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anesthetized rabbit model study

Hiba J. Tannous1,2, Corine J. Samaha1,2, Hassan A. Chami3, 
Joseph G. Ghafari2,4 and Jason Amatoury1,5*
1Sleep and Upper Airway Research Group (SUARG), American University of Beirut, Beirut, Lebanon, 
2Department of Dentofacial Medicine, American University of Beirut Medical Centre, Beirut, Lebanon, 
3School of Medicine, Johns Hopkins University, Baltimore, MD, United States, 4Department of 
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Background: Mandibular advancement serves as a treatment option for 
obstructive sleep apnea (OSA), but its effectiveness differs among patients. The 
position of the hyoid bone is crucial for maintaining upper airway patency 
and may influence mandibular advancement outcomes. This study aimed to 
assess the impact of surgical hyoid re-positioning on mandibular advancement-
induced changes in upper airway collapsibility in an animal model.
Methods: Twelve anesthetized male New Zealand White rabbits underwent 
mandibular advancement (0–4 mm), combined with hyoid repositioning in 
various directions (anterior, cranial, caudal, anterior-cranial, anterior-caudal) and 
increments (0–4 mm). Upper airway collapsibility was quantified as the negative 
pressure required to close the airway (Pclose) at various mandibular and hyoid 
positions.
Results: Increasing mandibular advancement alone led to a progressive 
reduction in Pclose, indicating a decrease in upper airway collapsibility. 
Similarly, anterior hyoid repositioning alone resulted in incremental reductions 
in Pclose, with similar outcomes observed for anterior-cranial and anterior-
caudal directions. When mandibular advancement was combined with anterior-
based hyoid repositioning directions, a further decrease in Pclose was 
observed compared to when either intervention was applied alone. Cranial and 
caudal hyoid repositioning had no direct effect on Pclose or on mandibular 
advancement outcomes.
Conclusion: In summary, decreases in upper airway collapsibility induced by 
mandibular advancement are dependent on both hyoid repositioning direction 
and increment. The findings suggest that combining mandibular advancement 
with anterior-based hyoid repositioning may enhance the effectiveness of 
mandibular advancement in treating OSA.
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obstructive sleep apnea, OSA, upper airway surgery, oral appliance, mandibular 
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1 Introduction

 The hyoid bone and mandible are crucial in maintaining the 
patency of the upper airway. Abnormal positioning of these bones 
can affect the mechanical behavior of upper airway tissues (including 
how they deform) and the effectiveness of pharyngeal muscles in 
responding to both static and dynamic upper airway loads (e.g., 
change in mandible position, intraluminal pressure variations, muscle 
activity) (Bilston and Gandevia, 2014). Individuals with obstructive 
sleep (OSA) often exhibit an inferiorly positioned hyoid bone and a 
retruded mandible compared to healthy individuals (Ahmadi et al., 
2022; Chi et al., 2011; Lee et al., 2009). These anatomical deviations 
are associated with a more collapsible upper airway, a characteristic 
feature of OSA (Chi et al., 2011; Neelapu et al., 2017; Bilici et al., 2018). 

OSA is a highly prevalent disorder associated with serious 
health consequences, such as cardiovascular diseases and cognitive 
impairments (McEvoy et al., 2016; Young et al., 1993; Barletta et al., 
2019). Accordingly, the treatment of OSA is a major health 
priority. Mandibular advancement, a treatment option for OSA 
that involves protruding the mandible using a dental appliance 
to keep the upper airway open during sleep, has been shown to 
reduce airway collapsibility (Bamagoos et al., 2019). The success 
of mandibular advancement is reported in approximately 50% 
of patients, but the reasons for this variability are not well 
understood (Sutherland et al., 2014). 

The mandible is connected to the hyoid bone via several pharyngeal 
muscles, including the genioglossus, geniohyoid, mylohyoid and 
digastric muscles (Mu and Sanders, 2010; Edwards and White, 2011). 
As a result of the hyoid-mandible connections, a lower hyoid bone may 
decrease the effectiveness of mandibular advancement therapy due to 
alteration of muscle angles and/or altered tissue mechanical (stiffness) 
properties (Bilston and Gandevia, 2014; Salman and Amatoury, 2024). 
Hyoid repositioning surgeries, such as those involving anterior-
cranial elevation of the hyoid to the mandible (hyomandibular 
suspension) or anterior-caudal hyoid attachment to the thyroid 
cartilage (hyothyroidopexy), are conducted to help compensate for 
the lower hyoid position in OSA and/or stabilize/enlarge the upper 
airway and improve clinical outcomes (Song et al., 2016; Baker et al., 
2025). However, the combined effects of surgical hyoid repositioning 
and mandibular advancement on OSA treatment outcomes remain 
unclear, warranting further research to better understand this 
interaction and potentially improve therapeutic strategies. 

The aims of this study were to investigate the impact of 
hyoid bone surgical repositioning and mandibular advancement, 
alone and in combination, on upper airway collapsibility, using 
an anaesthetized rabbit model. Rabbits were selected as an ideal 
model due to their fundamentally comparable upper airway anatomy 
and physiology to humans, including having a freely suspended 
hyoid bone (Amatoury et al., 2014; Amatoury et al., 2015), which 
differs from most non-primates in which the hyoid bone is 
relatively fixed (Van de Graaff et al., 1984). 

2 Methods

Studies were performed on 12 adult, male, New Zealand White 
rabbits weighing 2.9 ± 0.9 kg and approximately 6 months of age. 
The rabbits were bred and housed in the animal care facility at the 

American University of Beirut. All rabbits included in the study were 
healthy adult animals of the same species, gender, and similar age, 
with no prior experimental treatments. Each rabbit was isolated and 
fasted for approximately 12 h the night before experimentation, The 
protocol was approved by the Institutional Animal Care and Use 
Committee at the American University of Beirut (#19-08-544). 

2.1 Experimental setup

Most of the experimental methodology, except for that 
associated with mandibular advancement, has been previously 
reported (Samaha et al., 2022). The experimental setup is 
illustrated in Figure 1.

The rabbits were anesthetized with an intramuscular injection 
of ketamine (35 mg/kg) and xylazine (5 mg/kg) followed by 
a continuous intravenous infusion of ketamine (15 mg/kg/hr) 
and xylazine (4.5 mg/kg/hr) to maintain anesthesia throughout 
the experiment. Heart and respiratory rates were monitored 
to ensure the rabbits’ physiological stability. At the conclusion 
of the experiment, the rabbits were euthanized using an 
anesthetic overdose.

The rabbits were positioned supine on a surgical platform. The 
head/neck position was controlled, such that a line drawn from 
the tragus to the external nares was at 50° to the horizontal. A 
ventral skin incision was made on the neck and blunt dissection 
was performed to expose the trachea. The baseline position of 
the trachea, taken between the third and fourth tracheal cartilage 
rings, was marked on the fixed experimental platform at the end of 
expiration.

The trachea was completely transected between the third and 
fourth tracheal rings to isolate the upper airway. This procedure 
resulted in the absence of airflow though the upper airway and the 
rabbits breathed spontaneously via the caudal trachea. An L-shaped 
tube was inserted into the caudal trachea and the pressure was 
monitored via this connection using a pressure transducer (Validyne 
DP45–32; Validyne Engineering, Northridge, CA). Another L-
shaped tube was secured into the cranial trachea to reposition 
the tracheal segment to its pre-transection baseline position. A 
calibrated syringe and 100 cm volume extension for upper airway 
pressure application, and a pressure transducer (Validyne DP45–32) 
for measuring upper airway pressure (Pua), were also connected to 
the cranial L-shaped tube.

A small modified conical animal anesthetic mask (GaleMed 
VM-2, GaleMed, Taiwan) with inflatable sleeve was fitted to the 
rabbit’s snout to achieve a closed upper airway system. The mask 
allowed for a sealed system and the application of upper airway 
intra-luminal pressure and measurement of mask pressure (Pm) via 
a pressure transducer (Validyne DP45–32). To ensure a complete 
mask seal, the system was pressurized using a syringe. Pressure leaks 
were eliminated using petroleum jelly around the mask and inflation 
of the mask sleeve.

All surgical procedures, interventions, and measurements (see 
below) were performed by the same trained researchers using 
standardized protocols and instrumentation. Although intra-rater 
variability was not formally assessed, consistency across animals 
was ensured through the use of uniform techniques and close 
coordination among the operators. 
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FIGURE 1
Schematic of the anaesthetized supine rabbit model. The upper airway is isolated at the level of the trachea. Mandibular advancement (MA) is applied in 
set increments. Hyoid displacement is applied to reposition the hyoid in the indicated directions (shown inset on right). Suction pressure (applied with a 
syringe) at the caudal tracheal end for closing pressure determination using upper airway pressure (Pua) and mask pressure (Pm). Figure adapted and 
modified from Samaha et al. under the CC-BY license (Samaha et al., 2022).

2.2 Hyoid repositioning

A hyoid bone repositioning device was developed in-house to 
displace the hyoid bone in various increments and directions, as 
previously described (Samaha et al., 2022). Briefly, to attach the 
hyoid bone to the repositioning device, a miniscrew (RMO® Dual-
Top, 2 mm × 8 mm) was inserted into the central part of the body 
of the hyoid. The device consisted of a horizontal sliding platform 
positioned above the rabbit. A modified digital caliper with a rigid 
extension and alligator clamp was mounted perpendicular to this 
platform and connected to the hyoid miniscrew. This caliper was 
used to advance the hyoid anteriorly by set increments and then 
return it to baseline. The sliding platform itself could move in 
the cranial–caudal direction, with these displacements measured 
using a second digital caliper. By adjusting both calipers, combined 
anterior–cranial or anterior–caudal hyoid movements were precisely 
controlled. Following repositioning, the hyoid bone was fixed in 
place by the device. 

2.3 Mandibular advancement

A mandibular advancement splint (MAS) was custom made 
in-house based on plaster models of the rabbit’s maxilla (upper 
incisors) and mandible (lower incisors) (Figure 2). Alginate 
impression material was used to obtain a 3D impression of the 
models, which was then poured in white plaster. The MAS was 

constructed using cold-curing orthodontic acrylic resin (Vertex-
Dental, AOPP2201000, shade 22, Netherlands) and incorporated 
an orthodontic expansion screw (Leone, A0890, Italy). The screw 
allowed for small gradual advancements of the mandible in the 
anterior direction.

The MAS was attached to the mandibular and maxillary 
incisors using glass ionomer luting cement (3M ESPE, self-curing, 
Germany). The MAS was fitted in such a way that the angle of 
mandibular advancement was 70° to the horizontal. By turning the 
screw in a clockwise direction, the mandible was displaced forward. 

2.4 Pclose measurements

The collapsibility of the upper airway was quantified using 
Pclose, which represents the closing pressure of the upper airway. 
When the upper airway was open, the pressure detected at the level 
of the mask (Pm) was equivalent to the pressure at the level of 
the trachea (Pua). Subsequently, a negative pressure was applied 
to the upper airway using the syringe connected to the cranial 
trachea. Pua and Pm were carefully monitored until the point of 
deviation, indicating the closure of the upper airway. The minimal 
pressure value reached by Pm before diverging from Pua was defined 
as Pclose (Samaha et al., 2022). Relative to baseline, a more negative 
Pclose value indicates a less collapsible upper airway, while a more 
positive value indicates increased collapsibility. 
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FIGURE 2
Mandibular advancement splint (MAS). (A) Side view of the MAS in which upper and lower incisors are inserted. The blue arrow indicates the direction 
of movement. The appliance is activated through an expansion screw that positions the lower incisor and mandible forward. (B) Frontal perspective of 
the appliance. The incorporated yellow arrow indicates the direction of screw activation.

2.5 Interventional protocol

The hyoid bone was re-positioned within the mid-sagittal plane 
in sequence along anterior, caudal, cranial, anterior-cranial (45°) 
(ant-cranial), and anterior-caudal (45°) (ant-caudal) directions by 
0, 2 and 4 mm. At each hyoid displacement, the mandible was 
advanced by 0, 2 and 4 mm. Pclose was measured for each hyoid 
repositioning direction/increment and mandibular advancement 
level. Following each Pclose measurement, the system was re-opened 
to atmosphere (0 cmH2O) and then closed again, ready for the next 
measurement. The protocol was repeated three times. 

2.6 Data and statistical analysis

All physiological signals were acquired using a Power Lab 
16 channel acquisition system and recorded using Lab Chart 
8 (ADInstruments Ltd., Colorado, United States). The primary 
outcome, ΔPclose, was averaged for each rabbit for all three 
runs. Group averaged data were represented as mean ± SD. For 
mandibular advancement alone, the average of all runs before 
applying hyoid repositioning in each direction was included in 
the analysis. In combined mandibular advancement and hyoid 
displacement analysis, the mandibular advancement values prior to 
the hyoid repositioning intervention in a particular direction were 
considered baseline for direct relevance.

A fixed effects linear model (IBM SPSS v24) was used to analyze 
the effect of the three independent variables (hyoid repositioning 
direction and increment and mandibular advancement increment) 
on the outcome variable ΔPclose (dependent variable). We 
used a fixed-effects linear model because the study involved 
repeated measures within the same animals, where each subject 
underwent all intervention conditions. This approach appropriately 
accounts for within-subject comparisons and isolates the effects of 
hyoid repositioning direction, hyoid increment, and mandibular 
advancement on Pclose. Subjects were included as a fixed effect to 
account for repeated measures. Interaction terms tested whether the 
effect of one factor depended on another. Pairwise comparisons with 
Bonferroni correction identified significant differences between 
the outcomes and their direction. Model assumptions (normality, 

homogeneity of variance) were checked and met. Statistical 
significance for all the analyses was inferred for p < 0.05. 

3 Results

All 12 rabbits were included in the analysis. Each rabbit 
underwent three runs (i.e., three replicates per measurement), 
except for three animals in which only one run was performed 
per measurement due to physiological instability under anesthesia 
following the first run, which precluded further measurements. 
Accordingly, data from these single runs were used as the 
representative measurements for these animals.

At baseline, Pclose was −4.2 ± 0.4 cmH2O.When mandibular 
advancement was applied alone, Pclose was significantly decreased 
at each increment (p < 0.001; Figure 3). On average, Pclose decreased 
by −0.6 and −1.1 cmH2O at mandibular advancement levels of 2 and 
4 mm, respectively (Figure 3).

Pclose showed progressive decrease with each increment in 
hyoid displacement in the anterior, ant-caudal and ant-cranial 
directions, reaching on average −2.3 to −2.8 cmH2O at 4 mm 
(p < 0.001). Group data are shown in Figure 4, and individual 
rabbit data are presented in Figure A1. The decrease in Pclose was 
not statistically significant between all anterior-based directions at 
corresponding increments (p > 1.0). Pclose was not significantly 
altered when the hyoid was repositioned in cranial or caudal 
directions (p > 1.0; Figures 4, A1).

The changes in ΔPclose when both mandibular advancement 
and hyoid repositioning were combined are shown in Figure 5. There 
was no significant interaction between mandibular advancement 
and hyoid repositioning on Pclose in any direction (p > 0.7). 
When mandibular advancement was combined with anterior, 
ant-cranial and ant-caudal hyoid repositioning directions, 
ΔPclose was more negative compared to when mandibular 
advancement was applied alone (p < 0.003; Figures 5A,D,E). 
For instance, a 4 mm mandibular advancement combined with 
ant-cranial hyoid displacement resulted in a mean ΔPclose of 
−4.0 cmH2O compared with −1.4 cmH2O at 4 mm mandibular 
advancement alone, and −2.8 cmH2O at 4 mm ant-cranial hyoid 
displacement alone (Figure 5). No significant differences were 
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FIGURE 3
Change in closing pressure (ΔPclose) vs. mandibular advancement. 
Mandibular advancement alone caused a gradual decrease in ΔPclose 
with increasing increment. Individual rabbit (grey circles) and group 
mean values (black square) ± standard deviation (bars) are shown.

FIGURE 4
Change in closing pressure (ΔPclose) vs. hyoid repositioning (HR). 
Anterior (ant), ant-cranial and ant-caudal HR directions resulted in a 
gradual and similar decrease ΔPclose with each hyoid displacement. 
On the other hand, cranial and caudal HR directions had no significant 
effect on ΔPclose. Data are presented as mean group values (points) ± 
standard deviation (bars).

observed between anterior, ant-cranial and ant-caudal hyoid 
displacement effects on mandibular advancement induced ΔPclose 
outcomes (p > 1.0). Cranial and caudal hyoid displacement 
directions had no statistically significant effect on mandibular 
advancement (p > 1.0).

4 Discussion

This study has demonstrated that both graded mandibular 
advancement and hyoid repositioning in anterior-based directions, 
but not in cranial or caudal directions, independently decreased 
Pclose and hence reduced collapsibility of the upper airway. When 

mandibular advancement was combined with anterior-based hyoid 
repositioning, the effect was additive, resulting in further decrease in 
Pclose than when mandibular advancement was applied alone. These 
outcomes suggest that the effectiveness of mandibular advancement 
in treating OSA may be improved when combined with hyoid bone 
repositioning in anterior-based directions. 

4.1 Mandibular advancement

Our findings are consistent with studies that showed reductions 
in upper airway collapsibility with mandibular advancement in 
humans (Bamagoos et al., 2019; Isono et al., 1995; Isono et al., 
1997), which is likely to contribute to improved clinical outcomes 
in OSA, including reductions in apnea–hypopnea index (AHI), 
daytime sleepiness, and 24-h mean blood pressure (Farooq et al., 
2025; Chen et al., 2025). Studies have also demonstrated that 
mandibular advancement enlarges the upper airway (Kuna et al., 
2008; Sutherland et al., 2011; Amatoury et al., 2015; Degraeve et al., 
2024) and can increase tissue stress/stiffness (Amatoury et al., 
2016; Amatoury et al., 2015), factors that could mediate the 
observed reduced collapsibility. Computational fluid dynamics 
(CFD) modeling has also shown that mandibular advancement 
reduces intraluminal pressure and enhances flow along the 
length of the upper airway (Zhao et al., 2013). Furthermore, 
mandibular advancement can alter the tongue’s dilatory movements 
to potentially improve therapeutic response (Jugé et al., 2020). 
The effect of mandibular advancement on upper airway patency 
has also been partially related to the movement of the hyoid 
bone (Amatoury et al., 2016; Amatoury et al., 2015; Pae and 
Harper, 2021; Battagel et al., 1999).

When the mandible is advanced, the hyoid bone moves 
in an anterior/anterior-cranial direction (Amatoury et al., 2015; 
Battagel et al., 1999), which assists in redistributing the mandibular 
advancement load throughout the upper airway to enlarge and 
stiffen it (Amatoury et al., 2016; Amatoury et al., 2015). Indeed, 
a computational finite element model of the rabbit upper airway 
showed that mandibular advancement effects on upper airway 
soft tissue displacements were reduced when the hyoid was fixed 
compared to when it was free to move (Amatoury et al., 2016). 
Nonetheless, even with the hyoid fixed in the current study, 
relatively similar to surgical hyoid repositioning therapies for 
OSA, mandibular advancement can still reduce upper airway 
collapsibility. Mandibular advancement does not just impact the 
hyoid bone, but also alters the movement and stretch of the 
tongue (Jugé et al., 2020) and other muscles and connections to 
the upper airway, like the pterygomandibular raphe (Brown et al., 
2020), so that increases in upper airway patency and stiffening 
of soft tissues can occur. However, if the hyoid remained mobile, 
it is possible that the effects of mandibular advancement would 
be greater (Amatoury et al., 2016). 

4.2 Hyoid repositioning

The independent effects of hyoid displacement on upper 
airway collapsibility observed in this study are consistent with 
our previous experimental results in rabbits (Samaha et al., 2022). 
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FIGURE 5
Change in closing pressure (ΔPclose) vs. mandibular advancement (MA) and hyoid repositioning (HR) combined. Increasing levels of MA at HR 
increments of 0, 2 and 4 mm are shown in (A) anterior, (B) cranial, (C) caudal, (D) ant-cranial, (E) ant-caudal directions. When MA is combined with HR, 
there was an additive effect on ΔPclose such that it decreased even further then when either intervention was applied alone for anterior, ant-cranial 
and ant-caudal directions (A,D,E). However, ΔPclose did not significantly change with MA+HR for cranial and caudal directions compared to MA alone
(B,C). Data are presented as mean group values (points) ± standard deviation (bars).

Anterior-based hyoid displacements progressively decreased upper 
airway collapsibility, while cranial and caudal hyoid displacements 
had no effect. Similar enhancements in upper airway patency 
through anterior and ant-caudal hyoid repositioning have also been 
observed in human and dog models (Van de Graaff et al., 1984; 
Rosenbluth et al., 2012; Yao et al., 2025).

We previously hypothesized that the apparent lack of impact of 
cranial or caudal hyoid repositioning on upper airway collapsibility 
may be associated with compression/stretching of tissues above 
(e.g., genioglossus, geniohyoid, hyoglossus, styloglossus, stylohyoid 
and palatoglossus muscles) and below (e.g., thyrohyoid membrane 
and ligament, and thyrohyoid, sternohyoid and omohyoid muscles) 
the hyoid bone (Samaha et al., 2022). It is likely that moving the 
hyoid cranially stretches upper airway tissues caudally, contributing 
to improved upper airway stability. However, the cranial hyoid 
movement compresses airway tissues cranially, leading to a more 
collapsible airway upstream. The opposite effect occurs with 
caudal repositioning. Consequently, the improvement in upper 
airway collapsibility in one segment is offset by a reduction in 
collapsibility in another, leading to an overall lack of change 
in collapsibility. In recent computational model simulations, we 
predicted that a decrease or lack of change in upper airway size with 
caudal/cranial hyoid repositioning likely contributes to the absence 
of change in Pclose observed with caudal/cranial hyoid repositioning 
experimentally (Salman and Amatoury, 2024). 

4.3 Combined hyoid repositioning and 
mandibular advancement and clinical 
implications

To our knowledge, the combined effect of surgical hyoid 
repositioning and mandibular advancement has not been previously 
studied. The finding that combining hyoid repositioning in 
anterior-based directions with mandibular advancement leads 
to a more pronounced decrease in Pclose compared to either 
intervention alone is both novel and significant. For instance, 
the combination of mandibular advancement by 4 mm and hyoid 
ant-cranial repositioning by 4 mm yielded a 183% additional 
decrease in upper airway collapsibility compared to a 4 mm 
mandibular advancement alone. This combination is particularly 
impactful as upper airway tissues and dilator muscles are pulled 
in approximately the same direction by both interventions, 
which in turn likely enlarges the upper airway and stiffens the 
surrounding soft tissues. Thus, a treatment approach combining ant-
cranial hyoid repositioning through hyomandibular advancement 
surgery, along with mandibular advancement, may improve airway 
patency in individuals who do not respond well to mandibular 
advancement alone. Additionally, combining surgical hyoid 
repositioning with mandibular advancement may reduce the 
excessive amount of mandible advancement required for effective 
OSA treatment, thereby potentially mitigating side effects such 
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as temporomandibular or dental related pain, or dental/skeletal 
structural changes (Bartolucci et al., 2018; De Meyer et al., 
2021). Further studies examining a combined hyoid repositioning 
and mandibular advancement therapy approach in humans are 
necessary to confirm these hypotheses. 

4.4 Critique of methods

General limitations of the current study with 
hyoid repositioning alone and other interventions 
have been detailed previously (Samaha et al., 2022; 
Amatoury et al., 2014; Amatoury et al., 2015), and will be discussed 
briefly here. 

4.4.1 Rabbit model
A rabbit model was used for the current study, which we 

and others have repeatedly adopted in investigating upper airway 
physiology and mechanics with demonstrated similarity of rabbit 
upper airway outcomes to the human circumstance (Kirkness et al., 
2003a; Amatoury et al., 2014; Brouillette and Thach, 1980; 
Amatoury et al., 2015; Amatoury et al., 2016; Kairaitis et al., 2006; 
Kairaitis et al., 2012; Olson et al., 1989; Kirkness et al., 2003b; 
Schiefer et al., 2020; Benderro et al., 2018; Serghani et al., 2024; 
Samaha et al., 2022). Although the rabbit’s craniofacial structure 
differs from that of humans and it possesses an overlapping soft 
palate and epiglottis, the general similarity of its upper airway 
structure makes it ideal for understanding concepts related to hyoid 
repositioning and mandibular advancement. Both interventions 
applied alone have shown comparable outcomes in the anesthetized 
rabbit to the sleeping or anesthetized human (Samaha et al., 2022; 
Amatoury et al., 2016; Amatoury et al., 2015; Salman and Amatoury, 
2024), which provides us with confidence in the translatability of 
our combined intervention outcomes to the human. Furthermore, 
an advantage of the rabbit model is its mobile hyoid bone, which 
lacks fixed bony attachments like the human, a characteristic 
not found in other non-primates such as dogs, felines and rats 
(Amatoury et al., 2014; Amatoury et al., 2015). This allowed the 
hyoid to be readily repositioned in all directions and increments 
adopted in this study.

It is important to note that our rabbit model is not designed 
to replicate OSA but rather to simulate a healthy, well-controlled 
upper airway, which is one of the model’s major advantages to 
understanding fundamental mechanisms (see also below). OSA 
is a complex disorder influenced by multiple factors that require 
varied treatment approaches, including combination therapies 
(Carberry et al., 2018; Kairaitis et al., 2021). We propose that, 
in certain individuals with OSA, this combination of mandibular 
advancement and anterior-based hyoid repositioning could be key to 
successful treatment. However, future studies in humans are needed 
to identify which individuals would benefit most from this approach.

An isolated upper airway preparation was used in this study 
with rabbits deeply anaesthetized, as per previous preparations 
(Amatoury et al., 2014; Amatoury et al., 2015; Samaha et al., 
2022). General anesthesia reduces upper airway muscle tone 
(Eastwood et al., 2002a; Hillman et al., 2010). This reduction 
is ideal for our study, as general anesthesia creates an upper 
airway model similar to sleep, particularly in terms of collapsibility 

(Eastwood et al., 2002b; Hillman et al., 2010). The ketamine and 
xylazine combination used in this study is extensively employed 
as an anesthetic agent in upper airway research (Amatoury et al., 
2014; Amatoury et al., 2015; Rowley et al., 1996; Kairaitis et al., 
2003; Kairaitis et al., 2006; Kirkness et al., 2003a). Xylazine induces 
central muscle relaxation and anesthesia (Green et al., 1981), 
while ketamine, in addition to providing sedation, counteracts 
any respiratory depression caused by xylazine, helping to maintain 
a relatively stable breathing pattern (Eikermann et al., 2012; 
Uzun et al., 2006). This combination is suitable for airway studies 
due to its ability to maintain near-passive airway characteristics, 
with upper airway muscle activity further reduced with the isolated 
upper airway in the current study, while preventing complete airway 
collapse (Mishima et al., 2020; Drummond, 1996). The initial step in 
understanding the passive response of the upper airway to combined 
hyoid bone repositioning and mandibular advancement is necessary 
and advantageous for using animal models. By removing factors 
associated with upper airway muscle activity and airflow, we can first 
understand how hyoid repositioning and mandibular advancement 
impact the upper airway alone, and then comprehend in the future 
how muscle activity and upper airway airflow may alter outcomes in 
an intact upper airway (Song and Pae, 2001; Kairaitis et al., 2012). 

4.4.2 Hyoid bone repositioning and mandibular 
displacements

The hyoid bone was fixed in the new position and unable to move 
with any additional load, including mandibular advancement. This 
set-up is likely relatively similar to hyoid repositioning surgeries, 
in which the hyoid bone is attached to the mandible or the 
thyroid cartilage. However, the degree of hyoid mobility following 
such surgeries remains unknown. During normal functioning, the 
hyoid moves in response to various active and passive loads. 
Indeed, the hyoid bone is displaced with mandibular advancement 
(Amatoury et al., 2015; Battagel et al., 1999). Experimentally, 
preserving hyoid mobility after displacement in all directions 
investigated in this study is challenging. However, additional 
research, such as with computational modeling, could explicitly 
explore how preserving hyoid mobility post-surgical repositioning 
may further enhance upper airway patency.

We did not investigate posterior hyoid repositioning, as this 
is not a viable surgical option and would likely worsen upper 
airway patency. However, examining the impact of a naturally more 
posterior hyoid position on mandibular advancement, as well as 
other anatomical variations, could be informative. Nevertheless, this 
is not feasible in animal or human models, since such repositioning 
would alter other properties (e.g., length/tension of tissues), and 
would require computational modeling (Salman and Amatoury, 
2024), representing a potential avenue for future work.

A potentially useful metric would be to quantify hyoid position 
relative to the mandibular plane, as is commonly done in humans 
(Battagel et al., 1999; Costa e Sousa and dos Santos Gil, 2013), 
across different hyoid and mandibular displacement increments. The 
advantage of using a model based on healthy adult rabbits of the 
same species, gender, and similar age is that the hyoid and mandible 
are generally positioned similarly in each animal, including after 
hyoid repositioning. Nevertheless, we acknowledge that individual 
rabbits are not identical, and hyoid–mandibular plane distances 
could vary between animals. Measuring these distances using 
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imaging could provide additional insight and represents a possible 
direction for future studies.

In the current study, we focused exclusively on forward 
mandibular displacements (i.e., mandibular advancements) 
combined with controlled hyoid repositioning. Conditions 
involving mandibular setback with hyoid repositioning in various 
directions were not examined, as these scenarios were beyond the 
scope of this work. Future studies could explore how different 
hyoid positions interact with mandibular setback to influence upper 
airway patency. 

4.4.3 Experimental control and validity
Hyoid repositioning magnitudes/directions (anterior, caudal, 

cranial, anterior–cranial, and then anterior–caudal displacements) 
and mandibular advancements were performed in a fixed order, 
rather than randomized. This may have introduced potential order 
effects (e.g., progressive muscle stretch or passive tension). However, 
we believe any such effects were minimal given the consistency 
of our findings, particularly the robust benefit of anterior-based 
directions in improving upper airway collapsibility with mandibular 
advancement. In addition, the full set of repositioning directions was 
completed before the next experimental run, which likely reduced 
potential carryover effects.

We did not conduct a power analysis to determine the sample 
size for this exploratory animal study prior to its implementation. 
Instead, we used sample sizes from similar previous rabbit model 
investigations, both our own and those conducted by others, as a 
guide (Amatoury et al., 2014; Amatoury et al., 2015; Samaha et al., 
2022; Kairaitis et al., 2006; Kirkness et al., 2003a; Roberts et al., 
1984). However, a post hoc power analysis revealed that for 
an alpha of 0.05, the power to detect differences in Pclose 
between increments of hyoid repositioning (for each direction) and 
mandibular advancement was at least 87%. The exception was the 
comparison between mandibular advancement of 2 mm and 4 mm, 
which had a power of 68%. Thus, the findings from this comparison 
should be interpreted with some caution.

Measurements were not blinded in the current study, 
which represent a potential limitation. Blinding was difficult to 
implement, as the hyoid repositioning and mandibular advancement 
interventions are inherently observable during data collection. 
However, all measurements were performed using objective 
instrumentation and standardized procedures, minimizing the 
potential for observer bias. Data analysis was also not blinded, 
which may have introduced additional bias. Nonetheless, each rabbit 
served as its own control, with all interventions applied sequentially 
and effects measured relative to baseline. This within-subject design 
reduces variability between animals and helps mitigate, but does not 
entirely eliminate, the potential for bias from unblinded analysis. 

4.4.4 Pclose quantification, translational 
relevance and complementary measures

Baseline Pclose in our rabbit model (i.e., when mandibular 
advancement and hyoid displacement = 0 mm) was −4.2 
± 0.4 cmH2O. Peak negative upper airway pressures during 
normal breathing in anesthetized rabbits average approximately 
−0.3 ± 0.05–0.6 cmH2O (Kairaitis et al., 2003), whereas 
in humans, breathing pressures during sleep range more 

widely, for instance, from approximately −1.3 to −7.3 cmH2O 
(Tong et al., 2019; Amatoury et al., 2018).

Collapsibility data are reported as changes in Pclose to minimize 
any potential inter-animal variability, as our primary focus is 
the relative change in Pclose with hyoid repositioning and/or 
mandibular advancement rather than absolute values. For context, 
in non-obese anesthetized (with muscle paralysis) human subjects 
without OSA, baseline Pclose was approximately −3.5 to −5 cmH2O, 
decreasing to around −12.5 to −15 cmH2O with manual mandibular 
advancement [lower jaw thrust, magnitude unknown; estimated 
from Figure 5 in Isono et al. (1997), corresponding to an ∼200–257% 
decrease (Isono et al., 1997)]. In sleeping participants with OSA, 
Pcrit (critical closing pressure) decreased from approximately 1.8 ± 
3.9 to −4.0 ± 3.6 cmH2O with maximally comfortable mandibular 
advancement application [∼8 mm; calculated from Table 1 in 
Bamagoos et al. (2019)], a −5.8 cmH2O change (∼322% average 
decrease) (Bamagoos et al., 2019).

In the present study, mandibular advancement reduced 
from approximately −4.2 to −5.3 cmH2O at 4 mm mandibular 
advancement (∼26% reduction). To our knowledge no 
other studies apart from our previous work in a similar 
rabbit model (Samaha et al., 2022) have investigated upper airway 
collapsibility with hyoid repositioning. Although differences in 
experimental setup, protocol, species, and study populations (e.g., 
healthy vs. OSA), as well as measurement techniques, limit direct 
comparisons, the consistent direction and magnitude of change 
across studies demonstrate that mandibular advancement markedly 
reduces upper airway collapsibility, reinforcing the translational 
relevance of our findings.

While this study focused on upper airway collapsibility, as 
quantified by Pclose, additional outcomes, such as tissue stress 
and upper airway geometry, could provide complementary insights 
into airway mechanics. These measures were beyond the scope of 
the current study, but could be investigated in future work using 
computational modeling, imaging, or other approaches (Bekdache 
and Amatoury, 2024; Amatoury et al., 2015; Jugé et al., 2020). 
Incorporating such measures could help further elucidate how hyoid 
repositioning and mandibular advancement interact to influence 
upper airway patency. 

4.5 Conclusion

This study has demonstrated that combining mandibular 
advancement with anterior-based hyoid bone repositioning leads 
to further reduction in upper airway collapsibility compared to 
either intevention applied alone. However, no significant effect was 
observed with cranial or caudal hyoid repositioning. These findings 
suggest that indivudals with OSA who do not respond adequately 
to mandibular advancement alone may benefit from a combined 
therapeutic approach involving both mandibular advancement 
and anterior-based surgical hyoid repositioning. Such a combined 
treatment strategy holds promise for enhancing the management 
of OSA in these individuals. Further research and clinical studies 
are necessary to validate these findings in humans and refine OSA 
treatment protocols for personalized patient care.
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Appendix

FIGURE A1
Change in closing pressure (ΔPclose) vs. hyoid repositioning (HR) in Individual Rabbits. Individual rabbit (grey circles) and mean ± SD rabbit data (black 
squares and bars) for (A) anterior (ant), (B) cranial, (C) caudal, (D) ant-cranial and (E) ant-caudal HR directions.
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