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Background: Pneumocystis jirovecii pneumonia (PJP) is a serious form of
pneumonia characterized by non-specific symptoms. Diagnosis is challenging
due to overlapping clinical and laboratory features with bacterial pneumonia
(BP). This study aimed to develop a diagnostic prediction model integrating
digital chest CT analysis with clinical and laboratory parameters to enable early
identification of PJP.

Methods: A retrospective analysis was performed on patients with confirmed
PJP or BP at two medical centers between May 2020 and June 2024. Patient
history, clinical symptoms, and laboratory test results were compared between
cohorts. Chest CT images were analyzed using Al-assisted tools. Predictive
factors were identified through univariate and multivariate logistic regression
analyses, and a diagnostic nomogram was constructed. External validation was
conducted using an independent cohort.

Results: Multivariate analysis identified previous immunomodulator use,
procalcitonin levels, inflammatory lesion volume/total lung volume, whole lung
—700 to =450 HU pneumonia lesion volume, and whole lung =450 to —-300 HU
pneumonia lesion volume as independent predictors of PJP. The constructed
nomogram achieved AUCs of 0.898 and 0.820 in the training and validation
cohorts, respectively, with sensitivity of 74.5% and specificity of 90.4% in the
training cohort, and sensitivity of 73.5% and specificity of 79.4% in the validation
cohort. Calibration curves and decision curve analyses confirmed the model's
predictive accuracy and clinical utility.

Conclusion: The model provides a valuable tool for differentiating
PJP from BP, demonstrating that Al-assisted recognition of chest CT
images can effectively support pathogen identification. Its application
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has the potential

patient outcomes.

10.3389/fphys.2025.1616791

to improve early diagnosis of PJP and enhance

pneumocystis jirovecii pneumonia, bacterial pneumonia, chest CT imaging, digital
analysis, Al-assisted diagnosis, nomogram

1 Introduction

Pneumonia remains a leading cause of morbidity and mortality
worldwide, particularly among hospitalized patients. PJP and BP
represent two clinically important subtypes that require accurate
differentiation to guide appropriate treatment (Berenji et al., 2025).
PJP primarily affects immunocompromised individuals, whereas
BP is more common and associated with a wide range of pathogens
(Shoar and Musher, 2020; Yin et al.,, 2021). Despite advances in
diagnostic techniques, distinguishing PJP from BP continues to
pose significant challenges, as current guidelines for community-
acquired pneumonia (CAP) and hospital-acquired pneumonia
(HAP) do not provide specific treatment recommendations for
PJP. The rapid progression and non-specific symptoms of PJP
can delay diagnosis, leading to higher rates of mortality and
mechanical ventilation, underscoring the urgent need for timely
identification and treatment (LiJ. et al., 2024; Nseir et al., 2024;
Li et al.,, 2014; Roux et al., 2014). Traditional diagnostic methods
such as microscopy and culture are limited by their low sensitivity
in detecting PJP compared with other infections (Senécal et al.,
2022). Metagenomic next-generation sequencing (mNGS) has
improved pathogen detection in clinical samples and enhanced
pneumonia diagnosis, especially in immunocompromised
patients (Lv et al., 2023). However, it's very high sensitivity can
complicate the distinction between pathogenic and non-pathogenic
microorganisms, particularly in the case of Pneumocystis jirovecii,
which is associated with low specificity (Giacobbe et al., 2023).
At present, PJP diagnosis relies on the integration of risk factor
assessment, clinical symptoms, imaging features, and serum lactate
dehydrogenase levels to inform initiation of anti-pneumocystis
therapy (Tasaka, 2020; Li Y. et al., 2024). High-resolution chest CT
plays a critical role in detecting pulmonary infections and supports
early recognition of PJP for timely treatment (Wu et al.,, 2021).
Nevertheless, CT interpretation is time-consuming, and the heavy
workload of radiologists may hinder accurate recognition of subtle
features associated with PJP.

Artificial intelligence (AI) has been increasingly applied in chest
CT analysis (Yadav et al., 2024), particularly during the COVID-
19 pandemic (Saba et al., 2021). However, its use in differentiating
pneumonia pathogens remains underexplored. Computer-aided
systems are capable of preprocessing images and extracting
quantitative features, potentially providing valuable insights into
distinctions between PJP and BP. The present study sought to
improve PJP identification by integrating Al-based digital analysis
of chest CT scans with clinical and laboratory data. A retrospective
review of medical records from patients diagnosed with PJP and
BP was performed to systematically evaluate baseline clinical
characteristics, laboratory findings, and imaging features. On this
basis, a diagnostic prediction model was constructed to enhance
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diagnostic accuracy, support empirical anti-infective decision-
making, and improve patient prognosis.

2 Methods
2.1 Study design and participants

This retrospective study analyzed pneumonia patients at two
hospitals who underwent mNGS of sputum or bronchoalveolar
lavage fluid, selecting participants based on detected pathogens and
strict criteria. Logistic regression identified independent predictors
of PJP, which were used to create a nomogram model validated
by the Hosmer-Lemeshow test. The model’s accuracy was assessed
using ROC curve analysis, AUC, C-index, and calibration curve,
with DCA evaluating its net benefit. Figure 1 illustrates the flow
diagram of this retrospective, multicenter study conducted to
identify independent predictors of PJP among pneumonia patients
using metagenomic next-generation sequencing (mNGS) data. The
study protocol was ethically approved, and informed consent was
waived due to anonymization. The study involved two cohorts:
a training cohort of 99 pneumonia patients (May 2020 - April
2023) and an external validation cohort of 87 patients, February
2021 - June 2024. Inclusion criteria for the PJP cohort included:
(1) age 18+, (2) persistent lung infection symptoms for over a
week, (3) chest CT showing typical PJP features, (4) detection of
Pneumocystis jirovecii via mNGS, and (5) diagnostic confirmation
by two specialists considering medical records and TMP-SMX
use. PJP exclusion criteria included incomplete data and HIV
co-infection. BP inclusion criteria, based on community-acquired
pneumonia, required new or worsening respiratory symptoms,
signs of consolidation or crackles, abnormal leukocyte counts, and
radiographic evidence of infiltrates. BP exclusion criteria included
incomplete data and mNGS results showing mixed infections.

2.2 Data collection

Baseline clinical characteristics were extracted from electronic
medical records, including demographics, admission date by season,
comorbidities, symptoms, physical findings, immunosuppressive
therapy history, and current medications. Chronic comorbidities,
defined by CDC criteria, included conditions lasting over a
year needing ongoing care, such as cardiovascular diseases,
type 2 diabetes, respiratory
disorders (Goodman et al, 2013). Immunosuppressive agents

malignancies, and chronic
included glucocorticoids, calcineurin inhibitors, antimetabolites,
lymphocyte-depleting antibodies, and alkylating agents. Laboratory

data collected within 72h of admission included complete
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FIGURE 1

Flow illustration of the retrospective, multicenter study designed to identify independent predictors of PJP among patients with pneumonia.

blood count, inflammatory markers, serum biochemistry, cardiac
biomarkers, electrolytes, arterial blood gas analysis, and coagulation
profiles. All patients in this study underwent chest CT examinations
on Philips iCT, Philips Brilliant CT, Siemens Force CT, or GE
Lightspeed CT. Scanning parameters were as follows: fixed tube
voltage 120kV, 3D tube current automatic modulation technology.
Detector collimation width was 128 x 0.6 mm or 64 x 0.625 mm.
Reconstruction slice thickness was 1.0 mm or 2.0mm, with a slice
gap of 0.5mm or 1.25mm. CT images were interpreted using
Picture Archiving and Communication System (PACS) software
(GE Healthcare Life Sciences, Logan, UT, United States). All scans
were performed with patients supine at end-inspiration, without
intravenous contrast injection. Reconstruction was performed using
a bone algorithm with 1 mm thickness and 1 mm interval. CT
results included pneumonia, atelectasis, pulmonary nodules, pleural
effusion, emphysema, etc. We employed the Shukun Pneumonia
CT Image-Assisted Triage and Evaluation Software for automated
image analysis, quantification, and visualization of CT scan
structures (Figure 2). The software detects and segments pulmonary
lesions, providing lesion location and size measurements. The
Al algorithm intelligently recognizes CT images and precisely
segments pneumonia lesions. Two respiratory physicians, each
with over 3years of experience, jointly reviewed and manually
calibrated the lesion segmentation areas identified by the AI
software. Multi-dimensional quantitative analysis was performed
on lung volume, inflammatory lesion volume, and mean density of
inflammatory lesions (in Hounsfield units, HU). Two physicians
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from the Department of Respiratory and Critical Care Medicine
verified all pneumonia lesion delineations to ensure accuracy.

2.3 Statistical analysis

Statistical analyses were performed using RStudio software
(version R 4.3.3). Normally distributed continuous variables were
+

+

s), and two
groups were compared using independent samples t-test. Non-

presented as mean standard deviation (X
normally distributed quantitative data were presented as the median
(interquartile range) [M (P25, P75)], and comparisons between the
two groups were performed using the Wilcoxon rank sum test.
Categorical data were expressed as percentages (%), and two samples
were compared using the Chi-squared test or Fisher’s exact test. Risk
factor analysis was performed using logistic regression, calculating
odds ratios (OR) and their 95% confidence intervals (CI). A P-value
<0.05 was considered statistically significant.

3 Results

3.1 Baseline characteristics of the study
population

In the study, 163 pneumonia patients were considered, with 99
ultimately included: 47 in the PJP group (30 males, 17 females) and
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Original CT scans  Shukun algorithm Al-delineation 3D reconstruction

FIGURE 2

Chest CT images of 10 sample patients with pneumonia; (a) Original CT scans; (b) Pneumonia lesions delineated using the Shukun Al algorithm; (c)
Al-delineated lesions with green indicating ground-glass opacities and yellow indicating consolidation; (d) 3D reconstruction of the lungs, with red
indicating pneumonia lesions.
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Variable Total (n = 99) PJP (n = 47) BP (n = 52) P-value
Age, median (IQR), years 61.0 (53.0,70.0) 62.0 (54.0,72.0) 61.0 (51.8,67.2) 0.582
Age>65 years 42 (41.4) 22 (46.8) 20(39.2)
Sex 0.437
Male, n (%) 67 (67.7) 30 (63.8) 37(71.2)
Female, n (%) 32(32.3) 17 (36.2) 15 (28.8)
Severe pneumonia, n (%) 55 (56.0) 28 (59.6) 26 (50.0) 0.339
Intensive care unit admission, n (%) 42 (42.4) 20 (42.6) 22 (42.3) 0.980
mortality, n (%) 42 (42.4) 24 (48.9) 18 (34.6) 0.098

52 in the BP group (37 males, 15 females). The PJP group had ages
32-85, with most (78.7%) aged 50-70, while the BP group had ages
36-93, with 69.2% aged 50-70. Males predominated in both groups,
with higher prevalence in middle-aged and elderly patients. PJP
cases peaked in January and April, while BP cases peaked in June
and December.

Table 1 shows that the two groups had no significant differences
in age, gender, severe pneumonia incidence, ICU admission, and
mortality, but the PJP group had a higher incidence of chronic
diseases (93.6% vs. 63.5%, P < 0.001) and immunosuppressant
use (51.1% vs. 11.5%, P < 0.001). The BP group had a higher
hemoptysis rate (17.3% vs. 4.26%, P = 0.039), while other clinical
manifestations showed no significant differences (P > 0.05). Table 2
represents characteristics of patients with pneumocystis pneumonia
and bacterial pneumonia.

The PJP group had higher LDH levels (374 U/L vs. 254 U/L,
P < 0.05) and lower RBC (3.69 x 10"12/L vs. 4.31 x 10"12/L, P =
0.038), CK (33 U/L vs. 70 U/L, P < 0.001), PCO2 (34.8 mmHg vs.
35.9 mmHg, P = 0.048), and APTT (28.2 s vs. 31.4 s, P = 0.004) than
the BP group. Table 3 represents the laboratory data for patients with
PJP and bacterial pneumonia.

3.2 Imaging findings

A significant difference in inflammatory lesion volume was
found between the PJP (952 cm®) and BP (242 cm®) groups (P <
0.001), with PJP showing more extensive lung involvement and
diffuse distribution. Lesion volumes in both lungs were greater
in the PJP group, particularly in the left upper lobe (224 cm® vs.
24.8 cm?) and right lower lobe (258 cm? vs. 74 cm®), with significant
differences (P < 0.001). The right lung lesions were larger (median
549 cm®) than the left (median 140 cm?), and the left upper lobe
(median 391 cm®) had more lesions than the left lower lobe (median
96.3 cm®). In the right lung, lesions were most prevalent in the right
lower lobe (median 258 cm®). The ratio of upper lobe lesion volume
to total lung volume was higher in the PJP group (16.8% vs. 1.92%, P
=0.003), indicating upper lung predominance. Table 4 highlights the
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radiographic differences in pulmonary inflammatory lesion volumes
between patients with PJP and bacterial pneumonia.

No significant difference in average lung inflammatory lesion
density was found between PJP and BP groups, but the right
upper lobe showed a significant difference. The PJP group had
greater inflammatory lesion volumes than the BP group in
two density ranges. Table 5 highlights the differences in average
inflammatory lesion density and lesion volumes across various
Hounsfield Unit ranges between patients with PJP and bacterial
pneumonia.

PJP and BP patients showed no significant differences in
mechanical ventilation (82.6% vs. 67.3%, P = 0.083) and nutritional
support (40.4% vs. 44.2%, P = 0.683), but PJP patients needed
more immunoglobulin therapy (34% vs. 1.92%, P < 0.05) and had
a higher respiratory failure rate (68% vs. 46%, P = 0.028). No
significant differences were found in severe pneumonia incidence
(59.6% vs. 50%, P = 0.339), ICU stay (42.6% vs. 42.3%, P = 0.980),
or mortality (48.9% vs. 34.6%, P = 0.098). Table 6 highlights the
treatment approaches and clinical outcomes of patients with PJP
pneumonia and bacterial pneumonia.

PJP is characterized by diffuse ground-glass opacities in both
lungs, leading to statistical analysis of inflammatory lesions and
CT values. Eight clinically significant variables were analyzed,
identifying five independent predictors for distinguishing PJP from
BP: previous immunomodulator use (p = 0.025, OR 0.21), PCT (p
= 0.013, OR 0.19), inflammatory lesion volume/total lung volume
(p = 0.015, OR 1.09), whole lung -700 to —450 HU pneumonia
lesion volume (=0.042, OR 1.01), and whole lung -450 to —300
HU pneumonia lesion volume (p = 0.025, OR 0.98). Table 7
represents the univariate and multivariate logistic regression analysis
of independent risk factors for PJP and bacterial pneumonia.

We developed a nomogram model to differentiate PJP from
BP, with a higher score indicating greater PJP risk. The model’s
C-index was 0.898, showing excellent accuracy, confirmed by
the Hosmer-Lemeshow test (p = 0.266). In the training cohort,
the AUC was 0.898, with a calibration curve closely matching
the ideal line. External validation with 87 pneumonia patients
yielded an AUC of 0.820, indicating good predictive accuracy and
consistency, supported by DCA analysis showing significant clinical
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TABLE 2 Clinical characteristics of patients with PJP and BP.
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Variable Total (n = 99) PJP (n = 47) BP (n = 52) P-value
Past history
Chronic disease, n (%) <0.001
Yes 77 (77.8) 44 (93.6) 33 (63.5)
No 22(22.2) 3(6.38) 19 (36.5)
Previous immunomodulator use, n (%) <0.001
Yes 30 (30.3) 24 (51.1) 6(11.5)
No 69 (69.7) 23 (48.9) 46 (88.5)
Tumor, n (%) 21 (21.2) 11(23.4) 10 (19.2) 0.612
Symptom, n (%)
Fever 24 (24.2) 13 (27.7) 11(21.2) 0.451
T=>385°C 14 (14.1) 7 (14.9) 7 (13.5) 0.838
Dyspnea 66 (64.6) 31 (66.0) 33 (63.5) 0.795
hemoptysis 11(11.1) 2 (4.26) 9(17.3) 0.039
Shock 11(11.1) 6(12.8) 5(9.62) 0.618
Chest tightness 13 (13.1) 5(10.6) 8(15.4) 0.667
Digestive symptoms 12 (12,1) 3(6.38) 9(17.3) 0.096
Neurological symptoms 13 (13.1) 3(6.38) 10 (19.2) 0.059

net benefit. Figure 3 illustrates a nomogram model designed to
predict the likelihood of PJP among patients with pneumonia.
Figure 4  through Figure7 collectively illustrate the
development, validation, calibration, and clinical utility of the
predictive model for PJP. Figure 4 presents the Receiver Operating
Characteristic (ROC) curves for both the training and external
validation cohorts. In Figure 4a, the model achieved an Area Under
the Curve (AUC) of 0.898 in the training set, with an optimal
threshold of 0.614, specificity of 0.904, and sensitivity of 0.745,
reflecting strong discriminatory ability. Figure 4b shows slightly
reduced but still robust performance in the validation set, with
an AUC of 0.820, an optimal threshold of 0.526, specificity of
0.794, and sensitivity of 0.735. These results underscore the model’s
consistent performance across cohorts. Figure 5 provides internal
validation using bootstrap resampling. In Figure 5a, the red solid
line represents the original ROC curve from the training set, while
the grey lines depict 1,000 bootstrap replicates, indicating model
stability and low variance. Figure 5b illustrates the distribution
of AUCs from the 1,000 bootstrap samples, with a mean AUC of
0.899 and a 95% confidence interval ranging from 0.833 to 0.950,
further confirming the model’s reliability. Figure 6 shows calibration
curves assessing the agreement between predicted probabilities and
observed outcomes. In both the training (Figure 6a) and validation

(Figure 6b) cohorts, the red calibration line closely follows the
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ideal 45-degree line, and the green bias-corrected line remains
within acceptable deviation, indicating good concordance between
predicted and observed PJP risk. Figure 7 depicts Decision Curve
Analysis (DCA), evaluating the net clinical benefit of the model
across a range of risk thresholds. In both the training (Figure 7a)
and validation (Figure 7b) cohorts, the red decision curve lies
above the “treat-all” (grey line) and “treat-none” (horizontal line)
strategies, demonstrating that the model provides greater net benefit
in guiding clinical interventions compared to indiscriminate or
absent treatment approaches.

In addition to sensitivity, specificity, and AUC, overall accuracy
was also calculated to provide a more comprehensive assessment
of the model’s performance. The diagnostic prediction model
achieved an accuracy of 84.2% in the training cohort and
81.6% in the validation cohort. These values demonstrate strong
consistency across datasets and further confirm the robustness
and reliability of the model in distinguishing PJP from bacterial
pneumonia (Song et al., 2025).

4 Discussion

This study distinguishes itself from previous research by
employing a digital characterization approach for pneumonia
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TABLE 3 Laboratory data within 72 h of admission in patients with PJP and BP.

Variable Total (n = 99) PJIP (n = 47) BP (n = 52)

Blood routine, median (IQR)

White blood cell count, x10°/L 8.93 [7.15; 15.88] 8.17 [6.30; 13.4] 10.3 [7.59; 17.4] 0.077
Red blood cell count, x10'%/L 3.97 [3.26; 4.54] 3.69 [3.16; 4.34] 4.31[3.39; 4.80] 0.038
Platelet count, x10°/L 202 [128.5; 281] 168 [134; 260] 232 [120; 341] 0.310
Lymphocyte percentage, % 0.10 [0.05; 0.19] 0.10 [0.04; 0.18] 0.10 [0.06; 0.26] 0.375
Neutrophil percentage, % 0.86 [0.76; 0.92] 0.85[0.78; 0.93] 0.86 [0.71; 0.91] 0.346
Inflammatory mediators, median (IQR)

C-reactive protein, mg/L 49.0 [12.54; 97.41] 45.3[12.2; 85.9] 49.0 [14.3; 144] 0.333
Bacterial Infection Mediators, median (IQR)

Procalcitonin, pg/L 0.28 [0.10; 3.28] 0.18 [0.08; 0.62] 0.81 [0.10; 9.23] 0.028
Blood biochemistry, median (IQR)

Creatinine,umol/L 66.3 [48.4; 111.8] 61.0 [48.5; 89.7] 74.3 [47.8; 131] 0.284
Serum urea nitrogen, mmol/L 6.33 [4.56; 10.56] 6.43 [4.52; 10.2] 6.15 [4.56; 11.1] 0.703
Uric Acid,umol/L 273 [172.00; 408.00] 262 [166; 355] 299 [195; 452] 0.279
Lactate dehydrogenase, U/L 300 [223.60; 432.20] 374 [284; 530] 254 [182,370] <0.001
Alanine aminotransferase, U/L 26.0 [15.05; 40.65] 25.0 [17.4; 37.6] 27.8 [14.2; 44.4] 0.769
Aspartate aminotransferase, U/L 31.2 [17.05; 42.55] 28.0 [17.05 41.1] 33.7 [17.5; 50.1] 0.395
Creatine Kinase, U/L 42.0 [25.30; 100.25] 33.0 [21.8; 49.3] 70.0 [37.1; 218] <0.001
CreatineKinase-MB, U/L 15.8 [12.4; 23.85] 16.0 [13.15 25.2] 15.7 [11.45 22.7] 0.325
Brain Natriuretic Peptide, pg/mL 520 [198.9; 1746.0] 520 [215; 1,186] 578 [104; 4,740] 0.418
Blood Gas Analysis, median (IQR)

Pondus hydrogenii 7.43 [7.38; 7.47] 7.45 [7.41; 7.47] 7.43 [7.38; 7.48] 0.491
Partial pressure of oxygen, mmHg 86.0 [68.0; 101.5] 83.5 [64.0; 96.2] 86.0 [70.8; 106] 0.235
Partial pressure of carbon dioxide, mmHg 35.5[29.3;41.8] 34.8 [28.6; 39.7] 35.9 [31.4; 44.9] 0.048
Oxygenation index, mmHg 328.6 [197.56; 447.62] 291 [203; 399] 384 [177; 456] 0.116
Lactic acid, mmol/L 1.80 [1.30; 2.43] 1.80 [1.40; 2.49] 1.80 [1.29; 2.70] 0.626
Blood coagulation, median (IQR)

Prothrombin time, s 13.40 [12.75; 15.00] 13.2 [12.6; 14.5] 13.9 [12.8; 17.0] 0.290
Thrombin time, s 16.60 [15.15; 17.40] 16.4 [15.1;17.2] 16.9 [15.5; 17.4] 0.190
Fibrinogen, g/L 4.87 [3.57; 6.60] 4.91 [3.48; 6.46) 4.59 [3.66; 6.90] 0.558
Activated partial thromboplastin Time, s 30.10 [26.95; 33.60] 28.2 [25.6; 31.5] 31.4 [28.4; 36.07 0.004
D-dimer,ug/mL 1.71 [0.94; 3.40] 1.58 [1.12; 3.17] 2.11 [0.93; 3.75] 0.646
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TABLE 4 Distribution and comparison of pulmonary inflammatory lesion volumes in patients with PJP and BP.

Variable PJP (n = 47) P (n = 52) P-value
Total volume of pulmonary inflammatory lesions (cm?) 615.43 [175.72; 1,093.83] 952 [649; 1,380] 242 [78.7; 698] <0.001
Volume of inflammatory lesions in the left lung (cm?) 314.85 [58.44; 542.56] 391 [286; 672] 96.3 [20.5; 381] <0.001
Volume of inflammatory lesions in the right lung (cm?) 356.78 [77.0; 633.27] 549 [316; 778] 140 [31.5; 420] <0.001
Volume of inflammatory lesions in the left upper lobe (cm?®) 94.78 [7.97; 296.51] 224 [13.9; 384] 24.8 [5.37; 177] 0.009
Volume of inflammatory lesions in the left lower lobe (cm?) 77.99 [5.22; 222.91] 116 [3.90; 302] 42.7 [6.99; 205] 0.192
Volume of inflammatory lesions in the right upper lobe (cm?) 44.87 [4.18; 207.19] 60.5 [4.68; 279] 35.8 [2.68; 112] 0.138
Volume of inflammatory lesions in the right middle lobe (cm®) 5.95 [1.45; 46.10] 4.29 [1.56; 35.4] 6.46 [1.09; 53.7] 0.850
Volume of inflammatory lesions in the right lower lobe (cm?) 130.14 [20.94; 314.97] 258 [45.1; 509] 74.0 [16.5; 206] 0.008
Inflammatory lesion volume/Total lung volume (%) 25.54 [5.26; 47.84] 36.4 (23.3;62.1] 7.36 [1.88; 28.4] <0.001
Left lung inflammatory lesion volume/Total lung volume (%) 11.48 [1.72; 21.20] 18.2 [8.95; 29.1] 2.78 [0.55; 15.8] <0.001
Right lung inflammatory lesion volume/Total lung volume (%) 12.88 [2.88; 25.36] 22.5[12.6; 32.01] 3.97 [0.83; 14.5] <0.001
Left upper lobe inflammatory lesion volume/Total lung volume (%) 2.85[0.26; 11.75] 10.6 [0.45; 17.2] 0.81 [0.17; 6.30] 0.004
Left lower lobe inflammatory lesion volume/total lung volume (%) 2.92[0.20; 8.39] 4.67 [0.17; 11.9] 1.21 [0.21; 6.02] 0.119
Right upper lobe inflammatory lesion volume/Total lung volume (%) 1.23 [0.12; 7.30] 2.16 [0.24; 12.1] 0.97 [0.08; 5.64] 0.070
Right middle lobe inflammatory lesion volume/total lung volume (%) 0.16 [0.05; 1.60] 0.16 [0.06; 1.14] 0.16 [0.03; 2.04] 0.481
Right lower lobe inflammatory lesion volume/total lung volume (%) 4.84 [0.52; 13.36] 9.58 [1.52:16.8] 2.62 [0.34; 6.51] 0.003
Bilateral upper lobes inflammatory lesion volume/total lung volume (%) 6.16 [0.70; 21.39] 16.8 [1.43; 28.9] 1.92 [0.54; 13.4] 0.003

lesions in chest CT scans, moving beyond traditional manual
descriptions of lesion features. Building on this innovative method,
clinical information and laboratory test results were incorporated
to develop a predictive model for PJP. The model demonstrated
excellent sensitivity and specificity in both training and testing
sets, underscoring its potential for early detection and clinical
intervention. An important observation from the decision curve
analysis (Figure 7) is the influence of the high-risk threshold.
At higher thresholds, the model still maintained a positive net
clinical benefit, underscoring its robustness for guiding targeted
interventions in patients at elevated risk of PJP. This study introduces
a digital analysis approach combining chest CT imaging with clinical
features to differentiate PJP from BP. To validate the effectiveness of
this method, its performance was compared with existing studies
in the field. For instance, Yu et al. (2024) developed a CT-based
radiomics model for diagnosing PJP in non-HIV patients. Their
model achieved a diagnostic accuracy of 95.8%, demonstrating the
potential of radiomics in distinguishing PJP from other types of
pneumonia. In comparison, our Al-assisted methodology not only
achieved similar accuracy but also provided a more comprehensive
analysis by integrating clinical data, thereby enhancing diagnostic
precision. Additionally, Yu et al. (2024) employed multi-plane CT
imaging and machine learning techniques to differentiate bacterial
from non-bacterial pneumonia. While their approach showed
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promise, it primarily focused on imaging data without incorporating
clinical features. Our integrated model, by combining imaging
with clinical data, offers a more holistic diagnostic tool, potentially
leading to better patient outcomes.

Notably, this study is the first to demonstrate that effective
identification of pneumonia pathogens can be achieved solely
through comprehensive artificial intelligence (AI) analysis (Wong,
2023) of pulmonary infection lesions, combined with clinical
data, without relying on subjective physician interpretation. This
approach provides robust support for clinical decision-making and
opens new avenues for the diagnosis of pulmonary infections.
Findings indicate that PJP is more commonly observed in
immunocompromised individuals. Compared with patients with
BP, chest CT scans of PJP patients revealed a higher proportion
of inflammatory lesion volume relative to total lung volume,
with larger volumes of inflammation (measured in cm?) observed
in the ranges of -700 to —450 HU and -450 to —-300 HU.
Additionally, PJP patients exhibited significantly lower serum
procalcitonin (PCT) levels than those with BP. These results
align with existing literature, reinforcing the distinct clinical and
radiological features of PJP in immunocompromised populations
(Yu et al., 2024) (Hsu et al., 2020).

This study utilized Al-assisted tools to perform a quantitative
analysis of CT images from patients with PJPI?%, The results revealed
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TABLE 5 Comparison of average CT density and stratified lesion volume by Hounsfield Units in patients with PIJP and BP.

Variable

Average density of
inflammatory lesions in the
whole lung (Hu)

Total (n = 99)

—414.13 + 105

PJP (n = 47)

—431.98 £ 106

BP (n = 52)

—-397.99 + 103

10.3389/fphys.2025.1616791

‘ P-value

0.108

Average density of
inflammatory lesions in the left
lung (Hu)

—418.27 + 104

—431.34+ 114

—406.46 +93.9

0.241

Average density of
inflammatory lesions in the
right lung (Hu)

—419.18 + 110

—437.58 £ 102

—402.55 + 115

0.112

Average density of
inflammatory lesions in the left
upper lobe (Hu)

~427.5 [~533.10;-337.40]

—483.57 [-549.04;-348.06]

—-397.30 [-483.84;-310.71] 0.083

Average density of
inflammatory lesions in the left
lower lobe (Hu)

~389.6 [-466.8;-298.4]

—377.65 [-470.60:-294.78]

—404.69 [-459.06:-325.88] 0.656

Average density of
inflammatory lesions in the
right upper lobe (Hu)

—408.34 + 140

—444.65 + 123

—375.51 + 147

0.012

Average density of
inflammatory lesions in the
right middle lobe (Hu)

—431.45+ 114

—454.26 + 96.8

—410.83 + 126

0.056

Average density of
inflammatory lesions in the
right lower lobe (Hu)

-393.32+128

—403.40 £ 117

—384.20 + 137

0.454

‘Whole lung —1,000 to =700
HU pneumonia lesion volume
(em?)

68.20 [21.50; 147.0]

122 [61.2; 228]

30.2 [13.9; 81.4]

<0.001

Whole lung -700 to —450 HU
pneumonia lesion volume
(em?)

219.54 [53.05; 389.16]

322 [216; 513]

90.5 [23.3; 230]

<0.001

Whole lung —450 to 300 HU
pneumonia lesion volume
(em?)

87.01 [23.34; 187.88]

140 [84.9; 250]

36.7 [10.6; 120]

<0.001

‘Whole lung -300 to -100 HU
pneumonia lesion volume
(em?)

95.28 [19.46; 177.0]

118 [72.9; 231]

302 [9.73; 113]

<0.001

‘Whole lung 100 to 0 HU
pneumonia lesion volume
(em?)

39.48 [9.80; 77.91]

46.1 [28.8; 82.0]

12.9 [4.05; 67.3]

0.003

Whole lung 0 to 50 HU
pneumonia lesion volume
(em*)

15.78 [5.65; 32.75]

21.4[11.6;36.1]

7.48 [2.65; 26.0]

0.004

Whole lung >50 HU
pneumonia lesion volume
(em?)

24.14 [8.83; 48.08]

35.3 [21.7; 60.0]

11.2[3.16; 34.2]

<0.001

that PJP patients had inflammatory lesions characterized by larger
volumes and lower densities compared to BP patients, in contrast to
previous studies that focused primarily on qualitative assessments

Frontiers in Physiology

09

of imaging (Tasaka, 2020) (Zou et al., 2022). Digital characterization
of chest CT images enabled the quantification of complex imaging
features into analyzable data, enhancing understanding of disease

frontiersin.org


https://doi.org/10.3389/fphys.2025.1616791
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Chen et al.

TABLE 6 Treatment strategies and clinical outcomes in patients with PJP and BP.

10.3389/fphys.2025.1616791

Variable Total (n = 99) PJP (n = 47) BP n = 52)

Treatment

Mechanical ventilation, n (%) 73 (74.5) 38(82.6) 35(67.3) 0.083
Nutritional support=>3 days, n (%) 42 (42.4) 19 (40.4) 23 (44.2) 0.702
Glucocorticoid,n (%) 77 (77.8) 44 (93.6) 33 (63.5) 0.702
Immunoglobulin, n (%) 18 (18.2) 16 (34.0) 1(1.92) <0.001
Clinical outcomes

Severe pneumonia, n (%) 55 (56.0) 28 (59.6) 26 (50.0) 0.339
Respiratory Failure, n (%) 56 (57.0) 32 (68.0) 24 (46.0) 0.028
Intensive care unit admission, n (%) 42 (42.4) 20 (42.6) 22 (42.3) 0.980
Mortality, n (%) 42 (42.4) 24 (48.9) 18 (34.6) 0.098

TABLE 7 Univariate and multivariate logistic regression of predictors differentiating PIJP from BP.

Variables Pjp (N = 47) BP (N = 52) OR OR
(univariable) (multivariable)
Yes 44 (93.6%) 33 (63.5%) - -
Chronic disease
No 3 (6.38%) 19 (36.5%) 0.12 (0.03-0.43, p 021 (0.04-1.09, p =
=0.001) 0.064)
) Yes 24 (51.1%) 6 (11.5%) - -
Previous
immunomodulator
use No 23 (48.9%) 46 (88.5%) 0.13 (0.04-0.35, p 0.21 (0.05-0.82,p =
<0.001) 0.025)
<2 41 (87.2%) 30 (75.7%) - -
PCT
>=2 6 (12.8%) 22 (42.3%) 0.20 (0.07-0.55, p 0.19 (0.05-0.71,p =
=0.002) 0.013)
120-250 8 (17%) 20 (38.5%) - -
LDH )
outlier 39 (83%) 32 (61.5%) 3.05 (1.19-7.83, p 1.39(0.39-4.98, p =
=0.021) 0.615)

Inflammatory lesion volume/Total lung volume (%)

36.4 [23.3; 62.1]

7.36 [1.88; 28.4]

1.04 (1.02-1.06, p
<0.001)

1.09 (1.02-1.17, p =
0.015)

Whole lung ~700 to —450 HU pneumonia lesion volume (cm®)

322 [2165513]

90.5 [23.3; 230]

1.00 (1.00-1.01, p
<0.001)

1.01 (1.00-1.01, p =
0.042)

Whole lung —450 to —~300 HU pneumonia lesion volume (cm®)

140 [84.9; 250]

36.7 [10.6; 120]

1.01 (1.00-1.01, p
=0.005)

0.98 (0.97-1.00, p =
0.025)

Bilateral upper lobes inflammatory lesion volume/total lung volume (%)

16.8 [1.43;28.9]

1.92 [0.54; 13.4]

1.05 (1.02-1.08, p
=0.002)

0.97 (0.92-1.03, p =
0.373)

characteristics. This method also facilitates the development of
pathogen-specific diagnostic prediction models and improves the
ability to differentiate lung injuries caused by distinct pathogens.
The digital analysis highlighted significant differences in pneumonia
lesion volume and density between PJP and BP, further emphasizing
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the advantages of digital methods in differential diagnosis
(ShiJ. et al., 2021) (Ye et al., 2021) (Shi et al., 2022). Furthermore,
this research provides the first theoretical validation for the
application of AI in analyzing CT image attenuation patterns,
extending beyond traditional visual recognition techniques to
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Nomogram for predicting the occurrence of Pneumocystis jirovecii pneumonia.
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identify pneumonia pathogens via a multimodal model. This
advancement not only expands the scope of Al applications
in medical image analysis but also establishes a foundation for
more accurate and objective diagnosis of pulmonary infection
pathogens, offering promising potential for enhanced precision and
intelligence in clinical diagnostics and treatment. Metagenomic
next-generation sequencing (mNGS) technology has proven
effective in identifying pathogenic organisms, which is critical for
developing appropriate treatment strategies and improving patient
outcomes (Jarboui et al., 2010). Research indicates that mNGS
provides more comprehensive and accurate pathogen identification
than traditional microbiological methods (Yang et al, 2025a),
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particularly in immunosuppressed patients (Lin et al., 2022; Li et al.,
2022). However, mNGS can yield genetic information from multiple
potential pathogens, complicating the identification of the primary
causative agent—a critical consideration since different pathogens
require distinct treatment regimens.

The primary innovation of this study lies in the comprehensive
evaluation and comparative analysis of patients diagnosed with
PJP and BP using mNGS results. Integration of digitized imaging
features with clinical characteristics and laboratory findings
significantly enhances the accuracy and reliability of pathogen
identification in complex clinical scenarios. The findings further
reveal that patients with PJP have a higher prevalence of chronic
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underlying conditions and a history of immunosuppressive therapy
compared to those with BP, consistent with established risk
factors for PJP (Zhang et al, 2021). Additionally, potential new
biomarkers were identified, including PCT, which may serve as
diagnostic indicators for PJP. PCT, a precursor of calcitonin, is
recognized as a reliable infection marker, particularly in systemic
responses triggered by circulating endotoxins and inflammatory
cytokines (Tang et al., 2007). Recent studies have demonstrated a
positive association between PCT levels and mortality in PJP cases
(Zhangetal., 2024; Feng and Tong, 2024), although its specific role in
diagnosing PJP has not been previously reported. Findings suggest
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that the degree of PCT elevation could aid in distinguishing between
PJP and BP. One limitation of this study is the relatively small sample
size of the training cohort, which may affect the generalizability of
the results. The study was conducted at a single center, and although
an external validation cohort was included, its small size further
limits external validity. The selected patient population may not fully
represent characteristics from other geographic regions or medical
institutions. Future studies should consider larger, multi-center
cohorts to enhance representativeness and robustness. Additionally,
adopting a prospective study design (Wong et al., 2010) and
standardized treatment protocols would help minimize potential
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biases and provide more precise insights into diagnostic prediction
for PJP (Shi et al., 2021a; Shi et al., 2021b; Yang et al., 2025b).

5 Conclusion

The Al-assisted CT analysis enabled precise quantification
of lesion distribution and density, offering a novel dimension to
differential diagnosis that extends beyond traditional radiological
The
sensitivity, and specificity, highlighting its robustness and potential

interpretation. model demonstrated strong accuracy,
clinical value in guiding timely diagnosis and management.
These findings underscore the emerging role of AI and digital
radiology in infectious disease diagnostics, particularly for
immunocompromised populations at elevated risk of PJP. Such
advances may improve diagnostic precision and support clinicians
in making more confident therapeutic decisions, thereby reducing
misclassification and inappropriate antibiotic use. Despite these
promising results, certain limitations should be acknowledged,
including the retrospective single-center design and the possibility
of selection bias. Additionally, integrating metagenomic next-
generation sequencing (mNGS) data with imaging and clinical
variables warrants further exploration to optimize cost-effectiveness

and clinical utility.
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