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meta-analysis
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Hamstring strain injuries (HSI) remain a significant problem in professional
soccer, as this injury is the most prevalent. Nordic hamstring exercise (NHE)
is the most researched exercise regarding its effect on modifiable factors of
HSI. However, there is still debate about the minimal effective dosage for this
exercise. This systematic review and meta-analysis aimed (1) to analyse the
effects of low- and high-volume NHE on eccentric strength and hamstring
muscle architecture in soccer players, and (2) identify gaps in the literature to
guide future research. Three electronic databases (PubMed, Web of Science,
Scopus) were searched, and 11 studies met the inclusion criteria. Pooled
effect sizes (Hedges' g) and 95% confidence intervals (Cl) were calculated
using a random-effects model. High-volume NHE interventions significantly
improved eccentric hamstring strength (g = 0.77, 95% CI 049-1.06, p <
0.001, 1> = 51%), fascicle length (g = 0.43, 95% Cl 0.20-0.65, p < 0.001, I
= 0%), and muscle thickness (g = 048, 95% Cl 0.28-0.68, p < 0.001, I =
0%). Effects on pennation angle were non-significant (g = - 0.16, 95% CI -
0.38-0.06, p = 0.16). Low-volume protocols significantly increased eccentric
strength (g = 046, 95% Cl 0.06-0.87, p < 0.05, 2 0%) but did not
result in meaningful changes in fascicle length, pennation angle, or muscle
thickness. For eccentric torque, neither high or low volume interventions
produced significant effects (both g = 0.04, p = 0.74, 1> = 0%). Control
groups across all outcomes showed only trivial or negative changes. Results
indicate that high volume of NHE (~2-3 sets of 8-12 repetitions/2—-3 times
per week) significantly increases peak eccentric strength, fascicle length of
biceps femoris long head, and muscle thickness, while pennation angle shows
only trivial increase. Low volume of NHE (~1-2 sets of 3-5 repetitions/1-2
times per week) shows a similar effect on peak eccentric hamstring strength,
but there are no improvements in hamstring muscle architecture. Additionally,
the effect of both types of volume on hamstring eccentric peak torque
seems to be inconsistent. The variability of different testing methods on
isokinetic strength and small correlations between other methods introduce
challenges in comparisons with eccentric strength outcomes. A high volume
of NHE seems to influence hamstring architecture adaptations better than
low volume despite no differences in eccentric peak strength. Factors such
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as the player's different level (amateur, semi-professional or professional),
previous experience with NHE, and compliance significantly influence the
training outcomes. Future research is needed to better determine the effect
of low volume of NHE on the hamstring architecture adaptations in soccer
players regarding previous experience with NHE and playing level. Furthermore,
standardization of assessment tools and outcome measures is critical for future
comparisons with isokinetic dynamometry.
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1 Introduction

Muscle injuries are the most common in soccer at the elite
(Ekstrand et al., 2011) and youth level (Palazon etal, 2022),
accounting for nearly one-third of all time-loss injuries, with
most of them affecting four major muscle groups of the lower
limbs (Ekstrand et al., 2011). Hamstring strain injuries (HSI) have
had the highest incidence (0.5 injuries/1,000 h of exposure) and
injury burden over 30 years. They now make up roughly 19% of
all reported soccer-related injuries, having increased from 12%
to 24% over 21 consecutive seasons (2001-2002 to 2021-2022)
(Ekstrand et al, 2023). These injuries have grown by 4% a
year in elite soccer since 2001, with average time to return to
play accounting for 17 days (Ekstrand et al, 2021). The biceps
femoris long head muscle (BF'™) is involved in 84% of all first-
time injuries, with semitendinosus (ST) injury resulting in ~12%
and semimembranosus (SM) about 4%. The etiology of HSI is
multifactorial and complex in nature, and therefore it is inevitable
to understand possible risk factors related to this type of injury. The
previous HIS (Opar et al,, 2012) and advanced age (Freckleton and
Pizzari, 2013) have been considered as the main non-modifiable
risk factors. Poor flexibility (Opar et al., 2012), low eccentric knee
flexor strength, short muscle fascicles of BF" (Timmins et al,
2016), and core stability deficits (Schuermans et al., 2017) are
considered as possible modifiable risk factors that contribute to a
higher incidence of HIS. Most of the hamstring injuries (~60%)
take place during high-speed running actions (Woods et al., 2004)
or sprinting (Ekstrand et al., 2021), while other mechanisms such
as overstretch actions, shooting, or change of direction are also
presented (Ekstrand et al., 2023). During high-speed running, the
BF™ is the muscle that lengthened the most despite possession of
the shorter fascicles, opposite to BE*" with longer fascicles (Kellis
and Blazevich, 2022; Mao et al., 2024). This fact may explain the
susceptibility of BE™ to a higher risk of injury compared to other
hamstring muscles (Thelen et al., 2005). The mechanism behind
HSI seems to be the failure of the tissue to tolerate the forces
applied while the task is performed (Cuthbert et al., 2020). The
primary cause, however, has yet to be determined as the “weak
link” approach, in which active lengthening (i.e., eccentric muscle
action) of the sarcomeres creates a chronic accumulative cytoskeletal
damage effect until the HSI occurs (Cuthbert et al., 2020).

The hamstring eccentric strength has been previously shown to
play a crucial role in decreasing the risk of hamstring strain injury
(Timmins et al., 2016). Decreasing eccentric strength accounts for
4.3%-5% higher injury risk (Opar et al., 2015). Absolute eccentric
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knee flexor strength with shorter fascicles in BF™ significantly
increased the risk of HSI in elite Australian soccer players
(Timmins et al., 2016). Therefore, it appears that increasing muscle
fascicle length along with eccentric strength of the hamstring
muscles could potentially reduce the risk of HSI. ACWR (acute-
to-chronic workload ratio) relative to lower or moderate ACWR is
also associated with an increase in time-loss injury risk. A 2-4 times
higher risk of injury for a player is presented when acute training
load is 1.5 times higher than chronic workload (Gabbett, 2016).

Muscle architecture is considered to influence both force
production and the velocity capabilities of the muscles (Lieber
and Fridén, 2000). The muscle architecture mostly involves fascicle
length (FL), angle of pennation (PA), muscle thickness (MT), or
anatomical cross-sectional area (CSA). Muscle size (MT, CSA)
can be influenced either by FL (i.e., length of fascicles between
the aponeuroses/tendon) and PA (angle of fascicles relative to
the tendon) or in reverse, which depends on the training mode.
Traditional hypertrophy resistance training is responsible mainly for
the increasing of muscle CSA with an increase in PA (Aagaard et al.,
2001) and a modest or no increase in FL (Seynnes et al., 2007;
Franchi et al., 2014). On the other hand, eccentric training appears
to have a greater effect on the increase of muscle CSA (Douglas et al.,
2017) and FL (Franchi et al., 2014; Gérard et al., 2020) opposite
to hypertrophy resistance training. Some evidence assumes that
eccentric training can increase muscle fascicle length of the BF™
muscle (Potier et al., 2009) and increase muscle PA of the vastus
lateralis muscle (Guilhem et al., 2013).

The Nordic hamstring exercise was first documented when
evaluating its acute effect on the angle of peak torque of the
hamstrings during eccentric isokinetic testing (Brockett et al., 2001).
Since then, the NHE has been demonstrated to be an effective
injury prevention method, as it enhances (Mjolsnes et al., 2004;
Arnason et al,, 2008; Opar et al., 2012) and evaluates hamstring
eccentric strength (Opar et al, 2013) alongside the increase of
BF™ FL (Timmins et al., 2016). This exercise provides a slow
eccentric stimulus where myosin heads are already attached to
actin, where, due to the eccentric nature of the movement, they are
forced to detach by lengthening of the cross-bridges, which leads
to significant damage in the muscles (Franchi et al., 2017). This
exercise provides eccentric overload, where the hamstrings must
perform their maximal eccentric force production. High muscle
damage to the muscles is incurred, which subsequently may result
in delayed onset muscle soreness (DOMS) of the muscles involved
(Lieber and Jan, 2002). Some authors assume that the NHE program
implementation at the highest levels of professional soccer is too
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low and therefore is not expected to have an overall effect on acute
hamstring injury rates because of the high occurrence of DOMS in
players (Bahr et al., 2015). Although the NHE has been shown to
be an effective strategy for injury prevention of HSI incidence in
many sports, practitioners still disagree about whether a low or high
volume of the NHE is best suited for improving the modifiable risk
factors of HSI (Medeiros et al., 2021).

No significant difference was shown in a systematic review
for the effects of applying a high volume of this exercise versus
a low volume on the eccentric hamstring muscle strength or the
length adaptations of the biceps femoris fascicle (Cuthbert et al.,
2020). On the other hand, this meta-analysis includes articles with
a mixed population (professional athletes, amateur athletes, and
recreationally active people), which results in high variability from
a strength level and muscle architecture perspective (Cuthbert et al.,
2020). Focusing on one specific group where the NHE application
is the most prevalent may give the practitioners more applicable
information about the usage of this exercise. The aim of this
systematic review and meta-analysis are to (1) investigate how
the architecture (PA, FL, MT) and eccentric strength of the knee
flexor muscles are affected by either high or low volumes of NHE
in amateur, semiprofessional, and professional soccer players; (2)
identify gaps in the current literature and propose future research
on this topic.

2 Methods
2.1 Study design

This systematic review was designed in accordance with
the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines. The PRISMA statement
provides a 27-item checklist intended to guide the reporting
of systematic reviews, particularly those involving randomized
controlled trials (Page et al., 2021).

2.2 Literature search

To search all relevant studies, three electronic databases were
chosen (PubMed, Web of Science, and Scopus). For additional
search, the backward search was used (i.e., assessing the reference
lists of included articles). The terms such as “Nordic curl” and
“Nordic hamstring” were combined with the terms “football” and
“volume” to find any title and abstract that is related to our topic.
Only publications in the English language were included. Boolean
terms “AND” and “OR” were used for the keyword’s combination.

2.3 Inclusion and exclusion criteria

The main inclusion criteria were that studies had to examine
the NHE effect of either high or low volume or a comparison of
both on muscle architecture adaptations and/or eccentric strength
variables of hamstring muscles in amateur, semi-professional, or
professional soccer players of both genders. Other criteria were
based on the publication date of 2014-2025 and full text availability
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of the articles. The duration of the included study had to be more
than 4 weeks, and the experimental group could not have possessed
any lower limb injury at least 6 months before the start of the
study. The muscle architecture had to be measured on BE Mean +
standard deviation (SD) pre- and post-intervention were provided
for the measured variables for secondary analysis. Additionally,
there had to be an absence of any health disorders that would
interfere with the study results. The next criteria were based on
assessing the post-PHV players (peak height velocity) to prevent
the influence of the maturation status on our results (Drury et al.,
2020). Studies were excluded if they collected data solely through
injury incidence questionnaires without measuring physiological
or performance adaptations. Additionally, isokinetic data collected
at angular velocities greater than 120°/s were excluded due to
decreased reliability and a reduced percentage of the range of motion
maintained at a constant velocity as angular speed increases (Kellis
and Baltzopoulos, 1995).

If the studies failed to meet our criteria, they were excluded
from this review. It should be mentioned that although women
may possess lower peak strength values than men (Medeiros et al.,
2021), we decided to include the participants of both genders, as
our analyses considered the strength and architecture adaptation
differences between pre- and post-intervention rather than peak
strength values of athletes (Medeiros et al., 2021).

2.4 Quality and risk of bias assessment

The methodological quality of the studies was assessed using the
Testex scale (Smart et al., 2015), a quality assessment instrument
specifically designed for exercise training studies. It assesses
methodological quality based on 12 criteria, with a total possible
score of 15 points. Reference scores were used to express the quality
level of the studies and are presented as follows: <4 points “poor
quality;” 4-7 points “moderate quality;” 8-10 points “good quality;’
and >11 points “excellent quality” (Davies et al., 2021). Two types
of bias assessments were carried out in this review: the Rosenthal
fail-safe N method (Rosenthal, 1979) and the Cochrane risk of
bias tool for randomized controlled trials (Sterne et al., 2019). The
Cochrane tool evaluates RCT’s across several domains, such as the
randomization process, deviations from the intended intervention,
missing outcome data, etc. Each domain is rated as having a “low
risk of bias,” “high risk of bias,” or “some concerns.” The fail-safe N
was applied to estimate how many unpublished or missing studies
with null results would be required to reduce the observed effect to
nonsignificance (p > 0.05).

2.5 Analysis and interpretation of results

Means and standard deviations for strength outcomes and
muscle architecture measures were independently extracted from
the included studies. Strength outcomes included isokinetic
assessments such as eccentric peak torque (measured at 30%s,
60°/s, and 120°/s) and eccentric force. Muscle architecture variables
included fascicle length, pennation angle, and muscle thickness.

Effect sizes (ES) were calculated to provide standardized
comparisons of mean differences between groups or experimental

frontiersin.org


https://doi.org/10.3389/fphys.2025.1631205
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Cholp and Zemkova

conditions. Hedges' g, along with 95% confidence intervals (CI),
was used to quantify mean differences between pre- and post-
intervention, as it adjusts for sample size disparities. Hedges' g was
determined using the following formula (Hedges and Ingram, 1985):

B (Mean post — Mean pre)
B SD pooled

Interpretation of ES was followed by Hopkins thresholds
(Hopkins, 2010): trivial (<0.20), small (0.20-0.59), moderate
(0.60-1.19), large (1.20-1.99), and very large (=2.00). Consistency
across studies was assessed using Higgins test for heterogeneity
(I*) (Hopkins, 2010), with values interpreted as low (<25%),
moderate (25%-75%), or high (=75%) heterogeneity. Between-study
variance estimates for both strength and architecture outcomes were
calculated using random-effects models, with results expressed as
95% confidence intervals (The Jamovi project, 2019). Effect sizes
and random-effects models were calculated using Jamovi software
(version 2.7.6). For clarity and improved visualization, forest plots
were created separately based on the extracted effect size data.

3 Results
3.1 Search results

The PRISMA flow diagram (Figure 1) illustrates the search
and selection stages (Page et al., 2021). Initially, we identified
855 articles from the main databases and another 29 articles,
which provided an additional backward search from the reference
lists of relevant studies. After the exclusion of duplicates (n =
47), we removed studies that did not research hamstring strength
variables or architectural adaptations after NHE intervention in a
soccer population. Thirty-nine relevant articles were included in
the full-text analyses, and eleven of them reported suitable data
for quantitative analysis. The outcomes extracted from the studies
were eccentric knee flexor strength or eccentric knee flexor torque.
Other outcomes obtained from the studies were fascicle length (FL),
pennation angle (PA), and muscle thickness (MT) of BF", SM, and
ST muscles, which represent the hamstring muscle architecture.
For qualitative analysis Pre-post differences were calculated from
mean values and expressed as percentages. These indicators serve
to improve the understanding of the collected data (Table 3). For
quantitative analysis, data were collected from the interventions
reported in the included studies, comparing outcomes before and
after the interventions. Information from both interventions or/and
control groups was extracted when available; however, having a
control group was not part of the inclusion or exclusion criteria.
As a result, three of the included studies, de Oliviera et al. (2020),
Vianna et al. (2021), and Siddle et al. (2024) did not include
control groups.

3.2 Study quality and bias results

Quality of assessment was assessed using TESTEX criterion. The
mean score of the included studies was 8 out of 15 points, with the
highest-scoring studies being randomized trials (Lovell et al., 2018;
Medeiros et al., 2020). The scores in 6 of the presented studies were of
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moderate quality, 3 studies were of good quality, and 2 studies were
presented with excellent quality scores (Table 1).

For the risk of bias, two tools were also performed. The Cochrane
risk of bias (Table 2) shows an overall “some concerns” for the
review, mostly due to unclear randomization methods or incomplete
reporting of missing data. The second tool identifies that the results
of this meta-analysis are not subject to publication bias (p <
0.001), with 178 “filed away” studies for eccentric strength and 30
studies for muscle architecture needed to prove null effects of NHE
interventions on eccentric strength and muscle architecture. These
results indicate that the findings for eccentric strength are robust and
unlikely to be overturned by unpublished null studies. In contrast,
the muscle architecture outcomes appear more fragile, as relatively
few unpublished studies could change the statistical significance.

3.3 Systematic review and meta-analysis
findings

Within-study pre-post differences showing the magnitude of
change (Hedge’s g, 95% CI) across all included trials are illustrated in
Figures 2-6 below. For eccentric hamstring strength, high-volume
interventions (de Oliviera et al., 2020; Suarez-Arrones et al., 2019;
Amundsen et al., 2022; Ishgi et al., 2018; Vianna et al., 2021)
consistently demonstrated moderate improvements (g = 0.77, p <
0.001, 95% CI 0.49-1.06), with moderate heterogeneity (I* = 51%).
Low-volume protocols (Cadu et al., 2022; Amundsen et al., 2022)
also produced significant but small effects (g = 0.46, p < 0.05, 95%
CI 0.06-0.87) with no heterogeneity (I* = 0%), while control groups
(Suarez-Arrones et al., 2019; Ishoi et al., 2018) showed only trivial
or negative effects (g = —0.06, p = 0.75, 95% CI —0.40-0.29), with
moderate heterogeneity (I? = 51%). In the case of eccentric torque,
low volume interventions (Amundsen et al., 2022; Siddle et al., 2024)
did not result in significant gains, with only trivial effect (g = 0.04, p
= 0.74, 95% CI —0.21-0.29), as well as high-volume interventions
(g = 0.05, p = 0.55, 95% CI -0.12-0.23) (Medeiros et al., 2020;
Amundsen et al,, 2022; Sebelien et al., 2014; Lovell et al., 2018).
No heterogeneity (I? = 0%) was presented in low and high volume
groups, respectively. Two studies provided a control group (Sebelien
etal., 2014; Lovell et al., 2018), resulting in a trivial negative effect (g
=-0.07, p=0.67,95% CI -0.67-0.51, I = 0%).

Changes in muscle architecture were more variable across
outcomes. For fascicle length, high-volume interventions
(Medeiros et al., 2020; Lovell et al., 2018; Vianna et al., 2021;
Mendiguchia et al., 2020) elicited significant changes with a
small effect size (g = 0.43, p < 0.001, 95% CI 0.20-0.65) and no
heterogeneity (I* = 0%), whereas control groups (Lovell et al,
2018; Mendiguchia et al., 2020) showed a small negative effect (g =
-0.31, p = 0.25) with low heterogeneity (I? = 23.7%). Low volume
intervention (Siddle et al., 2024) resulted in non-significant gains
with only trivial ES (g = 0.12, 95% CI -0.37-0.61).

In contrast, adaptations in pennation angle were not statistically
significant (g = —0.16, p = 0.16, 95% CI —0.38-0.06, I* = 0%)
with trivial to small negative ES for either high-volume groups
(Medeiros et al., 2020; Lovell et al., 2018; Mendiguchia et al., 2020)
or control groups (g = —0.51, p = 0.39, I* = 78.6%) (Lovell et al.,
2018; Mendiguchia et al., 2020). Low volume group (Siddle et al.,
2024) again resulted in no significant changes (g = -0.11,
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FIGURE 1

Records identified from databases searching (n = 855)
Records identified from additional searching (n =29)

Duplicates excluded
(n=47)

Records screened
(n=837)

Records eligible for full-text
review and data extraction
(n=39)

Total studies included in
quantitative analysis for
eccentric strength
n=10)

Total studies included in
quantitative analysis for muscle
architecture
(n=35)

Records excluded based on titles
and/or abstracts
n=1799)

Search of NHE intervention studies.

Records excluded:

Pre-adolescent soccer players (n = 4)
Injury prevention study (n = 5)
Effect on speed performance (n= 4)
Non-intervention of NHE (n = 8)

NHE compliance rate study (n = 3)

Multiple exercises (n = 3)

Correlation between different exercise type (n = 1)
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TABLE 2 Cochrane risk of bias for randomization controlled trials.

Overall RoB

Selection of
reported
result

Measurment
of outcome

Deviations
from
intended
intervention

Randomization
process

Missing
outcome data

Ishoi et al. (2017) Low risk Low risk Low risk Low risk Low risk Low risk
Suarez- High risk Low risk Low risk Low risk Some concerns High risk

Aronnes et al. (2019)
! \

X

Q
Q
Q

X

Mendiguchia et al. Some concerns Low risk Low risk Low risk Some concerns Some concerns
(2020) __ __ __
A A A
Sebelien et al. (2014) Some concerns Low risk Low risk Low risk Some concerns Some concerns
A A A

Forest Plot - Ecc?nmciég%negth (by Training Volume)

]
i
Trevisol de Oliviera et al., 2020 ! — 1.05 [0.56, 1.54)
]
i
Suarez-Arrones et al., 2019 { _—— 0.86 [0.46, 1.26)
]
i
Amundsen et al., 2022 —i—-— 0.33[-0.16, 0.81]
]
i
Ishoi et al., 2017 ! —_—— 0.57 [0.24, 0.90]
]
|
Vianna et al., 2017 i 1.25(0.62,1.88)
|
!
Low Volume
]
]
|
Cadu et al., 2022 e s 0.36 [-0.25, 0.97]
]
|
Amundsen et al., 2022 e e 0.54[0.00, 1.08)
]
i
Control |
!
i
Ishoi et al., 2017 ——t— -0.13 [-0.65, 0.36]
|
!
Suarez-Arrones et al., 2019 —_— 0.01 (-0.47, 0.48)
]
1 e 1 i i
-2 -1 0 1 2

Effect Size (ES) with 95% CI

FIGURE 2
Changes in eccentric strength pre- and post- NHE intervention.

—0.61-0.38) after the training intervention. For muscle thickness,
high-volume interventions (Medeiros et al., 2020; Lovell et al., 2018;

control groups showed a moderate negative effect (g = -0.91, p =
0.39) with high between-study heterogeneity (I = 88.3%). A trivial
negative effect (g = —0.10; 95% CI -0.59-0.39) was found in low
volume group (Siddle et al., 2024).

Mendiguchia et al., 2020) demonstrated significant increases with
a small effect (g = 0.48, p < 0.001, 95% CI 0.28-0.68), whereas
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FIGURE 3
Changes in eccentric torque pre- and post- NHE intervention.

4 Discussion

4.1 Eccentric strength adaptations to NHE
of varying volumes

Although the NHE has been widely used by strength
and conditioning coaches, no consensus about dosage and its
manipulation in training has been reached yet. There was a
wide range of volumes and durations of included studies from
our literature search (Table3). In summary, 10 of 11 articles
included the measuring of eccentric strength variables of hamstring
muscles. The high volume of NHE has been performed in 8
studies (de Oliviera et al., 2020; Amundsen et al., 2022; Suarez-
Arrones etal., 2019; Ishoi et al., 2018; Vianna et al., 2021; Lovell et al.,
2018; Sebelien etal.,, 2014; Medeiros et al., 2020), whereas only
3 articles applied a low volume of NHE (Amundsen et al., 2022;
Caduetal., 2022; Siddle et al., 2024). Closer insights into the training
program and results of included studies are presented in Table 3.

Performing high volumes of NHE leads to a significant increase
in peak eccentric strength after 4 weeks (de Oliviera et al., 2020) and
after longer periods (>8 weeks) (+10%-16.5%). (Amundsen et al.,
2022; Vianna et al., 2021; Suarez-Arrones et al., 2019; Ishoi et al.,
2018; Medeiros et al., 2021). All studies, where peak eccentric
strength was investigated, found significant gains after high volumes
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of NHE. However, in a study where the players had been previously
trained using NHE, no significant increase was seen (Suarez-
Arrones et al., 2019). In addition, a high volume of NHE leads
to significant improvements in eccentric peak torque only in 2
(Lovell et al., 2018; Medeiros et al., 2020) of 4 studies (Lovell et al.,
2018; Medeiros et al., 2020; Amundsen et al., 2022; Sebelien
etal., 2014).

Low volume of this exercise leads to a significant increase of
peak eccentric strength in female soccer players (Amundsen et al.,
2022), with no significant differences between low and high volume
groups. Significantly higher peak eccentric strength was found after
performing a very low volume (1 set of 3 reps) for 21 weeks and
with a low compliance rate (47.2%) and with higher changes for
the “high compliance subgroup” (Cadu et al., 2022). Two studies
in our review examined the effect of low volume on eccentric peak
torque in professional female (Amundsen et al., 2022) and academy
soccer players (Siddle et al., 2024) with no significant gains.

The variability of results in increasing eccentric torque after
NHE can be explained by the poor correlation between peak
eccentric strength measured on NordBord and eccentric peak torque
measured on isokinetic dynamometers (Amundsen et al., 2022;
Wiesinger et al, 2020). This fact can be explained by the low
similarity of movement when performing tests on the NordBord
device versus the isokinetic machine (Medeiros et al., 2021).
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Changes in fascicle length pre- and post- NHE intervention.

Furthermore, any significant correlations between the eccentric
peak torque during NHE and peak eccentric knee flexion torque (r =
0.24-0.3, p = 0.26-0.4) were found when measured on a NordBord
and isokinetic dynamometer (Nishida et al., 2022). Similarly poor
correlation (r = 0.35) was found between eccentric force during
NHE and isokinetic eccentric peak torque at 60°/s (Van Dyk et al.,
2018). Another issue seems to be the difference in the body
positions (prone, sitting) and different movement velocities (30°/s,
60°/s, 180°/s, 270°/s) that were used in the studies to measure this
parameter. Significant changes were observed after performing a
high volume of NHE in 2 studies (Lovell et al., 2018; Medeiros et al.,
2020), but only when using lower angular velocity during testing
on isokinetic devices (30°/s, 60°/s). Measuring eccentric peak torque
has therefore seemed to be highly influenced by other factors such
as the movement performed and the velocity, which must be taken
into consideration. On the contrary, emphasizing higher angular
velocities during testing with an isokinetic dynamometer seems to
have some applicability, as sprinting is the most frequent action
during which HSI is occurring. The use of high velocities can better
explain specific hamstring work during this task, although it is
performed in isolation.

The peak eccentric strength measured during NHE on the
NordBord device (Opar et al., 2013) is the most used variable in
practice and research. However, there are some misconceptions
about which variable is the best for assessing the eccentric
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hamstring strength. Opar et al. (2015) suggest implementing
torque measurement during NHE on NordBord, as there are some
differences between athletes with longer or shorter lower leg levers.
Despite this, they claim that measuring the force output during NHE
still provides useful information for HSI risk. Buchheit et al. (2016),
on the other hand, found that measuring the knee flexor strength is
largely body mass dependent, but simply dividing absolute strength
by athlete body mass is not a sufficient method. They assume to
use the provided equation (eccentric strength [N] = 4 x BM [kg]
+ 26.1) for the estimation of players’ expected strength based on
their own body mass (BM) and compare it to their actual peak force
value from the test when monitoring players over longer periods
when BM changes may occur. This equation was developed to
differentiate what effect the athlete’s BM had compared to his true
eccentric strength. On the other hand, Opar et al. (2021) did not find
any difference between prospectively injured or non-injured soccer
players irrespective of the quantification tool used (between-limb
asymmetry, relative or absolute strength) in pre-season eccentric
strength. Therefore, practitioners can use different quantifications of
eccentric strength, based on their goal.

Only 6 of 11 investigated studies provided a compliance rate
greater than 80%. Some previous studies (Chesterton et al., 2021)
have shown that the low compliance rate in soccer players is a result
of DOMS presenting after the NHE. Goode et al. (2015), in their
meta-analysis, found that the effect of the exercise is also highly
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influenced by intervention compliance. Similar results were reported
by Rudisill et al. (2023) and Biz et al. (2021), who demonstrated that
eccentric hamstring training, particularly the NHE and other injury
prevention protocols, can reduce hamstring injury incidence by up
to 70%, but poor compliance and limited implementation in team
practice remain major barriers to effectiveness.

The groups where a high volume of NHE has been performed
increased intensity via increased volume, whereas in low volume
groups it is more likely that the increase in intensity was due
to increasing the breakpoint angle of the hamstrings during
movement because no volume has been increased (Cuthbert et al.,
2020). The athlete can last longer and get his torso closer to the
ground, which increases the torque due to force being applied
over a greater momentum. For improving muscle strength, the
performed intensity must be over 85% of 1 repetition maximum
(RM) and ~6 reps (Haff et al., 2016). This mostly applies to more
advanced athletes, whereas in novice athletes, lower intensity is
also preferred to elicit improvements in strength capabilities. The
NHE is supramaximal in nature, and intensity is above 1RM;
therefore, it applies true eccentric stimulus on the hamstring
muscles. The assumption would be that lower repetitions are enough
to stimulate hamstrings at the same level. Severo-Silveira et al.
(2021), on the other hand, found that a progressive workload
(236 reps over 8weeks) had better results than a constant
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workload (138 reps over 8 weeks) from an eccentric strength
perspective.

From the results of our studies, it seems that a lower volume of
this exercise can be as sufficient as high volume in improving the
peak eccentric hamstring strength measured on a NordBord. On
the contrary, the effect of both volume training types on eccentric
peak torque seems to be inconsistent in findings. The variability
of different testing methods on isokinetic dynamometry and small
correlations with other methods introduce challenges in comparing
eccentric strength outcomes. Practitioners must consider the low
validity of NHE when measuring the eccentric strength on an
isokinetic device.

4.2 Hamstring architecture adaptations to
NHE of varying volumes

In recent decades, the introduction of 2D image ultrasound has
allowed the study of muscle architecture (Blazevich et al., 2006).
This cost-effective and time-saving noninvasive method has helped
to expand the assessment of muscle thickness, pennation angle, and
fascicle length, particularly in the BF™, which is the most researched
muscle regarding the HSI. However, the use of two-dimensional
ultrasound in estimating fascicle length has been presented with
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some methodological limitations. Entire BE™ fascicles are too large
for the field of view, and thus, an estimation of fascicle length is
required through equation (Kellis et al., 2009).

Eccentric training appears to elicit greater increases in
muscle CSA than concentric or traditional resistance training
(Douglas et al., 2017). The mechanism seems to be a high level
of mechanical tension per active motor unit (Prilutsky, 2000),
stretch-induced strain (Toigo and Boutellier, 2006), and a greater
propensity for exercise-induced muscle damage (McHugh, 2003),
which may stimulate the hypertrophic signaling response to a greater
extent. Increasing distal muscle hypertrophy with eccentric training
results in increasing muscle CSA via the addition of sarcomeres
in series in contrast to the addition of sarcomeres in parallel with
concentric training (Franchi et al., 2014). This fact can explain the
increase in fascicle angle after the eccentric (Duclay et al., 2008;
Leong et al.,, 2014) as well as concentric training (Franchi et al.,
2017). Simultaneously, stretch-induced strain from eccentric
contractions, sensed within the Z-line region of titin, appears to
elicit a specific anabolic signaling response (Franchi et al., 2017).

The influence of NHE on muscle architecture in our review was
investigated in 5 of 11 articles (Lovell et al., 2018; Vianna et al.,
2021; Medeiros et al., 2020; Mendiguchia et al., 2020; Siddle et al.,
2024). Four included articles examined the effect of high volume
in NHE, and one article (Siddle et al., 2024) examined the effect

Frontiers in Physiology

of the low volume protocol. Previous studies that investigated the
effect of low volume on muscle architecture were mostly conducted
on recreationally active males but not elite athletes (Presland et al.,
2018). A similar exercise program (2-4 sets of 6-12 reps) was
used across the studies where high volume has been presented.
The difference was only in program duration (6-12 weeks). Only
one study used a protocol with a low volume program (144 reps
in 8 weeks) (Siddle et al., 2024).

Fascicle length of BF™ is the most examined variable regarding
the muscle architecture assessment. Recent studies examined that
possessing BF" fascicles <10.56 cm significantly increased the future
risk of HSI ~4 times in elite Australian soccer players (Timmins etal.,
2016). On the other hand, an increase in FL of 0.5 cm decreases the
risk of hamstring strain by ~ 74% on average. The influence of a
high volume training program on this variable was present in 4 of
5 studies (Lovell et al., 2018; Vianna et al., 2021; Medeiros et al.,
2020; Mendiguchia et al., 2020), while only one study used a low
volume training program (Siddle et al., 2024). A significant increase
by + 6.4% has been found after 8 weeks (456 reps) in elite female
players (Vianna et al., 2021). An small increase of FL was found
in professional male players with the same program and duration
with low (1x per week) and high training frequency (2x per week)
(Medeiros et al., 2020). This variable also increased by +7.38% after
6 weeks in the elite soccer players (Mendiguchia et al., 2020) and
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TABLE 4 Research gaps identified in the literature and suggestions for future studies.

Suggestions for future studies

Gaps and limitations in the literature

Lack of studies comparing the effects of low and high volume on hamstring
architecture in NHE experienced players

Investigate the effect of low volume on hamstring architecture for NHE experienced
players

Lack of studies comparing the effects of low and high volume on eccentric strength
NHE in experienced players

Compare the effects of low and high volumes of NHE on eccentric strength in
experienced players

Variability of results in changes of peak eccentric torque after NHE when measuring
on isokinetic device

Similarity of exercise as a measurement variable and training intervention in future
studies (i.e., Nordic curl = NordBord; Knee flexion exercises = Isokinetic device)
Standardization of assessment tools and outcome measures on isokinetic
dynamometry (velocity, position) for future comparisons

by +1.58% (small ES) after 12 weeks in amateur soccer players
(Lovell etal., 2018) performing NHE before training sessions but not
after. Low volume NHE programs elicit significant increases in FL
of BFM after 6 weeks in recreational athletes with no previous NHE
experience (Presland et al., 2018), while no meaningful difference
between the low and high volume groups has been found. Contrary
to that, no significant change was found after the low volume
intervention in elite male academy soccer players (Siddle et al.,
2024). One possible explanation is that the protocol has been done
on elite young soccer players with previous exposure to NHE;
therefore, to elicit significant improvements, the exercise intensity
had to be higher (Siddle et al., 2024). Low volume also increased
the FL of BF™ and SM after 6 weeks in elite youth soccer players,
but this change can be influenced by the inclusion of the second
exercise (bilateral stiff-leg deadlift), which is more hip dominant
movement and elicits greater activation of BF™, opposite to NHE
(knee dominant movement), where more ST muscle activity has
been presented (Bourne et al., 2017).

Three of our included studies (Lovell et al, 2018;
Mendiguchia et al., 2020; Medeiros et al., 2020) investigated the
influence of high volume NHE on the MT. Small and medium
increases in MT were presented after 6 and 8 weeks, respectively
(Mendiguchia etal., 2020; Medeiros et al., 2020). The same result was
presented with the group performing the NHE after, but not before,
the soccer session (Lovell et al., 2018), where the compliance rate
was presented below 50% in all groups; interestingly, this fact did not
affect the training outcome as stated previously with higher volumes
of NHE (Chesterton et al., 2021; Chebbi et al., 2022). This is not in
line with results from the meta-analysis by Cuthbert et al. (2020),
where the authors found no meaningful changes in MT. The authors
assume that the problem can be in low training duration (8 weeks
= <), though this did not affect the training outcome in the study
where the lower training duration (6 weeks) has been implemented
(Mendiguchia et al., 2020). On the contrary, MT of SM, ST, and BFlh
did not change after the low volume program (Siddle et al., 2024),
which is also probably influenced by lower intensity of exercise and
application of programme on previously NHE trained players.

PA increased after a high volume intervention program in
duration of 8 weeks in “after training group” (small ES) (Lovell et al.,
2018) and 6 weeks (ES = 0.41) (Mendiguchia et al., 2020). No
significant improvements were found in the angle of pennation
after 8 weeks in high volume groups (Medeiros et al., 2020) and
“before training group” (Lovell et al., 2018). Similarly, no significant
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difference in PA was found after low volume intervention with
8 weeks duration (Siddle et al, 2024). High volume resistance
training is primarily responsible for increasing PA and CSA
(Cuthbert et al., 2020). A decrease in PA as a desired outcome after
eccentric resistance training (Gérard et al., 2020) was presented in
meta-analysis by Cuthbert et al. (2020) in both low and high volume
groups. On the other hand, from our review, we observed only a
trivial increase in the angle of pennation after high volume training,
while no changes were seen after low volume training application.
The increase results in a higher physiological CSA with the addition
of myofibrils in parallel. This essentially improved force transmission
through the muscle-tendon unit and a higher architectural gear ratio
(Douglas et al., 2017; Azizi and Roberts, 2014). The ratio allows
the pennate biceps femoris to limit the strain from active fascicles,
which results in protection during fast-velocity lengthening actions
(Azizi and Roberts, 2014). Mechanical tension and intramuscular
metabolic stress determine the hypertrophic signal of the muscle
during high-intensity resistance training (Douglas et al., 2017).
Although the mechanical tension applies in both types of volumes,
low volume of NHE seem to not elicit the intramuscular metabolic
stress enough, resulting in no hamstring architecture changes.

Despite the methodological differences in our review (total
volumes, duration, playing levels), the high volume of NHE seems
to increase the FL of hamstring muscles and MT with trivial but non
significant changes observed in PA. Contrary to this, low-volume
protocol yields no significant adaptations on these parameters.
Intensity of exercise is a significant factor that must be considered
when the goal is to further elicit the outcomes in previously trained
players. We emphasize that more research must be done on this
particular topic because of the lack of literature investigating the
effect of low-volume NHE protocols on hamstring architecture in
soccer players. Summary of the gaps, limitations and suggestions for
the future studies are mentioned in Table 4.

5 Conclusion

This systematic review and meta-analysis critically examined
the effects of low and high volume NHE protocols on eccentric
strength and hamstring muscle architecture among soccer players.
The eleven included studies revealed greater effectiveness in muscle
architecture variables such as fascicle length and muscle thickness
after high than low volume protocols, while no changes were
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seen between groups. Given the lack of evidence regarding the
effect of low volume NHE on hamstring architectural adaptations
in soccer players, further research is needed. Furthermore, there is
no difference in eccentric peak force between high and low volume
NHE, however the effect of both types of training on eccentric peak
torque seems to be inconsistent in findings. The small to none effect
of NHE on eccentric peak torque measured by the isokinetic device
is likely influenced by testing conditions (e.g., angular velocity,
body position) and non-similarity with the training exercise. The
variability in assessment methods, particularly between NordBord
and isokinetic dynamometry, introduces challenges in comparing
eccentric strength outcomes. Factors such as different player levels
(amateur, semi-professional, or professional), previous experience
with NHE, and compliance with exercise significantly influence the
training outcomes and must be taken into consideration. Therefore,
standardization of assessment tools and outcome measures is critical
for future comparisons on the effect of low and high volume of NHE
on hamstring eccentric strength. Further research is also needed
to determine the effect of low volume of NHE on the hamstring
architecture adaptations regarding previous experience with NHE
and player level.

5.1 Practical applications

We suggest that coaches may prioritize the high volume of NHE
in the pre-season period in order to improve architectural adaptation
of the hamstring muscles and, when starting with novice athletes,
to increase compliance and decrease DOMS. Novice athletes should
first use low-intensity exercise (i.e., band-assisted NHE, decreasing
ROM) and gradually increase the intensity to perform exercise in
full range of motion. Low volume of exercise can be used within
the in-season period, where a high match schedule is presented
to decrease compliance with exercise. Progressive overload must
be used in experienced players with the aim to gradually increase
the hamstring strength and architecture of hamstring muscles.
Additionally, coaches should try to find the minimal effective dose of
NHE, respecting the desired outcomes of exercise, compliance, and
strength level of the players.
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