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Introduction: Global temperatures are rising, and scientists are mobilizing 
to uncover which birds are most affected by the problem of heat. Heat 
shock proteins (HSPs), for example, can shed light on this issue because they 
prevent damage and promote recovery from heat. However, few studies have 
investigated the relationship between HSPs and heat outside of experimental 
contexts. Here, we ask whether natural variation in HSP gene expression can 
serve as a biomarker of recent ambient conditions in wild nestling tree swallows 
(Tachycineta bicolor).
Methods: We focused on HSP90AA1 because this HSP increases mRNA 
abundance in avian blood, after acute heat. Using blood samples collected 
across ten degrees of latitude, we tested for population differences in 
constitutive HSP90AA1 gene expression in 12-day-old nestlings. To quantify the 
specific time period over which ambient conditions best predicted variation 
in HSP gene expression, we used a climate window analysis, evaluating the 
predictive value of maximum temperatures and maximum heat index in the 
hours and days from hatching until sampling.
Results: We observed a significant difference in constitutive HSP gene 
expression between populations, with South Carolina nestlings showing nearly 
double the HSP90AA1 mRNA abundance compared to those in Massachusetts. 
There was no relationship between HSP90AA1 and heat index at any time (hours 
or days), meaning that baseline HSP gene expression is not a reliable biomarker 
for the combined effects of heat and humidity, at least not when applying 
existing metrics that were developed for poultry. We found some evidence 
linking HSP90AA1 gene expression with maximum temperatures three to four
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days before sampling; however, a permutation test could not rule out the 
possibility of a false positive.
Discussion: HSP90AA1 mRNA abundance is not necessarily an effective 
biomarker of recent heat, and it may instead reflect other inherent population 
differences. As heat waves intensify, this conclusion could change, and other 
species could be more reactive to heat. We urge the avian biology community to 
continue biomarker testing for estimating heat impacts on wild birds, as we seek 
to better understand and predict avian resilience to environmental challenges.
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heat shock protein, biomarker, thermal tolerance, populations, bird 

Introduction

Anthropogenic change is driving temperature increases across 
the globe (Fischer et al., 2021). In extreme cases, high temperatures 
can cause population die-offs (Kim and Stephen, 2018; Mckechnie 
and Wolf, 2019) or species extinction (Root et al., 2003). Less 
intense, sub-lethal, heat can still change animal behavior and 
physiology (Louis et al., 2020; Woodruff et al., 2023). However, 
the impacts of sublethal heat are challenging to measure in natural 
environments because thermally-sensitive phenotypes can reflect an 
individual’s recent heat exposure as well as an individual’s readiness 
to cope with future heat (discussed in Svensson et al., 2023), 
complicating interpretation of data (Kenkel et al., 2014). Amidst 
the challenges of quantifying heat effects in wild animals, there is a 
real need to develop and test biomarkers in situ, particularly those 
that can be applied to multiple species by multiple investigators 
(Kenkel et al., 2014) to monitor an organism’s recent exposure to 
some environmental agent (Califf, 2018). Most biomarker testing 
and development focuses on human health and disease (Califf, 
2018), but there is a growing arm of conservation physiology, 
which uses elements of stress physiology in wild animals to 
measure anthropogenic impacts (Beaulieu and Costantini, 2014; 
Dantzer et al., 2014), including those caused by thermal stress 
(Parkinson et al., 2020; Sejian et al., 2018).

Much of this work has focused on mammals (Madliger et al., 
2018) or aquatic ectotherms (Fangue et al., 2006; Kenkel and Matz, 
2016; Li et al., 2019), but research on birds and the problem of 
heat has lagged behind, until the last 5–10 years (Mckechnie and 
Wolf, 2019; Nord and Giroud, 2020). Early work on avian thermal 
tolerance understandably related to poultry science, considering 
that heat stress is an economic issue for meat and egg production 
(reviewed in: Etches et al., 2008; see also; Greene et al., 2019; 
Kang and Shim, 2021; Murugesan et al., 2017; Nyoni et al., 2019; 
Wan et al., 2017; Wang et al., 2013; Xie et al., 2014; Zulovich 
and Deshazer, 1990). In recent years, this line of research has 
broadened to more bird species in more environments, including 
both laboratory and field (Andreasson et al., 2018; Andrew et al., 
2017; Choy et al., 2021; Corregidor-Castro and Jones, 2021; 
Mckechnie et al., 2021; Pollock et al., 2021; Rodriguez and Barba, 
2016; Ton et al., 2021; Woodruff et al., 2023). With this broader 
foundation of knowledge on the diverse physiological mechanisms 
that respond to heat in birds (Hoffman et al., 2018; Hsu et al., 2020; 
Lipshutz et al., 2022; Mentesana and Hau, 2022; Woodruff et al., 
2025), we are well positioned to explore biomarkers of thermal 

tolerance with which we might predict resilience to future
climate conditions.

Heat shock protein (HSP) regulation is one physiological metric 
that has potential as a biomarker of heat tolerance (Corbett et al., 
2023; Greene et al., 2019; Hoffman et al., 2024). HSPs are a 
protective response to heat and other stressors, and they prevent 
cellular damage and promote recovery (Feder and Hofmann, 1999; 
Lindquist and Craig, 1988; Singh et al., 2024). After direct heat 
exposure, HSP gene expression peaks approximately 4 hours later, 
though HSPs represent a large gene family and exact timing varies 
by gene (Finger et al., 2018; Foster et al., 2015). Gene expression 
can also remain elevated above baseline levels 24 h later (Wan et al., 
2017), suggesting lingering effects on constitutive HSP expression 
(i.e., levels in the absence of acute heat). Species, populations, 
or breeds from warmer climates can show higher levels of HSP 
gene expression, even when exposed to the same thermal regimes 
(Fangue et al., 2006; Singh et al., 2014; Wan et al., 2017; Xie et al., 
2018). Having a higher baseline of HSP expression could counteract 
heat-induced damage as soon as it begins, potentially negating 
the need for further elevation when faced with subsequent heat 
(Gleason and Burton, 2015; Kenkel and Matz, 2016; Li et al., 
2019). While this provides promising evidence that HSPs may 
be a biomarker of thermal exposure or thermal tolerance, little 
work has examined the degree to which baseline HSP levels may 
reflect inherent biological differences among populations versus 
a response to recent temperatures that happen to differ among 
populations. The time course of HSP elevation can vary over 
evolutionary time (Li et al., 2019; Tomanek and Somero, 2000), 
meaning it is critical that we determine the degree to which 
recent ambient conditions influence presumed baseline levels of
HSPs, in birds.

Here we investigate the degree to which recent environmental 
conditions predict constitutive (naturally-occurring) blood HSP 
gene expression in nestling tree swallows (Tachycineta bicolor), 
across geographically distinct populations. We aimed to identify 
critical time windows during early life when ambient conditions 
might predict HSP levels, and if so, we sought to determine 
the timescale over which these effects are integrated, from hours 
to days to weeks. Specifically, we tested three non-mutually 
exclusive hypotheses: (1) HSP expression reflects very recent 
conditions in the hours before sampling, (2) HSP expression 
integrates environmental experience during critical developmental 
time windows (e.g., hatching or peak growth), or (3) HSP 
expression reflects evolved population-level differences across 
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thermal regimes, independent of recent environmental exposure. 
Examining these predictors of thermal physiology is critical for 
working towards a much-needed biomarker for heat tolerance in
free-living birds.

Materials and methods

Study sites and sampling design

Our study focused on nestling tree swallows confined to the 
thermal environment of a nesting cavity—here, a human-made 
nest box. Further, the tree swallow breeding range spans much 
of North America (Winkler et al., 2020), allowing us to sample 
geographically distinct populations. We collected data from six 
populations, encompassing ∼10 degrees of latitude across the 
eastern United States, from South Carolina to Massachusetts 
(Table 1; Figure 1). While these populations extend to nearly 
the southern end of the species breeding range (Mccaslin and 
Heath, 2020; Shutler et al., 2012), our sampling does not capture 
the northern half of the breeding range, namely, Canada and 
Alaska (Winkler et al., 2020). We targeted sampling to postnatal 
day 12 (D12) because nestlings are fully endothermic and have 
reached asymptotic, adult-like mass (Mccarty, 2001), but they 
are young enough that researcher visits do not risk fledging, 
which occurs around postnatal D21. Hatch day is denoted as 
D1, and represents the day the majority of nestlings hatched, 
though it is noteworthy that there is marked hatching asynchrony 
in tree swallows (Winkler et al., 2020), so some of the sampled 
chicks may have hatched a day earlier. Prior to hatching, 
eggs are incubated by mothers for approximately 12 days and 
therefore are kept at a relatively consistent temperature via 

maternal modulation of incubation (Coe et al., 2015; Huggins, 
1941). From D1 to D6 post-hatch, nestlings are ectothermic 
(Marsh, 1980) and are brooded by mothers; after this point, 
they are more exposed to ambient temperatures and can display 
thermoregulatory behaviors, such as panting and huddling
(Woodruff et al., 2023).

Blood sampling and nestling age estimation

We collected blood at 25 ± 4 nests per population (Table 1) when 
nestlings were 11.9 ± 0.1 days-post-hatch (range: D9 – D15). We 
sampled 2-3 nestlings per nest, avoiding obvious runts and bleeding 
from the alar vein (∼50 uL). Samples were collected around mid-
day (average 12 h 10m ± 0 h 08m) during the summer breeding 
seasons of 2019, 2020, and 2021. Blood was stored on dry ice in the 
field and later transferred to −80 °C freezer. We banded all nestlings 
with a numbered USGS band, measured body mass to the nearest 
0.1 g, and measured wing length to the nearest 0.5 mm. For most 
nests, we knew the exact hatch date. However, we estimated some 
hatch dates in Pennsylvania, Tennessee, North Carolina, and South 
Carolina, due to pandemic-related personnel constraints. When 
hatch date was not known exactly, we estimated age using published 
tree swallow growth trajectories (Mccarty, 2001; Wolf et al., 
2021); details in SI§A. Nestling mass and days-post-hatch 
when sampled had no effect on HSP90AA1 gene expression
(details in SI§A).

Later, we measured HSP gene expression from the median 
mass nestling. In nests where only two nestlings were sampled, we 
randomly selected one for analysis. Sample sizes across populations 
differ due in part to pandemic-related personnel constraints, RNA 
quality, and weather conditions (details in SI§A). 

TABLE 1  Study populations name and location, sample size, year samples collected, and NOAA weather station name and location. We collected blood 
samples from one nestling per nest, therefore sample size values reflect unique nests and nestlings. See details in SI§ B.

State State
Abbrev.

County Latitude 
(°N)

Longitude 
(°W)

N Year(s) 
sampled

NOAA 
weather 
station

Weather 
station 
latitude 
(°N)

Weather 
station 
longitude 
(°W)

Distance 
to study 
area

Massachusetts MA Hampshire 42.22 72.31 14 2020 Hartford 
Bradley 
Airport

41.94 72.68 50 Km

Pennsylvania PA Crawford 41.65 80.43 36 2020 Port 
Meadville 
Airport

41.64 80.23 18 Km

Indiana IN Monroe, 
Brown

39.17 86.53 20 2019 Monroe 
County 
Airport

39.14 86.62 14 Km

Tennessee TN Knox 35.9 83.96 30 2020 Knoxville 
Airport

35.82 83.99 11 Km

North 
Carolina

NC Iredell 35.53 80.88 14 2020 Statesville 
Municipal 
Airport

35.77 80.96 28 Km

South 
Carolina

SC Clarendon 33.49 80.36 33 2020, 2021 Charleston 
Airport

32.9 80.04 45 Km
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FIGURE 1
Average annual number of days during the tree swallow breeding 
season (April-June) with maximum temperatures ≥26 °C from 
2012-2022. Previous research demonstrated that nestlings begin 
thermoregulating when nest temperatures reach 38 °C–equivalent to 
26 °C air temperatures because nestboxes are generally 12 °C hotter 
than ambient (Woodruff et al., 2023). Therefore, days with maximum 
air temperatures ≥26 °C were included in this summary. Data is 
grouped by quantile.

Environmental data and heat index 
calculation

We collected environmental data from two types of long-term 
databases to evaluate the degree to which populations differed in 
thermal regimes during breeding.

First, to assess population differences in breeding season 
climates, we used 10 years of remote-sensing data (ERA5 hourly 
data, Hersbach et al., 2022) to quantify the number of days 
in which nestling tree swallows were likely to experience sub-
lethal heat. Specifically, we focused on days with environmental 
temperatures above the estimated thermoneutral zone, a range of 
ambient temperatures outside of which an animal exerts energy 
to regulate internal temperatures, during the typical nestling 
season. The exact upper limit of this “comfort” zone is not 
known, but at least two types of inferences suggest it occurs 
around 38 °C (details in SI§B). If we account for the observation 
that nest cup average temperature was 12.3 °C ± 0.8 °C warmer 
than the ambient temperature (Woodruff et al., 2025), then 
nestlings have the potential for sublethal heat stress at ambient 
temperatures of about 26 °C. We then quantified the number of days 
during which maximum ambient temperatures met or exceeded 
26 °C (air temperature 2 m above land surface, resolution 0.1°
× 0.1° from Copernicus Climate Change Service Climate Data 
Store; Hersbach et al., 2022). Based on our experience in these
populations and typical lay dates, we focused on April 1st–June 30th, 

n = 91 days/year from 2012-2022. We then mapped these data using 
ArcGIS Pro (version 3.0.2); Figure 1.

Second, to collect climate data with which to predict HSP gene 
expression, we downloaded hourly dry bulb and wet bulb temperature 
data from the National Oceanic and Atmospheric Administration 
(NOAA) weather station nearest to each field site (Table 1). Wet bulb 
temperatures can be used to calculate humidity and therefore heat 
index. High temperatures are known to affect HSP gene expression 
(e.g., Fangue et al., 2006), but humidity may affect the experience of a 
temperature and the effectiveness of thermoregulation (Gerson et al., 
2014; Van Dyk et al., 2019). Therefore, a heat index can be helpful 
for understanding the experience of heat since it combines the 
effects of temperature and humidity into one value. Unfortunately, 
to our knowledge, there is no heat index formula for estimating 
effective heat for songbirds. Therefore, we used a physiologically-based 
index that was originally designed for laying hens, in Zulovich and 
Deshazer (1990); Supplementary Formula S1. We chose this formula 
because among the available indices, laying hens are the closest in 
physical size to tree swallows and therefore may best estimate effective 
heat. We used hourly dry bulb and wet bulb temperatures to calculate 
hourly heat index. In the end, our analyses focus on daily maximum 
values for temperature (Tmax) and heat index (Heat Indexmax). 

Gene expression (qPCR)

We quantified relative gene expression using RNA extracted 
from blood. Briefly, we extracted RNA using Trizol and converted 
RNA to cDNA using Superscript III (details in SI§C). We then ran 
cDNA in triplicate in quantitative real-time PCR (qPCR) to measure 
mRNA abundance of HSP90AA1, a gene that is robustly linked 
to heat tolerance in birds (Wang et al., 2015). Our previous work 
on HSP90AA1 in nestling tree swallows shows that it is expressed 
abundantly in blood, and its expression is elevated approximately 
2-fold after a 4-h experimental heat challenge (Woodruff et al., 
2025). Therefore, we focused on HSP90AA1 gene expression in this 
study because it should be reactive if nestlings were responding to a 
heat challenge. mRNA abundance was calculated in ThermoCloud 
(Thermo Scientific) using the delta Ct method in which fold change 
in expression for the gene of interest is normalized to an internal 
reference gene, MRPS25 (2−Δ∆Ct, where ∆ΔCt = (Ct

HSP90AA1 – 
Ct

MRPS25) reference – (Ct
HSP90AA1 – Ct

MRPS25) sample). Details on 
qPCR methods are in SI§ C and Supplementary Table S3. Plates were 
balanced by population and date. Each plate included intra- and 
inter-plate control samples (a cDNA pool derived from tree swallow 
RNA) and the ThermoCloud used these samples to normalize values 
across plates. We found no significant effect of sex on HSP90AA1 
gene expression; therefore, we did not include sex a covariate in 
subsequent analyses (details in SI§C). 

Statistical analyses

All analyses were performed in R Studio (2022.07.2 Build 
576), and HSP90AA1 relative quantities were Log2 transformed to 
improve normality. We conducted two types of analyses: First, we 
explored main effects of population on environmental variables and 
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HSP gene expression. Second, we explored co-variation between 
HSP gene expression and environmental variation. To assess 
whether temperature extremes may shape the nature of this co-
variation, we conducted this latter analyses for all populations 
(considered together) and again for South Carolina only (the 
southern-most population). For all analyses, we ensured that 
variables were not multicollinear (all VIFs <3, as in Fox and 
Weisberg, 2018). 

Testing for main effects of population
We assessed population differences in environmental data (Tmax

and HeatIndexmax), averaged across two time periods: (1) from 
hatching to sampling and (2) during the 4 hours preceding sampling. 
We used linear mixed effects models in which the climate variable 
was predicted by population. Because some nestlings were sampled 
on the same day, we included the random effect of Julian date. We 
assessed population differences in HSP90AA1 gene expression via 
ANOVA with a fixed effect of population. Pairwise comparisons 
were analyzed in a post hoc Tukey test. 

Testing for co-variation between environment 
and gene expression

We assessed whether and how environments shape constitutive 
HSP gene expression with a sliding window analysis using the 
“slidingwin” function in the climwin R package (Van De Pol et al., 
2016). This function is designed to identify time periods or 
“windows” over which a biological variable is sensitive to 
environmental variables (Bailey and Van De Pol, 2020). Climate 
windows varied in length from 1 day to 13 days, corresponding 
to the nestlings’ entire post-hatch life from est. hatch day up 
until sampling day (treated as day 0 by the program). We used 
all combinations of window start and window end days during 
this time. For example, “window open = 1, window close = 1” 
corresponds to ambient conditions only on the 1 day before 
sampling. At the other extreme, “window open = 13, window close 
= 1” corresponds to ambient conditions averaged across the 13 days 
leading up to sampling. This window is wider than 12 days (i.e., the 
estimated age at sampling) to accommodate the aforementioned 
potential for intra- or inter-nest variability in hatching; further 
details in SI§D.

For each climate window, we derived the mean value of our 
daily Tmax and HeatIndexmax data. We then fit a linear model for 
Log2 HSP90AA1 relative quantity with population and the climate 
window variable as predictors. The ‘null’ model consisted of Log2 
HSP90AA1 relative quantity predicted by population alone, i.e., 
it modeled the situation in which gene expression varies among 
populations regardless of recent ambient conditions.

Because blood samples were collected at midday, the maximum 
temperature of the sampling day may have occurred after the sample 
was collected, such that “window open = 0, window close = 0” 
is not applicable. The sliding window package does not allow for 
temperature windows to be tailored to a specific number of hours, 
so we used a separate linear model to ask if “day-of ” environments 
affected HSP gene expression. Specifically, we used maximum 
environmental variables from the 4 hours before sampling. We also 
verified that the maximum temperature nestlings experienced on 
the day of sampling (12a.m.–time of sampling) occurred during the 
4 hours proceeding sample collection.

Finally, for each climate variable, we merged results from the 
sliding window and manual “day of ” models and compared them 
with Akaike’s information criterion adjusted for small sample sizes 
(AICc). We considered models with ΔAICc ≤2 from ‘null’ to be 
competitive and equally well-fit (Burnham and Anderson, 2002). 
Given the number of models in this analysis, type 1 errors are 
possible (Van De Pol et al., 2016). Therefore, we also tested the 
likelihood of obtaining a similar ΔAICc using randomized climate 
variables as in Van De Pol et al. (2016). This step uses the ‘randwin’ 
function in climwin to generate 1,000 randomized models and a 
probability of getting our results by chance (hereafter PΔAICc). 
Climate variables for which the observed AICc of the best fit model 
was different from the randomized results (PΔAICc <0.05) indicate 
that the variable predicts HSP gene expression beyond what is likely 
to occur by chance alone. We repeated this same analysis for South 
Carolina alone because this southernmost population captures one 
of the warmest possible early life climates for the species (Mccaslin 
and Heath, 2020; Shutler et al., 2012). We did not have the power to 
replicate this analysis in the northern populations because personnel 
constraints limited the number of days during which blood samples 
were collected, thus restricting the amount of potential explanatory 
ambient conditions.

Results

Population differences in environmental 
variables

Examining a decade of climate data, we found that our study 
populations differed in potential exposure to sublethal heat, from 
an average of 3–90 days per year (Figure 1). During the study 
period, we observed significant population differences in mean 
daily Tmax from hatching to sampling (F5,136.4 = 35.76, p < 0.001) 
and Tmax in the 4 hours prior to sampling (F5, 131.08 = 11.44, p < 
0.001); summarized in Table 2. Similarly, we observed significant 
population differences in mean daily HeatIndexmax from hatching 
to sampling (F5, 136.00 = 41.30, p < 0.001), and HeatIndexmax in the 
4 hours prior to sampling (F5,129.45 = 9.79, p < 0.001). Post-hoc 
Tukey tests showed generally lower Tmax and HeatIndexmax in more 
northern populations (Massachusetts and Pennsylvania) compared 
to South Carolina across time periods (Table 2).

Population differences in HSP gene 
expression

We observed a marginal relationship between HSP90AA1 
mRNA abundance and population (F5, 141 = 2.08, p = 0.07, R2 = 
0.07). A post hoc Tukey test showed significantly lower HSP gene 
expression in Massachusetts compared to South Carolina (t141 = 
−3.09, p = 0.03), though there were no other significant pairwise 
comparisons (Figure 2).

Effect of “day of sampling” conditions

Tmax and HeatIndexmax in the 4 h before sampling did not 
significantly predict HSP90AA1 gene expression better than the null 
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TABLE 2  Environmental variable mean ± standard error and range by population. For nestling period values, daily Tmax and HeatIndexmax were averaged 
per nest from hatching to sampling, then the mean values were summarized per population. Letters indicate pairwise comparisons resulting from a
post hoc Tukey test based on a linear mixed effects model that controlled for the random effect of Julian date.

Environmental variable State Mean ± SE Range Tukey test pairwise
comparisons

Mean Tmax Nestling Period (°C)

MA 26.58 ± 0.02 26.43–26.60 ab

PA 26.24 ± 0.06 25.58–26.60 b

IN 27.02 ± 0.31 24.91–31.50 b

TN 26.77 ± 0.73 20.64–32.95 a

NC 22.54 ± 0.45∗ 20.87–24.17 c

SC 26.19 ± 0.40 20.64–29.79 d

Tmax 4 h Prior (°C)

MA 24.47 ± 0.51 21.11–27.78 ab

PA 23.24 ± 0.55 17.22–29.44 a

IN 25.94 ± 0.63 19.44–31.11 ab

TN 26.94 ± 0.58 18.33–31.94 bc

NC 27.28 ± 0.60 23.52–30.00 c

SC 28.56 ± 0.36 23.89–30.56 c

Mean HeatIndexmax Nestling Period

MA 23.06 ± 0.02 23.18–22.95 a

PA 22.81 ± 0.05 23.18–22.30 a

IN 24.70 ± 0.29 29.05–22.83 b

TN 23.56 ± 0.69 29.13–17.55 C

NC 19.49 ± 0.45 21.15–17.79 d

SC 22.86 ± 0.37 26.09–17.55 b

HeatIndexmax 4 h Prior

MA 21.16 ± 0.54 15.62–24.67 a

PA 20.22 ± 0.52 14.45–26.11 a

IN 23.42 ± 0.66 16.55–27.78 b

TN 23.92 ± 0.51 17.44–28.56 bc

NC 24.45 ± 0.49 21.81–27.04 c

SC 25.43 ± 0.36 21.22–27.67 bc

∗NC temperatures do not include the 3-day cold snap because none of the nestling periods included in this study overlapped with the cold snap.

model (Table 3). Within the warmest population (South Carolina), 
the same result held (Table 3).

Effect of environmental conditions across 
the nestling period

Using the sliding window analysis across all states, we found that 
Tmax predicted HSP gene expression better than the null in two time 

windows. Specifically, the window from 3 days prior to sampling 
(open = 3, close = 3) and the window spanning three to 4 days prior 
to sampling (open = 4, close = 3) showed a negative relationship 
between HSP gene expression and Tmax (Table 4; Figure 3), contrary 
to the positive co-variation we predicted. However, we could not 
reject the hypothesis that this result was a false positive (PΔAICc 
= 0.32). In the comparable model for HeatIndexmax, the sliding 
window analysis found no windows predicting HSP gene expression 
better than the null (Table 4; Figure 3, PΔAICc = 0.67).
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FIGURE 2
Relative gene expression of blood HSP90AA1 (Log2 2−ΔΔct) across 
populations. Letters indicate pairwise comparisons resulting from a 
Tukey test. Each point represents one nestling per nest. Error bars are 
mean ± SE. Note that 1 unit is a 2-fold difference in abundance on this 
log2-scale.

Finally, we focused on South Carolina alone, because its position 
at the southern extreme of the breeding range offered the warmest 
thermal environment for detecting potential effects. We again found 
that temperature was negatively related to HSP gene expression, 
with 29 windows spanning the entire nestling period in which Tmax
predicted HSP gene expression better than the null model (Table 4; 
Figure 4). Similarly, for HeatIndexmax we found 22 time windows 
that predicted HSP gene expression better than the null model, 
with a negative effect size in each window (Table 4; Figure 4). The 
direction of these results again did not align with our predictions, 
though neither of these results was robust to randomized validation 
(PΔAICc >0.33).

Discussion

We measured naturally occurring variation in HSP90AA1 gene 
expression in wild nestling birds across ten degrees of latitude, 
including populations that differ in their environmental potential 
for heat stress (Figure 1) and their max temperatures experienced 
on the days we sampled (Table 2). HSP gene expression was ∼2-fold 
higher in the most southern population (South Carolina) compared 
to the most northern population in our study (Massachusetts). Other 
mid-latitude populations were not significantly different from one 
another. When we explored environmental predictors of HSP gene 
expression among nestlings across all populations, however, we 
found weak evidence connecting post-natal thermal temperatures 
with constitutive HSP gene expression. We also found no support 
for the hypothesis that HSP gene expression tracks heat index, at 
any time window preceding our sampling. One important caveat is 
that we used a humidity-informed heat index that was developed 
for poultry, and it will be important in the future to develop 
such an index for non-domesticated, wild birds. Though we found 
stronger evidence linking HSP gene expression and temperature 

in our southernmost (warmest) population, we could not reject 
the possibility of a false positive. Based on these collective results, 
HSP90AA1 gene expression in the blood is not a strong biomarker of 
recent exposure to heat, and it may more robustly reflect population-
level differences in thermal physiology that have been shaped by 
long-term differences in climatic regimes (Figure 1). To the degree 
that these transcriptional patterns reflect protein abundance (Li 
and Biggin, 2015), we propose that HSP90AA1 mRNA abundance 
still has potential to reflect potentially adaptive readiness to handle 
heat, particularly as heat waves increase in their frequency and
intensity. 

Population differences in 12 day-old 
nestlings

It is well established that physiology can vary among 
populations. For example, populations differ in baseline oxygen 
consumption (Storch et al., 2009), glucocorticoid secretion 
(Vitousek et al., 2019), telomere length (reviewed by: Burraco et al., 
2020), and global gene expression (Gleason and Burton, 2015; 
Whitehead and Crawford, 2006). HSP90AA1, the focus of our 
study, is among those genes that have been linked to population 
differences, including in adult killifish (Fangue et al., 2006) and 
in domesticated sheep (Salces-Ortiz et al., 2015). Likewise, adult 
female tree swallows breeding in Alaska versus Indiana differed in 
HSP90AA1 gene expression in the hippocampus, with higher levels 
in the warmer lower latitude population (Woodruff et al., 2022). 
With the current study in nestlings, we extend this earlier finding 
to a much younger age (∼12 days-old), implying that differences 
in HSP gene expression from South Carolina to Massachusetts 
are “set” early in life, even if patterns also change with experience
or age.

Mid-range latitudes did not differ in HSP gene expression, 
suggesting that tissue differences may also play a role here. 
Tissues have different naturally-occurring HSP gene expression 
levels (Woodruff et al., 2022) and are differentially impacted by 
heat (Leandro et al., 2004; Lipshutz et al., 2022). Blood has 
the logistical advantage that it can be sampled repeatedly, and 
in terms of biomarker development, blood may be the only 
possible tissue that can be sampled repeatedly and/or sampled in 
a threatened species. Previous research on nestling tree swallows 
demonstrated that HSP90AA1 gene expression in the blood is 
highly sensitive to experimental heat, more so than the brain 
or muscle (Woodruff et al., 2025), suggesting that it is unlikely 
that we are missing population differences simply by using
blood.

Our climate analysis of the last decade shows that southern 
populations of tree swallows also have the potential to experience 
up to 30-times more warm days during the breeding season 
compared to the most northern populations we sampled 
(90 days vs. 3 days; Figure 1). Maximum heat index differed 
more among populations, but still by only about 5 °C. This 
limited environmental variation among populations may have 
occurred by chance, due to the logistics of sampling multiple 
populations. It also may relate to phenological adjustments 
because birds time their breeding to align with favorable 
conditions (De Villemereuil et al., 2020), with southern populations 
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TABLE 3  Day of sampling environmental conditions model results. AICc values relative to the null model (ΔAICc), beta estimate effect sizes (β), standard 
error (SE), and model intercept are reported. Window openings represent time furthest from sampling and window closures represent time nearest 
to sampling.

Models: All populations Window 
open

Window 
close

ΔAICc β SE Model 
intercept

Log2 HSP90AA1 ∼ 1 NA NA 0 −0.32 0.07 −0.32

Log2 HSP90AA1 ∼ Population NA NA 0.24 −0.91 0.22 −0.91

Log2 HSP90AA1 ∼ Population + HeatIndexmax 4hrs Hour of
sampling

1.72 0.02 0.03 −1.38

Log2 HSP90AA1 ∼ Population + Tmax 4hrs Hour of
sampling

1.94 0.02 0.02 −1.35

Models: South Carolina

Log2 HSP90AA1 ∼ Tmax 4hrs Hour of 
sampling

0 0.11 0.06 −3.38

Log2 HSP90AA1 ∼ 1 NA NA 1.12 −0.10 0.13 −0.10

Log2 HSP90AA1 ∼ HeatIndexmax 4hrs Hour of 
sampling

1.24 0.09 0.06 −2.50

breeding before northern populations. Regardless, birds that breed 
earlier are at a higher risk of inclement weather (Shipley et al., 
2020) and temperature extremes (Taff and Shipley, 2023), 
so there are likely to be constraints on advancing breeding
too much.

If nestlings in South Carolina have more HSP90AA1 gene 
expression at their disposal during early critical periods of their 
development, what else may this reflect for them, organismally? 
Considering that HSPs prevent damage and promote recovery 
from heat (Feder and Hofmann, 1999; Lindquist and Craig, 
1988), it is possible that higher baseline HSPs may reflect some 
degree of acclimation to challenging environments (Dong et al., 
2008), hardening the organism to handle more heat in the future. 
Indeed, other species with higher baseline HSP expression may 
have less of a ‘need’ for further elevation in the face of heat 
(Kenkel and Matz, 2016; Li et al., 2019; Rinehart et al., 2006; 
Wan et al., 2017), but see (Fangue et al., 2006). Early life exposure 
could reduce the effects of subsequent heat on oxidative stress 
(Costantini et al., 2012) or reproduction (Hoffman et al., 2018), 
though there may be tradeoffs with other traits, such as immune 
function (Hoffman et al., 2018). More experimental work is needed 
to test reactivity to heat directly in the wild, particularly since 
acute heat may enhance among-individual differences in HSP gene 
expression (Woodruff et al., 2025) and HSP upregulation can be 
energetically costly (Sørensen, 2010). 

Effects of recent environmental conditions

To maximize the usefulness of transcriptomic biomarkers, 
it is paramount that we investigate what precisely we are 
measuring (Califf, 2018; Kenkel et al., 2014). Our sliding 
window analysis is an important step in this process 
because thermal conditions–across diverse timescales–can 

dramatically affect physiology (Gonzalez-Rivas et al., 2020;
Mckechnie and Wolf, 2019).

Despite the documented reactivity of HSPs to heat within hours 
of exposure (Finger et al., 2018; Foster et al., 2015; Woodruff et al., 
2025), we did not observe any significant relationships between 
same-day thermal conditions and HSP gene expression. Some 
time windows were associated with Tmax variation across all 
samples, with more time windows seen in the South Carolina 
population; however, these patterns were not robust to false 
discovery (Table 4; Figure 4). Even if we try on these marginal 
effects for size, we note that all effect sizes in our top models were 
negative (refer to Table 4), meaning that the strongest relationships 
in these data link higher HSP gene expression with lower, not 
higher, temperatures. We speculate that this pattern may reflect 
downregulation of HSPs after a prior upregulation. The negative 
relationship between temperature and HSP gene expression also 
opposes the “response” or “reactivity” requirement for a biomarker 
(Califf, 2018) in which a biomarker should positively change in 
a meaningful way after exposure to a stimulus, though there are 
other reasons this may not rule out HSP90AA1 as a potential 
biomarker of recent heat exposure. For one, a null effect may occur 
if variation in HSP gene expression is also tracking other biotic 
or abiotic factors (Kaufmann, 1990; Lindquist and Craig, 1988), 
if HSP gene expression is shaped by parental effects on nestling 
phenotypes (Mota-Rojas et al., 2023), or if conditions were not 
extreme enough (Woodruff et al., 2023). Our analyses of the South 
Carolina samples aid interpreting this latter idea because these 
nestlings experienced the highest day-of-sampling temperatures in 
our study: on average, HeatIndexmax in South Carolina was 23 °C 
across the nestling period and max temperatures in the 4 hours 
preceding sampling as 29 °C. Based on our experimental data on 
nestling tree swallows in Indiana (Woodruff et al., 2025), this 
should have elevated HSP gene expression, yet our sliding window 
analysis did not link HSP gene expression to Tmax beyond the 
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TABLE 4  AICc values relative to the null model (ΔAICc), beta estimate effect sizes (β), standard error (SE), and model intercept are reported. Window 
openings represent time furthest from sampling and window closures represent time nearest to sampling.

Models: All 
populations

Window 
open

Window 
close

ΔAICc β SE Model 
intercept

Log2 HSP90AA1 
∼ Population + 
Tmax

3 3 −2.16 −0.04 0.26 0.05

4 3 −2.01 −0.04 0.26 0.10

Log2 HSP90AA1 
∼ Population + 
HeatIndexmax

13 13 −1.16 0.03 0.28 −1.77

4 3 −1.14 −0.04 0.26 −0.05

Models:
South 
Carolina

Log2 HSP90AA1 
∼ Tmax

10 1 −4.92 −0.20 0.07 5.51

10 2 −4.78 −0.17 0.06 4.77

11 1 −4.48 −0.22 0.08 5.96

11 2 −4.08 −0.18 0.07 5.02

3 2 −4.00 −0.11 0.04 3.03

9 2 −3.96 −0.15 0.06 4.03

9 1 −3.83 −0.17 0.07 4.56

8 2 −3.79 −0.14 0.06 3.86

8 1 −3.47 −0.16 0.06 4.32

3 3 −3.46 −0.11 0.04 2.86

12 1 −3.40 −0.22 0.09 6.02

8 8 −3.33 −0.08 0.03 2.11

10 6 −3.07 −0.12 0.05 3.16

4 2 −3.04 −0.13 0.06 3.60

8 6 −3.02 −0.09 0.04 2.48

8 7 −2.98 −0.09 0.04 2.31

7 2 −2.88 −0.14 0.06 3.72

12 2 −2.88 −0.18 0.08 4.93

9 6 −2.76 −0.10 0.04 2.62

10 7 −2.68 −0.11 0.05 3.03

9 7 −2.52 −0.10 0.04 2.47

10 3 −2.43 −0.13 0.06 3.48

7 6 −2.43 −0.09 0.04 2.50

9 8 −2.41 −0.09 0.04 2.40

10 8 −2.39 −0.11 0.05 3.03

7 1 −2.34 −0.15 0.07 4.06

(Continued on the following page)
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TABLE 4  (Continued) AICc values relative to the null model (ΔAICc), beta estimate effect sizes (β), standard error (SE), and model intercept are 
reported. Window openings represent time furthest from sampling and window closures represent time nearest to sampling.

Models: 
South 
Carolina

Window 
open

Window 
close

ΔAICc β SE Model 
intercept

13 1 −2.30 −0.21 0.10 5.81

6 6 −2.15 −0.09 0.04 2.39

7 7 −2.11 −0.09 0.04 2.31

Log2 HSP90AA1 
∼ HeatIndexmax

3 3 −4.71 −0.19 0.07 4.73

3 2 −4.29 −0.17 0.06 4.08

10 2 −4.19 −0.21 0.08 4.99

10 1 −3.94 −0.23 0.09 5.67

4 2 −3.81 −0.19 0.08 4.69

9 2 −3.66 −0.18 0.07 4.42

8 2 −3.58 −0.18 0.07 4.36

8 7 −3.38 −0.12 0.05 2.64

8 8 −3.33 −0.11 0.05 2.48

7 7 −3.27 −0.12 0.05 2.73

9 1 −3.20 −0.20 0.08 4.92

8 1 −2.93 −0.20 0.08 4.81

11 2 −2.91 −0.20 0.09 4.79

8 6 −2.86 −0.12 0.05 2.75

7 2 −2.86 −0.18 0.08 4.32

11 1 −2.80 −0.23 0.10 5.51

9 7 −2.71 −0.12 0.05 2.69

9 6 −2.53 −0.12 0.05 2.80

10 6 −2.50 −0.13 0.06 3.13

10 7 −2.42 −0.13 0.06 2.99

7 6 −2.37 −0.12 0.05 2.78

9 8 −2.13 −0.11 0.05 2.52

posbility of false discovery. Pulling these inferences together, this 
means that our observation of higher HSP gene expression in South 
Carolina compared to Massachusetts cannot simply be a transient 
artifact of recent environmental conditions at the southern extreme 
of the species’ breeding range. We speculate that population-
level differences in HSP90AA1 gene expression may better reflect 
ecological or evolutionary differences (sensu, Fangue et al., 2006; 
Singh et al., 2014; Wan et al., 2017). Thus, while HSPs are often 
thought of as a short-term response to recent heat, HSP levels 

measured outside of experimental contexts do not seem to be strong 
biomarkers of recent heat, unless that heat is more extreme than what 
we captured here.

Temperature alone may not tell the whole story because 
the compounded effects of heat and humidity can reduce 
the effectiveness of evaporative cooling (Gerson et al., 2014; 
Van Dyk et al., 2019). This is important for endotherms because 
evaporative cooling behaviors, like panting (Woodruff et al., 2023) or 
bathing (Oswald et al., 2008), are among the initial defenses against 
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FIGURE 3
Tmax (A,B) and HeatIndexmax (C,D) sliding window model ΔAICc values 
relative to the null model (A,C) and beta value effect sizes (B,D) for all 
populations. Window openings represent the time furthest from 
sampling and window closures represent the time nearest to sampling.

FIGURE 4
Tmax (A,B) and HeatIndexmax (C,D) sliding window model ΔAICc values 
relative to the null (A,C) and beta value effect sizes (B,D) for South 
Carolina (SC). Window openings represent time furthest from 
sampling and window closures represent time nearest to sampling.

heat (Huey et al., 2012; Woodruff et al., 2023). A high heat index, 
which stems from high temperatures combined with high humidity, 
should therefore necessitate coping mechanisms beyond this initial 
(behavioral) front line, including HSP upregulation. Empirically, 
though, we did not support this expectation: we found no evidence 

linking HSP gene expression and maximum heat index. We used a 
heat index formula developed for birds, though it was developed for 
laying hens. While this was the best approximation available among 
the indices developed for birds (discussed in Purswell et al., 2012), 
it is reasonable to expect that a laying hen’s experience of heat may 
differ from that of a 20 g nestling. It is noteworthy that the NOAA 
heat index most people know is specifically designed to capture the 
experience of a 1.7 m, 66.7 kg human wearing clothes (Rothfusz and 
Headquarters, 1990; Steadman, 1979). To the best of our knowledge, 
there is no comparable heat index for songbirds, much less songbird 
nestlings. We believe this is a notable gap in the study of songbird 
thermal physiology, and our current study underscores the need for 
increased scientific attention. To advance our understanding of the 
effects of intensifying heat, we need to be able to characterize the 
degree of heat that songbirds are experiencing. 

Implications and applications

As global temperatures warm, many animals are shifting 
their breeding ranges to higher latitudes or altitudes into cooler 
climates (Chen et al., 2011; Huang et al., 2023). However, some 
birds do not follow this pattern, and the tree swallow is one of 
these interesting exceptions (Mccaslin and Heath, 2020). In the 
last few decades, tree swallows along the eastern United States 
have expanded their breeding south into the hot and humid 
American Southeast (Shutler et al., 2012; Wright et al., 2019) 
– as far south as Alabama (Wright et al., 2019). There may 
be advantages to this change (e.g., better insect resources or 
reduced inter-specific competition for limited nesting cavities), 
but, for long-term success, the birds must have the physiological 
ability to cope with the environmental conditions of that area. 
Previous work across the continent has demonstrated that 
reproductive success was not sensitive to heatwaves in this 
species, even though other species showed concerning declines 
(Taff and Shipley, 2023). After mild heat exposure, tree swallow 
nestlings also showed some positive effects on body mass 
(Dawson et al., 2005; Shipley et al., 2022; Woodruff et al., 2023), 
a metric that predicts the likelihood of recruitment (Mccarty, 
2001; Shipley et al., 2022). Adult tree swallows in the southern 
expansion range also exhibit more defensive aggression, have 
higher baseline corticosterone, and have a greater magnitude of 
stress-induced corticosterone compared to birds in the historic 
core of the range (Siefferman et al., 2023). Our new results add 
an important data point on an additional element of physiology 
that differs across latitudes in ways that should be adaptive, at 
least under current levels of climate change. Future applications 
of HSP90AA1 gene expression could include use in tracking 
long-term physiological adjustments to warmer climates and 
use in predicting species’ adaptive potential to future thermal 
challenges. Moving forward, we urge more researchers to take 
up this ‘sliding window’ approach applied to additional potential 
biomarkers sourced from reviews (e.g., aldosterone, Corbett et al., 
2023; TRPV4, Sur and Sharma, 2025) and transcriptomic assays 
(e.g., NR4A3, PIK3CD, Woodruff et al., 2025). Coupled with 
among-population and among-species comparisons, we will 
be better equipped to predict and mitigate climate impacts
on birds.
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