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Implications for biomarker
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Introduction: Global temperatures are rising, and scientists are mobilizing
to uncover which birds are most affected by the problem of heat. Heat
shock proteins (HSPs), for example, can shed light on this issue because they
prevent damage and promote recovery from heat. However, few studies have
investigated the relationship between HSPs and heat outside of experimental
contexts. Here, we ask whether natural variation in HSP gene expression can
serve as a biomarker of recent ambient conditions in wild nestling tree swallows
(Tachycineta bicolor).

Methods: We focused on HSP90AAl because this HSP increases mRNA
abundance in avian blood, after acute heat. Using blood samples collected
across ten degrees of latitude, we tested for population differences in
constitutive HSP90OAAL gene expression in 12-day-old nestlings. To quantify the
specific time period over which ambient conditions best predicted variation
in HSP gene expression, we used a climate window analysis, evaluating the
predictive value of maximum temperatures and maximum heat index in the
hours and days from hatching until sampling.

Results: We observed a significant difference in constitutive HSP gene
expression between populations, with South Carolina nestlings showing nearly
double the HSP9OAA1 mRNA abundance compared to those in Massachusetts.
There was no relationship between HSP90AAL and heat index at any time (hours
or days), meaning that baseline HSP gene expression is not a reliable biomarker
for the combined effects of heat and humidity, at least not when applying
existing metrics that were developed for poultry. We found some evidence
linking HSPO90AAL gene expression with maximum temperatures three to four
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days before sampling; however, a permutation test could not rule out the
possibility of a false positive.

Discussion: HSP9OAA1 mRNA abundance is not necessarily an effective
biomarker of recent heat, and it may instead reflect other inherent population
differences. As heat waves intensify, this conclusion could change, and other
species could be more reactive to heat. We urge the avian biology community to
continue biomarker testing for estimating heat impacts on wild birds, as we seek
to better understand and predict avian resilience to environmental challenges.

KEYWORDS

heat shock protein, biomarker, thermal tolerance, populations, bird

Introduction

Anthropogenic change is driving temperature increases across
the globe (Fischer et al., 2021). In extreme cases, high temperatures
can cause population die-offs (Kim and Stephen, 2018; Mckechnie
and Wolf, 2019) or species extinction (Root et al., 2003). Less
intense, sub-lethal, heat can still change animal behavior and
physiology (Louis et al., 2020; Woodruff et al.,, 2023). However,
the impacts of sublethal heat are challenging to measure in natural
environments because thermally-sensitive phenotypes can reflect an
individual’s recent heat exposure as well as an individual’s readiness
to cope with future heat (discussed in Svensson et al., 2023),
complicating interpretation of data (Kenkel et al., 2014). Amidst
the challenges of quantifying heat effects in wild animals, there is a
real need to develop and test biomarkers in situ, particularly those
that can be applied to multiple species by multiple investigators
(Kenkel et al., 2014) to monitor an organism’s recent exposure to
some environmental agent (Califf, 2018). Most biomarker testing
and development focuses on human health and disease (Califf,
2018), but there is a growing arm of conservation physiology,
which uses elements of stress physiology in wild animals to
measure anthropogenic impacts (Beaulieu and Costantini, 2014;
Dantzer et al., 2014), including those caused by thermal stress
(Parkinson et al., 2020; Sejian et al., 2018).

Much of this work has focused on mammals (Madliger et al.,
2018) or aquatic ectotherms (Fangue et al., 2006; Kenkel and Matz,
20165 Li et al., 2019), but research on birds and the problem of
heat has lagged behind, until the last 5-10 years (Mckechnie and
Wolf, 2019; Nord and Giroud, 2020). Early work on avian thermal
tolerance understandably related to poultry science, considering
that heat stress is an economic issue for meat and egg production
(reviewed in: Etches et al., 2008; see also; Greene et al., 2019;
Kang and Shim, 2021; Murugesan et al., 2017; Nyoni et al., 2019;
Wan et al., 2017; Wang et al., 2013; Xie et al., 2014; Zulovich
and Deshazer, 1990). In recent years, this line of research has
broadened to more bird species in more environments, including
both laboratory and field (Andreasson et al., 2018; Andrew et al,,
2017; Choy et al, 2021; Corregidor-Castro and Jones, 2021;
Mckechnie et al., 2021; Pollock et al., 2021; Rodriguez and Barba,
2016; Ton et al., 2021; Woodruff et al., 2023). With this broader
foundation of knowledge on the diverse physiological mechanisms
that respond to heat in birds (Hoffman et al., 2018; Hsu et al., 2020;
Lipshutz et al., 2022; Mentesana and Hau, 2022; Woodruff et al.,
2025), we are well positioned to explore biomarkers of thermal
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tolerance with which we might predict resilience to future
climate conditions.

Heat shock protein (HSP) regulation is one physiological metric
that has potential as a biomarker of heat tolerance (Corbett et al.,
2023; Greene et al., 2019; Hoffman et al., 2024). HSPs are a
protective response to heat and other stressors, and they prevent
cellular damage and promote recovery (Feder and Hofmann, 1999;
Lindquist and Craig, 1988; Singh et al.,, 2024). After direct heat
exposure, HSP gene expression peaks approximately 4 hours later,
though HSPs represent a large gene family and exact timing varies
by gene (Finger et al., 2018; Foster et al., 2015). Gene expression
can also remain elevated above baseline levels 24 h later (Wan et al.,
2017), suggesting lingering effects on constitutive HSP expression
(i.e., levels in the absence of acute heat). Species, populations,
or breeds from warmer climates can show higher levels of HSP
gene expression, even when exposed to the same thermal regimes
(Fangue et al., 2006; Singh et al., 2014; Wan et al., 2017; Xie et al,,
2018). Having a higher baseline of HSP expression could counteract
heat-induced damage as soon as it begins, potentially negating
the need for further elevation when faced with subsequent heat
(Gleason and Burton, 2015; Kenkel and Matz, 2016; Li et al,
2019). While this provides promising evidence that HSPs may
be a biomarker of thermal exposure or thermal tolerance, little
work has examined the degree to which baseline HSP levels may
reflect inherent biological differences among populations versus
a response to recent temperatures that happen to differ among
populations. The time course of HSP elevation can vary over
evolutionary time (Li et al., 2019; Tomanek and Somero, 2000),
meaning it is critical that we determine the degree to which
recent ambient conditions influence presumed baseline levels of
HSPs, in birds.

Here we investigate the degree to which recent environmental
conditions predict constitutive (naturally-occurring) blood HSP
gene expression in nestling tree swallows (Tachycineta bicolor),
across geographically distinct populations. We aimed to identify
critical time windows during early life when ambient conditions
might predict HSP levels, and if so, we sought to determine
the timescale over which these effects are integrated, from hours
to days to weeks. Specifically, we tested three non-mutually
exclusive hypotheses: (1) HSP expression reflects very recent
conditions in the hours before sampling, (2) HSP expression
integrates environmental experience during critical developmental
time windows (e.g., hatching or peak growth), or (3) HSP
expression reflects evolved population-level differences across
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thermal regimes, independent of recent environmental exposure.
Examining these predictors of thermal physiology is critical for
working towards a much-needed biomarker for heat tolerance in
free-living birds.

Materials and methods
Study sites and sampling design

Our study focused on nestling tree swallows confined to the
thermal environment of a nesting cavity—here, a human-made
nest box. Further, the tree swallow breeding range spans much
of North America (Winkler et al., 2020), allowing us to sample
geographically distinct populations. We collected data from six
populations, encompassing ~10 degrees of latitude across the
eastern United States, from South Carolina to Massachusetts
(Table 1; Figure 1). While these populations extend to nearly
the southern end of the species breeding range (Mccaslin and
Heath, 2020; Shutler et al., 2012), our sampling does not capture
the northern half of the breeding range, namely, Canada and
Alaska (Winkler et al., 2020). We targeted sampling to postnatal
day 12 (D12) because nestlings are fully endothermic and have
reached asymptotic, adult-like mass (Mccarty, 2001), but they
are young enough that researcher visits do not risk fledging,
which occurs around postnatal D21. Hatch day is denoted as
D1, and represents the day the majority of nestlings hatched,
though it is noteworthy that there is marked hatching asynchrony
in tree swallows (Winkler et al., 2020), so some of the sampled
chicks may have hatched a day earlier. Prior to hatching,
eggs are incubated by mothers for approximately 12 days and
therefore are kept at a relatively consistent temperature via

10.3389/fphys.2025.1601369

maternal modulation of incubation (Coe et al.,, 2015; Huggins,
1941). From D1 to D6 post-hatch, nestlings are ectothermic
(Marsh, 1980) and are brooded by mothers; after this point,
they are more exposed to ambient temperatures and can display
thermoregulatory behaviors, such as panting and huddling
(Woodruff et al., 2023).

Blood sampling and nestling age estimation

We collected blood at 25 + 4 nests per population (Table 1) when
nestlings were 11.9 + 0.1 days-post-hatch (range: D9 - D15). We
sampled 2-3 nestlings per nest, avoiding obvious runts and bleeding
from the alar vein (~50 uL). Samples were collected around mid-
day (average 12h 10m + 0 h 08m) during the summer breeding
seasons of 2019, 2020, and 2021. Blood was stored on dry ice in the
field and later transferred to —80 °C freezer. We banded all nestlings
with a numbered USGS band, measured body mass to the nearest
0.1 g, and measured wing length to the nearest 0.5 mm. For most
nests, we knew the exact hatch date. However, we estimated some
hatch dates in Pennsylvania, Tennessee, North Carolina, and South
Carolina, due to pandemic-related personnel constraints. When
hatch date was not known exactly, we estimated age using published
tree swallow growth trajectories (Mccarty, 2001; Wolf et al,
2021); details in SISA. Nestling mass and days-post-hatch
when sampled had no effect on HSP90AAI gene expression
(details in SISA).

Later, we measured HSP gene expression from the median
mass nestling. In nests where only two nestlings were sampled, we
randomly selected one for analysis. Sample sizes across populations
differ due in part to pandemic-related personnel constraints, RNA
quality, and weather conditions (details in SISA).

TABLE 1 Study populations name and location, sample size, year samples collected, and NOAA weather station name and location. We collected blood
samples from one nestling per nest, therefore sample size values reflect unique nests and nestlings. See details in SIS B.

State County Latitude Longitude N | Year(s) NOAA Weather Weather Distance
Abbrev. (°N) (°w) sampled weather | station station to study
station latitude  longitude area
(°N) (*W)
Massachusetts) MA Hampshire 42.22 72.31 14 | 2020 Hartford 41.94 72.68 50 Km
Bradley
Airport
Pennsylvania = PA Crawford 41.65 80.43 36 | 2020 Port 41.64 80.23 18 Km
Meadville
Airport
Indiana IN Monroe, 39.17 86.53 20 2019 Monroe 39.14 86.62 14 Km
Brown County
Airport
Tennessee ™N Knox 35.9 83.96 30 | 2020 Knoxville 35.82 83.99 11 Km
Airport
North NC Iredell 35.53 80.88 14 | 2020 Statesville 35.77 80.96 28 Km
Carolina Municipal
Airport
South sC Clarendon 33.49 80.36 33 | 2020,2021 Charleston 329 80.04 45 Km
Carolina Airport
Frontiers in Physiology 03 frontiersin.org
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Average annual number of days with
maximum temperatures 2 26°C during the
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2012-2022
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FIGURE 1
Average annual number of days during the tree swallow breeding

season (April-June) with maximum temperatures >26 °C from
2012-2022. Previous research demonstrated that nestlings begin
thermoregulating when nest temperatures reach 38 °C-equivalent to
26 °C air temperatures because nestboxes are generally 12 °C hotter
than ambient (Woodruff et al., 2023). Therefore, days with maximum
air temperatures >26 °C were included in this summary. Data is
grouped by quantile.

Environmental data and heat index
calculation

We collected environmental data from two types of long-term
databases to evaluate the degree to which populations differed in
thermal regimes during breeding.

First, to assess population differences in breeding season
climates, we used 10 years of remote-sensing data (ERA5 hourly
data, Hersbach et al, 2022) to quantify the number of days
in which nestling tree swallows were likely to experience sub-
lethal heat. Specifically, we focused on days with environmental
temperatures above the estimated thermoneutral zone, a range of
ambient temperatures outside of which an animal exerts energy
to regulate internal temperatures, during the typical nestling
season. The exact upper limit of this “comfort” zone is not
known, but at least two types of inferences suggest it occurs
around 38 °C (details in SISB). If we account for the observation
that nest cup average temperature was 12.3°C + 0.8 °C warmer
than the ambient temperature (Woodruff et al., 2025), then
nestlings have the potential for sublethal heat stress at ambient
temperatures of about 26 °C. We then quantified the number of days
during which maximum ambient temperatures met or exceeded
26 °C (air temperature 2 m above land surface, resolution 0.1°
x 0.1° from Copernicus Climate Change Service Climate Data
Store; Hersbach et al., 2022). Based on our experience in these
populations and typical lay dates, we focused on April 1st-June 30th,
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n = 91 days/year from 2012-2022. We then mapped these data using
ArcGIS Pro (version 3.0.2); Figure 1.

Second, to collect climate data with which to predict HSP gene
expression, we downloaded hourly dry bulb and wet bulb temperature
data from the National Oceanic and Atmospheric Administration
(NOAA) weather station nearest to each field site (Table 1). Wet bulb
temperatures can be used to calculate humidity and therefore heat
index. High temperatures are known to affect HSP gene expression
(e.g., Fangue et al., 2006), but humidity may affect the experience of a
temperature and the effectiveness of thermoregulation (Gerson et al.,
2014; Van Dyk et al,, 2019). Therefore, a heat index can be helpful
for understanding the experience of heat since it combines the
effects of temperature and humidity into one value. Unfortunately,
to our knowledge, there is no heat index formula for estimating
effective heat for songbirds. Therefore, we used a physiologically-based
index that was originally designed for laying hens, in Zulovich and
Deshazer (1990); Supplementary Formula S1. We chose this formula
because among the available indices, laying hens are the closest in
physical size to tree swallows and therefore may best estimate effective
heat. We used hourly dry bulb and wet bulb temperatures to calculate
hourly heat index. In the end, our analyses focus on daily maximum
values for temperature (T .. ) and heat index (Heat Index,, ).

Gene expression (qPCR)

We quantified relative gene expression using RNA extracted
from blood. Briefly, we extracted RNA using Trizol and converted
RNA to cDNA using Superscript III (details in SISC). We then ran
cDNA in triplicate in quantitative real-time PCR (qPCR) to measure
mRNA abundance of HSP90AAI, a gene that is robustly linked
to heat tolerance in birds (Wang et al,, 2015). Our previous work
on HSP90AAI in nestling tree swallows shows that it is expressed
abundantly in blood, and its expression is elevated approximately
2-fold after a 4-h experimental heat challenge (Woodruff et al.,
2025). Therefore, we focused on HSP90AA1 gene expression in this
study because it should be reactive if nestlings were responding to a
heat challenge. mRNA abundance was calculated in ThermoCloud
(Thermo Scientific) using the delta Ct method in which fold change
in expression for the gene of interest is normalized to an internal
reference gene, MRPS25 (27221, where AAC, = (C, HSPPAAL _
C, MRPS2S) (C, HSPOAAL _ ¢ MRPS25)

). Details on

reference ~ sample

qPCR methods are in SI§ C and Supplementary Table S3. Plates were
balanced by population and date. Each plate included intra- and
inter-plate control samples (a cDNA pool derived from tree swallow
RNA) and the ThermoCloud used these samples to normalize values
across plates. We found no significant effect of sex on HSP90AA1
gene expression; therefore, we did not include sex a covariate in
subsequent analyses (details in SISC).

Statistical analyses

All analyses were performed in R Studio (2022.07.2 Build
576), and HSP90AA1 relative quantities were Log2 transformed to
improve normality. We conducted two types of analyses: First, we
explored main effects of population on environmental variables and
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HSP gene expression. Second, we explored co-variation between
HSP gene expression and environmental variation. To assess
whether temperature extremes may shape the nature of this co-
variation, we conducted this latter analyses for all populations
(considered together) and again for South Carolina only (the
southern-most population). For all analyses, we ensured that
variables were not multicollinear (all VIFs <3, as in Fox and
Weisberg, 2018).

Testing for main effects of population

We assessed population differences in environmental data (T
and HeatIndex
hatching to sampling and (2) during the 4 hours preceding sampling.
We used linear mixed effects models in which the climate variable

max

max)» averaged across two time periods: (1) from

was predicted by population. Because some nestlings were sampled
on the same day, we included the random effect of Julian date. We
assessed population differences in HSP90OAA1 gene expression via
ANOVA with a fixed effect of population. Pairwise comparisons
were analyzed in a post hoc Tukey test.

Testing for co-variation between environment
and gene expression

We assessed whether and how environments shape constitutive
HSP gene expression with a sliding window analysis using the
“slidingwin” function in the climwin R package (Van De Pol et al.,
2016). This function is designed to identify time periods or
“windows” over which a biological variable is sensitive to
environmental variables (Bailey and Van De Pol, 2020). Climate
windows varied in length from 1day to 13 days, corresponding
to the nestlings’ entire post-hatch life from est. hatch day up
until sampling day (treated as day 0 by the program). We used
all combinations of window start and window end days during
this time. For example, “window open = 1, window close =1”
corresponds to ambient conditions only on the 1 day before
sampling. At the other extreme, “window open = 13, window close
=1” corresponds to ambient conditions averaged across the 13 days
leading up to sampling. This window is wider than 12 days (i.e., the
estimated age at sampling) to accommodate the aforementioned
potential for intra- or inter-nest variability in hatching; further
details in SISD.

For each climate window, we derived the mean value of our
daily T, ., and HeatIndex,, data. We then fit a linear model for
Log2 HSP90AAL relative quantity with population and the climate

max

window variable as predictors. The ‘null’ model consisted of Log2
HSP90AALI relative quantity predicted by population alone, i.e.,
it modeled the situation in which gene expression varies among
populations regardless of recent ambient conditions.

Because blood samples were collected at midday, the maximum
temperature of the sampling day may have occurred after the sample
was collected, such that “window open = 0, window close = 0”
is not applicable. The sliding window package does not allow for
temperature windows to be tailored to a specific number of hours,
so we used a separate linear model to ask if “day-of” environments
affected HSP gene expression. Specifically, we used maximum
environmental variables from the 4 hours before sampling. We also
verified that the maximum temperature nestlings experienced on
the day of sampling (12a.m.-time of sampling) occurred during the
4 hours proceeding sample collection.
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Finally, for each climate variable, we merged results from the
sliding window and manual “day of” models and compared them
with Akaike’s information criterion adjusted for small sample sizes
(AICc). We considered models with AAICc <2 from ‘null’ to be
competitive and equally well-fit (Burnham and Anderson, 2002).
Given the number of models in this analysis, type 1 errors are
possible (Van De Pol et al.,, 2016). Therefore, we also tested the
likelihood of obtaining a similar AAICc using randomized climate
variables as in Van De Pol et al. (2016). This step uses the ‘randwin’
function in climwin to generate 1,000 randomized models and a
probability of getting our results by chance (hereafter PAAICc).
Climate variables for which the observed AICc of the best fit model
was different from the randomized results (PAAICc <0.05) indicate
that the variable predicts HSP gene expression beyond what is likely
to occur by chance alone. We repeated this same analysis for South
Carolina alone because this southernmost population captures one
of the warmest possible early life climates for the species (Mccaslin
and Heath, 2020; Shutler et al., 2012). We did not have the power to
replicate this analysis in the northern populations because personnel
constraints limited the number of days during which blood samples
were collected, thus restricting the amount of potential explanatory
ambient conditions.

Results

Population differences in environmental
variables

Examining a decade of climate data, we found that our study
populations differed in potential exposure to sublethal heat, from
an average of 3-90 days per year (Figure 1). During the study
period, we observed significant population differences in mean
daily T ,,, from hatching to sampling (Fs ;35,4 = 35.76, p < 0.001)
and T ,, in the 4 hours prior to sampling (F5 13,05 = 11.44, p <
0.001); summarized in Table 2. Similarly, we observed significant

max

population differences in mean daily HeatIndex,,,, from hatching
to sampling (Fs 13409 = 41.30, p < 0.001), and HeatIndex,,,, in the
4 hours prior to sampling (Fs 5945 = 9.79, p < 0.001). Post-hoc

max

Tukey tests showed generally lower T, ,, and HeatIndex,,,, in more
northern populations (Massachusetts and Pennsylvania) compared

to South Carolina across time periods (Table 2).

Population differences in HSP gene
expression

We observed a marginal relationship between HSP90AAL
mRNA abundance and population (F 1, = 2.08, p = 0.07, R* =
0.07). A post hoc Tukey test showed significantly lower HSP gene
expression in Massachusetts compared to South Carolina (t,,, =
-3.09, p = 0.03), though there were no other significant pairwise
comparisons (Figure 2).

Effect of “day of sampling” conditions

Tax and HeatIndex . in the 4h before sampling did not
significantly predict HSP90OA A1 gene expression better than the null
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TABLE 2 Environmental variable mean + standard error and range by population. For nestling period values, daily T,,,., and HeatIndex,,,., were averaged
per nest from hatching to sampling, then the mean values were summarized per population. Letters indicate pairwise comparisons resulting from a
post hoc Tukey test based on a linear mixed effects model that controlled for the random effect of Julian date.

Environmental variable Mean + SE Tukey test pairwise
comparisons
MA 26.58 + 0.02 26.43-26.60 ab
PA 26.24 +0.06 25.58-26.60 b
IN 27.02+0.31 24.91-31.50 b
Mean T,,,, Nestling Period (°C)
N 26.77 £0.73 20.64-32.95 a
NC 22.54 +0.45° 20.87-24.17 c
e 26.19 + 0.40 20.64-29.79 d
MA 24.47 +0.51 21.11-27.78 ab
PA 23.2440.55 17.22-29.44 a
IN 25.94 +0.63 19.44-31.11 ab
T nax 4 h Prior (°C)
™ 26.94 4 0.58 18.33-31.94 be
NC 27.28 +0.60 23.52-30.00 c
sC 28.560.36 23.89-30.56 c
MA 23.06 +0.02 23.18-22.95 a
PA 22.81 +0.05 23.18-22.30 a
IN 24.70 +0.29 29.05-22.83 b
Mean HeatIndex,,, Nestling Period
TN 23.56 + 0.69 29.13-17.55 C
NC 19.49 +0.45 21.15-17.79 d
sC 22.86 +0.37 26.09-17.55 b
MA 21.16 4 0.54 15.62-24.67 a
PA 2022 +0.52 14.45-26.11 a
IN 23.42 +0.66 16.55-27.78 b
HeatIndex,,, 4 h Prior
N 23.92+0.51 17.44-28.56 be
NC 24.45 +0.49 21.81-27.04 c
sC 25.43+0.36 21.22-27.67 be

“NC temperatures do not include the 3-day cold snap because none of the nestling periods included in this study overlapped with the cold snap.

model (Table 3). Within the warmest population (South Carolina), ~ windows. Specifically, the window from 3 days prior to sampling
the same result held (Table 3). (open = 3, close = 3) and the window spanning three to 4 days prior
to sampling (open = 4, close = 3) showed a negative relationship

between HSP gene expression and T Table 4; Figure 3), contrary

max (

Effect of environmental conditions across
the nestling period

to the positive co-variation we predicted. However, we could not
reject the hypothesis that this result was a false positive (PAAICc
= 0.32). In the comparable model for HeatIndex

max>

the sliding
Using the sliding window analysis across all states, we found that ~ window analysis found no windows predicting HSP gene expression
T ,ax Predicted HSP gene expression better than the null in two time  better than the null (Table 4; Figure 3, PAAICc = 0.67).
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FIGURE 2

Relative gene expression of blood HSP90AA1 (Log, 272%) across
populations. Letters indicate pairwise comparisons resulting from a
Tukey test. Each point represents one nestling per nest. Error bars are
mean + SE. Note that 1 unit is a 2-fold difference in abundance on this
log2-scale.

Finally, we focused on South Carolina alone, because its position
at the southern extreme of the breeding range offered the warmest
thermal environment for detecting potential effects. We again found
that temperature was negatively related to HSP gene expression,
with 29 windows spanning the entire nestling period in which T,
predicted HSP gene expression better than the null model (Table 4;
we found 22 time windows

that predicted HSP gene expression better than the null model,

Figure 4). Similarly, for HeatIndex,,
with a negative effect size in each window (Table 4; Figure 4). The
direction of these results again did not align with our predictions,
though neither of these results was robust to randomized validation
(PAAICC >0.33).

Discussion

We measured naturally occurring variation in HSP90AA1 gene
expression in wild nestling birds across ten degrees of latitude,
including populations that differ in their environmental potential
for heat stress (Figure 1) and their max temperatures experienced
on the days we sampled (Table 2). HSP gene expression was ~2-fold
higher in the most southern population (South Carolina) compared
to the most northern population in our study (Massachusetts). Other
mid-latitude populations were not significantly different from one
another. When we explored environmental predictors of HSP gene
expression among nestlings across all populations, however, we
found weak evidence connecting post-natal thermal temperatures
with constitutive HSP gene expression. We also found no support
for the hypothesis that HSP gene expression tracks heat index, at
any time window preceding our sampling. One important caveat is
that we used a humidity-informed heat index that was developed
for poultry, and it will be important in the future to develop
such an index for non-domesticated, wild birds. Though we found
stronger evidence linking HSP gene expression and temperature
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in our southernmost (warmest) population, we could not reject
the possibility of a false positive. Based on these collective results,
HSP90AA1 gene expression in the blood is not a strong biomarker of
recent exposure to heat, and it may more robustly reflect population-
level differences in thermal physiology that have been shaped by
long-term differences in climatic regimes (Figure 1). To the degree
that these transcriptional patterns reflect protein abundance (Li
and Biggin, 2015), we propose that HSP90AA1 mRNA abundance
still has potential to reflect potentially adaptive readiness to handle
heat, particularly as heat waves increase in their frequency and
intensity.

Population differences in 12 day-old
nestlings

It is well established that physiology can vary among
populations. For example, populations differ in baseline oxygen
consumption (Storch et al., 2009), glucocorticoid secretion
(Vitousek et al., 2019), telomere length (reviewed by: Burraco et al.,
2020), and global gene expression (Gleason and Burton, 2015;
Whitehead and Crawford, 2006). HSP90AA1, the focus of our
study, is among those genes that have been linked to population
differences, including in adult killifish (Fangue et al., 2006) and
in domesticated sheep (Salces-Ortiz et al., 2015). Likewise, adult
female tree swallows breeding in Alaska versus Indiana differed in
HSP90AAL1 gene expression in the hippocampus, with higher levels
in the warmer lower latitude population (Woodruff et al., 2022).
With the current study in nestlings, we extend this earlier finding
to a much younger age (~12 days-old), implying that differences
in HSP gene expression from South Carolina to Massachusetts
are “set” early in life, even if patterns also change with experience
or age.

Mid-range latitudes did not differ in HSP gene expression,
suggesting that tissue differences may also play a role here.
Tissues have different naturally-occurring HSP gene expression
levels (Woodruff et al., 2022) and are differentially impacted by
heat (Leandro et al, 2004; Lipshutz et al., 2022). Blood has
the logistical advantage that it can be sampled repeatedly, and
in terms of biomarker development, blood may be the only
possible tissue that can be sampled repeatedly and/or sampled in
a threatened species. Previous research on nestling tree swallows
demonstrated that HSP90AA1 gene expression in the blood is
highly sensitive to experimental heat, more so than the brain
or muscle (Woodruff et al., 2025), suggesting that it is unlikely
that we are missing population differences simply by using
blood.

Our climate analysis of the last decade shows that southern
populations of tree swallows also have the potential to experience
up to 30-times more warm days during the breeding season
compared to the most northern populations we sampled
(90 days vs. 3days; Figurel). Maximum heat index differed
more among populations, but still by only about 5°C. This
limited environmental variation among populations may have
occurred by chance, due to the logistics of sampling multiple
populations. It also may relate to phenological adjustments
because birds time their breeding to align with favorable
conditions (De Villemereuil et al., 2020), with southern populations
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TABLE 3 Day of sampling environmental conditions model results. AICc values relative to the null model (AAICc), beta estimate effect sizes (p), standard
error (SE), and model intercept are reported. Window openings represent time furthest from sampling and window closures represent time nearest

to sampling.
Models: All populations Window Window  AAICc Model
open close intercept

Log2 HSP90AATL ~ 1 NA NA 0 -0.32 0.07 -0.32

Log2 HSP90AA1 ~ Population NA NA 0.24 -0.91 0.22 -0.91

Log2 HSP90AA1 ~ Population + HeatIndex, 4hrs Hour of 1.72 0.02 0.03 -1.38
sampling

Log2 HSP90AAL1 ~ Population + T, 4hrs Hour of 1.94 0.02 0.02 -1.35
sampling

Models: South Carolina

Log2 HSP90AAL ~ T, 4hrs Hour of 0 0.11 0.06 -3.38
sampling

Log2 HSP90AAL ~ 1 NA NA 1.12 -0.10 0.13 -0.10

Log2 HSP90AA1 ~ HeatIndex,,,, 4hrs Hour of 1.24 0.09 0.06 -2.50
sampling

breeding before northern populations. Regardless, birds that breed
earlier are at a higher risk of inclement weather (Shipley et al.,
2020) and temperature extremes (Taff and Shipley, 2023),
so there are likely to be constraints on advancing breeding
too much.

If nestlings in South Carolina have more HSP90AA1 gene
expression at their disposal during early critical periods of their
development, what else may this reflect for them, organismally?
Considering that HSPs prevent damage and promote recovery
from heat (Feder and Hofmann, 1999; Lindquist and Craig,
1988), it is possible that higher baseline HSPs may reflect some
degree of acclimation to challenging environments (Dong et al.,
2008), hardening the organism to handle more heat in the future.
Indeed, other species with higher baseline HSP expression may
have less of a ‘need’ for further elevation in the face of heat
(Kenkel and Matz, 2016; Li et al.,, 2019; Rinehart et al., 2006;
Wan et al., 2017), but see (Fangue et al., 2006). Early life exposure
could reduce the effects of subsequent heat on oxidative stress
(Costantini et al., 2012) or reproduction (Hoffman et al., 2018),
though there may be tradeoffs with other traits, such as immune
function (Hoffman et al., 2018). More experimental work is needed
to test reactivity to heat directly in the wild, particularly since
acute heat may enhance among-individual differences in HSP gene
expression (Woodruff et al., 2025) and HSP upregulation can be
energetically costly (Serensen, 2010).

Effects of recent environmental conditions

To maximize the usefulness of transcriptomic biomarkers,
it is paramount that we investigate what precisely we are
measuring (Califf, 2018; Kenkel et al, 2014). Our sliding
this  process
timescales—can

window analysis is in

because thermal

an important

conditions—across

step
diverse
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dramatically affect physiology (Gonzalez-Rivas et al, 2020;
Mckechnie and Wolf, 2019).

Despite the documented reactivity of HSPs to heat within hours
of exposure (Finger et al., 2018; Foster et al., 2015; Woodruff et al.,
2025), we did not observe any significant relationships between
same-day thermal conditions and HSP gene expression. Some
time windows were associated with T,  variation across all
samples, with more time windows seen in the South Carolina
population; however, these patterns were not robust to false
discovery (Table 4; Figure 4). Even if we try on these marginal
effects for size, we note that all effect sizes in our top models were
negative (refer to Table 4), meaning that the strongest relationships
in these data link higher HSP gene expression with lower, not
higher, temperatures. We speculate that this pattern may reflect
downregulation of HSPs after a prior upregulation. The negative
relationship between temperature and HSP gene expression also
opposes the “response” or “reactivity” requirement for a biomarker
(Calift, 2018) in which a biomarker should positively change in
a meaningful way after exposure to a stimulus, though there are
other reasons this may not rule out HSP90AA1 as a potential
biomarker of recent heat exposure. For one, a null effect may occur
if variation in HSP gene expression is also tracking other biotic
or abiotic factors (Kaufmann, 1990; Lindquist and Craig, 1988),
if HSP gene expression is shaped by parental effects on nestling
phenotypes (Mota-Rojas et al., 2023), or if conditions were not
extreme enough (Woodruff et al,, 2023). Our analyses of the South
Carolina samples aid interpreting this latter idea because these
nestlings experienced the highest day-of-sampling temperatures in
our study: on average, HeatIndex,,, in South Carolina was 23 °C
across the nestling period and max temperatures in the 4 hours
preceding sampling as 29 °C. Based on our experimental data on
nestling tree swallows in Indiana (Woodruff et al, 2025), this
should have elevated HSP gene expression, yet our sliding window
analysis did not link HSP gene expression to T, beyond the
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TABLE 4 AlCc values relative to the null model (AAICc), beta estimate effect sizes (B), standard error (SE), and model intercept are reported. Window
openings represent time furthest from sampling and window closures represent time nearest to sampling.

Models: All Window Model

populations close intercept

Log2 HSP90AA1 3 3 -2.16 -0.04 0.26 0.05

~ Population +

T 4 3 -2.01 —0.04 0.26 0.10

Log2 HSP90AA1L 13 13 -1.16 0.03 0.28 -1.77

~ Population +

HeatIndex,,, 4 3 ~1.14 —0.04 0.26 -0.05

Models:

South

Carolina
10 1 -4.92 -0.20 0.07 5.51
10 2 -4.78 -0.17 0.06 4.77
11 1 -4.48 -0.22 0.08 5.96
11 2 -4.08 -0.18 0.07 5.02
3 2 -4.00 -0.11 0.04 3.03
9 2 -3.96 -0.15 0.06 4.03
9 1 -3.83 -0.17 0.07 4.56
8 2 -3.79 -0.14 0.06 3.86
8 1 -3.47 -0.16 0.06 432
3 3 -3.46 -0.11 0.04 2.86
12 1 -3.40 -0.22 0.09 6.02
8 8 -3.33 -0.08 0.03 211

Log2 HSPIOAAL 10 6 -3.07 -0.12 0.05 3.16

~ Toax 4 2 -3.04 ~0.13 0.06 3.60
8 6 -3.02 -0.09 0.04 2.48
8 7 -2.98 -0.09 0.04 2.31
7 2 -2.88 —0.14 0.06 372
12 2 -2.88 -0.18 0.08 4.93
9 6 -2.76 -0.10 0.04 2.62
10 7 -2.68 -0.11 0.05 3.03
9 7 -2.52 -0.10 0.04 2.47
10 3 243 -0.13 0.06 3.48
7 6 243 -0.09 0.04 2.50
9 8 -2.41 -0.09 0.04 2.40
10 8 -2.39 -0.11 0.05 3.03
7 1 -2.34 -0.15 0.07 4.06

(Continued on the following page)
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TABLE 4 (Continued) AlCc values relative to the null model (AAICc), beta estimate effect sizes (B), standard error (SE), and model intercept are
reported. Window openings represent time furthest from sampling and window closures represent time nearest to sampling.

Models: Window AAICc Model
South close intercept
Carolina
13 1 -2.30 -0.21 0.10 5.81
6 6 -2.15 -0.09 0.04 2.39
7 7 -2.11 —0.09 0.04 2.31
3 3 -4.71 -0.19 0.07 4.73
3 2 —4.29 -0.17 0.06 4.08
10 2 —4.19 -0.21 0.08 4.99
10 1 -3.94 -0.23 0.09 5.67
4 2 -3.81 -0.19 0.08 4.69
9 2 -3.66 -0.18 0.07 442
8 2 -3.58 -0.18 0.07 4.36
8 7 -3.38 -0.12 0.05 2.64
8 8 -333 -0.11 0.05 2.48
7 7 -3.27 -0.12 0.05 2.73
Log2 HSPSOAAL 9 1 -3.20 -0.20 0.08 4.92
~ Heatlndexy, 8 1 -2.93 -0.20 0.08 4.81
11 2 -291 -0.20 0.09 4.79
8 6 -2.86 -0.12 0.05 2.75
7 2 -2.86 -0.18 0.08 432
11 1 -2.80 -0.23 0.10 5.51
9 7 -2.71 -0.12 0.05 2.69
9 6 -2.53 -0.12 0.05 2.80
10 6 -2.50 -0.13 0.06 3.13
10 7 —2.42 -0.13 0.06 2.99
7 6 237 -0.12 0.05 2.78
9 8 -2.13 -0.11 0.05 2.52

posbility of false discovery. Pulling these inferences together, this
means that our observation of higher HSP gene expression in South
Carolina compared to Massachusetts cannot simply be a transient
artifact of recent environmental conditions at the southern extreme
of the species’ breeding range. We speculate that population-
level differences in HSP9OAA1 gene expression may better reflect
ecological or evolutionary differences (sensu, Fangue et al., 2006;
Singh et al., 2014; Wan et al., 2017). Thus, while HSPs are often
thought of as a short-term response to recent heat, HSP levels
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measured outside of experimental contexts do not seem to be strong
biomarkers of recent heat, unless that heat is more extreme than what
we captured here.

Temperature alone may not tell the whole story because
the compounded effects of heat and humidity can reduce
the effectiveness of evaporative cooling (Gerson et al, 2014;
Van Dyk et al., 2019). This is important for endotherms because
evaporative cooling behaviors, like panting (Woodruffetal., 2023) or
bathing (Oswald et al., 2008), are among the initial defenses against
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populations. Window openings represent the time furthest from
sampling and window closures represent the time nearest to sampling.
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Trax (A.B) and HeatIndex,,, (C,D) sliding window model AAICc values
relative to the null (A,C) and beta value effect sizes (B,D) for South
Carolina (SC). Window openings represent time furthest from
sampling and window closures represent time nearest to sampling.

heat (Huey et al., 2012; Woodruff et al., 2023). A high heat index,
which stems from high temperatures combined with high humidity,
should therefore necessitate coping mechanisms beyond this initial
(behavioral) front line, including HSP upregulation. Empirically,
though, we did not support this expectation: we found no evidence
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linking HSP gene expression and maximum heat index. We used a
heat index formula developed for birds, though it was developed for
laying hens. While this was the best approximation available among
the indices developed for birds (discussed in Purswell et al., 2012),
it is reasonable to expect that a laying hen’s experience of heat may
differ from that of a 20 g nestling. It is noteworthy that the NOAA
heat index most people know is specifically designed to capture the
experience of a 1.7 m, 66.7 kg human wearing clothes (Rothfusz and
Headquarters, 1990; Steadman, 1979). To the best of our knowledge,
there is no comparable heat index for songbirds, much less songbird
nestlings. We believe this is a notable gap in the study of songbird
thermal physiology, and our current study underscores the need for
increased scientific attention. To advance our understanding of the
effects of intensifying heat, we need to be able to characterize the
degree of heat that songbirds are experiencing.

Implications and applications

As global temperatures warm, many animals are shifting
their breeding ranges to higher latitudes or altitudes into cooler
climates (Chen et al,, 2011; Huang et al., 2023). However, some
birds do not follow this pattern, and the tree swallow is one of
these interesting exceptions (Mccaslin and Heath, 2020). In the
last few decades, tree swallows along the eastern United States
have expanded their breeding south into the hot and humid
American Southeast (Shutler et al, 2012; Wright et al, 2019)
- as far south as Alabama (Wright et al, 2019). There may
be advantages to this change (e.g., better insect resources or
reduced inter-specific competition for limited nesting cavities),
but, for long-term success, the birds must have the physiological
ability to cope with the environmental conditions of that area.
Previous work across the continent has demonstrated that
reproductive success was not sensitive to heatwaves in this
species, even though other species showed concerning declines
(Taff and Shipley, 2023). After mild heat exposure, tree swallow
nestlings also showed some positive effects on body mass
(Dawson et al., 2005; Shipley et al., 2022; Woodruff et al.,, 2023),
a metric that predicts the likelihood of recruitment (Mccarty,
2001; Shipley et al., 2022). Adult tree swallows in the southern
expansion range also exhibit more defensive aggression, have
higher baseline corticosterone, and have a greater magnitude of
stress-induced corticosterone compared to birds in the historic
core of the range (Siefferman et al., 2023). Our new results add
an important data point on an additional element of physiology
that differs across latitudes in ways that should be adaptive, at
least under current levels of climate change. Future applications
of HSP90AA1 gene expression could include use in tracking
long-term physiological adjustments to warmer climates and
use in predicting species’ adaptive potential to future thermal
challenges. Moving forward, we urge more researchers to take
up this ‘sliding window’ approach applied to additional potential
biomarkers sourced from reviews (e.g., aldosterone, Corbett et al.,
2023; TRPV4, Sur and Sharma, 2025) and transcriptomic assays
(e.g., NR4A3, PIK3CD, Woodruff et al, 2025). Coupled with
among-population and among-species comparisons, we will
be better equipped to predict and mitigate climate impacts
on birds.
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