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This cross-sectional study assessed trunk strength at 60°/s and 120°/s angular
velocities in swimmers and its relationship to 100-m sprint performance. Thirty-
two elite swimmers (age: 1949 + 144 years; height: 177.77 + 6.84 cm; body
mass: 71.88 + 8.50 kg) underwent isokinetic trunk testing and timed sprints. All
tests demonstrated excellent reliability (ICC >0.96). Swimmers had significantly
greater peak torque in extension compared to flexion (p < 0.01), and higher
torque in left versus right rotation, though the latter was not significant. Contrary
to the hypotheses, peak torque at 120°/s did not correlate more strongly with
performance than at 60°/s, and rotation torque did not surpass flexion/extension
metrics. After Benjamini—-Hochberg FDR correction for 24 comparisons, no
significant correlations remained (g < 0.05), indicating initial associations were
likely confounded by sex differences. These results suggest training should
emphasize inter-segmental coordination over isolated strength gains, focusing
on torque transfer from trunk to extremities. Interpretation of high-velocity
torque data requires caution due to potential acceleration artifacts at early peak
angles (5°-7°).

trunk strength, sprint performance, swimmers, freestyle, torque-velocity

Introduction

The primary objective of competitive swimming is to efficiently traverse a set distance
in the shortest time possible. Therefore, improving muscular strength for increased
propulsion, maintaining streamlined alignment, and minimizing drag through optimal
body positioning are vital for enhancing athletic performance in swimmers (Fig, 2005;
Kibler et al., 2006). Proper alignment of the head, shoulders, trunk, pelvis, and lower
limbs forms the technical foundation of swimming, and aligning these body segments in
a nearly straight line reduces hydrodynamic resistance and enhances swimming efficiency
(Willardson, 2007; Jia et al., 2022). Trunk muscles play a crucial role in maintaining body
posture and providing active stabilization in the unstable aquatic environment (Patil et al.,
2014). Insufficient strength in trunk muscles can lead to energy wastage due to compromised
stabilization (Martens et al., 2013; Khiyami et al., 2022). Furthermore, maintaining a stable
body position during swimming is crucial for optimizing power output from both the
upper and lower limbs (Willardson, 2007; Strzala et al., 2012). Trunk muscle training is
considered beneficial as it enhances stabilization, resulting in increased force production by
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the limbs and efficient force transmission between the trunk
and extremities (Hibbs et al, 2008; Dingley et al, 2014;
Weston et al, 2015). In sprint swimmers, trunk strength
training is thought to induce neuromuscular adaptations such as
enhanced neural activation, improved motor unit synchronization,
optimized recruitment patterns, and reduced inhibitory reflexes
(Strzala et al., 2012; Dingley et al., 2014), and these adaptations
directly contribute to enhancing stroke efficiency and athletic
performance.

However, empirical evidence supporting trunk strength’s direct
impact on swimming performance is conflicted. While core training
improves swim efficiency in adolescents (Karpinski et al., 2020),
elite studies show minimal transfer (Keiner et al., 2021). This
may stem from methodological limitations: most assessments use
isometric/endurance tests ill-suited to capture velocity-specific
strength adaptations crucial for sprint swimming. Trunk strength
is typically measured by the number of repetitions and the
load lifted (Faries and Greenwood, 2007). The endurance of the
anterior, posterior, and lateral trunk muscles is assessed using
trunk flexion, trunk extension, and right and left side bridge
tests (Reed et al., 2012; Shamsi et al., 2016). Most studies have
evaluated the maximal isometric strength and endurance of the
trunk, with little attention paid to the load, force, and power-velocity
relationships (Zemkova and Zapletalova, 2022). Therefore, further
research is needed to address this gap in the literature and investigate
strength and power-related measures within cross-sectional and
intervention studies. The lack of specificity in many dryland strength
training programs is frequently cited as a reason for their limited
effectiveness in improving swimming performance (Girold et al.,
2007). Critically, no study has examined isokinetic trunk strength
which quantifies torque-velocity profiles in relation to segmental
swimming performance, despite its potential to reveal sport-specific
neuromuscular adaptations.

This gap is compounded by a lack of sport-specific validation.
Static endurance testing is well-suited for assessing postural stability
in endurance-oriented sports, while Isokinetic assessmen may
be more appropriate for disciplines emphasizing strength (Pérez-
Olea et al., 2018). Isokinetic testing provides precise measurements
of muscle strength under controlled conditions, including angular
velocities, contraction types, and motion ranges. It is a well-
established method for assessing trunk strength, with testing
protocols in kneeling (Palmer and Uhl, 2011), standing (Andre et al.,
2012), and seated positions (Juan-Recio et al., 2017). The seated test
protocol specifically isolates lumbar motion and reduces hip force
interference. Research has shown that trunk endurance and balance
control may not be constraining factors for exceptional performance
(Wirth et al., 2022; Keiner et al., 2021). However, some studies have
highlighted that the intensity of trunk rotation significantly impacts
athletic performance, such as its effect on baseball pitching speed
(Taniyama et al., 2021), canoe sprint force (Zinke et al., 2019), and
golf swing speed (Gordon et al., 2009). Its role in freestyle swimming
remains untested where transverse-plane rotation dominates the roll
mechanism (Andersen et al., 2021).

This study examines freestyle swimming (the dominant
competitive stroke) using isokinetic dynamometry to evaluate
trunk strength-performance relationships. It aims to: (1) quantify
trunk strength characteristics across velocities (60°/s, 120°s) in
elite freestyle swimmers; (2) Analyze associations between strength
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metrics and 100 m sprint performance segments (start, turn,
overall). Given the velocity-specific nature of force production
in aquatic environments, we hypothesize that (1) peak torque
at 120°/s would correlate more strongly with sprint performance
than 60°/s, reflecting the high-velocity force demands of the catch
phase (Wirth et al., 2022); (2) trunk rotation torque will show a
stronger relationship to performance than flexion/extension torque
in freestyle, analogous to transverse-dominant sports (Zinke et al.,
2019), due to shared roll mechanics.

Methods
Participants

Thirty-two elite swimmers (age: 19.49 + 1.44 years; height:
177.77 + 6.84 cm; body mass: 71.88 £ 8.50 kg; body mass index:
22.68 +
recruited for this study after meeting the criteria of being at a

1.67 kg/mz), including 9 national-level athletes, were

Chinese first-class level or higher. The basic information differences
existed between sexes as detailed in Table 1. All participants
confirmed their lack of significant injuries in the preceding 6 months
and provided written informed consent after a comprehensive
explanation of the study’s aims and methods. Swimmers usually
perform 3-4 swim drills per week and at least 2 structured strength
and conditioning sessions per week during the testing cycle. All
subjects provided written informed consent and their personal
information was handled anonymously. The research protocol was
approved by the Ethics Committee of Beijing Sport University.

Experimental design

This study recruited swimmers from Beijing Sport University.
Conducted in September 2023, the protocol involved trunk
isokinetic muscle strength testing (60-80 min) and 100 m sprint
testing (20-30 min) on separate days to mitigate fatigue effects.
Participants were acquainted with testing procedures, and their
information was documented according to study protocols. To
ensure data validity and reliability, subjects completed a warm-up
and were advised to avoid strenuous physical activity for 48 h before
testing and to fast for 2 h beforehand.

Procedures
Isokinetic strength testing

The isokinetic trunk protocol utilized the Isomed 2000
dynamometer (D&R Ferstt GmbH, Hemau, Germany, 2000).
Participants were positioned on the dynamometer’s dual-position
back extension-flexion attachment with an upright trunk, hips and
knees bent at 90°, thighs parallel to the floor, and the dynamometer’s
axis aligned with the line between the anterior superior iliac spines,
serving as the anatomical reference. Adjustable pads supported the
head, sacrum, and upper trunk, with additional pads on the tibia’s
anterior surface, secured by Velcro straps on the upper trunk, thighs,
and pelvis as shown in Figure 1. Trunk movement was limited to
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TABLE 1 Baseline data of the subjects.

10.3389/fphys.2025.1625283

Basic information Total (n = 32) Male (n = 20) Female (n = 12)
Age (years) 19.49 + 1.44 19.59 £ 1.71 19.50 £ 1.00
Height (cm) 177.77 £ 6.8 181.11 £ 5.06 172.17 £5.84
Body mass (kg) 71.88 + 8.50 76.06 +7.2 65.59 +7.62
Body mass index (kg/mz) 22.68 + 1.67 23.19+1.77 22.04 + 1.51
Traing Time (years) 10.27 +2.48 9.43 £2.31 11.75 £ 2.09
Sprint (50-100 m) 24 (75%) 15 (75%) 9 (75%)
Mid-distance (200-400 m) 5 (15.6%) 3 (15%) 2 (16.7%)
Long-distance (800-1500 m) 3(9.4%) 2 (10%) 1(8.3%)

60°, with 30° of flexion and 60° of extension from the reference
position (0°), and rotation testing was confined to 60° range of
motion (30°rotation to the left and 30° to the right from the reference
position 0°). Hip movement was minimized following standardized
stabilization protocols (Garcia-Vaquero et al., 2020). Testing began
with flexion/extension trials from neutral, followed by rotation trials
starting from the left side. Participants crossed their arms over their
chest, with 1-3 min of rest between trials.

Participants were instructed to cross their arms over their
chest and exert maximum effort from the start of the first set
until the test concluded. Verbal encouragement was provided to
ensure maximal effort was sustained throughout testing. Before
assessment, participants completed a standardized 15-min warm-up
protocol comprising dynamic stretching, core activation exercises,
pillar preparation drills, and medicine ball throws. To acclimate
to the protocol, participants completed three maximal isokinetic
practice contractions followed by ten consecutive maximal efforts.
This warm-up facilitated familiarity with the equipment and
test procedure. The total testing duration ranged from 60 to
80 min. To accurately assess reliability, each participant underwent
five testing sessions of the isokinetic trunk flexion-extension
protocol. All trials were conducted at the same time of day
and overseen by the same researcher. During the initial testing
session, each participant’s position on the dynamometer was
logged and consistently controlled across all sets and sessions by
adjusting pads and straps to ensure protocol reliability. Peak torque
(PT), the maximal moment generated during joint movement,
was the primary outcome measure. Testing procedures followed
manufacturer guidelines rigorously, administered by certified
technicians. Participants received verbal encouragement to exert
maximal effort throughout.

Sports performance testing

The swimming performance tests were conducted in a 50-
m indoor pool maintained at 28°C. Safety protocols included the
presence of a standby rescue team. The pool lanes were marked
with 50-m spiral float line ropes. Two high-speed waterproof
cameras (GoPro HERO7, GoPro Inc.,, San Mateo, CA, United
States) recording at 2.7K and 100 Hz were utilized: one positioned
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0.15 m underwater at the lane center for stroke parameter analysis
(Franken et al., 2013), and another mobile camera operated by a
researcher to capture the entire trial. Stroke time (ST) was measured
by a coach using a chronometer, a standard method for identifying
stroke parameters (Franken et al., 2013; Khiyami et al., 2022). Prior
to the trial, swimmers performed 15 min of warm-up exercises. The
performance metrics measured were the total 100 m time, as well as
split times at 15 m (start), the turn (5 m pre-turn to 15 m post-turn).

Statistical analyses

The data are presented as means with standard deviations
(SD). Statistical analyses were conducted using IBM SPSS Statistics
(version 27; SPSS, Inc., Armonk, NY, United States). Normality
of the data was confirmed via the Shapiro-Wilk test, with
significance set at p < 0.05. Absolute and relative reliability
were calculated using the coefficient of variation (CV) and
intraclass correlation coefficient (ICC) with absolute agreement
(95% confidence intervals), respectively. CV values <10% were
considered acceptable (Cormack et al., 2008) and ICC values were
interpreted according to the guidelines proposed by Koo and Li
(2016), where >0.9 = excellent, 0.75 to 0.9 = good, 0.5 to 0.74 =
moderate, and <0.5 = poor. A paired-sample t-test was conducted to
examine the trunk muscle strength under different angular velocities
and the bilateral muscle strength. Pearson correlations examined
relationships between trunk strength measures (8 variables) and
swimming performance (3 segments). Given 24 comparisons per
subgroup, Benjamini-Hochberg FDR correction were implemented
to limit false discoveries to <5% of significant results. The procedure
identified the largest p-value satisfying p; < (i/24) x 0.05, with all
smaller p-values considered significant at q < 0.05.

Result

The data presented in Table 2 indicate significant sex-based
differences in peak torque (PT) for trunk extension and rotation.
Trunk extension PT was significantly greater than flexion PT at both
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TABLE 2 Mean testing data + standard deviations for each group.

10.3389/fphys.2025.1625283

Total (n = 32) Male (n = 20) Female (n = 12)
F 60%s PT (Nm) 135.42 +42.73 155.67 + 35.23" 100.45 + 30.59
E 60%s PT (Nm) 202.60 + 66.14 241.65 +47.34 136.19 + 31.47
F120%s PT (Nm) 111.84 +26.10 120.84 + 23.56 96.30 +23.58
E 120%s PT (Nm) 213.10 + 64.93" 247.42 + 48.89° 153.82 + 42.68
LR 60%s PT (Nm) 122.21 +31.09 136.74 + 26.63 97.12 +20.80
RR 60%s PT (Nm) 118.17 + 32,51 132.68 +29.77 93.09 + 19.41
LR 120%s PT (Nm) 130.62 + 38.13" 152.03 + 28.13* 93.64 +20.37
RR 120%s PT (Nm) 129.56 + 40.37* 152.21 + 30.26 90.42 +20.48
15 m Time (s) 6.80 +0.68 6.45 +0.39 7.41 +0.66
Turn Time (s) 12.13 +0.94 11.60 + 0.60 13.05 + 0.67
100 m Time (s) 60.07 + 4.41 57.65 + 2.09 64.12 + 4.43

PT, peak torque; F, flexor; E, extensor; LE left rotation; RR, right rotation.
" p < 0.05, highlighting differences in angular velocities.

TABLE 3 Peak torque angle distribution of trunk (n = 32).

Velocity Flexor (°) Extensor (°) Left rotation (°)

Right rotation (°)

60%s 17.36 + 3.84 12.86 +5.16

17.66 + 1.72 17.17 £2.65

120°s 17.04 £ 11.29 5.64 +4.63

6.66 + 4.34 6.24+4.70

high and low angular velocities (p < 0.01). Although left rotation PT
was marginally higher than right rotation PT, this difference was not
statistically significant. High-speed conditions elicited greater PT in
trunk extension and rotation compared to low-speed conditions (p
<0.05).

Table 3 displays the peak torque angle distribution of the trunk,
showing that peak torque consistently occurs at mid-range angles
across all movements, with minimal variability at 60°/s. Notably,
there is a significant angle reduction in extensors and rotators at
120°/s, while the flexor angle remains stable but with high standard
deviations.

Table 4 presents the mean test scores, standard deviations,
and reliability metrics, including the coefficient of variation (CV)
and intraclass correlation coefficient (ICC). All tests demonstrated
acceptable absolute reliability, with CV values under 8%. Relative
reliability was excellent, as indicated by ICC values ranging from
0.968 to 0.998.

Table 5 presents correlation coefficients between trunk
strength and swimming performance segments. Combined sample
correlations are provided for reference only and may be confounded
by sex differences. After Benjamini-Hochberg FDR correction (q <
0.05), no significant correlations were identified. In male swimmers,
trunk strength generally exhibited non-significant or positive
correlations with performance metrics showed mixed correlation

Frontiers in Physiology

directions (e.g., 60°/sF-15 m: r = —0.055; 120°/sE-15 m:r =0.21). The
strongest association was 60°/sRR-100 m (r = 0.465, p = 0.045), but it
did not survive FDR correction. In female swimmers, trunk strength
metrics did not show any statistically significant correlations with
performance segments. However, early-phase performance (15 m)
exhibited moderate negative trends with flexion torque: at 60°/s
flexion (r = —0.479) and 120°/s left rotation (r = —0.177), in contrast
to the positive correlations observed in males.

Discussion

This study utilized isokinetic dynamometry to assess trunk
strength at varying angular velocities and explored its relationship
with 100 m freestyle swimming performance. Results indicated
that sprint freestyle swimmers exhibited higher peak torque in
trunk rotation and flexion during high-speed movements compared
to low-speed ones. While swimmers generated greater rotational
torque at high speeds (p < 0.05), this mechanical advantage did
not enhance performance. The lack of FDR-significant associations
suggests trunk strength, as measured by isokinetic dynamometry,
may not directly determine swimming performance in elite athletes.
Training approaches should prioritize inter-segmental coordination,
with a focus on optimizing torque transfer from the trunk to
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TABLE 4 Accompanying reliability data for each test.

Total (n = 34)

CV (%) (95%Cl)

10.3389/fphys.2025.1625283

ICC (95%Cl)

F 60°%s PT (Nm) 13542 +42.73 3.86 (3.08-4.77) 0.994 (0.981-0.998) 4.17
E 60%s PT (Nm) 202.60 + 66.14 4.65 (3.64-5.97) 0.991 (0.962-0.997) 7.53
F120%s PT (Nm) 111.84 +£26.10 5.57 (4.24-6.92) 0.975 (0.954-0.987) 6.90
E 120%s PT (Nm) 213.10 +64.93 7.69 (6.01-9.66) 0.968 (0.941-0.983) 20.54
LR 60%s PT (Nm) 122.21 + 31.09 4.33 (3.33-5.41) 0.998 (0.949-0.995) 4.23
RR 60%s PT (Nm) 118.17 +32.51 3.93 (3.04-4.90) 0.989 (0.970-0.995) 4.93
LR 120%s PT (Nm) 130.62 + 38.13 5.04 (3.83-6.42) 0.985 (0.973-0.992) 8.05
RR 120%s PT (Nm) 129.56 +40.37 5.37 (4.28-6.70) 0.988 (0.977-0.994) 7.42

PT, peak torque; F, flexor; E, extensor; LE left rotation; RR, right rotation; CV, coefficient of variation; ICC, intraclass correlation coefficien; CI, confidence interval; SEM, standard error of

measurement.

TABLE 5 Correlation coefficients between trunk strength and performance.

15m Turn-(45-65 m)
Total (n Male (n Total (n Male (n Female Total (n
=32) =20) = 32) = 20) (n=12) = 32)
F ~0.567 -0.055 -0.479 ~0.494 0.002 -0.086 ~0.461 0.119 ~0.185
60
E ~0.598 ~0.145 —0.1 ~0.605 ~0.16 0.233 ~0.479 0.148 0.247
F -0.376 ~0.081 ~0.06 -0.375 0.093 -0.262 ~0.407 ~0.152 -0.055
120
E ~0.457 0.21 0.06 ~0.567 0.014 ~0.008 ~0.474 0.076 0.223
LR ~0.445 ~0.062 ~0.04 —0.421 0.088 0.073 -0.325 0.346 0.105
60
RR ~0.365 0.174 -0.041 ~0.407 0.142 0.069 -0.273 0.465 0.165
LR ~0.555 0.107 ~0.177 ~0.603 0.067 ~0.215 ~0.511 0.232 —0.045
120
RR ~0.547 0.111 ~0.161 ~0.644 -0.069 -0273 -0.498 0.34 ~0.124

PT, peak torque; F, flexor; E, extensor; LE left rotation; RR, right rotation.
All correlations non-significant after FDR, correction (q < 0.05).

the extremities. These findings offer valuable insights for refining
training strategies in sports.

The data aggregated across protocols (Table2) show trunk
extension peak torque (PT) significantly exceeded flexion PT at all
velocities (p < 0.01), with the disparity increasing at higher speeds
(e.g., extension-flexion difference: 67.2 Nm at 60°/s vs 101.3 Nm
at 120°/s). Consistent with the rapid torque-generation demands
in swimming, rotational PT at 120°/s surpassed 60°/s values (p <
0.05, Table 2), contrasting the typical velocity-force relationships
observed in non-aquatic sports. The angle distribution patterns
(Table 3) further revealed that the extensors/rotators exhibited
velocity-dependent shifts toward earlier ranges of motion (ROM),
with peaks at 5.6°-6.6° at 120°/s compared to 12.9°-17.4° at
60°/s. In contrast, the flexor angles remained stable but with
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increased variability at 120°s (SD = 11.29° vs 3.84° at 60°s),
suggesting compromised measurement consistency under high-
velocity conditions. These torque-angle profiles align with the
biomechanics of freestyle swimming, where rapid torso rotation
coordinates with limb propulsion (Ruiz-Navarro et al.,, 2025), but
caution is warranted when interpreting high-velocity data due to the
reduced isokinetic phase duration.

The study investigated the relationship between trunk
strength and sprint performance. Contrary to hypotheses 1-2,
which peak torque at 120°/s shows a stronger correlation with
sprint performance than at 60°/s and rotational torque is more
closely linked to performance than flexion/extension metrics, no
statistically significant correlations were found after correcting for
multiple comparisons. The observed nominal associations (p <
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FIGURE 1

Schematic diagram of trunk flexion/extension and rotation isokinetic testing.

0.05 uncorrected) were likely the result of Type I errors due to the
large number of statistical tests conducted. While trunk rotation
strength has been shown to predict performance in terrestrial
rotation-dominant sports like baseball (Taniyama et al., 2021),
its transfer to aquatic environments appears limited. Similarly,
weak trunk strength-performance links have been reported
in soccer (Keiner et al., 2015) and swimming (Prieske et al.,
2014), underscoring the context-dependent nature of physical
adaptations. Methodological and biomechanical factors may
explain the limited relationship between dry-land trunk strength
and swimming performance. Isokinetic tests conducted on land
cannot replicate the triaxial torque demands experienced during
aquatic propulsion (Pérez-Olea et al, 2018). Fluid dynamics
favor energy transfer via coordinated body roll over maximal
torque output (Zamparo et al., 2012; Ruiz-Navarro et al., 2025).
Furthermore, Andersen et al. (2021) found that torso muscles
are more crucial for postural stability and control during front
crawl swimming than for torso rotation. In conclusion, swimming
performance appears to depend more on the technical integration
of movement patterns than on isolated trunk strength. The context-
specific nature of physical adaptations should be considered when
evaluating the relevance of strength measures to aquatic sports
performance.

Despite the absence of significant within-sex associations
after FDR correction,
scatterplots (Figure 2)
cautious interpretation. Stratified data suggested potential sex-

visual inspection of sex-stratified

revealed nominal trends that merit

specific patterns: males exhibited a tendency toward positive
associations between rotation torque and performance, while
females showed a slight trend linking flexion to acceleration and
passive relationships between rotation torque and performance.
Although these observations are not statistically significant,
they suggest the hypothesis of differing kinetic strategies:
males might use rotation to compensate for limited sagittal-
plane force transmission, while females may focus on flexion-
driven streamline control (Andersen et al.,, 2020). It is critical
to emphasize that these patterns did not survive multiple
comparisons correction and should be considered strictly
exploratory. They serve primarily to highlight the complexity of
trunk biomechanics and the necessity for sex-specific investigations
in future research with larger samples. Methodologically, pooled
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correlations were confounded by biological dimorphism, such
as males’ generally higher strength and performance. The lack
of within-sex associations after stratification confirms that initial
combined-sample trends reflected sex differences rather than causal
relationships.

The present study challenges the utility of isolated trunk strength
as a predictor of elite swimming performance. The non-significant
outcomes observed underscore a fundamental disconnect
between conventional strength metrics and the biomechanical
demands of aquatic locomotion, where hydrodynamic efficiency
likely supersedes raw torque output (Zamparo et al, 2012).
Within a multifactorial training framework (Wirth et al,
2022), trunk strength should be integrated with technical skills
(e.g., stroke efficiency) and physiological capacities, rather
than being considered an isolated performance predictor.
Importantly, individualized dryland training programs (e.g.,
velocity-specific loads) can further modulate strength adaptation
(Izquierdo et al., 2002; Amaro et al., 2018), potentially explaining the
null correlations observed. Several limitations of the current study
warrant cautious interpretation. First, peak torque measurements
at 120°s occurred at low joint angles (5.6°-6.5°), which may
have captured acceleration artifacts rather than true trunk
strength. Second, the male-skewed sampling (M:22, F:12) obscured
potential sex-specific differences in the relationships examined.
Third, the study did not quantify body roll kinematics or the
periodization of dryland training, both of which may have
influenced the observed outcomes. Future research should employ
instrumented tethered swimming systems to directly quantify
trunk force production during aquatic locomotion, synchronizing
these measurements with 3D motion capture of roll mechanics.
Additionally, sex-stratified analyses in balanced cohorts are needed
to identify potential dimorphic strategies. Integrating longitudinal
training metrics (e.g., velocity-specific dry-land loads) with
comprehensive biomechanical profiling may further elucidate the
complex relationships between trunk strength, technical skills, and
swimming performance.

The present study utilized isokinetic dynamometry at angular
velocities of 60°s and 120°s to investigate the relationship
between trunk strength and 100 m performance. The findings
did not reveal any statistically significant correlations, challenging
the notion that isolated trunk strength is a reliable predictor
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non-significant after FDR correction (q < 0.05).

of swimming performance. This suggests that hydrodynamic
efficiency in swimming may depend more on inter-segmental
coordination and technical efficiency than on maximal torque

Frontiers in Physiology

output alone. Consequently, our study does not support the
prioritization of isolated trunk strength training as a performance-

enhancing strategy for swimmers. The observed trends between
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sexes, while intriguing, are exploratory in nature and underscore
the need for sex-specific investigations with larger sample sizes in
future research.
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