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Research physiologists use theoretical models to test new empirical 
relationships between physiological variables and psycho-physiological 
outcomes and compare observed outcomes with theoretical predictions to 
support or refute models. Models, while valuable, often focus on a limited 
perspective as part of a larger reality. In understanding Warfighter health, a 
more holistic perspective within a model is needed since this population is 
exposed to a high degree of physical, cognitive, and emotional demands/loads 
during training throughout a career. Focusing on the physical performance 
aspects of occupational exposures is important; however, this neglects 
imperative interrelationships between the psychological and musculoskeletal 
domains of health, which must be quantified for early in-field prevention 
of injury, underperformance, or psychological harm. Chronic duration of 
the physiological stress response may disrupt adaptive mechanisms and 
result in allostatic load, characterized as a maladaptive biological process by 
which physiological stability (‘allostasis’) fails owing to repeated and chronic 
stress exposure, which can negatively affect physical and cognitive function. 
It may also increase vulnerability to atypical reductions in occupational 
physical performance and psychological and musculoskeletal health. The 
purpose of this review was to (i) summarize empirical research of atypical, 
negative consequences of military training on physical performance and 
psychological and musculoskeletal health (ii); reconsider the underlying 
biological process rendering maladaptive outcomes observed during training 
by leveraging a ‘stress perspective’ wherein military training-related stressors 
perturb stress systems and lead to allostatic load, which may serve as a 
mechanism by which maladaptation occurs; (iii) summarize the impact 
of allostatic load quantified by the Allostatic Load Index (ALI) on physical 
performance, psychological wellbeing, and musculoskeletal health; and (iv) 
propose the use of valid and reliable commercially-available wearable devices 
as tools to measure allostatic load by collecting longitudinal cardiometabolic 
and neurobehavioral (sleep) data during training and determining verifiable 
signals associated with ALI and maladaptive outcomes. Allostatic load is 
an evolving model that may be suited to understand the long-term health 
effects of military training-related stress. There is opportunity to improve our 
understanding of measurement tools involving wearables to establishing the
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relationship between allostatic load and long-term health outcomes in military 
personnel.
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psychological distress 

1 Introduction

Warfighters are characterized as military service members 
directly engaged in combat-related roles and/or military operations 
(Nindl et al., 2017). In the United States (US), Warfighter readiness, 
lethality, and resilience remain a continued priority in the US 
Armed Forces as evidenced by the enacted “Military Readiness 
and Injury Prevention Act of 2019” (S.1860) (Moran and Smith, 
2019), the Holistic Health and Fitness (H2F) Initiative of 2020 
(U.S. Army Center for Initial Military Training, 2023), the Brandon 
Act of 2023 to advance mental health supportive programs 
(Military Health System, 2023), and the Defense Health Agency’s 
6-year advancement plan (2021–2027) to leverage fitness wearable 
devices for measuring and promoting readiness (Cisneros, 2023). 
Together, such initiatives may define the optimal Warfighter as one 
who is healthy enough to operate on short notice with or without 
appropriate recovery, resilient enough to overcome environmental, 
internal (biogenic, physiological), and external (mechanical, social) 
stressors while maintaining occupational role performance, and 
robust against the occurrence of musculoskeletal injury (MSKI) 
(Moran and Smith, 2019; U.S. Army Center for Initial Military 
Training, 2023; Military Health System, 2023; Cisneros, 2023).

Pertinent to the operational success of the Warfighter is 
the execution and completion of military training courses to 
learn and excel in physical, academic, and tactical skills for 
deployment, accrue individual military rank, and extend one’s 
military career (Drain et al., 2015; Caspar et al., 2020; Bartlett et al., 
2015). Warfighters spend considerable amounts of time each year 
enrolled in such courses, ranging between eight and 12 weeks for 
the majority of courses (Bulmer et al., 2022a; Alemany et al., 
2008; Henning et al., 2014; Harman et al., 2008), with specific 
curricula ranging four to 6-weeks in duration (Edgar et al., 
2021). Although their curriculum aims to enhance physical and 
psychological readiness for deployment (Flanagan et al., 2012), 
empirical research over 3 decades pinpoints the atypical negative 
effects of training, including MSKIs (Jones et al., 2010), worsened 
physical performance (Burley et al., 2018) and lower psychological 
wellbeing (Bulmer et al., 2022a). Together, these effects contribute 
to attrition owing to deterred medical or psychological health 
(Tait et al., 2022; Forse et al., 2024) and financial burden on 
healthcare systems (Dijksma et al., 2020).

Prevention initiatives within the US Armed Forces that aimed 
to tackle such negative effects observed during training have 
implemented deductive approaches wherein accrued findings 
from national databases of military health records result in 
advanced programs to address prevention, early identification, 
and management of negative effects (Cooper et al., 2024). Such 
programs also aimed to rescue financial security in the military 
domain (Cooper et al., 2024). Previous research demonstrated 
beneficial results of programs targeting musculoskeletal (Wardle 

and Greeves, 2017), physical fitness (Burley et al., 2020), 
and psychological health (Adler et al., 2015) when employed 
independently. However, although holistic health programs, such 
as the H2F Initiative, which aims to implement preventive care 
for soldiers due to increasing sleep and mental health concerns, 
and MSKI rates (Culley and DaLomba, 2025), have been a 
mainstay within US brigades since 2020, few interventions have 
assessed its effectiveness on musculoskeletal, physical fitness, 
and psychological health (Cooper et al., 2024). A 2025 study 
observed an increase in awareness of H2F in soldiers without 
assessing its effectiveness on targeted outcomes (Culley and 
DaLomba, 2025). Hence, as opposed to employing a deductive 
mechanism that relies on a reactive technique that leads to 
actionable programs, implementing an inductive mechanism by 
reconsidering the underlying biological processes that may render 
negative outcomes, such as allostatic load (McEwen, 1993), may 
improve our understanding of their development and advance
preventive means.

Allostatic load is a theoretical biological framework that outlines 
a maladaptive biological process wherein physiological stability, 
known as allostasis (Sterling, 1988) (Figure 1), characterized as the 
constant dynamism of physiological activity of biological systems 
that appropriately responds to stressors to maintain homeostasis, 
fails owing to dysregulated primary mediator activity from chronic 
stress exposure and reflects the cumulative physiological burden 
(McEwen BS., 1998). Allostatic load is a stress regulation model 
that describes how the ‘cost’ of adaptation to chronic stress 
exposure may result in multi-system dysregulation (Sterling, 1988) 
(Figure 2A). This model is reflected by the presence of primary 
outcomes or effects, characterized as the degradation of protective 
mechanisms that mediate physiological stress responses (i.e., 
desensitization of glucocorticoid receptors) and secondary outcomes
or effects (Guidi et al., 2020), characterized as consequential 
physiological responses from primary outcomes reflected by 
heightened cardiometabolic and altered neurobehavioral (i.e., 
sleep) health (McEwen, 2006; Logan and Barksdale, 2008; 
Feigel et al., 2024a), as well as adverse behavioral responses, 
such as worsened physical performance (Germano et al., 2023), 
sleep quality (Christensen et al., 2022), self-appraised resilience 
(Felix et al., 2023), and perceived stress appraisal (McEwen, 2007). 
Tertiary outcomes emerge from secondary outcomes, such as pain 
syndromes, musculoskeletal disorders, and illnesses (Feigel et al., 
2024a; Beckie et al., 2016; Parker et al., 2022) (Figure 2A). Taken 
together, this model highlights the influence of the environment, 
individual variation, and brain-body interactions to serve as a 
process by which chronic stress may result in secondary (i.e., 
poor fitness) and tertiary outcomes (i.e., MSKI) during training 
(McEwen BS., 1998; Feigel et al., 2024a).

Allostatic load is measured by its traditional operationalization, 
the Allostatic Load Index (ALI) (Figure 2B), which comprises 
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FIGURE 1
The allostasis model illustrates the constant dynamism of physiological activity of stress-related systems, including activity from the 
hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) systems, that serve to appropriately respond to physical, mental or 
environmental stressors in order to adapt to the physical, mental or environmental demands in a one-to-one ratio. Stress or anticipation of a stressor 
activates a physiological response to which leads to multi-system (i.e., immune, cardiovascular) responses. The physiological response is mediated and 
influenced by individual prediction of the stressor, one’s past experience or behavior, and individual factors (i.e., age), resulting in adaptation. With each 
increase in demand requires a met response of the body, which always stays in dynamic flux (McEwen, 1993).

a count-based composite score representing the number of 
biomarkers affected by chronic psycho-physiological stress across 
neuroendocrine, autonomic, and immune systems (Juster et al., 
2010; Seeman et al., 1997). The ALI score is determined by the 
number of biomarkers collected with higher scores indicating 
higher allostatic load (McLoughlin et al., 2020; Carbone et al., 
2022) (Figure 2B). The use of the ALI to quantify allostatic 
load has grown considerably (Juster et al., 2010; Seeman et al., 
1997; Geronimus et al., 2006). This has been shown in 
epidemiological studies (Carbone, 2021; Andrzejak et al., 2023; 
Bruun-Rasmussen et al., 2024), which have associated ALI with 
several negative health outcomes, including subclinical risk 
factors for cardiovascular disease (Logan and Barksdale, 2008), 
heightened morbidity and mortality rates (Parker et al., 2022; 
Bruun-Rasmussen et al., 2024), accelerated mechanisms of aging 
(Seeman et al., 1997), psychological disorders (Beckie et al., 
2016; Berger et al., 2019; Berger et al., 2018), physical locomotor 
dysfunction and musculoskeletal disorders (Germano et al., 2023), 
reduced muscular strength and postural balance (Germano et al., 
2023; Hansen et al., 2016), and worsened psychological wellbeing, 
such as symptoms of anxiety (Gou et al., 2025; D’Alessio et al., 
2020) and depression (Gou et al., 2025) and lower resilience 
(Felix et al., 2023), sleep quality (Christensen et al., 2022), 
and perceived stress (Guidi et al., 2020; Beckie et al., 2016; 
Juster et al., 2010; Geronimus et al., 2006).

Recent work from our group observed an increased ALI 
score following a 10-week military training course in both sexes 
(males: +2 ALI (5 out of 8); females: +1 ALI (4 out of 8)), and 
observed an association with worsened physical performance to 
support this framework as a useful model outlining a biological 
process associated with maladaptive training-related outcomes 
(Feigel et al., 2025a). Since the origination of the ALI in 1997 
(Seeman et al., 1997), the number of biomarkers and algorithms 
used for the ALI has grown (McLoughlin et al., 2020; Carbone et al., 
2022). However, this method has limitations for longitudinal 
study designs (Feigel et al., 2025a; Magtibay and Umapathy, 

2023), including obtaining several biomarkers multiple times over 
a study duration, which may render the ALI a challenging 
method for military training environments (Feigel et al., 2025a). 
Therefore, as an alternative approach, recent studies have begun 
to employ non-traditional, commercial wearable-based methods 
for its assessment (Magtibay and Umapathy, 2023; Corrigan et al., 
2021; Corrigan et al., 2023) (Figure 2C). Wearable-based methods 
may be a promising approach for allostatic load assessment owing 
to devices’ noninvasive wear and their ability to capture high-
resolution physiological time-series data from multiple sensors 
(Figure 2C). Importantly, such tools may reveal digital signatures 
and serve as a proxy measures of the ALI (Magtibay and Umapathy, 
2023). However, empirical research on this phenomenon remains 
unexplored. Moreover, although the ALI has been examined in 
military populations (Feigel et al., 2025a), limitations for wearable-
based methods, such as their methodological variability and data 
quality, should be considered for its feasibility for employment 
(Feigel et al., 2024a; Magtibay and Umapathy, 2023).

The purpose of this review is to (i) summarize the empirical 
research of atypical, negative consequences of military training 
on physical performance and psychological and musculoskeletal 
health (ii); reconsider the underlying biological process rendering 
maladaptive outcomes commonly observed during training by 
leveraging a ‘stress perspective’ where military training-related 
stressors, such as energy restriction, physical overtraining, 
cognitive distress, and sleep deprivation, perturb stress systems 
and lead to allostatic load, which may serve as a mechanism 
of training-related maladaptation; (iii) summarize the empirical 
research of allostatic load quantified by the ALI on physical 
performance, psychological wellbeing, and musculoskeletal health; 
and (iv) propose the use of valid and reliable commercial 
wearable devices as tools to measure allostatic load by collecting 
longitudinal cardiometabolic and neurobehavioral data during 
training and determining verifiable signals associated with 
ALI and maladaptive outcomes. Such findings may reveal 
a ‘digital phenotype’ of allostatic load for in-field detection 
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FIGURE 2
Letter (A): The Allostatic Load model depicts how chronic or repeated stress exposure disrupts allostasis, leading to physiological dysregulation, 
characterized as an inability to adapt to the demands, which leads to negative health outcomes. Key elements of this model include primary outcomes, 
including degradation of protective adaptive mechanisms from the stress response driven by negative feedback loops, secondary outcomes, including 
the downstream physiological effects of primary outcomes, such as elevated cardiometabolic and altered neurobehavioral activity, and behavioral 
responses, such as worsened fitness and psychological well-being. Tertiary outcomes are characterized as the maladaptive consequences of
secondary outcomes, including musculoskeletal and psychological disorders and illnesses. Allostatic load is deemed experienced when chronic stress 
is met with measurable secondary or tertiary outcomes. Unlike allostasis, which shows a one-to-one response to demand ratio, the increased demands 
(y-axis) eventually leads to primary outcomes, which shifts the response (x-axis) to the left under heightened demands. This leads to maladaptive 
outcomes, thus resulting in Allostatic Load. Letter (B): This model can be measured using traditional, biomarker-based methods. Biomarker-based 
methods require multi-system biomarker data from stress systems collected by a medium and summarized into quartiles. The quartiles can be used as 
cut-off thresholds to compute the Allostatic Load Index, that is, the number of biomarkers falling within at-risk quartiles commonly associated with 
stress pathophysiology. A higher index value is an indicator of greater allostatic load being experienced. Letter (C): This model may also be measured 
using non-traditional, wearable-based methods, which may be particularly suited for military training environments. Signal features, including 
photoplethysmography (PPG) and triaxial accelerometry, can be used to measure physiological responses to training that may be associated with 
secondary and tertiary outcomes. Such associations may reveal a digital phenotype of allostatic load (Figure 4), however, this remains theoretical.

and introduce a field-expedient method to identify personnel 
at-risk for maladaptive outcomes that occur during military 
training courses. 

2 Musculoskeletal, physical 
performance and psychological 
maladaptation to military training

In the US Armed Forces, across all branches (Army, Navy, 
Air Force, and Marines), ∼5% of all hospitalizations have been 
attributed to MSKIs, with ∼90% classified as ‘non-combat’ MSKIs 
(Hauret et al., 2010). ‘Non-combat’ MSKIs are characterized as 
those MSKIs that occur not from ballistic weaponry, improvised 
explosive devices (IED), parachuting, or vehicular accidents (i.e., 
helicopter crashes), and remain the leading cause of outpatient 
medical care in the US Army of active duty personnel, with 

two million encounters each year (Molloy et al., 2020a). ‘Non-
combat’ designated MSKIs of the upper and lower body regions 
account for 80% of all observed MSKIs (Molloy et al., 2020a; 
Molloy et al., 2020b), 50%–75% of those sustained in the lower 
body, including lumbar/sacral spine, pelvis, and lower extremity, 
MSKIs (Jones et al., 2010; Hauschild et al., 2018; Lovalekar et al., 
2018). Notably, the hip, ankle, and foot account for 14%, 12%, 
and 12% of all lower body MSKIs, respectively (Hauschild et al., 
2018). Importantly, ∼60% of limited duty days and 65% of non-
deployable Warfighters have been attributed to non-combat MSKIs 
(Flanagan et al., 2012; Jones et al., 2010). The majority (∼85%) 
(Hauschild et al., 2018) of MSKIs sustained are categorized as 
‘mechanical’ owing to external shear forces induced upon the 
musculoskeletal system, with ∼75% categorized as ‘overuse’ owing 
to the cumulative microtrauma (i.e., repetitive stress) and 10% as 
non-contact acute trauma (non-ballistic) MSKIs (Jones et al., 2010; 
Hauschild et al., 2018; Jensen et al., 2019).
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Overuse MSKIs observed during military training range in type 
from bone stress fractures (Molloy et al., 2020a; Molloy et al., 2020b; 
Koltun et al., 2022), inflammation and pain (Hauret et al., 2010), 
sprains and strains (Lovalekar et al., 2018; Lovalekar et al., 2023; 
Lovalekar et al., 2021), and even soft tissue degenerative diseases, 
such as osteoarthritis (Showery et al., 2016; Knapik et al., 2018). 
Lovalekar et al. (2023) (Lovalekar et al., 2023) observed a cumulative 
MSKI incidence of 39.7% in women and 23.1% in men among 736 
US Marine candidates (n = 131 women), with ∼65% categorized as 
overuse MSKIs (Lovalekar et al., 2023). Overuse MSKIs have been 
suggested to occur from the rigorous and physically demanding 
training involved (Allison et al., 2017). Additionally, overuse MSKI 
is an important cause of attrition, disability, and loss of military 
readiness (Songer and LaPorte, 2000) and high financial cost 
(Lovalekar et al., 2018). A 2018 study assessing the cost of such 
MSKIs among Air Force Special Tactics Operators showed that the 
total lifetime cost sustained by them during only a 1-year period was 
US $1.2 million (Lovalekar et al., 2018). Notably, a 2000 retrospective 
cohort study describing the MSKI occurrence during a 6-week 
United States Marine Corps (USMC) Officer Candidates School 
(OCS) course among 480 candidates (n = 30 women) observed 
a cumulative incidence (one or more MSKIs) of 60.7% (women: 
80.0%; men: 59.5%) with overuse MSKIs making up 65.2% of all 
encounters in men, and 70.3% of encounters in women. Together, 
overuse MSKIs were responsible for 0.62 and 1.67 lost training 
days per man and woman, respectively (Piantanida et al., 2000). 
However, a 2023 retrospective cohort study of OCS candidates 
undergoing this course reported a lower cumulative injury incidence 
of 39.7% in women (n = 52) and 23.1% (n = 140) in men. 
Although these results show improvement in overuse MSKI rates, 
further analysis reveals that such MSKIs remained the predominant 
MSKI type in both sexes (women: 66.2%; men: 65.4%), suggesting 
that they remain a medical challenge as they were 2 decades ago
(Lovalekar et al., 2023).

Although overuse MSKIs remain a prevalent challenge in 
contemporary training courses, recent evidence also observes 
atypical reductions in physical performance following training 
in both sexes (Brock and Legg, 1997; Booth et al., 2006; 
Tanskanen et al., 2011; Givens et al., 2023a). Physical fitness is 
emphasized as a critical element for advancement early in military 
servicemember careers (Agostinelli et al., 2022) that predict the 
success of military job-task roles (Bartlett et al., 2015; East et al., 
2017). This is due to the physically demanding and commonly 
recurring gender-neutral tasks soldiers are required to perform in 
ground close combat roles (Nindl et al., 2015; Szivak and Kraemer, 
2015). Additionally, the uplift of bans for women preventing 
enrollment in ground close combat in nations of the North 
Atlantic Treaty Organization (NATO) has positioned research on 
the physiological effects of physical training on male and female 
servicemembers to the forefront (Fitriani and Matthews, 2016; 
Sterczala et al., 2023; Feigel et al., 2024b). Recent research has shown 
that lowered fitness during training may pose problems for role 
performance (Alemany et al., 2008; Allison et al., 2017), and risk of 
detraining and lethality during deployment (Pihlainen et al., 2023). 
Decreases of 15%–20% in aerobic capacity and 10% in maximal 
muscular strength have been observed in both sexes following 
training (Häkkinen et al., 1985). Burley et al. found that 15% and 
14% of recruits showed a significant decline (≥5%) in maximal 

muscular strength assessed by a 1 repetition-maximum box lift 
and local muscular endurance assessed by a maximum number of 
pushups achieved in 2-min (Burley et al., 2018). Further analysis 
from this same investigation observed that a total of 7% and 4% of 
the sample reduced in estimated VO2peak and 3.2 km load carriage 
performance (≥5%), respectively (Burley et al., 2018). Similarly, 
Givens et al. observed no significant improvement in upper body 
muscular endurance (count: 6 ± 1 vs. 6 ± 1, p > 0.05) or aerobic 
capacity (25:14 ± 0:15 vs. 24:51 ± 0:15, p > 0.05) following a 10-
week course in female US Marines (Givens et al., 2023a). Although 
these results also depend upon training length and specificity 
(Coge et al., 2024), fatigue accumulation (Heilbronn et al., 2023), 
and motivation (Myllylä et al., 2023), such results demonstrate a 
divergent performance response to training in cohorts undergoing 
identical physical training curricula.

In addition to observed atypical reductions in physical 
performance, previous investigations have observed individuals 
(10%–25%) (Robinson et al., 2009) demonstrating lower levels 
of psychological wellbeing during training that can contribute to 
volitional attrition rates up to 25.8% (Forse et al., 2024). Lower 
psychological wellbeing during military training (Forse et al., 2024; 
Beckie et al., 2016; Bulmer et al., 2022b; McFadden et al., 2024a) 
may be characterized as the independent or combined experience of 
one or more of the following: (i) lower self-appraised psychological 
resilience (Forse et al., 2024; Nindl et al., 2018; McFadden et al., 
2024b), a dampened degree to which an individual copes in 
stressful situations or during times of adversity (Connor and 
Davidson, 2003), (ii) higher perceived stress appraisal, a heightened 
degree of self-reported perception of situations being particularly 
stressful (Cohen et al., 1983), and (iii) worsened subjective sleep 
difficulty, a higher degree to which individuals feel that they 
struggle to attain a sufficient night of sleep (Bender et al., 2018; 
Kargl et al., 2024). Recent investigations have observed a link 
between the aforementioned symptomatology and risk of readiness 
for deployment (Paxton et al., 2024), and incidence of psychological 
disorders (Beckie et al., 2016), including post-traumatic stress 
disorder (PTSD) (Abouzeid et al., 2012). Active duty personnel 
are likely to worsen symptoms concerning suicidal ideation (OR 
= 1.90, 95% CI = 1.20–2.90) following training compared to 
reservists (Robinson et al., 2009). A retrospective cohort study 
that assessed a battery of psycho-physiological characteristics 
of 1006 OCS candidates (79.5% male) observed that lower self-
appraised resilience was amongst the main predictors of attrition 
(Forse et al., 2024). Although perceived stress has been shown 
to improve cognitive focus and motivation to foster effective 
learning (Ross et al., 2024), chronic, heightened levels of stress 
can dampen cognitive performance (Ross et al., 2024) and risk 
discharge (Taylor et al., 2009). Taylor et al. (2009) (Taylor et al., 2009) 
observed that perceived stress was directly associated with acute 
stress biomarkers, whereas active coping ability was not, suggesting 
that perceived stress plays a fundamental role in the physiological 
stress response (Taylor et al., 2009). Among 202,339 active duty 
enlisted US Air Force trainees, 50% reported sleep difficulties, with 
9% reporting frequent occurrences (“often”, “most of the time”), 
which served as the strongest predictor of attrition. Further analysis 
observed that trainees with frequent sleep difficulties were 2.7 times 
more likely to be discharged (Taylor et al., 2020). 
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3 Role of chronic stress on 
maladaptation to military training: an 
allostatic load perspective

Given that a substantial relative incidence (∼60–65%) of 
overuse MSKIs, physical fitness decrements (∼30%), and worsened 
psychological wellbeing (∼10–25%) occur during military training, 
which may lead to consequences that threaten national security 
(Nindl et al., 2018; Good et al., 2020) and financial wellbeing 
of the US military healthcare system (Dijksma et al., 2020; 
Lovalekar et al., 2018; Pope et al., 1999), it is suggested that 
observed outcomes may be avoidable by the modification of 
risks. However, such risks must be delineated before prevention 
strategies can be implemented. Reductions in physical performance 
and the incidence of overuse MSKIs during training have been 
previously attributed to inadequate and excessive physical training 
stimuli, respectively (Burley et al., 2018), limited post-training 
recovery (Hansen et al., 2021), excessive mechanical loading on 
musculotendinous tissues (Feigel et al., 2023) and nutritional 
deficiencies (Alemany et al., 2008). Reduced psychological 
wellbeing, in turn, has been previously attributed to excessive or 
blunted stress responses (Tait et al., 2022; Taylor et al., 2017), 
introversion, or undesirable personalities (Saxon et al., 2020), 
childhood adversity (Ee et al., 2023), and a lack of previous training 
experience (Barrett et al., 2022). Though such factors have been 
revealed through the use of multi-factorial predictive models and 
their mitigation via individual interventions (Cooper et al., 2024), 
there is a lack of a unified physiological factor associated with such 
outcomes that may serve as the foundation bridging several psycho-
physical outcomes and reduce the analytical burden in identifying 
risk factors.

Owing to an overall 12.5% rise in the recruitment rate of the US 
Armed Forces in the fiscal year of 2024 (US Department of Defense, 
2025), structured military training programming functions to 
enable large masses of individuals to face similar external physical 
and psychological stress exposures, particularly under current 
gender-integrated physical training doctrine (Lovalekar et al., 2023). 
However, previous evidence reports a vast difference in the relative 
physiological response to stress, which may be detrimental to 
personnel experiencing greater stress exposures than their peers 
(Burley et al., 2018; Forse et al., 2024; O’Leary et al., 2018). Given 
research observing individualized maladaptive outcomes during 
training (Burley et al., 2018; Forse et al., 2024; Lovalekar et al., 2023), 
it is important to consider chronic activation of the physiological 
stress response perturbed by military training stressors, 
including energy restriction/deficits, sleep restriction/deprivation, 
physical overtraining, and cognitive distress, that may provoke 
allostatic load as an important contributor. The following 
section reviews the physiological response on neuroendocrine, 
immune, autonomic systems, its response to military training-
related stressors and how these responses contribute to
allostatic load. 

3.1 The physiological stress response

Stress is defined as a constellation of events consisting of an 
external (i.e., environmental, psychosocial, mechanical) or internal 

(i.e., physical, biogenic) stimulus, whether actual or perceived, that 
precipitates a reaction in the brain followed by a physiological 
response nonspecific and specific to the stimulus to maintain 
homeostasis (Selye, 1950; Selye, 1976; Goldstein and Kopin, 2007; 
Nicolaides et al., 2015; Sher et al., 2020). In turn, homeostasis is 
characterized as the physiologic stability between interdependent 
biological systems (Billman, 2020). As such, stress encompasses 
an integrated definition to create a three-pronged construct: 
(i) a stressor (stimulus), (ii) a stress perception (detection and 
interpretation in the brain), and (iii) a stress response involving 
the activation of physiological fight-or-flight and neuroendocrine 
systems that serve as an adaptive mechanism to maintain 
homeostasis (Finnell et al., 2017; Gianaros et al., 2017; McEwen 
and Gianaros, 2011; Cohen et al., 2016; Schneiderman et al., 2005).

The physiological stress response involves the integration 
of different brain regions and neuronal circuits responsible 
for the detection and interpretation of physical, psychological, 
or environmental stressors and the pro-survival and adaptive 
mechanisms that follow (McEwen and Gianaros, 2011; Cohen et al., 
2016). Though diverse stressors engage distinct brain regions for 
processing and interpretation (Gianaros et al., 2017; McEwen 
and Gianaros, 2011), the initiation of the stress response involves 
the activation of the hypothalamic-pituitary-adrenal (HPA) and 
sympathetic-adrenal-medullary (SAM) axes for multi-system (i.e., 
immune, metabolic, cardiovascular) effects (Sher et al., 2020; 
Miller et al., 2007). Common military training stressors, including 
energy deficiency or restriction, physical overtraining, cognitive 
stress, and sleep deprivation/restriction (Figure 3A), have shown 
to activate the HPA axis and release its neuroendocrine factors 
for downstream influence on immune and autonomic activity (see 
Sections 3.2–3.5) by utilizing three primary structures (Figure 3B). 
The three structures that respond to such stressors include the 
paraventricular nucleus of the hypothalamus (PVN), the anterior 
pituitary gland, and the adrenal cortex. The PVN computes and 
integrates neuronal and humoral inputs to activate a specialized 
group of cells that control the level of activation of the HPA axis, 
including the regulation, synthesis, and secretion of corticotropin-
releasing hormone (CRH) into the hypophyseal portal vasculature, 
which serves as a series of veins connecting two venous capillary 
beds for the transporting and exchanging of hormones between 
the hypothalamus and the anterior pituitary gland. The release 
of CRH and its subsequent binding to cognate receptors on 
corticotropes of the anterior pituitary can trigger the release of 
adrenocorticotropic hormone (ACTH) into the general circulation 
to bind to melanocortin-2 receptors on the surface of adrenal 
zona reticularis and the fasciculata cells of the adrenal gland. This 
binding triggers the release of glucocorticoids, including cortisol 
and dehydroepiandrosterone (DHEA), to the circulation (Figure 3B) 
(Nicolaides et al., 2015; Korte et al., 2005).

Cortisol, the primary glucocorticoid in humans (Oyola 
and Handa, 2017), binds to ubiquitous mineralocorticoid and 
glucocorticoid receptors on various body tissues to promote 
appropriate metabolic responses to environmental perturbations, 
including glycogenolysis and mobilization of free fatty acids for 
increased energy availability for expenditure and promote pro- 
and anti-inflammatory cytokine activation (Herman et al., 2012). 
DHEA, the glucocorticoid antagonist, serves to prevent excessive 
systemic inflammation and protects the neurologic machinery 

Frontiers in Physiology 06 frontiersin.org

https://doi.org/10.3389/fphys.2025.1638451
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Feigel et al. 10.3389/fphys.2025.1638451

FIGURE 3
Box A illustrates four common military training-related stressors (a) energy restriction/deficiency (b) physical overexertion (c) cognitive stress (d) sleep 
restriction/deficiency, which are coined the Stressor Pool; Box B illustrates the HPA axis with negative feedback inhibiting CRH release from the 
hypothalamus and ACTH from the anterior pituitary gland. Box C illustrates the first model (Model 1) of HPA axis dysfunction and one mechanism of 
allostatic load wherein biomarker dynamics emulate Selye’s General Adaptation Syndrome model of overstimulated to an under-stimulated system 
(Stage I = Alarm Stage, Stage II = Resistance Stage, Stage III = Exhaustion Stage); CRH = corticotropic releasing hormone; ACTH = adrenocorticotropic 
hormone; DHEA = dehydroepiandrosterone. Box C illustrates the second model of HPA axis dysfunction and mechanism of allostatic load (Model 2) 
where initial hypercortisolism results in reduced glucocorticoid and mineralocorticoid receptor sensitivity on cells of the hypothalamus and anterior 
pituitary that impairs negative feedback and renders CRH and ACTH as growth factors. This results in larger functional masses capable of greater 
binding affinity to maintain the stress response over weeks.

(i.e., glucocorticoid or mineralocorticoid receptors) from damaging 
effects of excess cortisol (Lennartsson et al., 2012; Lennartsson et al., 
2022). Glucocorticoid receptor binding of hormones mediates 
an adaptive, negative feedback response inhibiting further stress 
hormone production at all levels of the HPA axis (McEwen and 
Gianaros, 2011; Herman et al., 2012) (Figure 3B).

In cohesion with the neuroendocrine response to stress, the 
immune system is triggered by the presence of inflammation 
reflected by circulating pro- and anti-inflammatory cytokine 
concentrations that mediate HPA axis activity via receptors in 
tissues associated with the axis (Kargl et al., 2024). Cytokines 
include mediators of the interleukin family (i.e., interleukin-
6), tumor necrosis factor-alpha (TNF-α) (Turnbull and Rivier, 
1995), and c-reactive protein (CRP). CRP, a systemic marker of 
inflammation, is closely linked to HPA activity, meaning that when 
CRP concentrations rise, the HPA axis also tends to activate, which 
can lead to increased cortisol and DHEA production (Sproston 

and Ashworth, 2018). When the immune system is triggered, 
pro-inflammatory cytokines are released, which can concomitantly 
stimulate the HPA axis to produce a bi-directional relationship with 
cortisol and DHEA. Anti-inflammatory cytokines also increase from 
this response as a negative feedback mechanism (i.e., interleukin-
10) to counteract excessive pro-inflammatory effects (i.e., reactive 
oxygen species) (Kargl et al., 2024).

The physiological stress response also involves the activation 
of SAM axis owing to its neuronal synaptic circuitry relying on 
neurotransmitter communication between higher regions of the 
brain to peripheral receptors (Sapolsky et al., 2000). SAM activation 
involves the release of enzymes driven by sympathetic nervous 
system activity, such as salivary α-amylase (sAA), which is triggered 
by the release of norepinephrine and epinephrine and bind to 
β-adrenergic receptors in the salivary glands for its production. 
sAA is a reliable indicator of SAM activity (Nater and Rohleder, 
2009), and has previously been used as a biomarker to assess the 
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SAM response in ambient and military settings (Arhakis et al., 
2013; Habersaat et al., 2018; Ishitobi et al., 2010; Klaus et al., 
2019). The following sections aim to review empirical research of 
randomized controlled trial or observational cohort study designs 
that evaluated the influence of individual stressors commonly 
experienced during military training, including energy restriction 
or deficiency, physical overtraining or exertion, cognitive distress, 
and sleep deprivation or restriction, on the key drivers of allostatic 
load, including activity of the primary mediators of neuroendocrine, 
immune and autonomic systems (McEwen BS., 1998). Studies 
of healthy adults that assessed individual stressors and avoided 
confounding of additional stressors were included. Each summary 
included biomarkers commonly used in allostatic load research 
based on previous reviews (Juster et al., 2010; Carbone et al., 
2022) to be consistent in the reporting of mediators
across studies. 

3.2 Role of energy deficit/restriction on the 
primary mediators of allostatic load

Energy restriction and/or deficits are commonly experienced 
during military training courses, with previous research reporting 
average deficits of 9.7 MJ/day over 8-days of military training 
(Alemany et al., 2008) and deficits ranging between 1000 and 
4000 kcal d-1 over a 61-d US Army training course (Henning et al., 
2014). Energy restriction or deficits during training have been 
attributed to restricted feeding times (Koltun et al., 2023), food 
choices, and periods of practiced energy restriction to simulate 
operations (Friedl et al., 2000). Koltun et al. observed that negative 
eating behaviors, such as energy restriction and deficits, are 
associated with worsened military health outcomes, including 
MSKI risk in both sexes (Koltun et al., 2023). A synopsis of the 
influence of energy deficit or restriction on activity of primary 
mediators of allostatic load in healthy, non-obese individuals can be 
shown in Table 1. From this synopsis, there are two main findings 
from the literature that may be drawn (Alemany et al., 2008; 
Henning et al., 2014; Ruffing et al., 2022; Degoutte et al., 2006; 
Huovinen et al., 2015; Buffenstein et al., 2000; Pasiakos et al., 2011)
(Table 1).

First, it is observed that neuroendocrine, autonomic, and 
immune biomarker concentrations depend on the relative severity 
(i.e., intensity) and duration of the energy restriction or deficit, 
such that the magnitude and length of the deficit propagates 
an inverted “U-shaped” curve where substantial restrictions or 
deficits in severity and/or prolonged duration promote acute 
increases in end-product concentrations followed by dampened 
responses with concentrations falling below baseline (Alemany et al., 
2008; Henning et al., 2014; Ruffing et al., 2022; Degoutte et al., 
2006; Buffenstein et al., 2000; Pasiakos et al., 2011). Energy 
deficits exemplified by active individuals consuming 4 MJ d−1 
(<1000 kcal d−1) less than normal over 1 week (Degoutte et al., 
2006) demonstrated significant increases in ACTH (+∼30%, p < 
0.05), cortisol (+∼20%, p < 0.05) and DHEA (+5%, p < 0.05) 
and reductions in DHEA:Cortisol ratio (−20%, p < 0.001) from 
baseline (Degoutte et al., 2006). Over 2 days of near complete energy 
restriction where healthy individuals consumed less than 10% 
estimated calorie requirements, Pasiakos et al. (2011) (Pasiakos et al., 

2011) observed a significant decrease in circulating cortisol (−70%, 
p < 0.001) and an upregulation of DHEA (+68%, p < 0.001) from 
baseline suggested to be driven by an inverse relationship with 
lower concentrations of leptin (Pasiakos et al., 2011). Likewise, 
Pritchard et al. (1999) (Pritchard et al., 1999) reported an 86% 
increase in dehydroepiandrosterone-sulfate (DHEA-S) following 
a 3-month energy deficit in healthy adult men (Pritchard et al., 
1999). In contrast, however, Alemany et al. (2008) (Alemany et al., 
2008) observed a significant reduction in DHEA concentrations 
following an 9.7 MJ d−1 energy deficit over an 8-day military 
training exercise (Alemany et al., 2008). However, as this training 
included additional stressors, this finding should be interpreted 
with caution.

Similar dose-response relationships are revealed concerning 
autonomic and immune biomarkers in response to energy 
restriction or deprivation (Durguerian et al., 2018; Hennigar et al., 
2021). Among competitive weightlifters, Durgeurian et al. observed 
a significant increase in resting sAA (+364.60%, p < 0.05, Cohen’s 
d = 1.72) following a 6-day energy restricted diet of 8.4 ± 
3.6 MJ d−1 when compared to a control group consuming 15.4 
± 5.0 MJ d−1 (Durguerian et al., 2018). However, after a 4-week 
energy restriction protocol with greater absolute severity (<25% 
of calories from baseline; 1650 ± 911 kcal d−1), Waldman et al. 
found no significant difference in resting sAA concentrations in 
firefighters (Waldman et al., 2020). Although Durgeurian et al. 
showed a conservative energy deficit (∼2007.65 kcal d−1) than 
Waldman et al. (∼1650 kcal d−1), the relative change in Durgeurian 
et al. (−1438 kcal d−1) was more severe than Waldman et al. 
(−400 kcal d−1), which may have contributed to the results (Table 1). 
Further, an acute 2-d energy restriction protocol has shown to evoke 
autonomic nervous system balance toward sympathetic dominance 
(Solianik and Sujeta, 2018), with more chronic energy deficits 
demonstrating a blunting in sympathetic activity measured by heart 
rate variability (Jenkins et al., 2022; Mazurak et al., 2011). During a 
72-h sustained combat and training operations (SUSOPS) in active-
duty personnel, Hennigar et al. observed a −43% energy deficit 
(−2047 kcal d−1) in a restricted diet group (2515 ± 171 kcal d−1) 
compared to an +18% energy deficit in a balanced diet group 
(5437 kcal d−1 ± 377 kcal d−1; p < 0.001). Further analysis, observed 
significant increases following SUSOPS in CRP and IL-6 in both 
groups, with the restricted group showing a 59% greater increase 
in CRP than the balanced group (+2.6 ± 5.3 mg L−1, p < 0.001) 
(Hennigar et al., 2021). However, as the SUSOPS also included 
heavy physical training and sleep restriction (<4 h∙night−1), which 
may confound immune responses (Kargl et al., 2024), these results 
should be interpreted with caution. Over a 2-year energy restriction 
protocol, Trevizol et al. observed a significant reduction in IL-6 
to indicate improvement in inflammation (Trevizol et al., 2019). 
Likewise, a 2020 meta-analysis demonstrated that energy-restricted 
diets reduce CRP concentrations compared to baseline through 
a considerable length of intervention (≥2 months) (Wang et al., 
2020). In contrast, a 2022 systematic review observed an increase in 
circulating inflammatory cytokines in military personnel following 
field training exercises; however, this result may be confounded by 
additional stressors (E Silva et al., 2022).

Second, there is a general consensus that a reduction in body 
mass, as often observed following military training (Friedl et al., 
2000; Nindl et al., 1997; Nindl et al., 2012), may serve as an 
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TABLE 1  Empirical research of randomized controlled trial or observational cohort study designs that evaluated the influence of energy deficiency or 
restriction (independent variable) on primary mediators of allostatic load (dependent variable) in non-obese, healthy populations.

Author Population Methods Outcome

Ruffing et al. (2022) 21 F Recreationally- Active 2 × 24 h blood sampling pre-post 3-mo ExRx 
+ ER (−15%-60% EA, 5 ExRx∙wk-1 70%–80% 

HRmax)

↔C24hrAUC, 
↔CDaytimeAUC,↔Cmean,∗↑CMorningAUC

Ackerman et al. (2013) 21 F AE vs.18 F EE vs. 20 F NE Cross-sectional frequent sampling 
(2300–0700) to assess C (pulse amplitude, 

mass, half-life and AUC) dynamics

AE:∗↑CSerumOvernightAUC
AE:∗↑CSerumOvernightPulseAmp

Loucks et al. (1985) 9 F Balanced Diet vs. 9 F Restricted Diet vs. 
8 F Control Sedentary

Frequent sampling (10-min intervals over 
24 h) to assess C and ACTH dynamics 

following 10 kcal kg-1∙d-1 for 4-d

Restricted Diet: ↔ACTHPulseFreq;
↔CPulseFrequency,

∗
↑C24hUrine

Laughlin and Yen, (1996) 8 F, AA vs. 8 F, EA Trained Cyclists Frequent sampling to assess 24-h dynamics 
of C

AA:∗↑CSerum24hBasal

Alemany et al. (2008) 34 M US MOCs 9.7 MJ d-1 over 8-d ∗↓DHEASerumFreeBasalMean
↔DHEA-SSerumFreeBasalMean

Degoutte et al. (2006) 20 M Judoists ER (-4  MJ d-1;
n = 10) or No ER (n = 10) over 7-d

ER:∗↑ACTHSerumBasalMean
,∗↑CSerumBasalMean,∗↓DHEA-

S/CSerumBasalMean,∗↑DHEA-SSerumBasalMean

Henning et al. (2014) 23 M US Rangers −1000–4000 kcal d-1 over 61-d ↑CSerumBasalMean, ↔DHEASerumBasalMean

Huovinen et al. (2015) 15 M Athletes 4-wk ER (HWR: −750  kcal d-1

w/≥2 g∙kg-1∙d-1 PRO (n = 8 M) or LWR: 
−300  kcal d-1 w/≥2 g∙kg-1∙d-1 PRO

[n = 7 M])

HWR: 
↔CSerumBasalMean,∗↑CHWRSerumBasalMean

Hooper et al. (2017) 9 M EHMC vs. 8 M NE Cross-sectional sample of C dynamics 
between groups (EHMC: 27.2 ± 
12.7 kcal d-1∙FFM-1; NE: 45.4 ± 

18.2 kcal d-1∙FFM-1)

EHMC: ↓CSerumBasalMean

Pasiakos et al. (2011) 12 M, 1 F 48-h ER of <10% est. calorie requirements ∗↑DHEA-SSerumBasalMean,∗↓CSerumBasalMean

Durguerian et al. (2018) 11 M Competitive Weightlifters Diet Group (n = 6; −5% body mass over 6-d; 
8.4 ± 3.6 MJ d-1)

Control Group (n = 5; ±0% body mass over 
6-d; 15.4 ± 5.0 MJ d-1)

Diet Group:∗↑SAASalivaBasalMean, ↔ 
CSalivaBasalMean, ↔ DHEASalivaBasalMean

Waldman et al. (2020) 15 M Firefighters 4-wk ER (−25% of calories from baseline) ↔CSerumBasalMean, ↔CRPSerumBasalMean, 
↔SAASalivaBasalMean

Trevizol et al. (2019) 220 (153 F) Healthy Volunteers 2-y ER (−25% of calories from baseline; n = 
145) or Control (n = 75) from CALERIE 

Trial

ER:∗↓IL-6PlasmaBasalMean

Hennigar et al. (2021) 10 M Active-Duty Military Personnel 72-h SUSOPS w/Restricted Diet 
(−2047 kcal d ± 920 kcal d or −43% ± 9% 

energy deficit; n = 6) or 72-h SUSOPS 
w/Balanced Diet (+689 ± 852 kcal d or +18% 

± 20% energy deficit)

Restricted Diet:∗↑CRPSerumBasalMean
Both Groups:∗↑IL-6PlasmaBasalMean;

∗↑CRPSerumBasalMean

Note. Bolded values in Outcome column demonstrate a significant result (p < 0.05). C = cortisol; DHEA, dehydroepiandrosterone; DHEA-S, dehydroepiandrosterone-sulfate; ACTH, 
adrenocorticotrophic hormone; CRP = c-reactive protein; IL-6, interleukin-6; SAA, salivary α-amylase; F = female; M = male; MOCs, marine officer candidates; AE, amenorrheic exercisers; 
EE, eumenorrheic exercisers; NE, non-exercisers; ER, energy restriction; ED, energy deficit; EHMC, exercise-hypogonadal male condition; SUSOPS, sustained combat and training operations; 
HWR, high-weight-loss group; LWR, low-weight-loss group; PRO, protein; ExRx = exercise training program.

indicator of increased basal HPA activity (Ruffing et al., 2022; 
Schorr and Miller, 2017; Villanueva et al., 1986). Ruffing et al. 
(2022) observed a significant correlation between reduced body 
mass and increased 24-h area-under-the-curve (AUC) cortisol 

concentrations (r = −0.473, p = 0.030), suggesting that cortisol could 
respond to reduced chronic energy stores (Ruffing et al., 2022). 
Additional studies observed increased basal cortisol concentrations 
among females with anorexia nervosa (Schorr and Miller, 2017; 

Frontiers in Physiology 09 frontiersin.org

https://doi.org/10.3389/fphys.2025.1638451
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Feigel et al. 10.3389/fphys.2025.1638451

Misra and Klibanski, 2014) and in exercising females who were 
in a chronic energy deficit (Villanueva et al., 1986). Third, the 
hunger signal ghrelin may play a modulatory role in HPA axis 
activity during energy deficits (Misra et al., 2005). Previous 
studies observed a positive correlation between ghrelin and cortisol 
concentrations in females with anorexia nervosa (r = 0.480, p
= 0.002) (Misra et al., 2005), with military-simulated energy 
restriction observing a negative association between satiety and 
cortisol (r = −0.550, p < 0.05) and DHEA-S concentrations (r = 
−0.620, p < 0.05) (Pasiakos et al., 2011). Hence, the augmented 
HPA activity during energy deficit or restriction appears to 
produce a dose-response relationship associated with deleterious 
changes in body composition and subjective satiety changes. 
Taken together, energy restriction or deprivation may serve as 
a potent driver of the primary mediators of allostatic load
(Feigel et al., 2025a). 

3.3 Role of physical overtraining on 
primary mediators of allostatic load

Physical overtraining–physical training conducted beyond one’s 
finite ability to recover adequately between training sessions and 
supported by reduced physical performance (Pope et al., 2018) 
- is commonly reported during military training (Nindl et al., 
2017; Booth et al., 2006; O’Leary et al., 2018; Chicharro et al., 
1998). Previous research reports that external training loads, 
characterized as the total work performed that contributes to the 
internal training load (Foster et al., 2017; Impellizzeri et al., 2019), 
which is defined as the relative physiologic indicator reflecting 
the psycho-physiological response to external loads (Foster et al., 
2017; Impellizzeri et al., 2019), is often operationalized in military 
training by the total distance covered (O’Leary et al., 2018; 
Jurvelin et al., 2020; Whittle, 2022). Distances range, on average, 
between eight and twelve miles per day during initial training 
courses (Feigel et al., 2024a; Givens et al., 2023a; O’Leary et al., 
2018) (Drain et al., 2015; Pihlainen et al., 2023). As a synopsis 
of the impact of physical overtraining, which may be experienced 
in military courses (Booth et al., 2006; O’Leary et al., 2018; 
Chicharro et al., 1998), on the primary mediators of allostatic load, 
four findings may be drawn (Henning et al., 2014; Roberts et al., 
1993; Slivka et al., 2010; Fry et al., 1993; Volek et al., 2004; Cadegiani 
and Kater, 2017) (Table 2).

First, there is a general consensus that physical overtraining 
perturbs neuroendocrine activity such that it increases cortisol 
and DHEA concentrations as short as 1 week of training up to 
74 days of a heavy physical training program (Roberts et al., 1993; 
Slivka et al., 2010; Volek et al., 2004; Cadegiani and Kater, 2017). 
However, this is not always observed in elite athlete populations 
owing to differences in physical fitness level and training experience 
(Slivka et al., 2010; Fernández-Garcia et al., 2002). Second, there 
are contradictions in results reported by individual variations in the 
stress response (Fry et al., 1993; Fernández-Garcia et al., 2002). For 
instance, the occurrence of hypocortisolism during heavy physical 
training (Fry et al., 1993; Fernández-Garcia et al., 2002) may be 
indicative of overreaching in some individuals wherein cortisol is 
blunted and positive adaptations cease (Armstrong et al., 2021). 
Third, the increase in HPA activity appears to depend on either 

heightened volume or intensity alone, but increased HPA activity 
may also be observed during high-volume, low-intensity training 
alone (Roberts et al., 1993; Hooper et al., 2017; O’Connor et al., 
1989) or periodized high-volume, low-intensity training to low-
volume, high-intensity training (Volek et al., 2004). Fourth, these 
observations appear independent of sex (Szivak et al., 2023a; Szivak 
et al., 2023b). Further, similar to the role of energy restriction 
(Table 1), heavy physical training demonstrates a dose-response 
relationship with increased relative severity or duration inducing 
a rise in neuroendocrine markers followed by a blunting effect 
(Fry et al., 1993; Fernández-Garcia et al., 2002; Bouget et al., 2006). 
However, as mentioned previously, differences in results may be 
attributed to physical fitness level (Slivka et al., 2010; Fernández-
Garcia et al., 2002)

Fifth, physical overtraining has also been shown to alter 
inflammatory cytokine and autonomic biomarker concentrations at 
rest (Table 2). Fry et al. observed significant increases in markers 
of inflammation, including IL-2 (+183%, p < 0.001), following 
a 10-day, twice-daily, high-intensity interval running protocol in 
military personnel (Fry et al., 1993). Similarly, Tibana et al. showed 
significant increases in IL-6 (+99–197%), IL-10 (+14.4–21%) and 
a reduction in IL10:IL-6 ratio (−7.1%–8.9%) after a 2-day high-
intensity functional interval training protocol (Tibana et al., 2018), 
and Tuan et al. observed significant increases in serum TNF-
α (+∼100%, p < 0.05) following a 3-day intervention of 30-
min running sessions at 85% VO2max (Tuan et al., 2008). Previous 
research demonstrated that cytokines, including CRP, increases 
post-exercise (Tsao et al., 2009), with a peak around 24 h post-
exercise (Reichel et al., 2020; Ispirlidis et al., 2008), but does 
not appear intensity-dependent (Tsao et al., 2009). Excessive 
resistance training can augment CRP concentrations in which may 
remain elevated up to 3 weeks (Fatouros et al., 2006). Concerning 
autonomic markers, Collins et al. (2019) (Collins et al., 2019) 
observed significant increases in sAA immediately after and 
24-h post high-intensity exercise intervention in male athletes 
(Collins et al., 2019) and Chiodo et al. (2011) (Chiodo et al., 
2011) observed significant increases following combat fighting 
competitions (Chiodo et al., 2011). Only one study to our 
knowledge investigated the chronic effects of a 10-month heavy 
physical training on sAA and observed a significant reduction 
in athletes indicating parasympathetic dominance and potential 
fatigue (−22%, p < 0.05) (Yasuda, 2025). Although sAA following 
chronic physical training remains largely uninvestigated, previous 
studies may support this finding by observing initial increases in 
sympathetic activity from heart rate variability (Plews et al., 2012) 
with a time-dependent reduction in sympathetic dominance toward 
parasympathetic dominance (Plews et al., 2012; Hynynen et al., 
2006; Uusitalo et al., 1998; Flatt et al., 2017). Together, these data 
suggest physical overtraining may serve as a driver of the mediators 
of allostatic load. 

3.4 Role of cognitive stress on primary 
mediators of allostatic load

Cognitive stress is the heightened perception of stress that 
can occur during military training (Conkright et al., 2022; 
Eddy et al., 2015) owing to physical training (Eddy et al., 
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TABLE 2  Empirical research of randomized controlled trial or observational cohort study designs evaluating the influence of heavy physical training 
(independent variable) on primary mediators of allostatic load (dependent variable) in non-obese, healthy individuals.

Author Population Methods Outcome

Roberts et al. (1993) 5 M Trained Runners 74-d of +100% training volume 
(mileage∙wk-1) from baseline with 
maintained self-reported intensity

∗↑CSerumBasalMean

Slivka et al. (2010) 8 M Trained Cyclists 21-d of Cycling Tour (3,211 km) 
(169 km d-1 ± 4 km d-1) equivalent to 
+418% ± 142% training volume and 
+167.0 W ± 4.0 W (+47% ± 1%) of 

pre-training intensity

↔CSalivaryBasalMean, ↔T/CSalivaryBasalMean

Fry et al. (1993) 28 M Elite Weightlifters 1-wk of high-volume, full-body resistance 
training

∗↓T/CSerumBasalMean,
∗↓CSerumPostExRxMean

Volek et al. (2004) 17 M Resistance-Trained 4-week high volume, periodized full-body 
resistance training (week 1–2: 

high-volume, moderate intensity; week 
3–4: moderate volume, high-intensity)

∗↑CSerumBasalMean

Cadegiani and Kater (2017) 14 OTS Athletes, 25 Healthy Athletes, 12 
Sedentary Controls

4-week high volume resistance training 
(5 days∙wk-1)

∗↑CSerumBasalMean

Fernández-Garcia et al. (2002) 9 M Cyclists 3-wk “Vuelta a Espana” Cycling Tour ∗↓CPlasmaPostBasalMean

O’Connor et al. (1989) 14 F Swimmers 4-wk of progressive high volume aerobic 
training (2,000 yd∙d-1–12,000 years d-1)

∗↑CSalivaBasalMean

Bouget et al. (2006) 12 F Cyclists 4-d of +122% training volume and 
intensity

∗↑CSalivaBasalMean;∗↓DHEASUrineBasalMean
/CSalivaBasalMean

Fry et al. (1994) 5 M Military Personnel of the Special Air 
Services Regiment of Australian Army

10-d twice-daily interval running sessions 
(morning: 15 × 1 min @18–21 km h-1 with 
2 min rest between repetitions; afternoon: 
10 × 1 min @18–21 km h-1 with 1 min rest 

between repetitions)

∗↑IL-2SerumBasalMean

Tibana et al. (2016) 9 M CrossFit Trained 2-d of single ‘Workout of the Day’ ∗↑IL-6SerumBasalMean,
∗↑IL-10SerumBasalMean,

∗↓IL-10:IL-6SerumBasalMean

Tuan et al. (2008) 12 M Trained Runners 3-d of 30 min running exercise @85% 
VO2max

∗↑TNF-αSerumBasalMean

Halson et al. (2003) 8 M Trained Cyclists 2-wk intensified cycling (14 ± 5 h∙wk-1

equal to +100% training volume of 
identical proportions of training intensity 

distribution from baseline)

↔TNF-αPlasmaBasalMean, ↔IL-6PlasmaBasalMean

Yasuda (2025) 21 F National-Level Athletes 10 months of volleyball training and 
competition (2–2.5 h d-1 for 6 days wk-1)

∗↓SAASalivaBasalMean

Chiodo et al. (2011) 16 (6 F) Taekwondo Athletes 1-d of Youth Taekwondo Competition ∗↑CSalivaBasalMean
∗↑SAASalivaBasalMean

Collins et al. (2019) 21 M Team Sport Athletes 1 x Acute High-Intensity Functional 
Interval Training Session

∗↑SAASalivaBasalMean

Note. Bolded values in Outcome are significant (p < 0.05). C = cortisol; DHEA, dehydroepiandrosterone; DHEA-S, dehydroepiandrosterone-sulfate; T/C = testosterone to cortisol ratio; F = 
female; M = male; MOCs, marine officer candidates; AE, amenorrheic; EE, eumenorrheic; ER, energy restriction; ED, energy deficit; IL-2, interleukin-2; IL-10, interleukin-10; TNF-α, 
tumor-necrosis-factor-α; SAA, salivary α-amylase; W = watts; OTS, overtraining syndrome.

2015), negative energy balance (Beckner et al., 2023), sleep 
deprivation (Passi et al., 2022), environmental conditions, and 
decision-making tasks (Conkright et al., 2022; Ben-Avraham et al., 
2022). Newly recruited soldiers to mandatory military service 

face challenging psychological demands on a daily basis (Schei, 
1994; Mažeikienė et al., 2021), including separation from family 
and friends, unpredictable and uncontrollable demands on their 
time, intense routines, and operating in a space laden with laws 
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and hierarchies to contribute to cognitive stress (Boermans et al., 
2013). Together, these factors can negatively affect the mental 
health of soldiers and increase the risk for attrition (Tait et al., 
2022; Pope et al., 1999). Reduced cognitive performance may 
be reflected by cognitive fatigue (Eddy et al., 2015; Main et al., 
2023), which can impact the ability to maintain an alert and 
attentive state and risk poor operational performance (Passi et al., 
2022). Hockey (1997) (Hockey, 1997) observed that fatigue, in low 
controllability and high environmental demand situations, is related 
to HPA and SAM activation owing to direct engagement with an 
acute stressor (i.e., active problem-focused coping) (Hockey, 1997). 
Suarez and Perez found increased HPA activity in urban combat 
training when physical activity remained at a low level (Suárez and 
Pérez, 2013). Further analysis revealed cognitive stress caused by 
uncertainty regarding the location of threats, which led to fatigue 
and impaired post-combat information processing ability (Suárez 
and Pérez, 2013).

Table 3 summarizes a representative set of investigations 
(Henning et al., 2014; Lennartsson et al., 2012; Lennartsson et al., 
2022; Budde et al., 2010; Schoofs and Wolf, 2011; Kudielka et al., 
2004; Salvador et al., 2003) that assessed the influence of 
cognitive stress driven by the performance of cognitive tasks 
under time or duty constraints in occupational, classroom, or 
laboratory settings. Results of these studies observed significant 
increases (Lennartsson et al., 2012; Schoofs and Wolf, 2011; 
Kudielka et al., 2004; Salvador et al., 2003) or no change 
(Henning et al., 2014; Budde et al., 2010) in cortisol, DHEA, DHEA-
S, or ACTH in response to a battery of cognitive assessments, 
including military training-related tasks (Conkright et al., 2022). 
Acute cognitive stress increases HPA activity among both sexes 
(Lennartsson et al., 2012; Schoofs and Wolf, 2011; Kudielka et al., 
2004), whereas chronic cognitive stress can lead to blunted 
HPA activity (Miller et al., 2007). One meta-analysis observed 
a time-dependent HPA activity response with increased time 
since the onset leading to blunted morning and daily cortisol 
concentrations (Miller et al., 2007). However, it should be 
mentioned that Miller et al. observed that cognitive stress responses 
can be modulated by the nature (physical, social, traumatic), 
presence (morning, afternoon), emotional involvement (shame 
vs. loss), and controllability of the stressor (uncontrollable, 
controllable), which may affect neuroendocrine biomarker activity
(Miller et al., 2007).

Considering the influence of cognitive stress on immune 
and autonomic system function (Table 3), there is evidence of 
elevated circulating inflammatory markers owing to recurrent 
daily stressors (Gouin et al., 2012; Vineetha et al., 2014). Among 
a group of 53 chronic caregivers (56 months ±44 months) 
for dementia (≥5 h wk−1), Gouin et al. observed significantly 
higher concentrations of CRP and IL-6 compared to non-
caregiving controls (Gouin et al., 2012). A systematic review on 
the influence of chronic occupational stress (i.e., employment, 
burnout and exhaustion, caregiver stress) identified elevated CRP 
concentrations than control groups (Johnson et al., 2013). However, 
previous research shows varied sAA responses to chronic stress 
(Habersaat et al., 2018; Giessing et al., 2020; Wingenfeld et al., 2010; 
Unno et al., 2013; Wood et al., 2021; Juster et al., 2011) despite 
robust increases during acute stress (Man et al., 2023; Knauft et al., 
2021; Chacko et al., 2022; Teixeira et al., 2015). Individuals with 

chronic stress disorders demonstrate increases (Tanaka et al., 2012; 
Tanaka et al., 2013) or decreases in sAA (Teixeira et al., 2015; 
Wolf et al., 2008) during acute stressor tasks, but dampened basal 
sAA concentrations (Klaus et al., 2019; Wolf et al., 2008). Together, 
these data suggest cognitive stress may also perturb the mediators 
of allostatic load. 

3.5 Role of sleep restriction or deprivation 
on primary mediators of allostatic load

Majority of military training studies observe that soldiers 
achieve less than the nightly recommended sleep duration of 7–8 h 
per night (Givens et al., 2023a; Kargl et al., 2024; Hansen et al., 2021), 
with most studies observing 4–6 h of sleep per night on average 
(Edgar et al., 2021; Givens et al., 2023a; Kargl et al., 2024; Taylor et al., 
2020). Among a representative set of investigations assessing acute 
(1-2 nights) partial (4 h∙night−1) and total (0 h∙night−1) sleep 
deprivation on neuroendocrine function (Table 4), there is a general 
consensus of increased HPA activity across studies (Guyon et al., 
2014; Balbo et al., 2010). Additional studies assessing the influence 
of semi-chronic (4 nights) or chronic (5+ nights) find blunted 
HPA activity owing to “psychological deactivation” or fatigue 
(Åkerstedt et al., 1982) and reduced HPA sensitivity (van Dalfsen 
and Markus, 2018). However, chronic short sleepers (<5 h∙night−1) 
have been shown to have elevated cortisol concentrations compared 
to normal sleepers, suggesting that the downregulation of the HPA 
axis may fail to occur in some individuals (Balbo et al., 2010).

Investigations on the influence of sleep disturbance, defined as 
interruptions during periods of sleep, and deprivation has shown 
to alter immune and autonomic responses (Kargl et al., 2024; 
Irwin et al., 2016). A 2016 systematic review and meta-analysis 
(N = 72 studies) on the association between sleep disturbance, 
sleep duration, and inflammation in adults observed that sleep 
disturbance was associated with higher concentrations of CRP 
(ES 0.12; 95% CI = 0.05–0.19) and IL-6 (ES 0.20; 95% CI = 
0.08–0.31), with shorter sleep duration, but not the extremity of 
short sleep, was associated with higher CRP (ES 0.09; 95% CI = 
0.01–0.17) but not IL-6 (ES 0.03; 95% CI: −0.09–0.14). However, 
neither sleep disturbances nor sleep duration was associated with 
TNF-α (Irwin et al., 2016). Among salivary markers, recent 
literature suggests that sAA may be a cross-species marker of 
sleep deprivation in tactical (i.e., first responder) and military 
populations (Lindsey et al., 2025) and individuals with sleep 
disorders (Thieux et al., 2024). Pajcin et al. observed the influence 
of 2-d TSD (50-h) on sAA and observed a significant diurnal 
profile wherein concentrations increased throughout the morning 
and afternoon (p < 0.001) and steadily declined in the evening 
and early-morning (p < 0.001). These results suggested that sAA 
may be sensitive to the diurnal rhythm for arousal and tracking 
the diurnal drive for alertness (Pajcin et al., 2017) (Table 4). 
However, there does not appear to be a consensus as to the 
direction of sAA with subjective feelings of sleep disturbance 
and repercussions of sleep debt (i.e., sleepiness and cognitive 
performance) (Thieux et al., 2024). 
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TABLE 3  Empirical research of randomized controlled trial or observational cohort study design evaluating the influence of cognitive stress 
(independent variable) on primary mediators of allostatic load (dependent variable) in non-obese, healthy individuals.

Author Population Methods Outcome

Budde et al. (2010) 23 M, 17 F Letter Digital Span and d2-test ↓CSalivaryPostMean

Schoofs and Wolf (2011) 39 M, 44 F TSST or Placebo-TSST M:∗↑CSalivaryPostTSSTMean; 
F:∗↑CSalivaryPostTSSTMean

Kudielka et al. (2004) 102 M and F TSST ∗↑ACTHPlasmaPostMean,∗↑CSalivaryPostMean

Lennartsson et al. (2012) 20 M, 19 F TSST ∗↑ CSerumPostMean;∗↑ ACTHPlasmaPostMean

Lennartsson et al. (2012) 20 M, 19 F TSST ∗↑ DHEASerumPostMean;∗↑ DHEA-SSerumPostMean

Salvador et al. (2003) 17 M Judoists Pre-competition vs. practice salivary C 
dynamics

∗↑ CSalivaryPreMean

Gouin et al. (2012) 55 Caregivers, 77 Controls Cross-sectional blood sample Caregivers:∗↑ CRPSerumBasalMean,
∗↑ 

IL-6SerumBasalMean

Giessing et al. (2020) 1 M Police Officer 3-week frequent saliva sampling (directly after 
waking, 30 min later, 6-h later, before bed) 

during work hours

↔SAASalivaBasalMean

Wingenfeld et al. (2010) 215 (168 F) Nurses 13-h frequent sampling (07:00 h, 11:30 h, 
17:30 h, 20:00 h) on a working day during an 

early shift

M:∗↑SAASalivaBasalMean, F:∗↑SAASalivaBasalMean

Note. Bolded values in Outcome are significant (p < 0.05). C = cortisol; ACTH, adrenocorticotrophic hormone; DHEA, dehydroepiandrosterone; DHEA-S, dehydroepiandrosterone-sulfate; F = 
female; M = male; TSST, trier social stress test; SAA, salivary α-amylase; CRP = c-reactive protein; IL-6, interleukin-6.

TABLE 4  Empirical research selected owing to randomized controlled trial or observational cohort study design evaluating the influence of sleep 
deprivation (independent variable) on primary mediators of allostatic load (dependent variable) in non-obese, healthy individuals.

Author Population Methods Outcome

Blumert et al. (2007) 9 M Weightlifter 1-d x TSD ↔CSerumBasalMean, ↔CSerumPostExRxMean, ↔T/CSerumBasalMean, 
↔T/CSerumPostExRxMean

Guyon et al. (2014) 13 M Adults 2-d x PSD (4 h∙night-1) ∗↑ACTHPlasmaBasalMean
;∗↑CSerumBasalMean, ↔ACTHPlasmaPulseFreqMean

;↔CSerumPulseFreqMean;
∗↑ACTHPlasmaMorningMean;↔CSerumMorningMean

∗↑CSalivaryNightMean;∗↑CSerumNightMean
↔ACTHPlasmaNightMean

Minkel et al. (2014) 14 M, 12 F Adults 1-d TSD (n = 12) vs. Normal (n = 14) ∗↑CSerumBasalMean;∗↑CSerumPostTSSTlMean

Akerstedt et al. (1980) 12 M Adults 2-d TSD ∗↓CPlasmaBasalMean;∗↓DHEA-SPlasmaBasalMean

Pajcin et al. (2017) 12 (5 F) Adults 2-d TSD ∗↓SAASalivaBasalMean

Note. Bolded values in Outcome are significant (p < 0.05). M = male; F = female; TSD, total sleep deprivation; PSD, partial sleep deprivation.

3.6 Mechanism of allostatic load from 
military training-related stressors

Although military training-related stressors do not occur 
in isolation during training (Nindl et al., 2018; Friedl et al., 
2000), and exhibit bi-directional effects, such as sleep 
deprivation affecting subjective feelings of psychological stress 
(Schwarz et al., 2018), the above findings may reveal a 
pattern of the influence of stressors on primary mediators 

of allostatic load by demonstrating acute increases and 
chronic reductions in biomarker concentrations during stress 
(Tables 1–4). Chronic stress can lead to one or more forms 
of HPA axis dysfunction (Figures 3C,D) and alter immune 
and autonomic system function, which may serve as a 
mechanism of allostatic load (Selye, 1950; van Dalfsen and 
Markus, 2018; Karin et al., 2020) as biomarker concentrations 
may fall within ‘at-risk’ bounds to support the computation 
of the ALI (Juster et al., 2010).
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HPA axis dysfunction is characterized as a dynamic 
compensatory response to chronic stress that begins with initial 
hypercortisolism followed by hypocortisolism (Fries et al., 2005) 
or diurnal dysrhythmia (McEwen, 2007). The mechanism of HPA 
dysregulation derives from an evoked HPA axis that engenders an 
over-responsive system (e.g., hypercortisolism) toward an under-
responsive or non-responsive system (e.g., hypocortisolism) (Selye, 
1950). Progression from an over to under-responsive system is 
reflected by one or more forms of HPA axis dysregulation leading 
to allostatic load (McEwen, 2007; Juster et al., 2011) (Figures 3C,D). 
Model 1 is one form that illustrates the dynamics of neuroendocrine 
biomarker responses broken down into three stages when under the 
influence of chronic stress. These three stages illustrate the trajectory 
of biomarker concentrations and emulate Han’s Selye General 
Adaptation Syndrome (GAS) theory (Selye, 1950) (Figure 3C). The 
first stage of biomarker activity is the “Alarm Stage”, described as 
an acute, adaptive response to a stressor. This can also be illustrated 
by the allostasis model (Figure 1), where a response appropriately 
meets a demand observed by increased cortisol, DHEA, and ACTH 
concentrations (Korte et al., 2005). If the stress continues, however, 
the ‘Resistance Stage’ occurs, which is characterized by chronic 
activation of the physiological stress response (“chronic allostasis”) 
as observed by heightened biomarker concentrations. Notably, this 
stage risks degradation of protective negative feedback mechanisms 
(i.e., deterioration of glucocorticoid receptor sensitivity) or primary 
outcomes, as shown in the allostatic load model (Figure 2A). 
Finally, if the stress continues, the “Exhaustion Stage” occurs, 
which is characterized by a reduction in circulating biomarker 
concentrations that can signal allostatic load (Sher et al., 2020). 
Taken together, Model 1 reports that under chronic stress, ACTH 
will drive cortisol production and deplete DHEA production that 
leads to reduced cortisol production toward hypocortisolism in the 
Exhaustion Stage (Stephens and Wand, 2012). Hence, this model 
benefits the prediction of neuroendocrine biomarker trajectories 
and downstream immune and autonomic biomarker trajectories 
to complement the aforementioned results of empirical research 
on common military training-related stressors (Tables 1–4). Hence, 
Model 1 may serve as one mechanism leading to allostatic load 
(McEwen BS., 1998; Sher et al., 2020).

A second mechanism of allostatic load is shown in Model 
2 (Figure 3D). Model 2 purports that HPA dysfunction and the 
downstream effects of immune and autonomic function arise from 
changes in the total functional masses of the HPA hormone-
secreting glands including the adrenal cortex and anterior pituitary 
(Karin et al., 2020). Karin et al. reported that this mechanism 
occurs from an initial hypercortisolism followed by reduced DHEA 
production and glucocorticoid receptor and mineralocorticoid 
receptor sensitivity of the cells in the hypothalamus and anterior 
pituitary that impair the negative feedback loop of the HPA axis 
(Karin et al., 2020). Reduced cell receptor sensitivity with stress 
hormone production may render the hormones of the HPA as 
growth factors for the glands in the axis where excessive secretion 
of CRH can drive pituitary corticotroph cell growth and ACTH 
can drive adrenal gland hypertrophy/hyperplasia to result in larger 
functional masses capable of greater binding affinity to maintain 
the stress response over weeks. Consequently, this form of HPA 
axis dysfunction can lead to a similar over-to-under responsive 
neuroendocrine, immune, and autonomic nervous system activity 

(Henning et al., 2014; Kargl et al., 2024; Karin et al., 2020) 
as observed in response to military training-related stressors 
(Tables 1–4). Hence, Model 2 may serve as a second mechanism 
of allostatic load. Owing to the role of military training-related 
stressors on allostatic load, the next section summarizes the impact 
of allostatic load quantified by ALI on physical performance and 
psychological and musculoskeletal health, in non-obese, healthy 
adults and, where available, military personnel. 

4 Impact of allostatic load on physical 
performance, psychological, and 
musculoskeletal health

4.1 Physical performance

Previous evidence observes that ALI is negatively associated 
with physical performance outcomes assessed by a battery of 
maximal strength and balance assessments (Germano et al., 2023; 
Hansen et al., 2016). Among 1101 healthy volunteers (65–74 years), 
Germano et al. observed ALI was inversely associated with score 
on the Short Physical Performance Battery (SPPB) score (β = 
−0.234, p < 0.001), with indirect effects evidenced between age 
and socioeconomic status (Germano et al., 2023). Similarly, among 
5467 healthy volunteers (48–62 years), Hansen et al. found that 
the ALI mediated the association between education and physical 
performance (chair rise ability, postural balance, sagittal flexibility) 
and muscle strength (jump height, trunk extension, and flexion, 
handgrip strength) and accounted for 2%–30% of the total effect 
among women (Hansen et al., 2016). As a secondary analysis of 
data from the MacArthur Studies of Successful Aging study, Seeman 
et al. observed step-wise reductions in similar physical performance 
outcomes with every 1-unit increase in ALI (Seeman et al., 1997) and 
during a follow-up of 7 years (Seeman et al., 2001). Seeman et al. 
also found the ALI outperformed predicting physical dysfunction 
to a greater degree than its individual sub-components, suggesting 
its benefit of determining risk of physical performance decline 
(Seeman et al., 2001). However, these investigations were conducted 
among older (mid to late-life) adult populations (Germano et al., 
2023; Hansen et al., 2016). Nevertheless, recent research has 
linked high ALI with worsened physical performance in younger 
(<40 years) populations and in military personnel (Feigel et al., 
2025a; Hastings et al., 2022). Feigel et al. observed a significant 
negative association between change (Δ) in ALI from baseline 
and change in physical performance in men from elements of the 
USMC Physical Fitness Test (PFT) (ΔPullups: β = −0.88, R2 = 
0.60, 95% CI: −1.55, −0.21; ΔPush-Pull PFT Score: β = −2.87, R2

= 0.60, 95% CI: 4.99, −0.75; Δ Total PFT Score: β = −3.48, R2 = 
0.58, 95% CI: −5.76, −1.19) to suggest a potential role of chronic 
stress on military physical performance (Feigel et al., 2025a). Data 
from the National Survey of Midlife Development in the United 
States (N = 2055, 26–86 years) demonstrate a negative association 
with ALI and physical function (grip strength: β = −0.11, 95% 
CI: −0.15, −0.07; gait speed: β = −0.20, 95% CI: −0.24, −0.16) 
(Hastings et al., 2022). Although military training studies lack 
use of the ALI, previous research demonstrates an association 
between altered neuroendocrine and autonomic hormone profiles 
following training and worsened physical fitness characteristics, 
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such as muscular power and strength (Szivak et al., 2018), which are 
important attributes for occupational task performance (Feigel et al., 
2024b). Further evidence suggests that increased inflammatory 
cytokine concentrations can hinder muscle protein synthesis of lean 
muscle mass (Miller et al., 2022) and negatively influence upper and 
lower-body muscular strength (Sharma Ghimire et al., 2023). Hence, 
further research of ALI on physical performance in in-training 
personnel is warranted. 

4.2 Psychological wellbeing

Previous epidemiological studies demonstrate a positive 
association between ALI score and symptoms of reduced 
psychological wellbeing in healthy individuals (Guidi et al., 
2020), including anxiety (Gou et al., 2025; D’Alessio et al., 2020), 
depression (Gou et al., 2025; D’Alessio et al., 2020), and perceived 
stress (Guidi et al., 2020; Beckie et al., 2016; Juster et al., 2010; 
Geronimus et al., 2006) and a negative association with resilience 
(Felix et al., 2023), all of which are reported during military training 
(Forse et al., 2024; Bulmer et al., 2022b; Taylor et al., 2009; Guo et al., 
2021). However, cognitive reappraisal was indirectly associated 
with lower ALI, whereas the tendency to use emotion suppression 
was indirectly associated with greater ALI (Ellis et al., 2019). 
Sleep health has been tied to allostatic load from a systematic 
review demonstrating a positive relationship between chronic 
sleep difficulty level and ALI (Christensen et al., 2022). Guidi 
et al. observed poorer objective and subjective sleep quality was 
associated with ALI in four separate investigations (Guidi et al., 
2020). A 2022 systematic review and meta-analysis by Christensen 
et al. observed a significant negative association between sleep 
health, characterized by sleep duration and sleep quality (i.e., 
greater time in restorative sleep stages as compensation) on ALI 
among epidemiological studies. However, it was also reported 
that sleep may be bi-directional where poorer sleep quality may 
contribute to ALI if sleep health is not improved with intervention 
(Christensen et al., 2022). Interestingly, recent work from our group 
observed a significant negative association between Δ in sleeping 
difficulty level and Δ ALI by the end of a 10-week military training 
course in both sexes (ΔSD: β = −1.25 to −0.56, R2 = 0.35 to 0.82, 
p < 0.001–0.046) (Feigel et al., 2025a). Further research into the 
influence of ALI on psychological wellbeing outcomes in military 
training populations is also warranted. 

4.3 Musculoskeletal health

Gallagher and Barbe (2022) examined the role of allostatic load 
on musculoskeletal disorders, characterized as injury, dysfunction, 
or impairment to the muscle, ligament, tendon, or bone, during 
occupational settings (Gallagher and Barbe, 2022). Their findings 
suggested that musculoskeletal disorders, including overuse MSKIs, 
may result from impaired tissue repair mechanisms driven by 
mechanical stress. These impairments, in turn, are influenced 
by underlying inflammatory, autonomic, and neuroendocrine 
dysfunctions associated with allostatic load, which is precipitated 
by chronic psychological and physical stress. Overuse MSKIs 
are comprised of inflammatory and degenerative conditions in 

musculoskeletal tissues involving muscles, tendons, ligaments, and 
peripheral nerves (Edwards, 2018). The authors found that physical 
work risk factors for overuse MSKIs included high force demands, 
repetitive work, adoption of non-neutral postures, and repeated 
heavy lifting, with a combination of high psychosocial work 
demands during work settings (da Costa and Vieira, 2010), which 
are common attributes experienced during military training courses 
(Vaara et al., 2022). Additional psychological risk factors included 
perceived stress at work, psychological job demands, and low job 
control (Bongers et al., 1993; Bongers et al., 1993; Deeney and 
O’Sullivan, 2009). Together, the authors purported that the presence 
of psychological and physical stress may lead to allostatic load and 
overuse MSKI owing to a slower-than-normal healing response 
in the tissue. This may result in faster damage development in 
musculoskeletal tissues and higher overuse MSKI risk (Gallagher 
and Barbe, 2022).

Epidemiological studies demonstrate relationships between ALI 
and musculoskeletal disorders (Guidi et al., 2020; Mori et al., 2014). 
Among 703 healthy men and women (median age: 56), mixed-
effects linear regression controlling for clustering within families 
and adjusted for age, gender, race/ethnicity, body mass index, 
menopausal transition stage, childhood socioeconomic status, adult 
finances, education level, and study center, each standard deviation 
increment in ALI was associated with between 0.10 and 0.11 
standard deviation decrements in lumbar spine bone mineral 
density (all p < 0.05) (Mori et al., 2014). Symptom frequency 
and intensity were associated with higher ALI among chronic 
fatigue syndrome patients compared to controls (Maloney et al., 
2006; Goertzel et al., 2006). Further research on the influence 
of ALI on musculoskeletal health on training personnel is 
warranted (Feigel et al., 2024a). 

5 Future of allostatic load assessment 
in military training research: 
consideration of commercial wearable 
devices for monitoring verified digital 
phenotypes of allostatic load

Owing to the influence of military training-related stress 
on the primary mediators of allostatic load (Table 1–4), and 
empirical research of allostatic load on physical performance and 
psychological and musculoskeletal health, there is a growing support 
for the role of allostatic load on military training-related maladaptive 
outcomes (Feigel et al., 2024a; Feigel et al., 2025a). However, 
further empirical research is warranted in this area to support 
these findings. Therefore, the future of allostatic load monitoring 
in military training research may direct toward two options for its 
measurement: the ALI method (Feigel et al., 2025a) or commercial 
wearable-based methods (Feigel et al., 2024a).

Although the ALI offers the advantages of understanding the 
biological process underpinning cognitive and physical dysfunction 
in response to chronic stress when studied under longitudinal 
study designs, such as using sample-specific biomarker cut-off 
values for increased specificity (Juster et al., 2011), and selecting 
biomarkers relevant to the target population and stress exposure 
(Karlamangla et al., 2002; Mauss and Jarczok, 2021), the ALI 
has limitations (McLoughlin et al., 2020; Carbone et al., 2022; 
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Magtibay and Umapathy, 2023). First, longitudinal tracking of 
ALI requires more than one blood draw or salivary sample 
(Figure 2B), which increases participant burden, risk of missing 
data, and analytical complexity, especially when up to 20 
biomarkers are included (Juster et al., 2010). Second, there 
have been inconsistent ALIs used in the literature comprising 
different biomarkers (Juster et al., 2010) and algorithms for its 
computation to limit replication (Carbone et al., 2022). Hence, 
for occupational populations where conducting repeated ALI 
assessments presents the logistical challenges of obtaining more 
than one blood draw or salivary sample, such as military personnel, 
Magtibay and Umapathy proposed that ubiquitous, commercial 
wearables (Figure 2C) may overcome challenges (Magtibay and 
Umapathy, 2023).

Through continuous monitoring, commercial wearable 
devices use signal features, such as photoplethysmography (PPG) 
and accelerometry, to capture downstream cardiometabolic 
and neurobehavioral responses (i.e., sleep architecture or 
behavior) perturbed by chronic stress (Feigel et al., 2024a; 
Friedl, 2018). This approach has been suggested to complement 
the ALI where combinations of wearable-derived signals may 
define a wearable-derived “digital phenotype” of allostatic load 
(Feigel et al., 2024a; Corrigan et al., 2021). This phenotype may 
be characterized by one or more digital signatures, including 
chronically elevated and variable cardiometabolic activity, reduced 
heart rate variability, and/or altered sleep architecture—such as 
increased time spent in restorative sleep stages—in response 
to chronic occupational stress (Magtibay and Umapathy, 2023) 
(Figure 4). Our group provided empirical support for this 
phenotype identified using continuous monitoring of commercial 
wearable devices in military personnel who experienced tertiary 
outcomes of allostatic load, including overuse MSKI (Feigel et al., 
2024a). Together, these findings, as well as the technological 
advances in sensors, may support commercial wearable devices 
as a promising approach (Figure 2C) to detect downstream 
cardiometabolic and neurobehavioral effects (secondary outcomes; 
Figure 2A) and assess allostatic load in-the-field (Magtibay and 
Umapathy, 2023).

Use of physiological time-series data from continuously worn 
commercial (i.e., wrist-worn, durable, low-burden) wearable 
technology for allostatic load assessment remains understudied 
(Feigel et al., 2024a; Corrigan et al., 2021). Using allostasis and 
allostatic load models as tools for measuring stress responses 
in occupational settings, Magtibay and Umapathy reported 
that low-burden, wrist-worn wearable devices within a robust 
human-machine learning framework could be useful to measure 
digital biomarkers of allostasis, characterized as cardiovascular, 
metabolic, and behavioral responses to everyday life, and use 
those signals to detect physiological characteristics of allostatic 
load, which may take the form of a digital phenotype (Magtibay 
and Umapathy, 2023) (Figure 4). The authors also reported 
signals from wearables, such as PPG, triaxial accelerometry, and 
thermometry, could indicate stress-induced autonomic responses 
activated by HPA and SAM axes (Magtibay and Umapathy, 2023). 
Additionally, data features captured by most commercial wrist-
worn wearables could be used to determine its relationship 
with ALI as an alternative proxy of allostatic load assessment in 
occupational settings (Magtibay and Umapathy, 2023). Software 

FIGURE 4
The digital phenotype of allostatic load may be characterized by one 
or more digital signatures, including chronically elevated and variable 
cardiometabolic activity, blunted heart rate variability, and altered 
neurobehavioral (i.e., sleep health) patterns in response to chronic 
occupational stress. Digital signatures of the phenotype can be 
detected by continuously worn, wrist-worn commercial wearable 
devices when compared to a reference not exposed to chronic 
occupational stress. HR = heart rate, EE = energy expenditure, HRV = 
heart rate variability. Δ = Day-to-Day Change; ↑ = increase from 
normal; ↔ = no change from normal; ↓ = decrease from normal.

algorithms could reveal physiologic responses and behavioral 
tendencies owing to allostatic load, such as altered sleep patterns 
(Christensen et al., 2022). Previous research suggests that wrist-
worn devices may improve participant compliance than waist-worn 
devices (Kim et al., 2019; Wolpern et al., 2019) and promote 
continuous monitoring without obstruction or interference during 
military training (Feigel et al., 2024a; Friedl, 2018; Hinde et al., 
2021). As the use of the ALI increases in military training research 
(Feigel et al., 2025a), the employment of commercial wrist-worn 
wearable devices (Hinde et al., 2021; Feigel et al., 2025b; Friedl 
and Looney, 2023) may provide the opportunity to determine 
verifiable, wearable-derived signals of personnel experiencing 
allostatic load.

However, an important limitation found in the literature when 
using wearables to detect allostatic load (Corrigan et al., 2021; 
Corrigan et al., 2023) is the lack of aligning the signals with the 
formal definition of allostatic load as proposed by McEwen and 
Stellar (McEwen, 1993). Based on the definition, the threshold by 
which allostatic load occurs is not immediately informative with 
only independent variables (i.e., physiological signals of stress). 
However, the distinction when allostatic load is experienced may 
be revealed through the presence of (i) whether maladaptive 
psycho-physiological outcomes (secondary or tertiary outcomes; 
dependent variables) are associated with the signals (McEwen, 
1993; Magtibay and Umapathy, 2023) or (ii) signals are associated 
with ALI (Magtibay and Umapathy, 2023). Allostatic load is a 
biological state where physiological stability fails owing to multi-
system dysregulation and occurs concomitantly with secondary or 
tertiary outcomes (McEwen, 1993). The ALI has been validated 
through the observation of its association with secondary and 
tertiary outcomes (Seeman et al., 1997; Seeman et al., 2001), and 
associated with high ALI scores (i.e., ALI >3 or 4) (Juster et al., 
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2010; McLoughlin et al., 2020). Previous studies reveal the utility 
of commercial wearables in the detection of acute (Chen et al., 
2017; Cho et al., 2019; de Vries et al., 2022; Erickson et al., 2022), 
and chronic occupational stress (O’Leary et al., 2018; Hinde et al., 
2021; Erickson et al., 2022; Wyss et al., 2014). However, there have 
been very few studies that adopted this theory-based ruling to 
use commercial wearables and determine whether allostatic load is 
experienced (Feigel et al., 2024a). There remains a lack of research 
assessing the relation between digital signals and high allostatic load, 
and with secondary or tertiary outcomes (Feigel et al., 2024a). Such 
findings may advance the use of commercial, wrist-worn wearables 
in-the-field for high allostatic load risk detection in military 
personnel. The next section summarizes the empirical research that 
used wearable-based physiological signals for evaluating allostatic 
load detection in the literature thus far (commercial and non-
commercial). 

5.1 Physiological characteristics of 
allostatic load

5.1.1 Chronically elevated and variable heart rate
Among the first studies employing wearable devices to evaluate 

stress system perturbations using allostatic load as a framework, 
Milosevic et al. developed a research methodology to examine the 
real-time multi-modal responses to work stress of fifteen nursing 
volunteers conducting a representative protocol during a workday 
(Milosevic et al., 2013). They monitored physiological parameters 
of beat-to-beat blood pressure, heart rate, heart rate variability, 
respiratory rate, and galvanic skin resistance during a simulated, 
high-fidelity patient simulator (30-min) intervention (tracheostomy 
protocol with and without respiratory distress) through the use of 
garment-worn and electrode-based sensors attached on the chest. 
Repeated-measures analysis of variance evaluated the physiological 
changes before, during, and after the protocol, and revealed a 
significant strain placed on volunteers during the test, owing to 
a significant rise in blood pressure, heart rate, respiratory rate, 
and reduction in heart rate variability, with some participants 
returning to baseline after the test. The authors suggested that this 
response may be characteristic of allostatic load (Milosevic et al., 
2013). However, the ALI, secondary, or tertiary outcomes were not 
assessed, thus hindering the verification of chronically elevated heart 
rate and lower heart rate variability as a digital signatures of allostatic 
load. Recent research from our group, however, observed that 
these digital signatures measured by valid and reliable commercial 
wrist-worn devices, were associated with a tertiary outcome of 
allostatic load including overuse MSKI occurrence (Feigel et al., 
2024a). Although the ALI was not assessed from our group in the 
aforementioned study (Feigel et al., 2024a), this finding may support 
these signals of the digital phenotype (Feigel et al., 2024a) (Figure 4). 
Nevertheless, further research on the relationship between these 
signals and ALI is warranted. 

5.1.2 Chronically elevated and variable energy 
expenditure

Allostasis and allostatic load cost metabolic energy for 
responding and attempting to adapt to environmental and 

physiological perturbations to maintain homeostasis (Bobba-
Alves et al., 2022). Bobba-Alves et al. reported that the transition 
from allostasis to allostatic load can be defined by an energetic 
tradeoff wherein allostasis and stress-related energy costs compete 
with growth, maintenance, and repair mechanisms (Bobba-
Alves et al., 2022). However, empirical research using wearable-
based energy expenditure as a digital signature to determine 
whether allostatic load is experienced in personnel remains 
limited. Givens et al. employed a wrist-worn device for continuous 
physiological monitoring over a 10-week USMC training course 
and observed elevated total daily energy expenditures, on average, 
of 3000 kcal∙day-1 (Givens et al., 2023a). Using the allostatic 
load framework, Feigel et al. observed that male and female 
personnel who sustained an overuse MSKI had chronically elevated 
and variable wrist-worn commercial wearable-derived energy 
expenditure compared to uninjured counterparts, which may help 
verify this digital signature of allostatic load (Feigel et al., 2024a). 
To our knowledge, this was the only investigation that used the 
allostatic load model to evaluate whether wearable-derived energy 
expenditure was associated with a tertiary outcome. Although these 
results may suggest that chronically elevated and variable energy 
expenditures may be digital signatures of the phenotype (Figure 4), 
further research on the relationship between wearable-derived 
energy expenditure and ALI is warranted. 

5.1.3 Altered sleep behavior
Altered sleep behavior is reported as a consequence of 

allostatic load owing to elevated neuroendocrine, inflammatory, 
and autonomic nervous system activity experienced from daytime 
stressors (McEwen, 2006; Christensen et al., 2022; Balbo et al., 
2010). Magtibay and Umapathy report that wearables may capture 
sleep health for allostatic load monitoring (Magtibay and Umapathy, 
2023). Fortunately, previous research supports this claim. Using a 
23-biomarker ALI, Bei et al. assessed the association of ALI and 
wearable-derived sleep health via actigraphy, including bed time, 
rise time, sleep efficiency [ratio of total sleep time to time in bed, 
multiplied by 100 to yield a percentage], total sleep time, sleep onset 
latency, wake-after-sleep-onset, and observed that later average bed 
time (β = 0.15, SE = 0.02, 95% CI: 0.03, 0.26) and shorter average 
total sleep time (β = −0.13, SE = 0.02, 95% CI: −0.24, −0.02) were 
associated with a higher ALI score, and more variable sleep-onset-
latency (β = 0.14, SE = 0.02, 95% CI: 0.02, 0.26) and wake-after-
sleep-onset (β = 0.13, SE = 0.04, 95% CI: 0.01, 0.26) were associated 
with ALI (Bei et al., 2017). Martucci et al. observed no significant 
difference in an 11-biomarker ALI score between patients with 
insomnia confirmed via actigraphy and normal sleepers (insomnia: 
2.5 ± 1 vs. normal: 2.0 ± 1, p = 0.200) (Martucci et al., 2020). 
However, Feigel et al. found that wrist-worn device-derived absolute 
and relative time spent in restorative sleep stages, including deep and 
light stage sleep, was associated with overuse MSKI status during 
military training (Feigel et al., 2024a). Together, these results may 
suggest that shorter sleep time, inconsistent sleep patterns, and 
greater time spent in restorative sleep may serve as signatures of the 
phenotype (Figure 4). 

5.1.4 Blunted heart rate variability
Corrigan et al. (2021) conducted a systematic review on the 

influence of military training or tactical operator stress on heart 
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rate variability as a method to assess allostatic load (Corrigan et al., 
2021). However, whether the signals were associated with their 
formal established measurement, the ALI, or secondary or tertiary 
outcomes were not reported to support the use of heart rate 
variability as a measure of allostatic load. Nevertheless, the authors 
revealed an overall reduction in heart rate variability indices in 
response to acute physical and cognitive stressors, with slower rates 
of recovery after the completion of acute occupational stressors that 
was dependent on the magnitude of the stress, as well as chronic 
stressors observed during nightly heart rate variability assessments 
(Corrigan et al., 2021). Only one study assessed daily resting heart 
rate variability in soldiers with markers of stress to provide context 
to the signal responses (Huovinen et al., 2009). However, without 
linking the signals with its formal measure or secondary or tertiary 
outcomes, the definition of allostatic load may be neglected its 
full use in explaining psycho-physiological maladaptation. Further 
investigation linking heart rate variability, ALI, and psycho-physical 
outcomes is warranted. Hence, further research on whether blunted 
heart rate variability may serve as a digital signature of the phenotype 
is warranted (Figure 4). A summary of the wearable-derived signals 
used for allostatic load assessment in the literature, their definitions, 
and signals often observed in consumer, wrist-worn commercial 
wearable devices based on Peake et al. (2018), which may be useful 
for allostatic load measurement in military training environments, 
is found in Table 5.

6 Limitations and knowledge gaps

As the allostatic load model gains traction in military field 
training research, several limitations and knowledge gaps remain 
that must be addressed to support its practical application and clarify 
its potential role as a mechanism for training-related maladaptation. 
First, it has been observed that the ALI remains underused in 
military personnel during training courses (Feigel et al., 2025a). 
Future research measuring ALI and determining its role on psycho-
physical outcomes is warranted. Additionally, future research 
assessing the linkage between the ALI and wearable-derived 
signals is warranted to determine whether commercial wearable 
signals can suit allostatic load measurement in military settings. 
Further, whether the ALI is associated with different psycho-
physical outcomes between sexes (Feigel et al., 2025a), and whether 
different wearable signals are associated with outcomes and ALI 
between sexes remains unknown. However, future research on 
determining which wearable may consider the recommendations 
provided on Table 5, Friedl (2018), or adopt similar valid wrist-worn 
models adopted from Feigel et al. (2024a) for “wear and forget” 
interventions.

Second, wrist-worn commercial wearables produce in vivo data 
that are temporal and dynamic wherein averages of time-series 
data may neglect the dynamic characteristics of physiological time-
series data (Feigel et al., 2024a). These characteristics include linear 
serial dependencies such as trends, rhythms, and autoregressive 
dynamics. Non-linear characteristics (Richman and Moorman, 
2000), such as changes in complexity (Young and Benton, 2015), 
are inherent to wearable device data (Gronwald et al., 2021), which 
can indicate critical increases or decreases in fluctuation (i.e., 
heart rate) (Gronwald et al., 2020) and can therefore be useful in 

revealing the most stressful impacts that stretch allostasis and result 
in allostatic load. Consideration should be given to how dynamic 
instruments can provide data to improve our understanding of 
allostasis and allostatic load. Understanding how allostasis works 
in everyday life from a dynamic standpoint can help to prevent 
allostatic load and its consequences.

Third, allostasis and allostatic load research is dominated by 
population-based designs, such as cross-sectional, case-control or 
longitudinal studies (Juster et al., 2010; Carbone et al., 2022). Intense 
within-individual analysis applying time series analysis is very rare 
and may reveal when and under which circumstances allostatic 
loading occurs (i.e., reduced physical performance with blunted 
heart rate variability and high ALI).

Fourth, allostatic load may not be the only model to adopt 
in explaining military training-related maladaptation (Selye, 
1950; Bates et al., 2013). Previous frameworks have been used 
in military health sectors to bring actionable and measurable 
risk factors to the forefront of prevention (Bates et al., 2013; 
Deuster and OʼConnor, 2015; Givens et al., 2023b; Jonas et al., 
2010). However, such frameworks may not contain biological 
variables that can quantitatively link a unified mechanism with 
psycho-physiological outcomes. For example, Bates et al. (2013) 
introduced the Military Demand-Resource Model (MDR) which, 
using the Conservation of Resources Theory and the Job Demand 
Resource Model, was developed for military personnel outside 
combat roles or for trainees. This model conceptualized how 
demands, such as information overload, non-combat tasks, and 
resources (i.e., external: leadership, training; internal: awareness, 
coping, engagement) interact to affect psychological wellbeing, 
resilience, and cognitive performance. Although the model 
addresses psychological aspects and operator performance, it does 
not consider musculoskeletal health or physical fitness (Bates et al., 
2013). Hence, the adoption of allostatic load may be able to provide 
quantifiable means (i.e., ALI, wearable-assessed signals) to link stress 
with important military health outcomes for job-role performance. 
However, the allostatic load model may not be able to explain 
other non-stress-related military training health outcomes, such 
as acute traumatic MSKIs from a fall or trauma (Jones et al., 2010). 
Nevertheless, the allostatic load model may outline a promising 
biologically-grounded mechanism to explain stress-related health 
outcomes for future study.

Additionally, Schulkin (2004a) purports that the allostasis 
and allostatic load models are more advantageous than the 
more common stress regulation model, homeostasis (Schulkin, 
2004a). Homeostasis and allostasis aim to achieve physiologic 
stability (Schulkin, 2004b). However, each model employs different 
methods to meet this objective that may render allostasis and 
allostatic load more favorable for adoption in explaining military 
training-related maladaptation. Homeostasis leverages negative 
feedback mechanisms to render setpoints stable (static) and return 
deviations to pre-stressor and normal levels (Schulkin, 2004a). In 
contrast, allostasis exemplifies the principle of maintaining stability 
through constant variation (dynamic) of all the parameters of its 
internal milieu and appropriately matching them to environmental 
demands (“stability through change”) to allow for subsequent 
adaptation (Figure 1). Hence, the allostasis model emphasizes 
a dynamic rather than static principle to achieve biological 
setpoints and considers the brain a central component in feedback 
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TABLE 5  Description of existing wearable-based measures of allostatic load used in the literature and measures that are programmed in modern 
wrist-worn, commercial wearables from Peake et al. (2018).

Measure Description Available in most wrist-worn, 
commercial wearables

Heart rate (bpm) (Milosevic et al., 2013; Bulmer et al., 
2022a)

Rate of cardiac contractility per minute; Rate reflects 
dominance of autonomic nervous system activity with 

lower rates indicative of parasympathetic branch 
activation and higher rates indicative of sympathetic 
branch activity; Sensitive to HPA and SAM activity 

from stress. Available in most commercial wearables

Yes

Heart rate variability (Milosevic et al., 2013; 
Corrigan et al., 2023)

Period (time) between beats (i.e., inter-beat interval 
duration) measured by frequency or time-domain 

methods. Nonlinear time series analysis methods (i.e., 
detrended fluctuation analysis) demonstrate utility in 

reflecting frequency domain methods to stress. Higher 
variability has been associated with greater autonomic 
nervous system balance between branches, with lower 
variability associated with singular branch dominance 
that may require heart rate for context. Not available in 

most commercial wearables

Yes (if No, calculate from time-series data)

Total daily energy expenditure (kcal, rate) (Magtibay 
and Umapathy, 2023)

Magnitude or rate of total daily calories burned that is 
estimated using a combination of heart rate, 

anthropometric, demographic, and activity data 
captured by wearable devices. Available in most 

commercial wearables

Yes

Physical activity energy expenditure (kcal, rate) 
(Magtibay and Umapathy, 2023)

Magnitude or rate of total calories burned during 
physical activity estimated by wearable devices

Yes

Systolic blood pressure (mmHg) (Milosevic et al., 
2013)

Pressure in the arteries when the heart beats and 
pumps blood throughout the body; Measured by a 

noninvasive 24-h ambulatory blood pressure monitor 
worn on the peripheral upper limb to provide a 

real-time picture of blood pressure fluctuations during 
the day and evening

No

Diastolic blood pressure (mmHg) (Milosevic et al., 
2013)

Pressure in the arteries when the heart relaxes between 
beats; Measured by a noninvasive 24-h ambulatory 

blood pressure monitor worn on the peripheral upper 
limb to provide a real-time picture of blood pressure 

fluctuations during the day and evening

No

Electrodermal activity (Milosevic et al., 2013) Changes in the skin’s electrical conductance due to 
sweat gland activity, which is a non-invasive method to 

assess emotional and physiological arousal to stress; 
Sensitive to metabolic and neuroendocrine systems; 
Measured by applying a small current between two 

electrodes placed on the skin and measuring the skin’s 
resistance or conductance to that current 

(microsimens). Increased activity is associated with 
elevated sympathetic nervous system activity

No

Sleep Duration (hh:mm:ss) (Bulmer et al., 2022a; 
Christensen et al., 2022)

Time period at which one is asleep, with lesser time 
often associated with indices of allostatic load from 

biomarker-based measurements

Yes

Sleep Architecture (hh:mm:ss, %) (Christensen et al., 
2022)

Time or proportion spent in each sleep stage: Light, 
Deep, and Rapid-Eye-Movement [REM], with greater 

time spent in restorative (Deep, REM] stages 
associated with lower allostatic load index

Yes

regulation, for whole-body adaptation to contexts (Schulkin, 2004b). 
Indeed, the brain plays a central role in allostasis (McEwen 
and Gianaros, 2011; Cohen et al., 2016; Korte et al., 2005). 
The brain controls the mechanisms across systems via the 

activity of mediators of allostasis to induce constant variation 
of parameters in response to stress (McEwen, 2003). Allostasis 
enforces that the brain designates command by modulating the 
extent of allostasis via influential factors (experience, memories), 
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individualization (perception of stress, physical condition of 
the body) (McEwen B. S., 1998), and re-evaluation of needs 
by anticipating physiological requirements before the behavior 
(Drug Addiction, 2025). In contrast, the homeostasis model views 
each organ system as independent from the brain without any 
influence of modulation (Schulkin, 2004b).

Together, addressing these gaps and limitations may generate 
the empirical support needed to advance the allostatic load model 
to the forefront within military sectors and practice—not only 
within the US but across international Armed Forces—as an 
alternative framework for better understanding how military-
training-related stress may instigate maladaptive health outcomes. 
By measuring and testing allostatic load against such outcomes, 
research physiologists can help develop interventions to 
mitigate allostatic load and enhance post-training military
readiness. 

7 Conclusion

Research physiologists use theoretical models to test new 
empirical relationships between physiological variables and psycho-
physiological outcomes and compare observed outcomes with 
theoretical predictions to support or refute models. Allostatic load 
is a model outlining a biological process whereby physiological 
stability fails owing to recurrent and chronic stress exposure. 
This model may be a suitable framework to assess its role 
on musculoskeletal, physical performance and psychological 
maladaptation during training. Military-training-related stressors, 
such as energy restriction, cognitive stress, physical overtraining, 
and sleep deprivation, disrupts neuroendocrine, immune, and 
autonomic systems, and contributes to allostatic load as a potential 
mechanism underlying military training-related maladaptation. 
However, although epidemiological studies on allostatic load 
measured by ALI demonstrate relationships with poorer physical 
performance and psychological and musculoskeletal health, further 
empirical research in military training populations is warranted to 
support this model. Owing to the limitations of assessing allostatic 
load via ALI in occupational settings and longitudinal study designs, 
future research in military training environments may benefit from 
wrist-worn, commercial wearable technology as opposed to the 
ALI to measure downstream cardiometabolic and neurobehavioral 
responses perturbed by stress systems. However, wearable signals 
should be verified based on the formal definition of allostatic load 
by determining whether the signals are associated with the ALI 
and whether signals are associated with secondary and/or tertiary 
outcomes. The digital phenotype of allostatic load, characterized 
by one or more digital signatures, such as chronically elevated 
and variable cardiometabolic activity and altered neurobehavioral 
responses, requires further testing before it can be implemented 
in military training as an “at-risk” indicator. Further research could 
help military practitioners and leadership identify personnel in need 
of intervention and combat mitigate allostatic load and prevent 
maladaptive psycho-physical outcomes.
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