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Background: Pneumocystis jirovecii pneumonia (PJP) is a serious form of 
pneumonia characterized by non-specific symptoms. Diagnosis is challenging 
due to overlapping clinical and laboratory features with bacterial pneumonia 
(BP). This study aimed to develop a diagnostic prediction model integrating 
digital chest CT analysis with clinical and laboratory parameters to enable early 
identification of PJP.
Methods: A retrospective analysis was performed on patients with confirmed 
PJP or BP at two medical centers between May 2020 and June 2024. Patient 
history, clinical symptoms, and laboratory test results were compared between 
cohorts. Chest CT images were analyzed using AI-assisted tools. Predictive 
factors were identified through univariate and multivariate logistic regression 
analyses, and a diagnostic nomogram was constructed. External validation was 
conducted using an independent cohort.
Results: Multivariate analysis identified previous immunomodulator use, 
procalcitonin levels, inflammatory lesion volume/total lung volume, whole lung 
−700 to −450 HU pneumonia lesion volume, and whole lung −450 to −300 HU 
pneumonia lesion volume as independent predictors of PJP. The constructed 
nomogram achieved AUCs of 0.898 and 0.820 in the training and validation 
cohorts, respectively, with sensitivity of 74.5% and specificity of 90.4% in the 
training cohort, and sensitivity of 73.5% and specificity of 79.4% in the validation 
cohort. Calibration curves and decision curve analyses confirmed the model’s 
predictive accuracy and clinical utility.
Conclusion: The model provides a valuable tool for differentiating 
PJP from BP, demonstrating that AI-assisted recognition of chest CT 
images can effectively support pathogen identification. Its application

 

Frontiers in Physiology 01 frontiersin.org

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2025.1616791
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2025.1616791&domain=pdf&date_stamp=
2025-10-15
mailto:9199912007@fjmu.edu.cn
mailto:9199912007@fjmu.edu.cn
mailto:zeng_yiming@fjmu.edu.cn
mailto:zeng_yiming@fjmu.edu.cn
https://doi.org/10.3389/fphys.2025.1616791
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphys.2025.1616791/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1616791/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1616791/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1616791/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1616791/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Chen et al. 10.3389/fphys.2025.1616791

has the potential to improve early diagnosis of PJP and enhance 
patient outcomes.

KEYWORDS

pneumocystis jirovecii pneumonia, bacterial pneumonia, chest CT imaging, digital 
analysis, AI-assisted diagnosis, nomogram 

1 Introduction

Pneumonia remains a leading cause of morbidity and mortality 
worldwide, particularly among hospitalized patients. PJP and BP 
represent two clinically important subtypes that require accurate 
differentiation to guide appropriate treatment (Berenji et al., 2025). 
PJP primarily affects immunocompromised individuals, whereas 
BP is more common and associated with a wide range of pathogens 
(Shoar and Musher, 2020; Yin et al., 2021). Despite advances in 
diagnostic techniques, distinguishing PJP from BP continues to 
pose significant challenges, as current guidelines for community-
acquired pneumonia (CAP) and hospital-acquired pneumonia 
(HAP) do not provide specific treatment recommendations for 
PJP. The rapid progression and non-specific symptoms of PJP 
can delay diagnosis, leading to higher rates of mortality and 
mechanical ventilation, underscoring the urgent need for timely 
identification and treatment (Li J. et al., 2024; Nseir et al., 2024; 
Li et al., 2014; Roux et al., 2014). Traditional diagnostic methods 
such as microscopy and culture are limited by their low sensitivity 
in detecting PJP compared with other infections (Senécal et al., 
2022). Metagenomic next-generation sequencing (mNGS) has 
improved pathogen detection in clinical samples and enhanced 
pneumonia diagnosis, especially in immunocompromised 
patients (Lv et al., 2023). However, it’s very high sensitivity can 
complicate the distinction between pathogenic and non-pathogenic 
microorganisms, particularly in the case of Pneumocystis jirovecii, 
which is associated with low specificity (Giacobbe et al., 2023). 
At present, PJP diagnosis relies on the integration of risk factor 
assessment, clinical symptoms, imaging features, and serum lactate 
dehydrogenase levels to inform initiation of anti-pneumocystis 
therapy (Tasaka, 2020; Li Y. et al., 2024). High-resolution chest CT 
plays a critical role in detecting pulmonary infections and supports 
early recognition of PJP for timely treatment (Wu et al., 2021). 
Nevertheless, CT interpretation is time-consuming, and the heavy 
workload of radiologists may hinder accurate recognition of subtle 
features associated with PJP.

Artificial intelligence (AI) has been increasingly applied in chest 
CT analysis (Yadav et al., 2024), particularly during the COVID-
19 pandemic (Saba et al., 2021). However, its use in differentiating 
pneumonia pathogens remains underexplored. Computer-aided 
systems are capable of preprocessing images and extracting 
quantitative features, potentially providing valuable insights into 
distinctions between PJP and BP. The present study sought to 
improve PJP identification by integrating AI-based digital analysis 
of chest CT scans with clinical and laboratory data. A retrospective 
review of medical records from patients diagnosed with PJP and 
BP was performed to systematically evaluate baseline clinical 
characteristics, laboratory findings, and imaging features. On this 
basis, a diagnostic prediction model was constructed to enhance 

diagnostic accuracy, support empirical anti-infective decision-
making, and improve patient prognosis. 

2 Methods

2.1 Study design and participants

This retrospective study analyzed pneumonia patients at two 
hospitals who underwent mNGS of sputum or bronchoalveolar 
lavage fluid, selecting participants based on detected pathogens and 
strict criteria. Logistic regression identified independent predictors 
of PJP, which were used to create a nomogram model validated 
by the Hosmer-Lemeshow test. The model’s accuracy was assessed 
using ROC curve analysis, AUC, C-index, and calibration curve, 
with DCA evaluating its net benefit. Figure 1 illustrates the flow 
diagram of this retrospective, multicenter study conducted to 
identify independent predictors of PJP among pneumonia patients 
using metagenomic next-generation sequencing (mNGS) data. The 
study protocol was ethically approved, and informed consent was 
waived due to anonymization. The study involved two cohorts: 
a training cohort of 99 pneumonia patients (May 2020 - April 
2023) and an external validation cohort of 87 patients, February 
2021 - June 2024. Inclusion criteria for the PJP cohort included: 
(1) age 18+, (2) persistent lung infection symptoms for over a 
week, (3) chest CT showing typical PJP features, (4) detection of 
Pneumocystis jirovecii via mNGS, and (5) diagnostic confirmation 
by two specialists considering medical records and TMP-SMX 
use. PJP exclusion criteria included incomplete data and HIV 
co-infection. BP inclusion criteria, based on community-acquired 
pneumonia, required new or worsening respiratory symptoms, 
signs of consolidation or crackles, abnormal leukocyte counts, and 
radiographic evidence of infiltrates. BP exclusion criteria included 
incomplete data and mNGS results showing mixed infections.

2.2 Data collection

Baseline clinical characteristics were extracted from electronic 
medical records, including demographics, admission date by season, 
comorbidities, symptoms, physical findings, immunosuppressive 
therapy history, and current medications. Chronic comorbidities, 
defined by CDC criteria, included conditions lasting over a 
year needing ongoing care, such as cardiovascular diseases, 
type 2 diabetes, malignancies, and chronic respiratory 
disorders (Goodman et al., 2013). Immunosuppressive agents 
included glucocorticoids, calcineurin inhibitors, antimetabolites, 
lymphocyte-depleting antibodies, and alkylating agents. Laboratory 
data collected within 72 h of admission included complete 
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FIGURE 1
Flow illustration of the retrospective, multicenter study designed to identify independent predictors of PJP among patients with pneumonia.

blood count, inflammatory markers, serum biochemistry, cardiac 
biomarkers, electrolytes, arterial blood gas analysis, and coagulation 
profiles. All patients in this study underwent chest CT examinations 
on Philips iCT, Philips Brilliant CT, Siemens Force CT, or GE 
Lightspeed CT. Scanning parameters were as follows: fixed tube 
voltage 120kV, 3D tube current automatic modulation technology. 
Detector collimation width was 128 × 0.6 mm or 64 × 0.625 mm. 
Reconstruction slice thickness was 1.0 mm or 2.0mm, with a slice 
gap of 0.5 mm or 1.25 mm. CT images were interpreted using 
Picture Archiving and Communication System (PACS) software 
(GE Healthcare Life Sciences, Logan, UT, United States). All scans 
were performed with patients supine at end-inspiration, without 
intravenous contrast injection. Reconstruction was performed using 
a bone algorithm with 1 mm thickness and 1 mm interval. CT 
results included pneumonia, atelectasis, pulmonary nodules, pleural 
effusion, emphysema, etc. We employed the Shukun Pneumonia 
CT Image-Assisted Triage and Evaluation Software for automated 
image analysis, quantification, and visualization of CT scan 
structures (Figure 2). The software detects and segments pulmonary 
lesions, providing lesion location and size measurements. The 
AI algorithm intelligently recognizes CT images and precisely 
segments pneumonia lesions. Two respiratory physicians, each 
with over 3 years of experience, jointly reviewed and manually 
calibrated the lesion segmentation areas identified by the AI 
software. Multi-dimensional quantitative analysis was performed 
on lung volume, inflammatory lesion volume, and mean density of 
inflammatory lesions (in Hounsfield units, HU). Two physicians 

from the Department of Respiratory and Critical Care Medicine 
verified all pneumonia lesion delineations to ensure accuracy.

2.3 Statistical analysis

Statistical analyses were performed using RStudio software 
(version R 4.3.3). Normally distributed continuous variables were 
presented as mean ± standard deviation (x ̄ ± s), and two 
groups were compared using independent samples t-test. Non-
normally distributed quantitative data were presented as the median 
(interquartile range) [M (P25, P75)], and comparisons between the 
two groups were performed using the Wilcoxon rank sum test. 
Categorical data were expressed as percentages (%), and two samples 
were compared using the Chi-squared test or Fisher’s exact test. Risk 
factor analysis was performed using logistic regression, calculating 
odds ratios (OR) and their 95% confidence intervals (CI). A P-value 
<0.05 was considered statistically significant. 

3 Results

3.1 Baseline characteristics of the study 
population

In the study, 163 pneumonia patients were considered, with 99 
ultimately included: 47 in the PJP group (30 males, 17 females) and 
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FIGURE 2
Chest CT images of 10 sample patients with pneumonia; (a) Original CT scans; (b) Pneumonia lesions delineated using the Shukun AI algorithm; (c)
AI-delineated lesions with green indicating ground-glass opacities and yellow indicating consolidation; (d) 3D reconstruction of the lungs, with red 
indicating pneumonia lesions.
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TABLE 1  Baseline demographic characteristics of patients with PJP and BP.

Variable Total (n = 99) PJP (n = 47) BP (n = 52) P-value

Age, median (IQR), years 61.0 (53.0,70.0) 62.0 (54.0,72.0) 61.0 (51.8,67.2) 0.582

Age≥65 years 42 (41.4) 22 (46.8) 20 (39.2)

Sex 0.437

 Male, n (%) 67 (67.7) 30 (63.8) 37 (71.2)

 Female, n (%) 32 (32.3) 17 (36.2) 15 (28.8)

Severe pneumonia, n (%) 55 (56.0) 28 (59.6) 26 (50.0) 0.339

Intensive care unit admission, n (%) 42 (42.4) 20 (42.6) 22 (42.3) 0.980

mortality, n (%) 42 (42.4) 24 (48.9) 18 (34.6) 0.098

52 in the BP group (37 males, 15 females). The PJP group had ages 
32–85, with most (78.7%) aged 50–70, while the BP group had ages 
36–93, with 69.2% aged 50–70. Males predominated in both groups, 
with higher prevalence in middle-aged and elderly patients. PJP 
cases peaked in January and April, while BP cases peaked in June 
and December.

Table 1 shows that the two groups had no significant differences 
in age, gender, severe pneumonia incidence, ICU admission, and 
mortality, but the PJP group had a higher incidence of chronic 
diseases (93.6% vs. 63.5%, P < 0.001) and immunosuppressant 
use (51.1% vs. 11.5%, P < 0.001). The BP group had a higher 
hemoptysis rate (17.3% vs. 4.26%, P = 0.039), while other clinical 
manifestations showed no significant differences (P > 0.05). Table 2 
represents characteristics of patients with pneumocystis pneumonia 
and bacterial pneumonia.

The PJP group had higher LDH levels (374 U/L vs. 254 U/L, 
P < 0.05) and lower RBC (3.69 × 10^12/L vs. 4.31 × 10^12/L, P = 
0.038), CK (33 U/L vs. 70 U/L, P < 0.001), PCO2 (34.8 mmHg vs. 
35.9 mmHg, P = 0.048), and APTT (28.2 s vs. 31.4 s, P = 0.004) than 
the BP group. Table 3 represents the laboratory data for patients with 
PJP and bacterial pneumonia.

3.2 Imaging findings

A significant difference in inflammatory lesion volume was 
found between the PJP (952 cm3) and BP (242 cm3) groups (P < 
0.001), with PJP showing more extensive lung involvement and 
diffuse distribution. Lesion volumes in both lungs were greater 
in the PJP group, particularly in the left upper lobe (224 cm3 vs. 
24.8 cm3) and right lower lobe (258 cm3 vs. 74 cm3), with significant 
differences (P < 0.001). The right lung lesions were larger (median 
549 cm3) than the left (median 140 cm3), and the left upper lobe 
(median 391 cm3) had more lesions than the left lower lobe (median 
96.3 cm3). In the right lung, lesions were most prevalent in the right 
lower lobe (median 258 cm3). The ratio of upper lobe lesion volume 
to total lung volume was higher in the PJP group (16.8% vs. 1.92%, P 
= 0.003), indicating upper lung predominance. Table 4 highlights the 

radiographic differences in pulmonary inflammatory lesion volumes 
between patients with PJP and bacterial pneumonia.

No significant difference in average lung inflammatory lesion 
density was found between PJP and BP groups, but the right 
upper lobe showed a significant difference. The PJP group had 
greater inflammatory lesion volumes than the BP group in 
two density ranges. Table 5 highlights the differences in average 
inflammatory lesion density and lesion volumes across various 
Hounsfield Unit ranges between patients with PJP and bacterial 
pneumonia.

PJP and BP patients showed no significant differences in 
mechanical ventilation (82.6% vs. 67.3%, P = 0.083) and nutritional 
support (40.4% vs. 44.2%, P = 0.683), but PJP patients needed 
more immunoglobulin therapy (34% vs. 1.92%, P < 0.05) and had 
a higher respiratory failure rate (68% vs. 46%, P = 0.028). No 
significant differences were found in severe pneumonia incidence 
(59.6% vs. 50%, P = 0.339), ICU stay (42.6% vs. 42.3%, P = 0.980), 
or mortality (48.9% vs. 34.6%, P = 0.098). Table 6 highlights the 
treatment approaches and clinical outcomes of patients with PJP 
pneumonia and bacterial pneumonia.

PJP is characterized by diffuse ground-glass opacities in both 
lungs, leading to statistical analysis of inflammatory lesions and 
CT values. Eight clinically significant variables were analyzed, 
identifying five independent predictors for distinguishing PJP from 
BP: previous immunomodulator use (p = 0.025, OR 0.21), PCT (p
= 0.013, OR 0.19), inflammatory lesion volume/total lung volume 
(p = 0.015, OR 1.09), whole lung −700 to −450 HU pneumonia 
lesion volume (=0.042, OR 1.01), and whole lung −450 to −300 
HU pneumonia lesion volume (p = 0.025, OR 0.98). Table 7 
represents the univariate and multivariate logistic regression analysis 
of independent risk factors for PJP and bacterial pneumonia.

We developed a nomogram model to differentiate PJP from 
BP, with a higher score indicating greater PJP risk. The model’s 
C-index was 0.898, showing excellent accuracy, confirmed by 
the Hosmer-Lemeshow test (p = 0.266). In the training cohort, 
the AUC was 0.898, with a calibration curve closely matching 
the ideal line. External validation with 87 pneumonia patients 
yielded an AUC of 0.820, indicating good predictive accuracy and 
consistency, supported by DCA analysis showing significant clinical 
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TABLE 2  Clinical characteristics of patients with PJP and BP.

Variable Total (n = 99) PJP (n = 47) BP (n = 52) P-value

Past history

Chronic disease, n (%) <0.001

 Yes 77 (77.8) 44 (93.6) 33 (63.5)

 No 22 (22.2) 3 (6.38) 19 (36.5)

Previous immunomodulator use, n (%) <0.001

 Yes 30 (30.3) 24 (51.1) 6 (11.5)

 No 69 (69.7) 23 (48.9) 46 (88.5)

Tumor, n (%) 21 (21.2) 11 (23.4) 10 (19.2) 0.612

Symptom, n (%)

Fever 24 (24.2) 13 (27.7) 11 (21.2) 0.451

T ≥ 38.5 °C 14 (14.1) 7 (14.9) 7 (13.5) 0.838

Dyspnea 66 (64.6) 31 (66.0) 33 (63.5) 0.795

hemoptysis 11 (11.1) 2 (4.26) 9 (17.3) 0.039

Shock 11 (11.1) 6 (12.8) 5 (9.62) 0.618

Chest tightness 13 (13.1) 5 (10.6) 8 (15.4) 0.667

Digestive symptoms 12 (12,1) 3 (6.38) 9 (17.3) 0.096

Neurological symptoms 13 (13.1) 3 (6.38) 10 (19.2) 0.059

net benefit. Figure 3 illustrates a nomogram model designed to 
predict the likelihood of PJP among patients with pneumonia.

Figure 4 through Figure 7 collectively illustrate the 
development, validation, calibration, and clinical utility of the 
predictive model for PJP. Figure 4 presents the Receiver Operating 
Characteristic (ROC) curves for both the training and external 
validation cohorts. In Figure 4a, the model achieved an Area Under 
the Curve (AUC) of 0.898 in the training set, with an optimal 
threshold of 0.614, specificity of 0.904, and sensitivity of 0.745, 
reflecting strong discriminatory ability. Figure 4b shows slightly 
reduced but still robust performance in the validation set, with 
an AUC of 0.820, an optimal threshold of 0.526, specificity of 
0.794, and sensitivity of 0.735. These results underscore the model’s 
consistent performance across cohorts. Figure 5 provides internal 
validation using bootstrap resampling. In Figure 5a, the red solid 
line represents the original ROC curve from the training set, while 
the grey lines depict 1,000 bootstrap replicates, indicating model 
stability and low variance. Figure 5b illustrates the distribution 
of AUCs from the 1,000 bootstrap samples, with a mean AUC of 
0.899 and a 95% confidence interval ranging from 0.833 to 0.950, 
further confirming the model’s reliability. Figure 6 shows calibration 
curves assessing the agreement between predicted probabilities and 
observed outcomes. In both the training (Figure 6a) and validation 
(Figure 6b) cohorts, the red calibration line closely follows the 

ideal 45-degree line, and the green bias-corrected line remains 
within acceptable deviation, indicating good concordance between 
predicted and observed PJP risk. Figure 7 depicts Decision Curve 
Analysis (DCA), evaluating the net clinical benefit of the model 
across a range of risk thresholds. In both the training (Figure 7a) 
and validation (Figure 7b) cohorts, the red decision curve lies 
above the “treat-all” (grey line) and “treat-none” (horizontal line) 
strategies, demonstrating that the model provides greater net benefit 
in guiding clinical interventions compared to indiscriminate or 
absent treatment approaches.

In addition to sensitivity, specificity, and AUC, overall accuracy 
was also calculated to provide a more comprehensive assessment 
of the model’s performance. The diagnostic prediction model 
achieved an accuracy of 84.2% in the training cohort and 
81.6% in the validation cohort. These values demonstrate strong 
consistency across datasets and further confirm the robustness 
and reliability of the model in distinguishing PJP from bacterial 
pneumonia (Song et al., 2025). 

4 Discussion

This study distinguishes itself from previous research by 
employing a digital characterization approach for pneumonia 
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TABLE 3  Laboratory data within 72 h of admission in patients with PJP and BP.

Variable Total (n = 99) PJP (n = 47) BP (n = 52) P-value

Blood routine, median (IQR)

White blood cell count, ×109/L 8.93 [7.15; 15.88] 8.17 [6.30; 13.4] 10.3 [7.59; 17.4] 0.077

Red blood cell count, ×1012/L 3.97 [3.26; 4.54] 3.69 [3.16; 4.34] 4.31 [3.39; 4.80] 0.038

Platelet count, ×109/L 202 [128.5; 281] 168 [134; 260] 232 [120; 341] 0.310

Lymphocyte percentage, % 0.10 [0.05; 0.19] 0.10 [0.04; 0.18] 0.10 [0.06; 0.26] 0.375

Neutrophil percentage, % 0.86 [0.76; 0.92] 0.85 [0.78; 0.93] 0.86 [0.71; 0.91] 0.346

Inflammatory mediators, median (IQR)

C-reactive protein, mg/L 49.0 [12.54; 97.41] 45.3 [12.2; 85.9] 49.0 [14.3; 144] 0.333

Bacterial Infection Mediators, median (IQR)

Procalcitonin, μg/L 0.28 [0.10; 3.28] 0.18 [0.08; 0.62] 0.81 [0.10; 9.23] 0.028

Blood biochemistry, median (IQR)

Creatinine,μmol/L 66.3 [48.4; 111.8] 61.0 [48.5; 89.7] 74.3 [47.8; 131] 0.284

Serum urea nitrogen, mmol/L 6.33 [4.56; 10.56] 6.43 [4.52; 10.2] 6.15 [4.56; 11.1] 0.703

Uric Acid,μmol/L 273 [172.00; 408.00] 262 [166; 355] 299 [195; 452] 0.279

Lactate dehydrogenase, U/L 300 [223.60; 432.20] 374 [284; 530] 254 [182,370] <0.001

Alanine aminotransferase, U/L 26.0 [15.05; 40.65] 25.0 [17.4; 37.6] 27.8 [14.2; 44.4] 0.769

Aspartate aminotransferase, U/L 31.2 [17.05; 42.55] 28.0 [17.0; 41.1] 33.7 [17.5; 50.1] 0.395

Creatine Kinase, U/L 42.0 [25.30; 100.25] 33.0 [21.8; 49.3] 70.0 [37.1; 218] <0.001

CreatineKinase-MB, U/L 15.8 [12.4; 23.85] 16.0 [13.1; 25.2] 15.7 [11.4; 22.7] 0.325

Brain Natriuretic Peptide, pg/mL 520 [198.9; 1746.0] 520 [215; 1,186] 578 [104; 4,740] 0.418

Blood Gas Analysis, median (IQR)

Pondus hydrogenii 7.43 [7.38; 7.47] 7.45 [7.41; 7.47] 7.43 [7.38; 7.48] 0.491

Partial pressure of oxygen, mmHg 86.0 [68.0; 101.5] 83.5 [64.0; 96.2] 86.0 [70.8; 106] 0.235

Partial pressure of carbon dioxide, mmHg 35.5 [29.3; 41.8] 34.8 [28.6; 39.7] 35.9 [31.4; 44.9] 0.048

Oxygenation index, mmHg 328.6 [197.56; 447.62] 291 [203; 399] 384 [177; 456] 0.116

Lactic acid, mmol/L 1.80 [1.30; 2.43] 1.80 [1.40; 2.49] 1.80 [1.29; 2.70] 0.626

Blood coagulation, median (IQR)

Prothrombin time, s 13.40 [12.75; 15.00] 13.2 [12.6; 14.5] 13.9 [12.8; 17.0] 0.290

Thrombin time, s 16.60 [15.15; 17.40] 16.4 [15.1; 17.2] 16.9 [15.5; 17.4] 0.190

Fibrinogen, g/L 4.87 [3.57; 6.60] 4.91 [3.48; 6.46] 4.59 [3.66; 6.90] 0.558

Activated partial thromboplastin Time, s 30.10 [26.95; 33.60] 28.2 [25.6; 31.5] 31.4 [28.4; 36.07 0.004

D-dimer,μg/mL 1.71 [0.94; 3.40] 1.58 [1.12; 3.17] 2.11 [0.93; 3.75] 0.646
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TABLE 4  Distribution and comparison of pulmonary inflammatory lesion volumes in patients with PJP and BP.

Variable Total (n = 99) PJP (n = 47) BP (n = 52) P-value

Total volume of pulmonary inflammatory lesions (cm3) 615.43 [175.72; 1,093.83] 952 [649; 1,380] 242 [78.7; 698] <0.001

Volume of inflammatory lesions in the left lung (cm3) 314.85 [58.44; 542.56] 391 [286; 672] 96.3 [20.5; 381] <0.001

Volume of inflammatory lesions in the right lung (cm3) 356.78 [77.0; 633.27] 549 [316; 778] 140 [31.5; 420] <0.001

Volume of inflammatory lesions in the left upper lobe (cm3) 94.78 [7.97; 296.51] 224 [13.9; 384] 24.8 [5.37; 177] 0.009

Volume of inflammatory lesions in the left lower lobe (cm3) 77.99 [5.22; 222.91] 116 [3.90; 302] 42.7 [6.99; 205] 0.192

Volume of inflammatory lesions in the right upper lobe (cm3) 44.87 [4.18; 207.19] 60.5 [4.68; 279] 35.8 [2.68; 112] 0.138

Volume of inflammatory lesions in the right middle lobe (cm3) 5.95 [1.45; 46.10] 4.29 [1.56; 35.4] 6.46 [1.09; 53.7] 0.850

Volume of inflammatory lesions in the right lower lobe (cm3) 130.14 [20.94; 314.97] 258 [45.1; 509] 74.0 [16.5; 206] 0.008

Inflammatory lesion volume/Total lung volume (%) 25.54 [5.26; 47.84] 36.4 [23.3; 62.1] 7.36 [1.88; 28.4] <0.001

Left lung inflammatory lesion volume/Total lung volume (%) 11.48 [1.72; 21.20] 18.2 [8.95; 29.1] 2.78 [0.55; 15.8] <0.001

Right lung inflammatory lesion volume/Total lung volume (%) 12.88 [2.88; 25.36] 22.5 [12.6; 32.01] 3.97 [0.83; 14.5] <0.001

Left upper lobe inflammatory lesion volume/Total lung volume (%) 2.85 [0.26; 11.75] 10.6 [0.45; 17.2] 0.81 [0.17; 6.30] 0.004

Left lower lobe inflammatory lesion volume/total lung volume (%) 2.92 [0.20; 8.39] 4.67 [0.17; 11.9] 1.21 [0.21; 6.02] 0.119

Right upper lobe inflammatory lesion volume/Total lung volume (%) 1.23 [0.12; 7.30] 2.16 [0.24; 12.1] 0.97 [0.08; 5.64] 0.070

Right middle lobe inflammatory lesion volume/total lung volume (%) 0.16 [0.05; 1.60] 0.16 [0.06; 1.14] 0.16 [0.03; 2.04] 0.481

Right lower lobe inflammatory lesion volume/total lung volume (%) 4.84 [0.52; 13.36] 9.58 [1.52:16.8] 2.62 [0.34; 6.51] 0.003

Bilateral upper lobes inflammatory lesion volume/total lung volume (%) 6.16 [0.70; 21.39] 16.8 [1.43; 28.9] 1.92 [0.54; 13.4] 0.003

lesions in chest CT scans, moving beyond traditional manual 
descriptions of lesion features. Building on this innovative method, 
clinical information and laboratory test results were incorporated 
to develop a predictive model for PJP. The model demonstrated 
excellent sensitivity and specificity in both training and testing 
sets, underscoring its potential for early detection and clinical 
intervention. An important observation from the decision curve 
analysis (Figure 7) is the influence of the high-risk threshold. 
At higher thresholds, the model still maintained a positive net 
clinical benefit, underscoring its robustness for guiding targeted 
interventions in patients at elevated risk of PJP. This study introduces 
a digital analysis approach combining chest CT imaging with clinical 
features to differentiate PJP from BP. To validate the effectiveness of 
this method, its performance was compared with existing studies 
in the field. For instance, Yu et al. (2024) developed a CT-based 
radiomics model for diagnosing PJP in non-HIV patients. Their 
model achieved a diagnostic accuracy of 95.8%, demonstrating the 
potential of radiomics in distinguishing PJP from other types of 
pneumonia. In comparison, our AI-assisted methodology not only 
achieved similar accuracy but also provided a more comprehensive 
analysis by integrating clinical data, thereby enhancing diagnostic 
precision. Additionally, Yu et al. (2024) employed multi-plane CT 
imaging and machine learning techniques to differentiate bacterial 
from non-bacterial pneumonia. While their approach showed 

promise, it primarily focused on imaging data without incorporating 
clinical features. Our integrated model, by combining imaging 
with clinical data, offers a more holistic diagnostic tool, potentially 
leading to better patient outcomes.

Notably, this study is the first to demonstrate that effective 
identification of pneumonia pathogens can be achieved solely 
through comprehensive artificial intelligence (AI) analysis (Wong, 
2023) of pulmonary infection lesions, combined with clinical 
data, without relying on subjective physician interpretation. This 
approach provides robust support for clinical decision-making and 
opens new avenues for the diagnosis of pulmonary infections. 
Findings indicate that PJP is more commonly observed in 
immunocompromised individuals. Compared with patients with 
BP, chest CT scans of PJP patients revealed a higher proportion 
of inflammatory lesion volume relative to total lung volume, 
with larger volumes of inflammation (measured in cm3) observed 
in the ranges of −700 to −450 HU and −450 to −300 HU. 
Additionally, PJP patients exhibited significantly lower serum 
procalcitonin (PCT) levels than those with BP. These results 
align with existing literature, reinforcing the distinct clinical and 
radiological features of PJP in immunocompromised populations 
(Yu et al., 2024) (Hsu et al., 2020).

This study utilized AI-assisted tools to perform a quantitative 
analysis of CT images from patients with PJP[28. The results revealed 

Frontiers in Physiology 08 frontiersin.org

https://doi.org/10.3389/fphys.2025.1616791
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Chen et al. 10.3389/fphys.2025.1616791

TABLE 5  Comparison of average CT density and stratified lesion volume by Hounsfield Units in patients with PJP and BP.

Variable Total (n = 99) PJP (n = 47) BP (n = 52) P-value

Average density of 
inflammatory lesions in the 
whole lung (Hu)

−414.13 ± 105 −431.98 ± 106 −397.99 ± 103 0.108

Average density of 
inflammatory lesions in the left 
lung (Hu)

−418.27 ± 104 −431.34 ± 114 −406.46 ± 93.9 0.241

Average density of 
inflammatory lesions in the 
right lung (Hu)

−419.18 ± 110 −437.58 ± 102 −402.55 ± 115 0.112

Average density of 
inflammatory lesions in the left 
upper lobe (Hu)

−427.5 [−533.10;-337.40] −483.57 [-549.04;-348.06] −397.30 [-483.84;-310.71] 0.083

Average density of 
inflammatory lesions in the left 
lower lobe (Hu)

−389.6 [-466.8;-298.4] −377.65 [-470.60:-294.78] −404.69 [-459.06:-325.88] 0.656

Average density of 
inflammatory lesions in the 
right upper lobe (Hu)

−408.34 ± 140 −444.65 ± 123 −375.51 ± 147 0.012

Average density of 
inflammatory lesions in the 
right middle lobe (Hu)

−431.45 ± 114 −454.26 ± 96.8 −410.83 ± 126 0.056

Average density of 
inflammatory lesions in the 
right lower lobe (Hu)

−393.32 ± 128 −403.40 ± 117 −384.20 ± 137 0.454

Whole lung −1,000 to −700 
HU pneumonia lesion volume 
(cm3)

68.20 [21.50; 147.0] 122 [61.2; 228] 30.2 [13.9; 81.4] <0.001

Whole lung −700 to −450 HU 
pneumonia lesion volume 
(cm3)

219.54 [53.05; 389.16] 322 [216; 513] 90.5 [23.3; 230] <0.001

Whole lung −450 to −300 HU 
pneumonia lesion volume 
(cm3)

87.01 [23.34; 187.88] 140 [84.9; 250] 36.7 [10.6; 120] <0.001

Whole lung −300 to −100 HU 
pneumonia lesion volume 
(cm3)

95.28 [19.46; 177.0] 118 [72.9; 231] 30.2 [9.73; 113] <0.001

Whole lung −100 to 0 HU 
pneumonia lesion volume 
(cm3)

39.48 [9.80; 77.91] 46.1 [28.8; 82.0] 12.9 [4.05; 67.3] 0.003

Whole lung 0 to 50 HU 
pneumonia lesion volume 
(cm3)

15.78 [5.65; 32.75] 21.4 [11.6; 36.1] 7.48 [2.65; 26.0] 0.004

Whole lung >50 HU 
pneumonia lesion volume 
(cm3)

24.14 [8.83; 48.08] 35.3 [21.7; 60.0] 11.2 [3.16; 34.2] <0.001

that PJP patients had inflammatory lesions characterized by larger 
volumes and lower densities compared to BP patients, in contrast to 
previous studies that focused primarily on qualitative assessments 

of imaging (Tasaka, 2020) (Zou et al., 2022). Digital characterization 
of chest CT images enabled the quantification of complex imaging 
features into analyzable data, enhancing understanding of disease 
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TABLE 6  Treatment strategies and clinical outcomes in patients with PJP and BP.

Variable Total (n = 99) PJP (n = 47) BP n = 52) P-value

Treatment

Mechanical ventilation, n (%) 73 (74.5) 38 (82.6) 35 (67.3) 0.083

Nutritional support≥3 days, n (%) 42 (42.4) 19 (40.4) 23 (44.2) 0.702

Glucocorticoid,n (%) 77 (77.8) 44 (93.6) 33 (63.5) 0.702

Immunoglobulin, n (%) 18 (18.2) 16 (34.0) 1 (1.92) <0.001

Clinical outcomes

Severe pneumonia, n (%) 55 (56.0) 28 (59.6) 26 (50.0) 0.339

Respiratory Failure, n (%) 56 (57.0) 32 (68.0) 24 (46.0) 0.028

Intensive care unit admission, n (%) 42 (42.4) 20 (42.6) 22 (42.3) 0.980

Mortality, n (%) 42 (42.4) 24 (48.9) 18 (34.6) 0.098

TABLE 7  Univariate and multivariate logistic regression of predictors differentiating PJP from BP.

 Variables  Pjp (N = 47)  BP (N = 52)  OR 
(univariable)

 OR 
(multivariable)

Chronic disease

Yes 44 (93.6%) 33 (63.5%) - -

No 3 (6.38%) 19 (36.5%) 0.12 (0.03–0.43, p
= 0.001)

0.21 (0.04–1.09, p = 
0.064)

Previous 
immunomodulator 
use

Yes 24 (51.1%) 6 (11.5%) - -

No 23 (48.9%) 46 (88.5%) 0.13 (0.04–0.35, p
<0.001)

0.21 (0.05–0.82, p = 
0.025)

PCT

<2 41 (87.2%) 30 (75.7%) - -

>=2 6 (12.8%) 22 (42.3%) 0.20 (0.07–0.55, p
= 0.002)

0.19 (0.05–0.71, p = 
0.013)

LDH

120–250 8 (17%) 20 (38.5%) - -

outlier 39 (83%) 32 (61.5%) 3.05 (1.19–7.83, p
= 0.021)

1.39 (0.39–4.98, p = 
0.615)

Inflammatory lesion volume/Total lung volume (%) 36.4 [23.3; 62.1] 7.36 [1.88; 28.4] 1.04 (1.02–1.06, p
<0.001)

1.09 (1.02–1.17, p = 
0.015)

Whole lung −700 to −450 HU pneumonia lesion volume (cm3) 322 [216; 513] 90.5 [23.3; 230] 1.00 (1.00–1.01, p
<0.001)

1.01 (1.00–1.01, p = 
0.042)

Whole lung −450 to −300 HU pneumonia lesion volume (cm3) 140 [84.9; 250] 36.7 [10.6; 120] 1.01 (1.00–1.01, p
= 0.005)

0.98 (0.97–1.00, p = 
0.025)

Bilateral upper lobes inflammatory lesion volume/total lung volume (%) 16.8 [1.43; 28.9] 1.92 [0.54; 13.4] 1.05 (1.02–1.08, p
= 0.002)

0.97 (0.92–1.03, p = 
0.373)

characteristics. This method also facilitates the development of 
pathogen-specific diagnostic prediction models and improves the 
ability to differentiate lung injuries caused by distinct pathogens. 
The digital analysis highlighted significant differences in pneumonia 
lesion volume and density between PJP and BP, further emphasizing 

the advantages of digital methods in differential diagnosis 
(Shi J. et al., 2021) (Ye et al., 2021) (Shi et al., 2022). Furthermore, 
this research provides the first theoretical validation for the 
application of AI in analyzing CT image attenuation patterns, 
extending beyond traditional visual recognition techniques to 
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FIGURE 3
Nomogram for predicting the occurrence of Pneumocystis jirovecii pneumonia.

FIGURE 4
ROC curves: (a) Training cohort (AUC: 0.898, optimal threshold: 0.614, specificity 0.904 and sensitivity 0.745) (b) Validation cohort (AUC: 0.820, optimal 
threshold: 0.526, specificity 0.794, sensitivity 0.735). X-axis shows 1-specificity, Y-axis shows sensitivity.

identify pneumonia pathogens via a multimodal model. This 
advancement not only expands the scope of AI applications 
in medical image analysis but also establishes a foundation for 
more accurate and objective diagnosis of pulmonary infection 
pathogens, offering promising potential for enhanced precision and 
intelligence in clinical diagnostics and treatment. Metagenomic 
next-generation sequencing (mNGS) technology has proven 
effective in identifying pathogenic organisms, which is critical for 
developing appropriate treatment strategies and improving patient 
outcomes (Jarboui et al., 2010). Research indicates that mNGS 
provides more comprehensive and accurate pathogen identification 
than traditional microbiological methods (Yang et al., 2025a), 

particularly in immunosuppressed patients (Lin et al., 2022; Li et al., 
2022). However, mNGS can yield genetic information from multiple 
potential pathogens, complicating the identification of the primary 
causative agent—a critical consideration since different pathogens 
require distinct treatment regimens.

The primary innovation of this study lies in the comprehensive 
evaluation and comparative analysis of patients diagnosed with 
PJP and BP using mNGS results. Integration of digitized imaging 
features with clinical characteristics and laboratory findings 
significantly enhances the accuracy and reliability of pathogen 
identification in complex clinical scenarios. The findings further 
reveal that patients with PJP have a higher prevalence of chronic 
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FIGURE 5
Internal validation with bootstrap resampling; (a) ROC curves: red solid line represents the original ROC curve from training set, grey curves show 1,000 
bootstrap resamples. The distribution of grey curves indicates model stability and uncertainty; (b) Distribution of bootstrap AUC values: mean AUC = 
0.899 (red dashed line), 95% CI: 0.833–0.950 (green dashed lines).

FIGURE 6
Calibration curves for PJP prediction. (a) Training cohort; (b) Validation cohort. X-axis represents predicted risk of PJP; Y-axis shows observed rate. 
Dashed line indicates ideal calibration, red line shows model calibration, and green line represents bias-corrected calibration. Proximity to the diagonal 
reflects prediction accuracy. PJP = Pneumocystis jirovecii pneumonia.

underlying conditions and a history of immunosuppressive therapy 
compared to those with BP, consistent with established risk 
factors for PJP (Zhang et al., 2021). Additionally, potential new 
biomarkers were identified, including PCT, which may serve as 
diagnostic indicators for PJP. PCT, a precursor of calcitonin, is 
recognized as a reliable infection marker, particularly in systemic 
responses triggered by circulating endotoxins and inflammatory 
cytokines (Tang et al., 2007). Recent studies have demonstrated a 
positive association between PCT levels and mortality in PJP cases 
(Zhang et al., 2024; Feng and Tong, 2024), although its specific role in 
diagnosing PJP has not been previously reported. Findings suggest 

that the degree of PCT elevation could aid in distinguishing between 
PJP and BP. One limitation of this study is the relatively small sample 
size of the training cohort, which may affect the generalizability of 
the results. The study was conducted at a single center, and although 
an external validation cohort was included, its small size further 
limits external validity. The selected patient population may not fully 
represent characteristics from other geographic regions or medical 
institutions. Future studies should consider larger, multi-center 
cohorts to enhance representativeness and robustness. Additionally, 
adopting a prospective study design (Wong et al., 2010) and 
standardized treatment protocols would help minimize potential 
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FIGURE 7
Decision curve analysis for predicting PJP. (a) Training cohort; (b) Validation cohort. X-axis represents high-risk threshold for clinical intervention; Y-axis 
shows standardized net benefit. Red curve demonstrates the actual net benefit of the prediction model at different thresholds, with higher curves 
indicating greater clinical utility at corresponding thresholds. horizontal line (None) represents treating no patients, and grey line (All) represents 
treating all patients.

biases and provide more precise insights into diagnostic prediction 
for PJP (Shi et al., 2021a; Shi et al., 2021b; Yang et al., 2025b). 

5 Conclusion

The AI-assisted CT analysis enabled precise quantification 
of lesion distribution and density, offering a novel dimension to 
differential diagnosis that extends beyond traditional radiological 
interpretation. The model demonstrated strong accuracy, 
sensitivity, and specificity, highlighting its robustness and potential 
clinical value in guiding timely diagnosis and management. 
These findings underscore the emerging role of AI and digital 
radiology in infectious disease diagnostics, particularly for 
immunocompromised populations at elevated risk of PJP. Such 
advances may improve diagnostic precision and support clinicians 
in making more confident therapeutic decisions, thereby reducing 
misclassification and inappropriate antibiotic use. Despite these 
promising results, certain limitations should be acknowledged, 
including the retrospective single-center design and the possibility 
of selection bias. Additionally, integrating metagenomic next-
generation sequencing (mNGS) data with imaging and clinical 
variables warrants further exploration to optimize cost-effectiveness 
and clinical utility.
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