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Cuproptosis related genes in
immune infiltration and
treatment of osteoporosis by
bioinformatic analysis and
machine learning methods

Haiyang Wu*, Junhao Wu and Guowei Wen

Shanghai Second People’s Hospital, Shanghai, China

Cuproptosis, a copper-dependent form of cell death, has been implicated in
immune function and osteoporosis. However, the specific roles of cuproptosis-
related genes (CRGs) in osteoporosis remain unclear. The differentially
expressed CRGs from the Gene Expression Omnibus datasets of persons with
osteoporosis and healthy individuals were categorized using R software tools in
this study. Following that, the CIBERSORT algorithm and the GSVA technique
were used to investigate the relationships between the different clusters and
immune infiltration characteristics. Based on four machine learning techniques
(Random Forest, Support Vector Machine, XGBoost, and Generalized Linear
Model), Support Vector Machine and WGCNA analysis was carried out to
identify the main genes linked to cuproptosis in the pathological course of
osteoporosis. Subsequently, a model was built using the core genes related
to cuproptosis to forecast the disease and identify potential treatment targets.
The model was validated using an external dataset. In the end, a nomogram
and calibration curve were created to improve this model’s clinical applicability.
Additionally, to investigate the possible biological roles of the core genes related
to cuproptosis, we enriched them along several pathways. This study represents
the first identification of key CRGs and core genes associated with cuproptosis
in osteoporosis patients, findings that will facilitate the development of novel
therapeutic strategies.
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Introduction

Osteoporosis, a systemic skeletal disease characterized by reduced bone mass,
microarchitectural deterioration of bone tissue, increased bone fragility, and
elevated fracture risk (Ensrud and Crandall, 2024). In the US during 2017–2018,
the age-adjusted prevalence of osteoporosis among adults aged ≥50 years was
12.6% (Sarafrazi et al., 2021). Interventions for prevention and treatment include
hormone replacement therapy, bisphosphonates, Denosumab, Raloxifene, Parathyriod
homone peptides, Romosozumab, calcium and vitamin D, herbs and exercise
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(Liu et al., 2017; Stevenson and medical advisory council of the 
British Menopause, 2023). Despite these interventions,
approximately two million incident osteoporotic fractures occur
annually in the US, incurring an estimated cost of $17 billion
(Sarafrazi et al., 2021). Adverse fracture-related impacts include
functional impairment, chronic pain, lower quality of life, loss of
independence, and increased mortality, especially after hip and
clinical vertebral fractures (Singer, 2021). Alarmingly, osteoporosis
management is frequently neglected in older patients following
fracture events (Curtis et al., 2020).

Between 50 and 120 mg of copper are found in our bodies,
with around two-thirds of that amount found in muscles and bones
(Turnlund et al., 1998). Copper ions play critical roles in numerous
biological processes, including kinase activity regulation, organellar
redox balance maintenance, and gene expression modulation
(Henriksen and Arnesen, 2023). However, overexposure to copper
can cause cell death via processes such mitochondrial malfunction,
proteasome suppression, and the buildup of reactive oxygen
species (ROS) (Chen et al., 2023). This copper-dependent cell
death, termed “cuproptosis,” has been implicated in osteoporosis
pathogenesis (Chaudhri et al., 2009; Mahdavi-Roshan et al.,
2015; Qu et al., 2018). It involves the tricarboxylic acid cycle’s
binding of copper ions to fatty-acylated proteins, which causes
proteotoxic stress, an inflammatory response, and cell death
(Tsvetkov et al., 2022; Li et al., 2023).

However, the precise mechanistic role of cuproptosis in
osteoporosis and its connection to the disease pathology remain
complex and incompletely understood. Cuproptosis exhibits
significant interplay with other regulated cell death pathways,
including autophagy, apoptosis, pyroptosis, and ferroptosis
(Liu M. et al., 2023; Xue et al., 2023). For example, pro-apoptotic
mitogen-activated protein kinase pathways can be triggered by
copper-induced ROS, ultimately resulting in apoptosis (Chen et al.,
2009). Similarly, macrophage pyroptosis, an inflammatory kind of
cell death, can be brought on by copper-mediated activation of
the NLRP3 inflammasome pathway (Qiao et al., 2024). Moreover,
copper overload has been observed to increase free iron pools and
disrupt mitochondrial homeostasis, suggesting a mechanistic link
to ferroptosis (Liu and Chen, 2024).

The dual function of copper in cellular processes and its
potential toxicity when homeostasis is disturbed have been brought
to light by recent investigations (Chen et al., 2023). Consuming
copper may lower the incidence of osteoporosis and be favorably
correlated with bone mineral density (Mir et al., 2007). For
instance, correlations between copper consumption and bone
mineral density were discovered in research using data from the
National Health and Nutrition Examination Survey, indicating that
copper may have preventive effects on bone health  (Fan et al.,
2022). Copper supplementation has also demonstrated anti-
inflammatory and anti-arthritic properties, potentially preserving
articular cartilage and modulating immune responses (Liu Y. et al.,
2022). Conversely, copper poisoning is a well-known concern that
may result in a number of health issues, such as disruptions in
the enzymes responsible for mitochondrial metabolism and cell
death (Zhang and Burke, 2023)    . To get the benefits of copper,
it's critical to strike a balance between consuming enough of
it without going beyond, as this may be hazardous (Ge et al.,
2022). To properly comprehend the role of copper in bone

health and osteoporosis, more research is necessary, as the
results of this study do not align with those of the other
studies.

Consequently, it is critical to identify the core cuproptosis-
related genes (CRGs) that regulate the biological process and the
mechanism of cuproptosis in the pathology of osteoporosis. We
carried out this bioinformatic study with the intention of offering
a fresh perspective to enhance comprehension of the underlying
biological process and search for novel treatment strategies by
searching the relevant genes. To our knowledge, this is the first study
to use bioinformatic and machine learning techniques to investigate
cuproptosis in osteoporosis.

Methods

Whole flow: Data collection and differential expressed CRGs
identification →Immune infiltration analysis →Subtype clustering
→Hub Gene selection →Model construction and validation
→Annotation and drug prediction.

GEO data sources and differential
expressed CRGs acquirement

Gene expression datasets were downloaded from the National
Center for Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO) database. The selection criteria are as follows:
diagnosed by a professional institution according to the bone
mineral density; no restriction of the osteoporosis type, sex, age,
and race. The analyzed dataset (GSE56815) and validation datasets
(GSE7429 and GSE35957) were selected based on their relevance to
osteoporosis and the availability of comprehensive gene expression
profiles (Xiao et al., 2008; Benisch et al., 2012; Zhou et al., 2018).
The GSE56815 dataset involved 40 osteoporosis patients with hip Z-
score < −0.52 and 40 controls with hip Z-score >0.84 on the platform
of GPL96. This trial was approved by the Institutional Review
Boards of University of Missouri Kansas City and Tulane University.
Written informed consent was obtained from all participants before
inclusion. The GSE7429 dataset involved 10 osteoporosis cases
with a spine or hip Z-score < −0.84 and 10 controls with a spine
or hip Z-score >0.84 on the platform of GPL96. Institutional
Review Board of Creighton University in Omaha approved this
study, and all the subjects signed informed-consent documents
before participating in the trial. The GSE35957 dataset included
five controls and five osteoporosis patients on the platform of
GPL570. Bonematerial was used under agreement of the local Ethics
Committee of the Medical Faculty of the University of Wuerzburg
with written informed consent of each patient. Participants in
GSE56815 and GSE7429 are postmenopausal females and in
GSE35957 are primary osteoporosis patients. A comprehensive list
of CRGs was compiled based on existing literature (Huang et al.,
2022; Li et al., 2022; Liu, 2022; Zhang et al., 2022). Finally, 31
CRGs were included in our research, containing AOC3, ATOX1,
ATP7A, ATP7B, CCS, CD274, CDKN2A, COA6, COX11, COX17,
CP,DBH,DBT,DLAT,DLD,DLST, FDX1,GCSH,GLS,H2C1, LIAS,
LIPT1, LIPT2, LOXL2, MAP2K1, MAP2K2, MTCO2P12, MTF1,
NFE2L2, NLRP3, PDE3B, PDHA1, PDHB, PDK1, SCO1, SLC25A3,
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SLC31A1, SLC31A2, SOD1, TYR, UBE2D1, UBE2D2, UBE2D3,
UBE2D4, ULK1, ULK2, VEGFA.

The software R (https://www.bioconductor.org/) was used for
data analysis. Datasets were filtered, background corrected, and
normalized. The normalized dataset was subjected to CRGs with
significant expression changes between osteoporosis patients and
healthy controls. Differentially expressed CRGs were identified
using the “limma” package with a threshold of |log2FC| > 0.5 and
adjusted P < 0.05 (Benjamini–Hochberg FDR correction). Then, the
significant correlations between every two CRGs were identified by
“circlize” package.

Immune infiltration analysis

Given that immune-cell infiltration such as B cells, NK
cells, T cells, and macrophages was detected in osteoporosis
patients (Gao et al., 2024; Keum et al., 2024), we also used
the CIBERSORT method to estimate the percentage of different
immune cell types that were present in the samples. Immune
infiltration analysis bridges the gap between copper metabolism
and bone remodeling by elucidating how CRGs modulate immune
cell behavior (Dong et al., 2021). The CIBERSORT deconvolution
algorithm, amachine learningmethodology, relies on linear support
vector regression, a computational method that ascertains the
percentage of immune cells present in tissues or cells (Chen et al.,
2018). It calculates the number of immune cells in a sample using
RNA-sequence data (Newman et al., 2019). The link between CRG
expression and immune cell infiltration in osteoporotic samples
was investigated with the aid of this study. The work replicated
the transcription characteristic matrix of 22 different kinds of
immune cells usingR and theCIBERSORTdeconvolution technique
(different situations of B cells, plasma cells, T cells, NK cells,
monocytes, macrophages, dendritic cells, mast cells, eosinophils,
and neutrophils).We compared the immune cell infiltration samples
from the control group with the osteoporosis group. Meanwhile, the
relationship between the differentially expressed CRGs and immune
cells was explored. The “CIBERSORT” R script was used for data
analysis in the software R. P < 0.05 was set as the significant criteria.

Subclusters analysis of immune infiltration
and GSVA analysis

The “ConsensusClusterPlus” tool in R software was utilized to
categorize patients based on variations in CRG quality. Determining
the inflection point of the sum of mistakes allowed for the selection
and determination of the k value. The “limma” package was used
to search the differential genes of the cluster patterns. A principal
components analysis (PCA) map of the subclusters allowed us to see
the geometric distance between them.

Gene Set Variation Analysis (GSVA) was conducted to
clearly state the functional distinctions between the Cuproptosis
subclusters. The “c2.cp.kegg.symbols.gmt” and “c5.go.symbols.gmt”
files were downloaded for GSVA analysis from the online
Molecular Signature Database (https://www.gsea-msigdb.
org/gsea/msigdb/human/collections.jsp). We used the “limma,”
“GSEABase,” and “GSVA” packages in R, with P < 0.05 considered

significantly enriched. After that, a barplot was utilized to show
how the two subclusters of genes involved in cuproptosis were
distinct from one another in terms of the activity of their
respective pathways.

Genes screening based on WGCNA

By comparing these gene modules according to molecular
subtypes and clinical characteristics, we were able to discover gene
modules using Weighted Gene Co-expression Network Analysis
(WGCNA). These genes were thought to be important contributors
to cuproptosis’s participation in osteoporosis. We created a co-
expression network of genes from normal people and osteoporosis
samples using the “WGCNA” R program. Gene expression data
is first normalized as part of the WGCNA approach, and then
outliers are found using hierarchical clustering. A scale-free network
architecture is obtained by choosing a soft-thresholding power β.
Next, an adjacency matrix is calculated and transformed into a
topological overlapmatrix, which forms the foundation for dynamic
tree cutting-based module discovery. The next step is to calculate
the eigengenes of each module, which are then connected with
clinical features to find the modules that are linked to the desired
attributes. Lastly, network visualization helps identify genes inside
important modules.

The significant module filter was set to 0.8 and the significant
gene filter to 0.5 for this investigation. Two groups of osteoporosis
individuals were identified based on differentially expressed CRGs,
and genes based on WGCNA were studied from the perspectives
of both osteoporosis and normal patients. The genes we utilized for
additional analysis were found at the intersection of two findings.

Machine learning approaches to screen
final core genes

Todevelop predictionmodels for osteoporosis, we usedmachine
learning methods such as Random Forest (RF), Support Vector
Machine (SVM), XGBoost, andGeneralized LinearModel (GLM) to
further pick the final possible core genes connected to cuproptosis.
RF is an ensemble prediction method that evaluates each variable’s
importance and can process large amounts of input data. The
repeatedcvmethodwas used and number of trees is five in this study.
Thismethod creates a large number of decision trees during training,
and the class mode (Yang et al., 2024). During the SVM model’s
training phase, a svmRadial kernel approach was applied to address
the non-linear connection between variables. Setting a threshold
between two classes so that label prediction based on one or more
feature vectors is possible is the aim of the potent SVM technique
(Absar et al., 2022). XGBoost is an open-source program that is
frequently used to develop machine learning algorithms under
the Gradient Boosting framework in regression and classification
applications. In data science challenges, it is renowned for its
performance, accuracy, and speed (Nguyen et al., 2024). We used
the xgbDART method to complete the analysis. With the ability
to include response variables with error distribution models other
than normal distributions, GLM models expand on the capabilities
of classic linear regression. By using a link function to connect these
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variables to linear predictors, it can be used for a variety of data types
and is a key instrument in statistical data analysis (Mao et al., 2024).
In GLM model, the glm method and binomial family were adopted.
Finally, we selected themost precisemethod based on the sensitivity,
specificity, square of residuals, and root mean square error. These
genes may serve as potential biomarkers or therapeutic targets. R
packages “caret,” “DALEX,” “ggplot2,” “randomForest,” “kernlab,”
“xgboost,” and “pROC” finished the four machine learning
techniques.

Construction and validation of
osteoporosis predictive model based on
core genes

We developed a nomogram evaluation method based on core
genes to forecast the likelihood of osteoporosis and identify the
treatment approach. The agreement between the observed and
expected values was assessed using calibration curves. To assess our
model’s therapeutic advantages, we also ran decision curve studies.
Decision curve analysis is a technique used to calculate the net
benefit of employing a predictive model for decision-making to
assess the therapeutic value of the models. With the use of receiver
operating characteristic (ROC) curves, the effectiveness of the
machine learning models was assessed. To evaluate the prediction
accuracy of the models in differentiating osteoporotic samples from
controls, the area under the curve (AUC) was determined. All
the analysis was conducted by the “pROC,” “rms,” and “rmda”
R packages.

Finally, two different external datasets (GSE7429 andGSE35957)
were used to confirm the core genes’ expression levels and
significance. The ROC was used to evaluate the performance of core
genes in predicting the groups.

In addition, mouse bone mesenchymal stem cells (BMSCs)
experiment was conducted to testify the different expressions
of core genes. The protocol was approved by the Ethics
Committee of Shanghai Second People’s Hospital (No.: 2023-
N015; date: 18 September 2023). Twenty C57BL/6J mice [bought
from Lingchang BioTech Co., Ltd (Shanghai, China)]. were
fed a standard diet in a facility with a temperature range of
22°C–25°C, 50% relative humidity, and 12-h light/dark cycles
for 1 week prior to the experiment. Ten mice were divided into
the control group and received a sham surgery. The other ten
mice as the osteoporosis model group received the ovariectomy.
BMSCs were derived from the femur and tibia after 12 weeks
and then cultured in αMEM supplemented with 10% fetal
bovine serum. The total RNAs were extracted to complete the
Quantitative Real-time PCR (qPCR). Table 1 contains the specific
primers for each gene. Sangon Biotech Co., Ltd. created the
PCR primers using the online tool Primer BLAST from the
National Center for Biotechnology Information (Shanghai, CN).
Following the manufacturer’s instructions, reverse transcription
was carried out using PrimeScript RT Reagent Kit (Takara
Bio, Shiga, JP). TB Green Premix EX Taq with fluorescence
quantitative PCR instrument Applied Biosystems (Thermo Fisher
Scientific, Waltham, USA) was used to test the relative RNA
expression.

Enrichment analysis and potential drugs

In order to analyze the biological functions and pathways
involved in core genes related to cuproptosis, enrichment analysis was
performed on Enrichr (https://maayanlab.cloud/Enrichr/#, assessed
on 25 April 2024) (Evangelista et al., 2023).Gene functions and
interactions, such as biological processes (BP), molecular functions
(MF), and cellular components (CC), are frequently described using
gene ontology (GO) enrichment analysis (Pomaznoy et al., 2018).
A common method for storing data regarding genomes, biological
pathways, and illnesses is the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis (Kanehisa et al.,
2017). An essential Elixir resource, the Reactome Knowledgebase
(https://reactome.org), offers carefully selectedmolecular information
on a wide range of physiological and pathological biological processes
in humans, including both inherited and acquired disease processes
(Gillespie et al., 2022). WikiPathways is a collaborative biological
pathway database (https://www.wikipathways.org) that promotes
open research practices and removes obstacles to material access
and usage. It is now being used by more initiatives, projects,
tools, and content creators. This is particularly true for groups
of people that focus on certain biological processes, such as lipid
metabolism and rare diseases (Martens et al., 2021). In addition,
we also analyze the enrichment of core genes in GWAS database
(https://gwas.mrcieu.ac.uk/, P-value <0.05, linkage disequilibrium
with an r2 threshold of 0.8 and a ±500 kb window,), human
phenotype (https://hpo.jax.org/app/), Jensen tissue (https://tissues.
jensenlab.org/Search), human cell (https://hubmapconsortium.org/),
and potential drug targets (https://druggablegenome.net/). The
protein–protein interaction (PPI) network was also analyzed (https://
string-db.org/).

Statistical analysis

All statistical tests were completed in the R software version
4.3.2. The correlation between the variables was determined using
Pearson’s or Spearman’s correlation test. qPCR data were analyzed
using unpaired two-tailed Student’s t-tests (GraphPad Prism v10.0).
P-value less than 0.05 was set to be statistically significant.

Results

The landscape of genetic variation of CRGs
in osteoporosis

The GSE56815 dataset was adopted to determine the expression
levels of 31 cuproptosis-related genes in osteoporosis and normal
participants. The location of universal copy number variation
changes for the 31 genes was presented in Figure 1A. The
distribution of differentially expressed 10 CRGs between normal
controls and osteoporosis patients was visualized by a boxplot and
a heatmap in Figures 1B,D. It showed that in osteoporosis patients,
CP (P < 0.01), LIPT1 (P < 0.05), SLC25A3 (P < 0.001), and
UBE2D3 (P < 0.01) were upregulated, while the expression levels
of CDKN2A (P < 0.05), DBH (P < 0.01), DLST (P < 0.05), LOXL2
(P < 0.05), SLC31A1 (P < 0.05), and UBE2D1 (P < 0.01) were
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TABLE 1 List of primers for real-time PCR analysis.

Gene Symbol Accession Number Oligonucleotide Sequence

GPR27 NM_008158.2 Forward 5’ATGGCGAACGCTAGTGAGC3’

Reverse 5’GGCGGTCGTGGATGAAGAAG3’

PDE8A NM_008803.3 Forward 5’CCGAGCATCCACACTTCCG3’

Reverse 5’TCAGCTACTGATACCTTCGAGG3’

NIF3L1 NM_022988.3 Forward 5’AAGAAATGCTGGGTGTTCACTT3’

Reverse 5’GAGGGTCCCTGTCTGTCTCA3’

CIR1 NM_025854.4 Forward 5’GGGAAGTCATTCGCCAATTTCA3’

Reverse 5’CACGTTCATCTCCCATAAGCAAT3’

VPS35 NM_022997.5 Forward 5’GCTGTGAAGGTTCAGTCATTCC3’

Reverse 5’GTCAGGTAGACCTCCAAGTAGT’

downregulated.The chromosome location demonstrated that LIPT1
on chromosome 2; CP on chromosome 3; UBE2D3 on chromosome
4; LOXL2 on chromosome 8; CDKN2A, DBH, and SLC31A1
on chromosome 9; UBE2D1 on chromosome 10, SLC25A3 on
chromosome 12; DLST on chromosome 14 (Figure 1C). Moreover,
a CRG interaction network was constructed to illustrate their
interconnections (Figures 1E,F). There was a substantial and strong
positive correlation found between the expression of SLC31A1
and UBE2D1, a significant positive correlation between LIPT1 and
UBE2D3A, and a positive correlation between DBH and LOXL2
expression. However, a significant negative correlation was found
between DLST and UBE2D3.

As the research above indicates, osteoporosis displays a
diverse landscape of CRG genetic and expression alterations. This
demonstrated that CRGs play an essential role in osteoporosis
formation and progression.

Immune infiltration analysis

CIBERSORT algorithm and GSVA method revealed a
differential expression matrix of immune cell subtypes in
osteoporosis patients compared to controls. The distribution of
22 immune cells in each sample is represented in the heatmap
(Figure 2A). It showed that the relative percent in the monocytes
is the highest. There is no significant difference in immune
cells between osteoporosis and control participants (Figure 2B).
Among the differentially expressed CRGs, immune infiltration
was significantly correlated to seven genes (UBE2D3, UBE2D1,
SLC31A1, LOXL2, LIPT1, DBH, and CP). Figure 2C represented the
detailed correlation analysis of UBE2D3 with positive correlation of
macrophages M2 (P < 0.05), negative correlation of CD8+ T cells (P
< 0.05); UBE2D1 with positive correlation of CD4+ T cells memory
activated (P < 0.01), negative correlation of resting NK cells, plasma
cells, andCD8+ T cells (P < 0.05); SLC31A1with positive correlation
of resting dendritic cells, macrophages M0, and resting mast cells

(P < 0.05), negative correlation of resting NK cells and plasma cells
(P < 0.05); LOXL2 with negative correlation of resting dendritic
cells and plasma cells (P < 0.05); LIPT1 with positive correlation
of resting dendritic cells (P < 0.001), macrophages M2 (P < 0.05),
and neutrophils (P < 0.05), negative correlation of monocytes (P <
0.01); DBH with positive correlation of monocytes (P < 0.05); CP
with negative correlation of gamma delta T cells (P < 0.01).

Subclusters analysis of immune infiltration

Consistent clustering was adopted to better clarify the clinical
significance or biological pattern of CRGs. According to the
expression levels of ten CRGs, osteoporosis samples were divided
into subgroups. As discovered, the best stability of clustering can be
offered with k = 2 (Figure 3A). Only two colors were shown with
k = 2 in the tracking plot (Supplementary File 1). In addition, the
relative change region below the cumulative distribution function
curve and cumulative distribution function diagram were shown
in Supplementary Files 2,3. Osteoporosis samples were divided
into cluster 1 (n = 28) and cluster 2 (n = 12) of the two
different clusters (Figure 3B) (Supplementary File 4). Following the
boxplot (Figure 3C) and heatmap (Figure 3D), the cluster one
group exhibited increased expression levels of UBE2D3 (P <
0.001), SLC31A1 (P < 0.001), and LIPT1 (P < 0.01). Moreover,
in accordance with CRG expression levels, PCA indicated that the
two groups showed a remarkable difference in CRG transcriptional
profiles (Figure 3E). According to immune infiltration analysis for
osteoporosis patients, the cluster two group showed low innate
immune cell infiltration, including cells such as resting dendritic
cells (P < 0.001), eosinophils (P < 0.01), and neutrophils (P < 0.01);
high innate immune cell infiltration, only monocytes (P < 0.01)
(Figure 3F). The heatmap (Figure 3G) depicts the distribution of
22 immune cells in each sample, with the macrophage having the
highest relative percent.

The GSVA analysis discovered that pathways (spliceosome,
nucleotide excision repair, mismatch repair, RNA degradation,
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FIGURE 1
Expression characteristics and gene localization of CRGs. (A) The position of 31 CRGs on the chromosome. (B) Boxplot showing differences in the
expression of CRGs in osteoporosis and control participants, with significant differences in the expression of 10 genes. (C) The chromosome
distribution of number variation changes among 10 differential expressed CRGs. (D) Heatmap showing the expression characteristics of 10 CRGs in in
osteoporosis and control participants. Red represents high expression levels while blue represents low expression levels. (E,F) Spearman correlation
analysis of CRGs; positive correlation is represented by red, while negative correlation is represented by green. Bigger area means stronger
correlation. ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001. CRGs, cuproptosis-related genes.
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FIGURE 2
Immune cell infiltration and correlation analysis. (A) The relative percentage of 22 immune cell subtypes between osteoporosis and control
participants. (B) Boxplot illustrates different fractions of 22 immune cells in osteoporosis and control participants. (C) The correlation analysis of
immune cells and differential expressed CRGs. Red and blue represent positive and negative correlation, respectively. ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P <
0.001. CRGs, cuproptosis-related genes.

propanoate metabolism, protein export, peroxisome, proteasome,
glycosylphosphatidylinositol GPI anchor biosynthesis, basal
transcription factors, ribosome) were upregulated in cluster 2;
however, pathways (antigen processing and presentation, allograft
rejection, pentose phosphate pathway, galactose metabolism,
B cell receptor signaling pathway, chronic myeloid leukemia,
tryptophan metabolism, limonene and pinene degradation, ABC
transporters, dorso ventral axis formation) were downregulated in
cluster 1 (Figure 3H).

Genes screening based on WGCNA

The WGCNA analysis of genes between osteoporosis and
normal participants was performed first. As shown in Figure 4A, the
analysis of soft threshold selection revealed that gene associations

were maximally consistent with the scale-free distribution when
β = 11 (scale free R2 = 0.8). Based on selected soft-thresholding
power, a hierarchical clustering tree was established to cluster high
co-expression genes into the same module and color code them
(Figure 4B). Then, a total of three modules were identified in the
weighted gene co-expression network by setting the minimum
number of genes in a module to 20. We found that MEblue module
(P = 0.002) was positively correlated with osteoporosis in non-gray
modules by Spearman correlation analysis (Figure 4C). Genes in
the MEblue module were further used in the analysis, including
152 genes (Figure 4D). It showed a significant correlation between
genes of osteoporosis and blue module membership (cor = 0.18,
P = 0.026). We also selected 1000 genes randomly to draw a
network heatmap to show the correlation among genes in the same
module (Supplementary File). More golden yellow meant stronger
related. It showed a relatively high correlation in the MEturquoise
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FIGURE 3
Immune cells infiltration of the two distinct clusters and GSVA analysis. (A) Various consensus score of different k value (from two to 9). (B) The
consensus matrix heatmap (k = 2) exhibits the two clusters’ correlation region. (C,D) Boxplot and heatmap depict the expression of 10 CRGs in
GeneClusters. (E) Remarkable transcriptome differences between the two clusters based on PCA. (F) Boxplot illustrates different fractions of 22
immune cells in two clusters. (G) Heatmap shows the relative percentage of 22 immune cell subtypes between two clusters. (H) GSVA analysis
represents regulated pathways in two clusters. ∗∗P < 0.01, and ∗∗∗P < 0.001. CRGs, cuproptosis-related genes; PCA, principal components analysis;
GSVA, Gene Set Variation Analysis.

module. The detailed information about the relationship between
gene significance and module membership was summarized in
Supplementary File 6.

Then we conducted the WGCNA analysis of genes in
osteoporosis patients between cluster one and cluster two based
on differentially expressed CRGs. The results of the soft threshold
selection analysis, as presented in Figure 4E, indicated that
gene correlations were maximally compatible with the scale-free
distribution when β = 9 (scale free R2 = 0.8). A hierarchical
clustering tree was created to color code and group high co-
expression genes into the same module based on the chosen soft-
thresholding power (Figure 4F). Through Spearman correlation
analysis, we discovered that C2 had the highest connection with the
MEturquoise module (P < 0.001) (Figure 4G). 2,470 genes of the
MEturquoise module were further analyzed (Figure 4H). It showed
a significant correlation between cluster two genes and turquoise
module membership (cor = 0.89, P < 0.001). Additionally, 1000
randomly chosen genes were used to create a network heatmap
that displays the association between the genes in the same module

(Supplementary File 7). In the MEturquoise module, the correlation
was comparatively high. The Supplementary File 8 provided a full
summary of the facts about the link between the gene importance
of two clusters and module membership.

Finally,weobtained26potential key genes (Supplementary File 9)
by intersecting152genesofdiseaseWGCNAand2,470genesofcluster
WGCNA in a Venn plot (Figure 4I).

Core genes related to cuproptosis through
machine learning approaches

Reverse cumulative distribution of residuals (Figure 5A), ROC
curve analysis (Figure 5B), and Boxplots of residuals (Figure 5C)
demonstrated that SVMdisplayed notably high predictive capability.
In Figure 5A, the SVM model demonstrated the best performance
among the four models. The majority of the samples had small
absolute residuals, as indicated by the steeper curve in the low
residual range. This steepness suggested that the SVM model
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FIGURE 4
Potential key genes screening based on WGCNA. (A–D) Co-expression network of differential expressed genes between osteoporosis patients and
normal individuals. (A) Soft threshold analysis in osteoporosis. (B) Module correlations in osteoporosis. (C) Module-trait correlation heatmap, red is
positive correlation, blue is negative correlation. (D) Scatter plot of blue module. (E–H) Co-expression network of differential expressed genes between
two cuproptosis related osteoporosis clusters. (E) Soft threshold analysis in osteoporosis. (F) Module correlations in osteoporosis. (G) Module-trait
correlation heatmap, red is positive correlation, blue is negative correlation. (H) Scatter plot of blue module. (I) Venn plot of genes in cluster WGCNA
and osteoporosis WGCNA. WGCNA, Weighted genes correlation network analysis.
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achieved the highest accuracy.Therefore, the SVMmodel was highly
accurate and reliable for this dataset. The RF model showed good
performance with a relatively concentrated residual distribution.
Although the curve was not as steep as that of the SVM model, the
RF model still performed well overall. Its predictive accuracy was
high, making it a strong contender, albeit slightly less optimal than
the SVMmodel for this particular dataset.TheXGBmodel exhibited
moderate performance, with a relatively flat curve, especially in the
low absolute residual range. This flatness indicated that the XGB
model had larger prediction errors for many samples. Despite its
general robustness, the XGB model’s performance on this dataset
was average, suggesting that it might require further parameter
tuning or feature engineering to improve its accuracy. The GLM
model had the poorest performance, as shown by the flattest curve
among the four models. The wide distribution of residuals across
the entire range suggested that the GLM model had relatively high
prediction errors and lower accuracy. Consequently, theGLMmodel
was not suitable for this predictive task on the given dataset. In
Figure 5B, the AUC value was a single scalar value that summarized
the overall performance of themodel. AhigherAUC indicated better
performance. The SVM model, with the highest AUC of 0.812, was
the best performer for distinguishing between the classes in this
dataset. In Figure 5C, the boxplot analysis showed that SVM and RF
had relatively low variability in residuals and potentially lower root
mean square of residuals (RMSR), making them strong candidates
for accurate predictions. XGB showed moderate variability and
RMSR, suggesting it had decent performance but with more
variability. GLM had the highest variability in residuals and the
highest RMSR, indicating it was the least reliable model among
the four in this context. According to the root mean square
error loss after permutations, the results of the SVM method
were selected (Figure 5D). In total, we showed ten core genes related
to cuproptosis (VPS35, ADNP, CIR1, LPCAT3, NIF3L1, NARFL,
PDE8A, GPR27, TMEM14B, and AKR7A2) by the SVM method.

Construction and validation of
osteoporosis model based on core genes
related to cuproptosis

Genes were ranked by SVM-derived importance scores, and
the top five (GPR27, PDE8A, NIF3L1, CIR1, and VPS35) were
selected due to their cumulative contribution (85.4%) to model
accuracy. To predict the probability and treatment targets of
osteoporosis, we constructed a nomogram evaluation mode based
on these top five core genes (Figure 6A). The calibration curves
(Figure 6B) and decision-curve analysis (Figure 6C) proved the
nomogram model to be an ideal predictive model for osteoporosis.
We further evaluated the diagnostic values of these biomarkers.
The AUC value of the ROC curve was 0.771 for this model
(Figure 6D). Then we performed an external validation by GSE7429
and GSE35957, and the AUC value of the ROC curve was 0.889 and
0.833 respectively (Figures 6E,F), suggesting biological relevance
of the identified cuproptosis-related genes despite demographic
variations. Additionally, the mRNA relative expression of CIR1
(Figure 6G), GPR27 (Figure 6H), and PDE8A (Figure 6J) were
reduced in the osteoporosis group, while NIF3L1 (Figure 6I)
and VPS35 (Figure 6K) were increased.

Enrichment of top five core genes related
to cuproptosis and potential drugs

GO enrichment analysis was performed on the top five
core genes related to cuproptosis (GPR27, PDE8A, NIF3L1,
CIR1, and VPS35). The BP enriched by these differential genes
was mitochondrial fragmentation involved in the apoptotic
process, neurotransmitter receptor transport, endosome to plasma
membrane, and regulation of the dopamine receptor signaling
pathway (Figure 7A). MF analysis indicated that these genes were
enriched in dopamine receptor binding, phosphodiesterase activity,
and kinase activator activity (Figure 7B). No significance was
found in the CC enrichment (late endosome, lytic vacuole, lytic
vacuole membrane, early endosome, and lysosomal membrane)
(Figure 7C). KEGG pathway enrichment analysis revealed that
these differential genes significantly enriched the top five
pathways: the Notch signaling pathway, cortisol synthesis and
secretion, morphine addiction, purine metabolism, and Cushing
syndrome (Figure 7D). In addition, REACTOME (Figure 7E) and
WikiPathway (Figure 7F) analyses were also performed. The results
revealed that the core genes were significantly enriched in WNT
ligand biogenesis and trafficking, signal transduction, the Notch
signaling pathway, and so on.

We also enriched the five genes in the GWAS database
(neurofibrillary tangles, hand grip strength, and so on) (Figure 8A),
the human phenotype database (akinesia, dyskinesia, diminished
movement, bradykinesia, and so on) (Figure 8B), and the Jensen
tissue database (embryonic carcinoma cell, phloem, and so on)
(Figure 8C). As shown in Figure 8D, the PPI network indicated
that VPS35 has a correlation with four proteins (BEM2, PAC10,
H2AFX, and SEC63), NIF3L1 with four proteins (CCDC85B, DIPA,
YWHAQ, and VIM), and PDE8A with two proteins (NFKB2
and NFKBIA). Then, the relationship of the ten proteins was
conducted and represented in Figure 8E. It suggested that NFKB1A
and CCDC85B had the most connection with other proteins. In
addition, the five core genes were mainly enriched in bone marrow
cells (Figure 8F). According to the genes, three drugs (flavoxate,
dipryridamole, and sildenafil) might play an important role in
treating osteoporosis (Figure 8G).

Discussion

Our investigation utilizing the GSE56815 dataset significant
genetic and expression dysregulation of CRGs in osteoporosis,
highlighting the complexity of this disease. Key findings include
the downregulation of CDKN2A, DBH, DLST, LOXL2, SLC31A1,
and UBE2D1, alongside the upregulation of CP, LIPT1, SLC25A3,
and UBE2D3. These results are in line with other researchers’
hypotheses on a possible connection between osteoporosis and
CDKN2A (Curtis et al., 2017), DBH (Ji et al., 2023), LOXL2
(Han et al., 2018), CP (Karakas et al., 2016), SLC25A3 (Kang et al.,
2021), and UBE2D3 (Shao et al., 2020). Cellular senescence
and aging have been connected to CDKN2A, which is well-
known for its function in controlling the cell cycle (Jiao et al.,
2018). Its downregulation in individuals with osteoporosis may
indicate a reduction in cellular senescence, which would boost
osteoclast activity and bone resorption, weakening bone structure.
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FIGURE 5
Four machine learning methods to screen core genes related to cuproptosis. (A) reverse cumulative distribution of residuals. (B) ROC curves as a
function of the values of observed sensitivity and specificity among four methods. (C) Boxplot of the residual distribution. (D) The importance of the
four models and 10 top genes each. SVM, support vector machine; RF, random forest; XGB, XGBoost; GLM, generalized linear model.

Norepinephrine, which has been demonstrated to affect bone
remodeling, is synthesized by DBH (Liu et al., 2024). Decreased
norepinephrine levels resulting from decreased DBH expression
may have adverse effects on osteoblast activity and bone formation.
The integrity of the bone matrix is maintained by the cross-linking
of collagen fibers, which is facilitated by LOXL2 (Bates et al.,
2023). Reduced LOXL2 levels may lead to a weakened bone
matrix, increasing the risk of bone fractures. Ceruloplasmin, or CP,
possesses antioxidant qualities and is involved in iron metabolism
(Warjukar et al., 2024). A compensatory mechanism to offset
increased oxidative stress in osteoporotic bones—whichmight result
in bone degradation—might be indicated by overexpression of

CP. Because SLC25A3 is essential to mitochondrial function, its
overexpression in osteoporotic bones may be a reaction of the cells
to elevated energy requirements ormalfunction in themitochondria
(Kucukcongar Yavas et al., 2024). The control of immunological
response and protein breakdown is suggested by UBE2D3’s
participation in ubiquitination (Yalcin et al., 2023). Its upregulation
may be associated with the immune system’s effort to control
inflammation in bones that have osteoporosis. DLST SLC31A1,
LIPT1, and UBE2D1 are reported to regulate cuproptosis in sepsis
(Wang et al., 2024), hepatocellular carcinoma (He et al., 2024),
multiple myeloma (Zhu Y. et al., 2023), thyroid carcinoma (Yu et al.,
2024), oral squamous cell carcinoma (Yuan et al., 2023), rheumatoid
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FIGURE 6
Construction and validation of osteoporosis model. (A) Nomogram of the predictive model based on top five core genes related to cuproptosis. (B)
Calibration curves shows that the nomogram model may be an ideal predictive model for osteoporosis. (C) Decision-curve analysis is used to
determine the clinical utility of the risk prediction nomograms. (D) ROC curve indicates the diagnostic performance of the model. ROC curve shows
the diagnostic performance by this model in an external dataset GSE7429 (E) and GSE35957 (F). (G–K) The mRNA relative expression of CIR1, GPR27,
NIF3L1, PDE8A, and VPS35. Data presented as mean ± standard deviation; statistical significance determined by unpaired t-test (∗∗P < 0.01). AUC, area
under the curve; ROC, receiver operating characteristic.
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FIGURE 7
Enrichment analysis of the top five core genes related to cuproptosis. (A) Significantly enriched biological processes. (B) Significantly enriched
molecular functions. (C) Enrichment of cellular components. (D) Significantly enriched KEGG pathway. (E) Significantly enriched REACTOME pathway.
(F) Significantly enriched WikiPathway. KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; MF, molecular function; CC, cellular
component.

FIGURE 8
Enrichment of the top five core genes in different databases. (A) Enrichment of GWAS database. (B) Human tissue enrichment. (C) Jensen cell
enrichment. (D,E) PPI network. (F) Human cell enrichment. (G) Potential drug targets.

arthritis (Jiang et al., 2023), periodontitis (Liu S. et al., 2023), gastric
cancer (Zhu X. et al., 2023), colorectal cancer (Yang W. et al., 2023),
andmyocardial infarction (Yang et al., 2024). Immunological system
involvement is a commonality across all these disorders. In vivo and

in vitro experiments should be done to verify the accurate roles of
these genes in the pathology of osteoporosis.

Emerging research increasingly highlights the critical role
of cuproptosis in immune regulation (Yan et al., 2022). The
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hypothesis that cuproptosis and the immune system are associated
with the pathophysiology of osteoporosis is strengthened by
our data, which supports these findings by demonstrating a
substantial correlation between CRGs and monocyte infiltration
in osteoporosis. Monocytes and macrophages are essential for
bone remodeling, and their dysregulation can contribute to
osteoporosis (Xu et al., 2024). Notably, UBE2D3 expression
exhibits a positive correlation with M2 macrophages and a
negative correlation with CD8+ T cells. This pattern reflects a
complex interplay between bone degradation and immune response,
potentially indicative of a chronic inflammatory state within the
osteoporotic bone microenvironment.

Additionally, we employed unsupervised cluster analysis to
show the various cuproptosis regulation patterns in osteoporosis
patients based on the expression landscapes of CRGs. Two different
clusters connected to cuproptosis were found. In the cluster
two osteoporosis group, we observed that the majority of CRGs
were downregulated. Furthermore, only monocytes exhibited a
significant level of innate immune cell infiltration in the cluster
two group. Growing evidence also highlights the critical role that
monocytes play in cuproptosis (Liu Z. et al., 2022; Xu et al., 2022).
In addition, DNA damage drives accelerated bone aging via an
NF-κB-dependent mechanism; however, nucleotide excision and
mismatch repair can improve this situation (Chen et al., 2013). B cell
contributes to the inflammation to destroy the equilibrium of bone
metabolism (Frase et al., 2023). One possible target for osteoporosis
therapy is bone immunity, which controls osteoclast development
and bone resorption (Wang X. et al., 2022). Collectively, these
findings suggest that Cluster 2 may be associated with poorer
clinical outcomes, warranting further investigation. This variation
emphasizes the necessity of personalized medicine approaches for
osteoporosis treatment. The interplay between CRGs and immune
cells, particularly monocytes and macrophages, highlights novel
opportunities for immunomodulatory therapies.

Four machine learning techniques are utilized to further
evaluate the 26 cuproptosis-related genes identified through
WGCNA. Next, five hub genes (GPR27, PDE8A, NIF3L1, CIR1,
and VPS35) with the highest prognostic significance were selected
to construct a predictive nomogram. This developed model was
verified in two external datasets, GSE7429 (AUC = 0.889) and
GSE35957 (AUC = 0.833), indicating its potential clinical utility
in osteoporosis risk stratification. Mechanistically, cell proliferation
can be impacted by GPR27 via the MAPK/ERK pathway, which
is critical for bone growth and maintenance (Wang H. et al.,
2022). PDE8A functions as a novel protective target in central
nervous system inflammation, where its expression in pathogenic
Teff cells suggests potential roles in bone inflammatory responses
and remodeling processes (Epstein et al., 2021). VPS35 regulates
receptor activator of NF-κB trafficking, signaling, and function
to preserve healthy bone mass and structure (Xia et al., 2013).
However, studies about NIF3L1 and CIR1 are rare; we just know
that NIF3L1 appears in both osteoporosis and osteoarthritis patients
(Li et al., 2019), and CIR1 is a transcription factor that regulates iron
acquisition and use (Xue et al., 2024). Further exploration could be
done in this aspect.

Functional enrichment analysis of the top five core genes
provides deeper insight into the molecular processes that
cuproptosis may affect in osteoporosis. The discovered pathways,

like the apoptotic process, the Notch signaling pathway, WNT
ligand biogenesis and trafficking, offer fascinating linkages to bone
metabolism and might inspire new lines of inquiry. These pathways
also suggest a link to cuproptosis and osteoporosis (Chen et al., 2009;
Xu et al., 2022; Yang L. et al., 2023; Zaidi et al., 2023). Apoptosis,
also known as programmed cell death, is an essential mechanism
that balances the production and resorption of bones to preserve
bone homeostasis (Jilka et al., 2013). Osteoporosis and other bone
disorders can result from dysregulation of apoptosis (Weinstein and
Manolagas, 2000; Mollazadeh et al., 2015). According to studies,
osteoblasts, or bone-forming cells, and osteocytes, or mature bone
cells, undergo excessive apoptosis, which decreases bone production
and increases bone fragility (Florencio-Silva et al., 2015). Because
core genes are enriched in the apoptotic process, changes to these
genes may upset the equilibrium between bone creation and
resorption, resulting in osteoporosis.Through controlling osteoblast
and osteoclast (bone-resorbing cell) differentiation and activity, the
Notch signaling system plays a crucial role in bone growth and
remodeling (Jakovljevic et al., 2023). Increased Notch signaling
has been shown to suppress osteoblast development, which lowers
bone production and increases bone resorption (Yoshida et al.,
2022). Given that core genes are involved in the Notch signaling
system, cuproptosis may affect osteoporosis by modulating this
route and perhaps interfering with normal processes involved in
bone remodeling. The production and regeneration of new bone
depend on the WNT signaling system. It increases the survival and
functionality of mature osteoblasts and encourages mesenchymal
stem cells to differentiate into osteoblasts (Marini et al., 2023).
Osteoporosis can result from mutations or dysregulation in WNT
signaling components, which can reduce bone production and
increase bone resorption (Gao et al., 2023). Cuproptosis-related
genes VPS35 impairs the availability and activity of WNT ligands,
which might alter bone metabolism and contribute to osteoporosis
(Chen et al., 2016; Chiu et al., 2020).

In addition, these genes also relate to clinical symptoms like
akinesia, dyskinesia, diminished movement, and bradykinesia,
which are commonly observed in neurodegenerative diseases
like Parkinson’s disease (Hayes, 2019). This neuro-bone axis
suggests that cuproptosis-related pathways may have systemic
effects on neuromuscular coordination, emphasizing their
complex physiological roles (Cao et al., 2023). The similarity in
symptoms between neurological and bone disorders emphasizes
how complex cuproptosis is and how many physiological
systems it may affect. Furthermore, prospective drugs that
may target these key genes include sildenafil, dipyridamole,
and flavoxate, as revealed by the enrichment analysis. These
medications’ established pharmacological actions may make
them useful for treating osteoporosis. For instance, it has been
demonstrated in animalmodels that the phosphodiesterase inhibitor
sildenafil enhances bone repair and promotes bone production
(Bereket et al., 2018). The vasodilatory and anti-inflammatory
properties of dipyridamole and flavoxate may synergistically
improve bone microcirculation and reduce inflammatory
bone loss (Baert, 1974; Macatangay et al., 2020). Prospective
drugs may target CRGs through dual osteoimmunomodulatory
mechanisms, particularly in patients with dysregulated copper
metabolism or immune-driven bone loss. The discovery of
possible medications using enrichment studies opens possibilities
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for pharmacological intervention, which might be essential for
treating osteoporosis given the enrichment of these genes in
bone marrow cells. However, their effects on bone metabolism
and CRG expression require experimental validation in
cellular or animal models before any translational implications
can be drawn.

There are certain restrictions on this article. First, while FDR
correction was applied, the exploratory nature of bioinformatics
analyses warrants independent validation to minimize false
positives. Secondly, our qPCR validation of core genes in mouse
BMSCs provided preliminary transcriptional evidence but lacked
protein-level and in vivo functional data. The translational
relevance to human osteoporosis requires further investigation.
Third, different cell types (PBMCs, B lymphocytes, and MSCs)
across datasets introduces complexity into comparative analyses.
Future validations in tissue-matched cohorts are essential. Finally,
the validation cohorts (GSE7429 and GSE35957) had limited
sample sizes and heterogeneous patient characteristics (e.g.,
menopausal status, osteoporosis etiology), which may confound
the generalizability of our predictive model. Our bioinformatic
model identifies hypothetical cuproptosis-related biomarkers and
therapeutic targets. While machine learning and cross-dataset
validation support their relevance, these predictions require
empirical confirmation. Based on this, we have a detailed future
research agenda as follows: to validate the predictive model in
diverse clinical settings; to evaluate the model’s feasibility and
effectiveness when implemented in routine clinical workflows; to
understand the long-term benefits and potential limitations of using
the predictive model; to refine the model based on real-world data
and feedback.

Conclusion

In summary, our study highlights the importance of CRGs in
the etiology of osteoporosis and offers fresh insights into the genetic
foundations of the condition. Our findings highlight the potential of
personalized medicine in osteoporosis treatment by the correlation
found betweenCRGs and immune cell infiltration, the identification
of unique clusters, and the creation of a prediction model. While
our model identifies potential biomarkers, future research should
investigate the therapeutic potential of targeting CRGs in clinical
settings and try to validate the model in larger, multi-ethnic cohorts
with standardized phenotyping to mitigate confounding effects.
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