coefficient, mean Recall (mRecall), and Accuracy. To
provide a more clinically comprehensive evaluation and address the
reviewer’s suggestions, we expanded our analysis beyond standard
segmentation metrics. We first quantified boundary precision,
a critical factor in clinical practice, using the 95% Hausdorff
Distance (HDys). Our results show that LESS-Net achieved a
significantly lower HDy; score, indicating a superior ability to
accurately delineate lesion edges. Furthermore, to address the
challenge of detecting minute pathologies, we specifically analyzed
performance on small bleeding lesions, supported by FP/TPR
curves. This revealed that LESS-Net maintains an exceptionally high
recall for even the tiniest bleeding spots—areas often missed by
baseline models—highlighting its sensitivity and potential for early
detection. Finally, to build trust and assess model confidence, we
conducted an uncertainty analysis by examining the entropy of
the output probability maps. As expected, the model exhibited low
uncertainty (high confidence) in clear bleeding regions and higher
uncertainty near ambiguous boundaries, providing a valuable, built-
in indicator of prediction reliability crucial for clinical decision
support. A comprehensive comparison of these results is presented
in the subsequent tables, where the top-performing metric in each
category is highlighted in bold. The mIoU across labeling ratios is
summarized in Table 3.

The comparative analysis, summarized in the subsequent tables,
demonstrates the clear superiority of LESS-Net across all semi-
supervised evaluation settings. At the 50% labeling ratio, LESS-
Net established a new state-of-the-art performance, achieving a
mean Intersection over Union (mIoU) of 82.51%, a Dice coefficient
of 75.62%, and a mean Recall of 92.12%. In a direct comparison
to the semi-supervised U-Net baseline, this represents substantial
performance gains of 25.05% in mloU, 50.15% in Dice, and
28.68% in mRecall. Critically, the performance of LESS-Net trained
with only half of the annotated data surpassed that of all fully
supervised models trained with the complete (100%) labeled dataset.
This result underscores the remarkable data efficiency of our
proposed framework. Furthermore, LESS-Net maintained its robust
performance at extremely low label ratios of 25% and 5%, confirming
its effectiveness in data-scarce scenarios.

To further validate the design of LESS-Net, we also conducted
a comparative evaluation of its computational efficiency against the
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TABLE 3 Comparison of mloU Performance Across Labeling Ratios.

Model 5% A ’ 50%
U-Net (fully) 73.78
U-Net++ (fully) 59.43
TransU-Net (fully) 66.59
Deeplabv3+ (fully) 62.02
U-Net 62.01 65.73 71.41
U-Net++ 55.03 56.25 59.83
TransU-Net 60.55 63.12 65.48
Deeplabv3+ 63.58 62.72 66.23
Mean-Teacher 57.29 57.84 61.25
Co-training 61.27 63.55 66.21
Cross Pseudo 63.94 64.10 69.26
Ours (LESS-Net) 67.85 73.24 82.51

Bold indicates the best performance in each column.

benchmark models. The analysis, presented in Table 4, compares
multiple key indicators: segmentation accuracy (mlIoU and F1-
Score), calibration reliability (ECE), boundary precision (HD95),
parameter count, and computational complexity (GFLOPs). As
these architectural metrics are independent of the labeled data
ratio, the 50% labeling condition serves as a representative case
for this comparison. The comparative performance distribution
is shown in Figure 7.

The data presented in Table 4 underscore the exceptional
balance that LESS-Net strikes between high performance and
computational efficiency. Our model operates with simplified
11.491M parameters and only requires 146.165 GFLOPS to
achieve excellent calibration performance (ECE of 2.5%) and
boundary accuracy (HD95 of 8.7 mm), making it an extremely
efficient architecture. While U-Net++ features a marginally smaller
parameter count (9.160M), this comes at the cost of nearly
double the computational complexity (279.244 GFLOPS) and for
a significantly lower segmentation accuracy (59.83% mloU). In
contrast, other benchmark models like TransU-Net require 5-7
times more parameters than LESS-Net to achieve inferior results.
This unique combination of a compact design with state-of-the-
art accuracy (exceeding the next-best model's mIoU by over
13 percentage points) confirms that LESS-Net is a lightweight,
high-performance framework suitable for real-world clinical
deployment.

4.7 Ablation experiments

To systematically dissect the LESS-Net framework and
quantify the contribution of its core components, we conducted
a comprehensive series of ablation studies. These experiments were
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performed on the Nasal Bleeding dataset across all three semi-
supervised training configurations (5%, 25%, and 50% labeled
data). We individually and jointly ablated our three primary
architectural and methodological innovations: the MobileViT
backbone (M), the Channel Attention-based fusion module (C), and
the Triplet Contrastive Loss (T). The results, presented in Table 5
compare the full model against seven ablated variants across key
performance metrics.

The results of our ablation study, presented in Table 5, offer
several key insights into the LESS-Net architecture. As expected,
model performance scales directly with the proportion of labeled
data, with the 50% training configuration consistently yielding the
best outcomes. More importantly, the analysis reveals the individual
and synergistic contributions of our three core components: the
MobileViT backbone (M), the Channel Attention-based fusion
module (C), and the Triplet Contrastive Loss (T).

When introduced individually to the baseline consistency
model at 25% and 50% label ratios, each component provided
a notable performance uplift. The replacement of the standard
encoder with the MobileViT backbone (M) produced the most
significant individual gains, underscoring the critical importance
of a powerful feature extractor. Interestingly, at the extremely
low 5% label ratio, the supervisory signal appeared too sparse
to effectively guide the C and T modules alone, resulting in
performance degradation compared to the baseline. This suggests
a foundational level of feature representation is necessary before
the benefits of the fusion and contrastive loss modules can be
fully realized.

The true strength of LESS-Net, however, lies in the synergy
between its components. The combination of any two modules
consistently outperformed single-module variants. For example,
pairing the MobileViT backbone with the contrastive loss (M
+ T) or the attention-based fusion module (M + C) yielded
substantial improvements, confirming that these components are
complementary. Ultimately, the optimal configuration was achieved
when all three modules were integrated. The full LESS-Net model
(M + C + T) demonstrated the highest performance across nearly all
metrics and label ratios, confirming that each component provides
a unique and essential contribution. The qualitative results of this
final integrated model are visualized in Figure 8, which corroborates
its superior segmentation accuracy. To provide a more rigorous
and comprehensive interpretability analysis, we present a qualitative
evaluation in Figure 8. This figure moves beyond cherry-picked
successes to offer a balanced view, illustrating both typical successful
and failure cases of LESS-Net, with direct comparisons to a state-
of-the-art (SOTA) baseline, U-Net++. In a representative success
case, LESS-Net demonstrates its superior sensitivity by accurately
segmenting a subtle, point-like bleeding vessel that the baseline
U-Net++ fails to detect. This highlights our model’s strength in
capturing fine-grained details and generating clearer boundaries
with fewer false positives. In contrast, we also present a challenging
failure case involving an image with extremely heavy bleeding
and severe reflections. In this scenario, LESS-Net struggles to
completely isolate the lesion, a difficulty shared by the baseline
model. Our analysis suggests this failure is attributable to the region
being almost entirely obscured by visual artifacts, a condition that
poses a significant challenge even for human clinical interpretation.
By examining such cases side-by-side, we not only underscore
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TABLE 4 Comparison of model efficiency and accuracy at 50% labeling ratio.

10.3389/fphys.2025.1644589

Model ‘ mloU (%) Parameters (M) ’ GFLOPs F1-Score (%) ECE (%) HD95 (mm)
U-Net 71.41 13.395 248.986 83.30 35 10.0
U-Net++ 59.83 9.160 279.244 74.87 4.0 12.0
TransU-Net 65.48 66.815 260.819 79.15 3.8 10.9
Deeplabv3+ 66.23 54.714 167.000 79.70 3.7 10.8
Mean-Teacher 61.25 51.150 308.040 75.97 4.2 11.7
Co-training 66.21 25.600 388.650 79.68 3.7 10.8
Cross Pseudo 69.26 81.050 346.750 81.84 3.6 10.3
Ours (LESS-Net) 82.51 11.491 146.165 90.42 2.5 8.7
Bold indicates the best performance in each column.
mloU 96.94
100 A . 94.72
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FIGURE 7
Histogram of model performance on the Nasal Bleeding dataset, comparing test results across four segmentation models.

the advantages of LESS-Net but also transparently acknowledge
its current limitations. This analysis of failure modes provides
valuable insights, revealing that extreme visual obstructions remain
a primary hurdle. This balanced qualitative comparison validates
our models capabilities while guiding concrete directions for
future research and improvement. Representative qualitative success
cases are shown in Table 6. Typical failure cases are presented
in Table 7.
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5 Discussion

Semi-supervised learning has been widely applied in medical
image analysis, particularly in situations where labeled data are
limited or costly to obtain. However, its application remains
relatively underexplored in the context of nasal endoscopic epistaxis.
To address this gap, we propose LESS-Net, a segmentation model
designed to detect malformed blood vessels and accurately localize
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TABLE 5 Vertical-format ablation study on LESS-Net using different module combinations (M: MobileViT, C: Channel Attention, T: Transformer fusion).

e oo o

mloU (5%) 54.45 53.32 46.71 47.15
mloU (25%) 56.86 70.42 57.77 59.19
mloU (50%) 57.46 77.37 55.09 65.90
Dice (5%) 24.57 19.76 1.82 2.60
Dice (25%) 25.84 57.14 29.93 35.81
Dice (50%) 25.47 67.28 28.02 43.07
mRecall (5%) 68.68 56.98 50.49 50.92
mRecall (25%) 62.08 75.12 63.05 69.82
mRecall (50%) 63.44 82.73 58.91 77.36
Accuracy (5%) 87.37 93.06 92.30 92.27
Accuracy (25%) 92.63 95.34 92.81 91.05
Accuracy (50%) 92.39 96.40 93.16 93.00

Bold indicates the best performance in each column.

Original Image

Ground True

LESS-NET

FIGURE 8

66.47 65.06 55.60 67.85
73.34 71.56 54.41 73.24
78.17 77.38 58.74 82.51
47.68 49.96 21.90 52.98
61.44 59.38 24.05 61.42
68.75 62.61 30.30 75.62
79.98 77.12 61.67 81.45
73.34 84.78 58.34 81.31
84.78 82.65 64.74 92.12
92.74 92.62 91.80 93.13
95.52 94.21 92.97 95.32
96.40 96.41 92.71 96.94

Visualization of segmentation predictions produced by LESS-Net. From left to right: original image, ground truth label, and predicted mask under

various label ratios.

bleeding areas under nasal endoscopy. The model achieves excellent
results across multiple metrics. Specifically, with 50% labeled
data, LESS-Net reached scores of 82.51% mloU, 75.62% Dice,
92.12% mRecall, 96.94% Accuracy, 11.491 Parameters, and 146.165
GFLOPS. Furthermore, it also demonstrates strong performance
with just 5% and 25% labeled data.

Frontiers in Physiology 12

Despite these promising outcomes, our approach has some
First, there
performance enhancement. Second, medical image data often

potential limitations. is still room for further
come from diverse devices and imaging techniques, leading
to domain bias. These variations may affect the model’s

generalizability in practical applications.
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In future work, we will further refine our algorithm, taking
into account hardware constraints and real-time processing
requirements. We aim to enhance the model’s domain adaptability
and ensure that it can be reliably deployed in real-world
clinical systems.

6 Conclusion

To address the challenge of accurately localizing bleeding
regions and abnormal blood vessels under nasal endoscopy, we
propose LESS-Net, a semi-supervised segmentation model based on
consistency regularization. The goal is to enhance both diagnostic
efficiency and accuracy in clinical settings. First, we combine
consistency regularization with contrastive learning, leveraging
the differences between non-augmented, weakly augmented,
and strongly augmented versions of the same image to improve
robustness and generalization. Second, we replace the original
U-Net backbone with MobileViT, a lightweight architecture
that better captures contextual semantics and improves feature
representation. Furthermore, to overcome the limitations of U-
Net’s skip connections—namely, their limited ability to capture
cross-layer semantics—we incorporate a multi-scale feature fusion
module with a channel attention mechanism, enabling effective
integration of both global and local information. The impact of each
component is validated through ablation studies, confirming their
individual and combined contributions to overall performance.

In comparative experiments, LESS-Net trained with only 50%
labeled data outperforms all fully supervised models trained
on 100% labeled data, demonstrating its strong segmentation
capability. These findings underscore the practical potential of LESS-
Net in nasal endoscopic epistaxis localization tasks, particularly
in reducing the risk of complications caused by inexperienced
or improperly performed clinical procedures. Moreover, our
results validate the efficacy of the proposed semi-supervised
framework in alleviating challenges associated with small-scale
datasets and annotation scarcity. This study offers a valuable
reference for the application of semi-supervised learning to
other medical image segmentation tasks. In future work, we will
continue to improve the performance and efficiency of medical
image analysis through deep learning and facilitate deployment
in real-world clinical environments to advance intelligent
healthcare systems.
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