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Cardiac arrhythmias cause depolarization waves to conduct unevenly on the 
myocardial surface, potentially delaying local components with respect to a 
previous beat when stimulated at faster frequencies. Despite the diagnostic 
value of localizing the distinct local electrocardiogram (EGM) components for 
identifying regions with decrement-evoked potentials (DEEPs), current software 
solutions do not perform automatic signal quantification. Electrophysiologists 
must manually measure distances on the EGM signals to assess the existence 
of DEEPs during pacing or extra-stimuli protocols. In this work, we present a 
deep learning (DL)-based algorithm to identify decrement in atrial components 
(measured in the coronary sinus) with respect to their ventricular counterparts 
from EGM signals, for disambiguating between accessory pathways (APs) and 
atrioventricular re-entrant tachycardias (AVRTs). Several U-Net and W-Net neural 
networks with different configurations were trained on a private dataset of 
signals from the coronary sinus (312 EGM recordings from 77 patients who 
underwent AP or AVRT ablation). A second, separate dataset was annotated for 
clinical validation, with clinical labels associated to EGM fragments in which 
decremental conduction was elucidated. To alleviate data scarcity, a synthetic 
data augmentation method was developed for generating EGM recordings. 
Moreover, two novel loss functions were developed to minimize false negatives 
and delineation errors. Finally, the addition of self-attention mechanisms and 
their effect on model performance was explored. The best performing model 
was a W-Net model with 6 levels, optimized solely with the Dice loss. The model 
obtained precisions of 91.28%, 77.78% and of 100.0%, and recalls of 94.86%, 
95.25% and 100.0% for localizing local field, far field activations, and extra-
stimuli, respectively. The clinical validation model demonstrated good overall 
agreement with respect to the evaluation of decremental properties. When 
compared to the criteria of electrophysiologists, the automatic exclusion step 
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reached a sensitivity of 87.06% and a specificity of 97.03%. Out of the non-
excluded signals, a sensitivity of 96.77% and a specificity of 95.24% was obtained 
for classifying them into decremental and non-decremental potentials. Current 
results show great promise while being, to the best of our knowledge, the first 
tool in the literature allowing the delineation of all local components present 
in an EGM recording. This is of capital importance at advancing processing 
for cardiac electrophysiological procedures and reducing intervention times, 
as many diagnosis procedures are performed by comparing segments or late 
potentials in subsequent cardiac cycles.

KEYWORDS

intracavitary electrograms, decrement-evoked potentials, deep-learning, automatic 
signal delineation, coronary sinus, local field components, synthetic data 

1 Introduction

Understanding deviations in electrical conduction patterns 
is a key task when diagnosing cardiac arrhythmias (CAs) in 
electrophysiology (EP) procedures Porta-Sánchez et al. (2018). 
During EP interventions, a series of local activation patterns 
or electrograms (EGM) are recorded, which correspond to 
depolarization waves captured by special catheters. While these 
EGMs are represented as isolated electrical deflections in normal 
cardiac tissue, CAs cause depolarization waves to conduct unevenly 
on the myocardial surface, which alter the morphology of an EGM, 
induce decremental response of the tissue, generate fractionations 
in the local components (local fields, LF) or produce the appearance 
of late potentials (LP) Zeppenfeld and Porta-Sánchez (2020).

Decremental response is especially important as a diagnostic 
marker. Decrement occurs when local components are delayed with 
respect to a previous beat when stimulated at faster frequencies. 
This decrement may be naturally caused (e.g., the AV node 
delays conduction at faster firing frequencies) or induced by 
lesions in the myocardium. Current clinical guidelines hint at 
the diagnostic value of decrement-evoked potentials (DEEPs), 
which are portions of tissue presenting decremental conduction. 
Those DEEPs are diagnosed by producing extrastimuli in specific 
myocardial positions Acosta et al. (2016), Acosta et al. (2020). 
In this work, the presence or absence of decrement in atrial 
components (measured in the coronary sinus, CS) with respect to 
their ventricular counterparts will be explored for disambiguating 
between accessory pathways (APs) and atrioventricular reentrant 
tachycardias (AVRTs).

Despite the importance of localizing the distinct local EGM 
components for assessing the existence of DEEPs, current software 
solutions do not perform automatic signal quantification Zeppenfeld 
and Porta-Sánchez (2020). Electrophysiologists must manually 
measure distances on the EGM signals to assess the existence of 
DEEPs during pacing or extrastimuli protocols. Even state-of-the-
art 3D electroanatomical mapping systems (EAMs) only locate 
the local field signal with the largest deflection within a cardiac 
cycle Zeppenfeld and Porta-Sánchez (2020) with relatively simple 
and error-prone algorithms, which often forces EAM operators to 
reassign fiducials Zeppenfeld and Porta-Sánchez (2020).

Some computational solutions for EGM signal analysis exist. 
These algorithms are based on calculating digital signal processing 

(DSP)-based transformations on the data, such as filtering or 
Fourier/wavelet transforms (FT and WT, respectively), which aid in 
reducing data complexity for producing robust signal detection. 
Osorio et al. (2017) produced an algorithm based on filtering 
out high-frequency components for locating local components 
in AF recordings. Similarly, Felix et al. (2015) used a threshold-
based WT pipeline for estimating LFs. In Faes et al. (2002), the 
authors proposed to estimate the local activation time (LAT) 
from the barycenter of LFs in bipolar EGMs, after filtering and 
adaptive thresholding. On the other hand, Hajimolahoseini et al. 
(2018) used a Gaussian mixture model for the analysis of the 
natural logarithm of the signal. To the best of our knowledge, 
only Alcaine et al. (2013), Alcaine et al. (2014) directly attempted 
EGM delineation. The authors firstly delineated onsets and offsets 
of the surface QRS complex, which was used for windowing the 
EGM. Then, the WT was used on the signal’s envelope alongside a 
rule-based algorithm to determine the onset/offset pair of the LFs, 
reaching good delineation performance. This approach, however, 
cannot be used to delineate isolated LPs or extra LFs in patients 
with AF, preventing its usage as a general purpose tool. Neither of 
the aforementioned works in the literature produce detections of 
individual waves outside the most salient component, with only 
Alcaine et al. (2013), Alcaine et al. (2014) computing the onsets and 
offsets of the predicted wave.

In recent times, deep learning (DL) algorithms have gained 
popularity for automated data analysis, given their minimal pre-
processing requirements and high performance. In the specific 
case of cardiac signals, some solutions exist for automatic 
electrocardiogram (ECG) quantification Jimenez-Perez et al. (2019), 
Jimenez-Perez et al. (2021a), Jimenez-Perez et al. (2021b). However, 
not many algorithms have been developed for analyzing EGMs, 
and they revolve around classification Rodrigo et al. (2021). In 
this work, several fully-convolutional network (FCN), the U-Net 
Ronneberger et al. (2015) and the W-Net Xia and Kulis (2017) 
with different configurations, were trained on a private dataset 
of signals from the CS. To alleviate data scarcity, a synthetic 
data augmentation method was developed for generating EGM 
recordings. Moreover, two novel loss functions were developed to 
minimize false negatives and delineation errors. Finally, the addition 
of self-attention mechanisms and their effect on model performance 
was explored Wang et al. (2020). To the best of our knowledge, 
this is the first developed approach for delineation of intracavitary 
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FIGURE 1
Generated ground truth for an intracavitary electrocardiographic recording at the coronary sinus. The green and magenta overlays represent, 
respectively, local field activations from the coronary sinus and the ventricular far field. The recording presents ventricular pacing and decremental 
properties.

electrocardiograms (iECG), bridging the gap between the ECG and 
iECG communities. 

2 Materials and methods

This section firstly describes the employed datasets in 
Section 2.1. Secondly, the EGM analysis pipeline is defined, 
consisting the generation of synthetic tracings (Section 2.2), 
the DL architecture (Section 2.3) and the list of performed 
experiments (Section 2.5). 

2.1 Materials

A proprietary EGM delineation dataset was developed in the 
Hospital Universitario Virgen del Rocío (Sevilla, Spain). This dataset 
comprises 312 EGM recordings of variable size taken from 77 
patients who underwent AP or AVRT ablation, following the 
ablation protocol recommended in the standard-of-care. The LF 
and FF activations were manually annotated using a Python tool 
to mark their onsets and offsets, and these fiducials were then 
validated by a panel of certified cardiologists. A LF activation was 
considered when the catheter was placed into a specific anatomical 
structure (e.g., the left ventricle) and the EGM depicted a high-
frequency activation, whereas the FF activation was considered a 
low-frequency activation occurring elsewhere but propagated to 
the local tissue (e.g., atrial activation in the left ventricule). In 
total, 20,671 LF, 13,354 FF and 318 stimulation artifacts annotations 
were generated. All interventions recorded 5 bipolar EGMs from 
decapolar catheter (CS-1 or proximal through CS-5 or distal) during 
pacing or application of extrastimuli while testing for decremental 
conduction. A Bard Labsystem Pro EP Recording System ⓒ was 
used (1,000 Hz sampling frequency, 16 bits resolution, 2.5 μV/bit, 
bandpass-filtered in [30, 500] Hz).

The annotations were represented as binary masks for their 
usage as optimization targets in the segmentation architectures, 
where a mask of shape {0,1}3×N  was True-valued whenever a specific 
sample n ∈ [0,N] was contained within a stimulation, LF or FF 
activation (indices 0, 1 and 2, respectively) Jimenez-Perez et al. 
(2021b). The dataset was split 75%–25% so that all bipolar EGMs 
from the same patient would either be in the training or the testing 
sets, producing a training set and a held-out testing set (49 and 28 
patients, respectively). Figure 1 shows an annotated EGM signal.

A second, completely separate dataset was annotated for clinical 
validation and was not used for model training or validation. 
This dataset did not contain delineation annotations (onsets/offsets 
of LF and FF activations), but clinical labels associated to EGM 
fragments in which decremental conduction was elucidated. The 
study protocol consisted in the application of a simple pacing (S 
= [400, 600] ms) followed by an extra-stimulus (S2 = effective 
refractory period (ERP) + [20, 60] ms), measuring the delay in 
response caused by the AV node. The recordings were annotated 
by expert electrophysiologists, where three possible labels were 
assigned to each recording: decremental (if the time delay after 
S2 exceeded 10 ms), non-decremental or non-interpretable (loss of 
capture in S2 or no conduction through AV node). In total, 321 
recordings from 50 patients were annotated and analysed. 

2.2 Synthetic data augmentation

EGM recordings have segments of electrical silence (or rest), 
in which one or several LF or FF activations may be contained. 
Taking advantage of this modular structure, an algorithm for 
generating synthetic data was developed in this work. The 
algorithm has two major steps: data pre-processing and trace 
generation. Figure 2 schematically represents the synthetic data
augmentation pipeline.

2.2.1 Data pre-processing
The data pre-processing step consisted in two phases. In the first 

phase, the annotated ground truth was cropped in its fundamental 
segments, separating into independent “sets of segments” the LF, 
FF, LP, stimulation and rest segments. The FF and rest segments 
were low-pass filtered (100 Hz, 2nd order Butterworth filter) to 
suppress any unannotated LP in its trace. Moreover, each segment 
was onset/offset corrected so its voltage started and ended in zero 
for easier synthetic composition. Finally, the LF morphologies were 
subdivided into LF and LP morphologies according to whether 
the segment displayed a length shorter than 25 samples as a
rule of thumb.

In the second phase, the segment’s morphology was separated 
from its voltage by modelling its amplitude. Given that the 
amplitude profile of each segment (amplitudesegment) has a 
strong dependence with the amplitude of the LF component 
(amplitudeLF; see Figure 3B), the segment amplitudes could 
not be fit in a single distribution. For this purpose, firstly, the 
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FIGURE 2
Synthetic data generation pipeline. The data pre-processing step [(A); blue shading] consists of: (1) cropping the ground truth segments into different 
data “pools” (local field [LF] in green, far field [FF] in magenta, and rest); and (2) fitting the original segment amplitudes to log-normal distributions with 
respect to the amplitude of the local field (amplitudesegment/amplitudeLF). The cycle orchestration step [(B); orange shading] involves: (1) generating a 
set of registry-wide rules for all cardiac cycles; and (2), generating a set of per-cycle rules (e.g., merging the FF component with the LF), retrieving the 
specific segment croppings and computing the segment amplitudes for the left, central and right cardiac cycles. Finally, in the synthetic composition 
step [(C); green shading], the three cardiac cycles are independently generated by firstly generating a baseline of rest segments of sufficient size and 
adding over it the drawn segments. Then, they are concatenated into a synthetic trace and cropped into a single (central) cardiac cycle, discarding the 
grayed area.

FIGURE 3
Histogram (A) and conditional distribution (B) of amplitudes (amp) of the cropped far field (FF) and rest segments with respect to the amplitude of the 
local field (LF). The histograms represent, in blue, the amplitudes of the segments and, overlaid in orange, the samples drawn from a log-normal 
distribution, demonstrating a good fit. The conditional distribution represents the kernel density estimates of the relative segment amplitude ( y-axis) 
with respect to the LF amplitude of the cardiac cycle (x-axis), demonstrating larger segment amplitude at smaller local field amplitudes.

amplitude of the LF was split into 10 bins (dividing the [0,100]% 
amplitude interval in increments of 10%). Secondly, for each LF 
amplitude bin, a log-normal distribution was fitted to model the 
amplitude distributions of the sub-set of FF and rest segments 
that accompanied each specific LF fragment, totalling 10 log-
normal distributions per segment type. Finally, the amplitude 
of the LF and LP segments were fitted independently of the 
amplitude of any other fiducial, with log-normal distributions as 
well. Once the amplitudes had been fitted, all segments in the 
“segment pools” were normalized to their maximum absolute value
(“max abs” scaling).

2.2.2 Synthetic trace generation
The synthetic trace generation step aimed at producing bipolar 

EGM signals corresponding to a single cardiac cycle at a time. 
The resulting synthetic traces were intentionally crafted to deviate 
from strict physiological replication, in accordance with our clinical 
collaborators. This design decision was made because of the 
constraints posed by the size of the development dataset, which 
was comprised of few samples with manual annotations, which 
severely hindered the model’s coverage of the real data distribution 
when used “as-is” for model training. In consequence, the generated 
synthetic traces intentionally cover iECG morphologies much 
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beyond the ones found in the development set, by composing traces 
with pseudo-randomly located far field, local field, extrastimuli and 
DEEP activations.

Synthetic generation consisted of two steps. The first step 
revolved around probabilistically generating per-registry and per-
cycle rules (see Figure 2B). Per-registry rules governed conditions 
that affect all cardiac cycles within a registry, altering how the 
per-cycle rules were generated. To produce signals that are robust 
to QRS segmentation errors or to any physiological differences 
in LF/FF locations, three cardiac cycles were generated for each 
patient, which were then cropped to preserve the context of the 
central cardiac cycle (see Figure 2C). Some examples of per-registry 
rules are the percentage of the left- and right-most cycles that is 
preserved, whether all cardiac cycles in a registry have the same 
morphology, or whether the registry contains stimulation artifacts. 
Per-cycle rules, on their behalf, governed conditions that affect 
a single cardiac cycle. For this purpose, different segments (LFs, 
FFs, LPs and rest segments) and their respective amplitudes were 
drawn from the sets of segments and amplitude distributions for 
each cardiac cycle. Given a pre-defined probability, some segments 
might not be drawn for a specific cardiac cycle (e.g., in the case 
of AV block, no ventricular activation might take place). If the 
“same morphology” boolean was toggled, the same segments were 
drawn for all cardiac cycles, although the amplitudes might vary. 
Finally, each segment positioned in some location ([0,100]%) of its 
corresponding cardiac cycle. A full description of the per-registry 
and per-cycle rules is reported in the Supplementary Materials.

After generating the per-registry and per-cycle rules, the final 
synthetic trace was composed. Firstly, the rest segments were 
multiplied by their respective amplitudes and concatenated to form 
a baseline upon which to place the rest of the segments. Then, each 
drawn segment (LFs, FFs and LPs) was multiplied by its amplitude 
and placed in the trace by adding it to the baseline, starting at 
a specific index, placing them spatially into the registry. These 
indices were kept in memory to generate the ground truth of the 
delineation, indicating the precise onset and offset of each segment. 
To maximize variability, each segment was given a chance to be 
interpolated to 75%–125% its original length and a chance to be 
merged with another waveform using Mixup Zhang et al. (2018), 
a data augmentation strategy that produces a linear combination of 
different segments. Finally, once all segments were added into the 
baseline, the noise and baseline wander were added to the trace and 
the final segment was cropped according to the “RR’ percentage” 
generated in the global conditions. Figure 4 in the Supplementary 
Material provides some examples of real and synthetic electrogram 
signals and traces, respectively. Differences can be observed in 
the figure between real and synthetic iECG data. However, the 
synthetically generated traces were not designed to serve as 
physiological replicas of real data, but to extend the limited original 
dataset to cover the large variability of iECG signals due to the 
characteristics of the acquisition and the underlying arrhyhthmia 
required to improve the training of segmentation models.

2.3 Architecture

The U-Net Ronneberger et al. (2015) is a state-of-the-
art convolutional neural network (CNN) that is organized 

as an encoder-decoder structure and is usually employed in 
medical imaging segmentation tasks. The encoder-decoder 
is a type of artificial neural network (ANN) topology 
revolving around the usage of an encoder for obtaining 
highly abstract data representations (usually tied to reducing 
input complexity), and a decoder to leverage the abstracted 
information into a specific output LeCun et al. (2015). In 
the case of the U-Net, the encoder and the decoder are 
conformed of convolutional operations, which act similarly 
to trainable digital filters and emphasize local relationships 
in data (either spatial or temporal, depending on the data 
to be analyzed), and pooling/upsampling operations, which 
allow models to train filters over more distant elements of the 
input image by reducing/increasing tensor size. Finally, the 
encoder and the decoder are connected by “skip connections”, 
which recover the input information at different levels of 
abstraction for: a) defining segmentation borders in a more 
precise manner, which could be lost with the pooling layers; 
and b) preventing problems arising from vanishing gradients 
when optimizing the model’s weights Ronneberger et al. 
(2015). The number of trainable convolutional filters is usually 
doubled after every pooling operation and halved after every
upsampling operation.

Many U-Net-based alternatives exist due to its high performance 
for a variety of tasks Litjens et al. (2017). Most works explore 
altering the model’s original design decisions, such as the number of 
convolutional operations before any pooling operation (hereinafter, 
model “width”), the number of times the model reduces the 
input size (model “depth”), number of convolutional filters, 
employed non-linearity or choice of regularization Jimenez-
Perez et al. (2021b). Some authors have even developed heuristics 
for automatically adjusting the model’s training parameters 
and reducing the developer’s workload Isensee et al. (2021). 
Other authors have attempted at incorporating state-of-the-
art additions such as self-attention mechanisms Vaswani et al. 
(2017), which allow the weights of an operation to be controlled 
by a secondary set of weights, effectively controlling feature 
importance Prabhakararao and Dandapat (2020). While some 
adaptations of attention mechanisms exist for convolutional 
operations, this work explores the application of efficient 
channel attention (ECA) due to its low computational overhead
Wang et al. (2020).

Other works explore topological changes, either by embedding 
the U-Net into another structure Xia and Kulis (2017); Chen et al. 
(2018) or by increasing its connectivity (number of times the 
output tensors from each convolutional operation are used) 
Zeng et al. (2019). In this work, the W-Net architecture Xia 
and Kulis (2017) was employed given its good performance 
in other segmentation domains, such as the segmentation 
of echocardiographic images Xu et al. (2020). The W-Net 
involves using two U-Nets, where the second network takes 
as input the output of the first network, and employ “skip 
connections” not only between each encoder/decoder pair but 
also between the decoder of the first U-Net and the encoder of 
the second. This second U-Net increases the model’s capacity, 
which is usually tied to better performing models. A visual 
representation of the U-Net and the W-Net are presented
in Figure 5.
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FIGURE 4
Examples of real (A–D) and synthetic (E–H) electrogram signals and traces, respectively. The green and magenta overlays represent the local and far 
field activations, respectively. Substantial differences can be observed between real signals and synthetic traces, the latest providing a larger variability 
in signal characteristics, making them more suitable for training segmentation models than a limited dataset of clinically-obtained electrogram data.

FIGURE 5
Representation of the U-Net (encircled in yellow) and W-Net architectures (encircled in red, containing the U-Net). Both networks are instantiated with 
3 levels and 2 convolutional blocks per level. Arrows represent operations, while blocks are indicative of output tensors. Convolutional filters are 
doubled at each level, so that level Li has 2iN channels per level (with N being the starting number of channels), whereas pooling and upsampling have 
a kernel size of 2. Color code: convolutions (yellow), pooling operations (red), upsampling operations (blue), concatenation operations (black).

2.4 Model evaluation

The model’s performance was calculated in two ways: by 
evaluating the performance using typical delineation metrics; 
and by addressing the precision in a clinical validation dataset. 
Firstly, detection and delineation metrics were computed with 
respect to the ground truth. Detection metrics measured 

localized matches with the ground truth (i.e., segments occurring 
at the same time in the prediction and the ground truth). 
Delineation metrics, on their behalf, measured error at the 
localization of the segment’s onset and offset with respect 
to the reference. The detection and delineation metrics were 
computed before and after filtering: given the large number 
of LPs detected within the confines of FF activations (see 
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FIGURE 6
Representative examples of model predictions depicting good examples (A), prediction errors caused by higher sensitivity than ground truth [(B); 
high-frequency component within the far field], true prediction errors (C) and errors attributable to wrongly annotated ground truth (D). The figures 
show the ECG reference (top), predicted fiducials (middle) and ground truth (bottom). Green and magenta regions represent local and far field 
components, respectively.

Section 3 and Figure 6B), a secondary set of metrics was 
computed, consisting in measuring the aforementioned detection 
and delineation metrics, but avoiding counting these as false 
positives.

With respect to the clinical validation metrics, sensitivity 
and specificity figures are reported for the accurate detection of 
decremental response in the annotated registries. For producing 
a prediction, five stages were followed. Firstly, the QRS complex 
was firstly detected using the delineator proposed in Jimenez-
Perez et al. (2021a). Secondly, the EGMs of each cardiac cycle 
were independently predicted, obtaining the onsets and offsets 
of each segment for each lead. Thirdly, a single onset-offset 
pair was selected across all leads by majority voting. This was 
useful for this specific clinical problem, given that the spatial 
configuration of the employed catheter allowed for certain 
synchronicity across leads (see Section 2.1). In fourth place, 
a matching algorithm was employed to tie each stimuli to its 
response. For this purpose, the origin of the stimulation was 
firstly located (stim; auricular or ventricular origin) for, then, 
determining the delay to the response (resp; ventricular or 
auricular response, respectively). In this step, a series of exceptions 
were defined (e.g., uncoordinated stimulation-response, too 
distant response, absence of response or too different response 
morphology, among others), which lead to the exclusion of the 
excerpt for its posterior analysis. In fifth and final place, the 
distances between the stimulus and the response (Δti = respi − stimi)
were computed. Given the stimulation protocol (single pacing 
followed by extrastimulus S2), the delay Δt between the two 
last stimuli (ΔtN−1 and ΔtN , respectively) was measured and 
decremental response was considered if (ΔtN−1 −ΔtN−1) > 10ms. 
The final value was corrected with the lag of the highest 
cross-correlation between the last two responses. Figure 7 
depicts the decrement computation algorithm on
a sample EGM.

2.5 Experiments

Model performance was assessed by training several model 
topologies, isolating specific changes to test the contribution of each 
element in the model. Firstly, the best architectural configuration 
was assessed by comparing the performance of the U-Net and W-
Net (for depths 5 and 6, independently), both with and without 
ECA. Secondly, the effect of using a pre-trained model for the 
task of ECG delineation was tested, taking the weights from a 
model for ECG delineation Jimenez-Perez et al. (2019), Jimenez-
Perez et al. (2021a), Jimenez-Perez et al. (2021b). Finally, the effect of 
applying a loss function that forces higher sensitivity was explored 
by doubling the executions, comprising training models with and 
without the loss function. The loss function employed the edge 
detector described in Jimenez-Perez et al. (2021a) for computing 
the true positives (TP), false positives (FP) and false negatives (FN), 
which were in turn employed for computing the classic sensitivity 
score: Se(%) = TP/(TP+ FN).

Some aspects were kept constant throughout all experiments. 
On the one hand, the application of some regularization strategies 
such as SDr or certain types of DA was associated with better 
performance, so these were always applied. A random seed 
(123456) was employed for reproducibility, the Adam optimizer 
was used Kingma and Ba (2014), leaky ReLUs Xu et al. (2015) 
were selected as the non-linearities of choice, and the number 
of base channels was kept the same (32, doubled/halved on 
the pooling/upsampling operations). Due to limitations in the 
completeness of the annotated ground truth (see Figure 6D), 
training was solely performed using synthetic data. However, as 
reported in Jimenez-Perez et al. (2021a), this was associated with 
only a slight decrease in performance as compared to using synthetic 
and real data, and outperformed training the model only with real 
data. All executions were performed with a NVIDIA Titan Xp GPU
using PyTorch.
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FIGURE 7
Decrement computation algorithm on a non-decremental trace. In (A), the surface ECG is delineated (red dotted line) and the stimulation onset is 
located (gray dotted line). In (B), the detected QRS’ are employed to locate the onsets and offsets of the local field (green) and far field (magenta) 
activations for each bipolar electrode. In (C), majority voting is performed to obtain a single set of onsets/offsets for all electrodes, the predictions are 
cleaned (e.g., spikes related to pacing) and the measurements are produced.

TABLE 1  Precision (%), recall (%), Dice score (%), onset error (mean [M] ± standard deviation [SD], in miliseconds) and offset errors (M ± SD, in 
miliseconds) of our best performing model.

Precision (%) Recall (%) Dice (%) Onset error (M ± SD) Offset error (M ± SD)

 Local Field 76.44 94.84 77.37 4.20 ± 13.89 −6.45 ± 19.86

 Far Field 74.73 95.23 73.22 3.74 ± 19.26 −5.71 ± 21.91

 Local + Far Field 90.02 97.53 83.52 9.04 ± 26.09 −10.65 ± 29.32

 Stimulation 100.0 100.0 94.78 −0.68 ± 1.27 -

 Local Field (≤25 ms) 75.04 67.98 45.41 1.51 ± 1.41 −5.69 ± 2.91

 Local Field ( >  25 ms) 80.77 96.18 78.68 4.04 ± 13.42 −3.65 ± 16.67

3 Results

The best performing model was a W-Net model with 6 levels, 
optimized solely with the Dice loss. The model obtained precisions 
of 76.44%, 74.73% and of 100.0%, and recalls of 94.84%, 95.23% and 
100.0% for localizing LF activations, FF activations and extrastimuli, 
respectively. The model also attained an average delineation error 
of 4.20 ± 13.89 and −6.45 ± 19.86 ms when localizing the LF’s 
onsets and offsets, respectively; and of 3.74 ± 19.26 and −5.71 ±
21.91 ms when estimating the onsets and offsets of the FF. The 
localization of stimulations was very precise, with onset errors of 
−0.68 ± 1.27 ms. Given the ambiguity between some segments and 
the errors in the dataset annotations (as it will be discussed in 
Section 4), a metric was obtained by merging the binary masks of 
LF and FF components, which obtained a precision, recall, onset and 
offset errors of 90.02, 97.53, 83.52, 9.04 ± 26.09 and −10.65 ± 29.32, 
respectively. A detailed description of the per-wave metrics of the 
model (precision, recall, Dice score, onset error and offset error) is
reported in Table 1.

A secondary set of measurements was computed by discarding 
as false positives any LF that occurred within the confines of 
a FF, as described in Section 2.5. With this secondary metric, 

the model obtained precisions of 91.28%, 77.78% and of 100.0%, 
and recalls of 94.86%, 95.25% and 100.0% for localizing LF 
activations, FF activations and extrastimuli, respectively. The 
model had an average delineation error of 3.89 ± 14.56 and 
−6.16 ± 20.25 ms when localizing the LF’s onsets and offsets, 
respectively; and of 3.47 ± 20.03 and −5.44 ± 22.82 ms in the 
FF. A more in-depth report of the per-wave metrics of the 
model is reported in Table 2. Furthermore, some representative 
examples of the best performing model’s performance have been 
plotted in Figure 6. To aid in the discussion, the samples were 
grouped according to the different types of errors produced 
by the network (or absence of). These can be divided into 
four main categories: good samples (Figure 6A), errors due to 
increased model sensitivity with respect to the ground truth 
(Figure 6B), true network errors (Figure 6C), and annotation 
errors in the database (Figure 6D). Together with the real and 
synthetic examples depicted in Figure 4 in the Supplementary 
Material, these results demonstrate the appropriateness of training 
a segmentation model with a synthetic dataset including a large 
variability of characteristics, despite the obvious differences in signal 
morphology with real data, which can only be available in a limited
number of settings.
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TABLE 2  Precision (%), recall (%), Dice score (%), onset error (mean [M] ± standard deviation [SD], in miliseconds) and offset errors (M ± SD, in 
miliseconds) of our best performing model after discarding small local field activations contained within far field activations.

Precision (%) Recall (%) Dice (%) Onset error (M ± SD) Offset error (M ± SD)

 Local Field 91.28 94.86 77.37 3.89 ± 14.56 −6.16 ± 20.25

 Far Field 77.78 95.25 73.22 3.47 ± 20.03 −5.44 ± 22.82

 Local Field + Far Field 91.39 97.57 83.52 7.85 ± 28.52 −9.67 ± 31.77

 Stimulation 100.0 100.0 94.78 −0.68 ± 1.27 -

 Local Field (≤25 ms) 94.53 67.98 45.41 1.51 ± 1.41 −5.69 ± 2.91

 Local Field ( >  25 ms) 94.06 96.19 78.68 4.0 ± 13.51 −3.6 ± 16.76

FIGURE 8
Boxplots of the contributions of the different model additions to the overall model performance, divided into the local field (left) and far field (right).
Y-axis corresponds to the F1 score.

3.1 Model additions

The only model addition that showed consistently better results 
with respect to the baseline was the application of increased model 
capacity (either with W-Net or with more model depth) and 
pre-training the model with weights from an ECG delineation 
model Jimenez-Perez et al. (2021a). Other effects, such as the 
addition of custom data losses, were generally detrimental for model 
performance. Figure 8 summarizes the effect of the different model 
additions.

3.2 Clinical validation

The clinical validation model demonstrated good overall 
agreement with respect to the evaluation of decremental properties. 
Out of the 321 recordings employed for evaluation of decremental 
response, 81 (25.23%) were automatically excluded by the rule-
based algorithm. When compared to the exclusion criteria proposed 
by electrophysiologists, the exclusion step reached a sensitivity of 
87.06% and a specificity of 97.03%. Out of the 240 remaining, 180 
(75%) were evaluated to be decremental and 60 as non-decremental 
(94.42% accuracy, 96.77% sensitivity, 95.24% specificity). The 
selected model is not computationally expensive, producing a 
prediction in 18.9± 0.22ms on GPU (NVidia GeForce GTX 

1050 Ti), which is bound to be faster with more modern
hardware. 

4 Discussion

Electrogram segmentation is a crucial task for advancing 
in the automatization of EP procedures. Currently, physicians 
must manually produce basic measurements when performing 
interventions such as AVRT or AP ablation for determining 
decremental properties or to measure basic intervals. Despite 
its importance, even state-of-the-art EAM systems only 
perform basic detection of the most salient wave within a 
cardiac cycle for computing derived clinical indicators. The 
inability of performing full signal delineation is limiting, 
as recent developments in diagnostic markers for catheter 
ablation such as decrement-evoked potentials are detected 
through the analysis of portions of myocardial tissue that 
produce LFs or LPs that are delayed with respect to previous 
cardiac cycles.

The work presented here builds upon the existing detection 
and delineation literature by advancing towards an all-purpose 
iECG analysis system. Similarly to the approach proposed in 
Jimenez-Perez et al. (2021a), a DL model was trained for automatic 
data quantification; focusing on quantification counterbalances the 
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drawbacks of DL algorithms with an application that is immediately 
interpretable by the operator. Given the lack of large-scale iECG 
datasets annotated for delineation, two main design decisions were 
made. Firstly, the model was trained solely with synthetic data 
from a modest dataset of 312 iECG recordings from 77 distinct 
patients, with ground truth generated for localizing independent 
LF and FF activations. This synthetic dataset greatly improves 
model performance in scenarios where data is scarce, and has 
been proven to be more performant than training on real samples 
if the data is scarce Jimenez-Perez et al. (2021a). Secondly, the 
prediction pipeline was designed to analyse excerpts of individual 
cardiac cycles, whose window of interest was localized with the QRS 
complex’s barycenter in the surface ECG using a DL model Jimenez-
Perez et al. (2021a). Cropping the iECG recordings into individual 
cardiac cycles allowed the model to adjust the prediction of a 
specific waveform according to whether the LFs (high frequency 
components) occurred before or during ventricular depolarization. 
The combination of these design decisions allowed to alleviate 
the main limitations found in initial approaches, producing more 
versatile networks.

Although many models and model additions were explored 
for pushing performance, model performance seemed to respond 
similarly to the explored changes (Figure 8). Moreover, the trained 
models swored a high variance overall in F1 score, and neither 
changing model capacity (5 or 6 U-Net/W-Net levels), changing 
the loss functions (Dice score or new losses) or changing the 
base architecture (U-Net or W-Net) seemed to significantly 
improve performance. The only clear improvement in both LF 
and FF F1 scores seemed to be starting the training from a model 
pretrained with an ECG delineation task Jimenez-Perez et al. 
(2021a), which is consistent to the recent advancements in 
Self-Supervised pretraining of Computer Vision models (Caron 
et al., 2021). We hypothesize that one of the factors that 
cause this variance is the need to add more training data, 
which is also hinted by the high amount of runs that did not 
produce a model that consistently converged (i.e., F1 scores 
neighbouring 60%).

The best performing model demonstrated high sensitivity 
but moderate precision (around 95% and 75%, respectively, for 
both LF and FF activations in a held-out test set). With respect 
to the onset/offset localization, the models provided a good 
fit with respect to the reference (errors of 3.89 ± 14.56 and 
−6.16 ± 20.25 ms when estimating the LF’s onsets and offsets, 
respectively; and of 3.47 ± 20.03 and −5.44 ± 22.82 ms at the FF 
components). Comparing the proposed approach to the existing 
literature gives the impression of a reduced algorithm performance: 
some methods reach precision and recall figures nearing 100% 
Osorio et al. (2017); Felix et al. (2015) and half the SD in 
onset/offset localization Alcaine et al. (2014). This, however, is 
misleading for several reasons. Firstly, existing algorithms are only 
concerned with locating a single LF activation for each cardiac 
cycle and disregard any other type of activation (e.g., LP or 
FF), which prevents direct comparison between methodologies. 
Secondly, all development datasets are private, preventing a fair 
comparison of methods; the dataset collected for this work 
consists of real clinical data, making no compromises with 
respect to signal quality or difficulty. Thirdly, models that are 
more sensible than specific were sought for, and distinguishing 

subtle LPs from noise is a challenging task. Finally, the larger 
delineation errors are to be expected given smoothness at signal 
initiation and termination (see Figure 9) and the lack of an unified 
criterion for their definition. Despite the comparatively reduced 
detection and delineation metrics, the overall performance at 
locating specific components has proved excellent for a downstream 
clinical application for the detection of decremental response in 
AP or AVRT procedures. The model, with a relatively simple 
post-processing, allowed for the identification of decremental 
response (Δt > 10ms) with high precision and accuracy, reaching 
sensitivity and specificity figures of 96.77% and 95.24% specificity, 
respectively.

The proposed approach has two main advantages. Most 
importantly, a full delineation of all important iECG fiducials 
in the registry is performed, as opposed to the localization of 
the most salient component Osorio et al. (2017); Felix et al. 
(2015); Alcaine et al. (2014). This is of capital importance at 
advancing processing for EP procedures and reducing intervention 
times, as many diagnosis procedures are performed by comparing 
segments or LP in subsequent cardiac cycles. Additionally, using 
a synthetic data generation algorithm allows to better control 
the conditions for predicting a local component, which is highly 
beneficial: the low specificity reported in Table 1 results from 
lowering the threshold at which a perturbation can be recognized 
as a local component (see Figure 6B). Thus, the system is 
able to propose low intensity, high frequency deflections as 
candidate local components, which would be too costly and time-
consuming to annotated while not necessarily erroneous. The 
difference between the ground truth and the predictions might 
represent a limitation of the ground truth rather than of the
developed model.

The primary objective of the synthetic data generation was 
not to be used as realistic data for clinical practice, but to 
force the model to identify specific iEGM components such 
as local field, far field, and DEEP signals, including possible 
changes in signal acquisition (e.g., different type of catheters). 
The resulting intentional deviation from strict physiological 
replication proved beneficial, even at a slight loss of realism. 
This tradeoff between variability and realism in the generated 
signals is not significantly different from usual data augmentation 
strategies found in the deep learning literature, in which extreme 
transformations over the base image are performed but not 
necessarily evaluated for realism (e.g., the recent GIN-IPA data 
augmentation technique (Ouyang et al., 2023)). In consequence, 
it is not straightforward to make a direct comparison between 
real and synthetic data using similarity-based metrics (e.g., 
cross-correlation). However, the developed segmentation and 
classification models were trained exclusively on synthetic data, 
their accuracy on held-out datasets of real data being a very 
strong indirect evaluation of the usefulness of the synthetic 
generation pipeline.

The proposed approach has, however, some limitations that 
are unique to EGMs as opposed to other cardiac signals such 
as the ECG. Firstly, expressing the ground truth as a binary 
mask delimiting each local component, as is performed in this 
work, might clash with some scenarios where the individual local 
components should not be merged, giving rise to difficulties 
when analyzing highly fractionated potentials, where predicting 
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FIGURE 9
The smoothness of the wave complicates the definition of the local field’s offset (red dashed line) and the far field’s onset and offset (cyan and magenta 
dashed lines, respectively). Multiple possible onsets/offsets are marked.

a continuous True-valued binary mask spanning the whole 
fractionation might not be useful for posterior analyses. Secondly, 
a compromise with respect to the architectural choice might 
be of need, as the model prediction time is larger than the 
sampling frequency (7.88 ms per cardiac cycle and lead). This, 
however, might be circumvented by good implementation in an 
EAM platform, by multi-threading, processing the iECG while 
the catheter changes position or the system waits for respiration 
cues or by providing the outputs with a slight delay. Thirdly, 
the model could not be trained leveraging real data, partially 
due to the necessity to improve the quality of the ground 
truth annotations: many waves were not correctly delineated and 
accounted for false positives (Figure 6D), requiring re-annotation, 
and more prevalence of fractionated potentials is needed to 
assess the generalizability of our approach. Finally, the developed 
rules for the synthetic DA algorithm allow for much higher 
complexity, requiring the inclusion of more real-world casuistry to
enhance performance. 

5 Conclusion

The proposed methodology for the analysis of iECG 
recordings has proven to be useful in other signal analysis 
tasks such as ECG delineation Jimenez-Perez et al. (2021a), 
hinting at the feasibility of a good-performing, all-purpose 
EGM annotation tool. Current results show great promise 
while being, to the best of our knowledge, the first tool in 
the literature allowing the delineation of all local components 
present in a recording. The algorithm, based on an encoder-
decoder DL architecture, was trained solely with synthetic data 
according to a rule-based algorithm that allows for controlling 
the generation process. The algorithm is, however, faced with 
several limitations in the dataset, data generation and data 
representation. Nevertheless, the development of an all-purpose 
EGM delineation model is a key tool for unlocking a wide array 
of downstream tasks, ranging from the automatic identification of 
myocardial portions of scar presenting DEEPs to the exploration 
of morphological indicators that might aid in diagnosis or risk
stratification.
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