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Editorial on the Research Topic
Advancing quantum computation: optimizing algorithms and error 
mitigation in NISQ devices

s

 For the moment, noisy intermediate-scale quantum (named NISQ) device is the best 
option for quantum computation and this quantum research with tools of optimization and 
error mitigation has achieved both many important milestones and overcome fundamental 
challenges over several years. While such NISQ devices have demonstrated prototype 
quantum algorithms that exploit uniquely quantum resources such as superposition and 
entanglement, their practical application remains constrained by gate errors, limited qubit 
counts, and algorithmic inefficiencies during coherence time. This Research Topic brings 
together recent advancements to address these challenges through the optimization of 
quantum algorithms, the design of resource-efficient encodings and architectures, and the 
exploration of new computational paradigms for NISQ platforms. Thus, the contributions 
outline viable routes towards near-term quantum utility while establishing the foundation 
for longer-term progress towards scalable, fault-tolerant quantum computation in the future.

A central theme is that progress in the NISQ era requires innovations in algorithmic 
design and problem representation, not solely hardware improvements. The article by Fuchs 
et al. exemplifies this by addressing the efficient mapping of the weighted MAX k-CUT 
problem onto quantum hardware. This combinatorial problem is a key benchmark, but 
simple encodings demand excessive qubits and circuit depth. Their work systematically 
examines alternative encoding strategies, including binary and constrained subspace 
representations, using numerical simulations. The authors demonstrate that balanced and 
subspace-restricted encodings significantly improve approximation quality while reducing 
circuit complexity, thereby enhancing the feasibility of implementing variational quantum 
algorithms on current NISQ devices.

Beyond encoding efficiency, the Research Topic highlights execution paradigms 
that exploit quantum hardware characteristics. The brief report by Osaba and Villar-
Rodriguez revisits quantum annealing, specifically reverse annealing, as a relevant NISQ 
optimization strategy. Unlike conventional forward annealing, reverse annealing starts 
with a known candidate solution and performs a localised quantum search, making
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it suitable for hybrid and iterative optimization workflows. Through 
experiments on the well-known knapsack problem instances, 
the authors explored whether initialising reverse annealing with 
solutions from related problems enhanced performance. Their 
findings suggest that transferring solution information, particularly 
when problem instances are closely related in terms of Hamming 
distance, can improve success probabilities and robustness. This 
study establishes a conceptual bridge between transfer learning and 
quantum optimization, offering a promising direction for practical 
NISQ-era applications.

The intersection of quantum algorithms and data-driven 
methods is a critical area explored in contributions covering 
quantum machine learning. A consistent perspective across 
these works is the strategic adaptation of established classical 
machine learning techniques to align with the limitations and 
advantages of current NISQ hardware. For instance, Seong and 
Park recast centroid-based clustering, a fundamental unsupervised 
learning task, into a quantum-mechanical framework using a cost 
Hamiltonian. This approach provides a principled method for 
implementation on quantum devices, illustrating how classical 
techniques can be extended through quantum formulations, despite 
remaining challenges like noise sensitivity.

Complementing this, Lee et al. investigate the optimization of 
Quantum Convolutional Neural Network (QCNN) architectures. 
They show design strategies that balance QCNN’s expressive power 
with hardware constraints like circuit depth and parameter count, 
which are crucial for mitigating noise impacts. Both studies 
demonstrate that careful algorithmic design and architectural 
choices are key to developing practical QML models suited for 
near-term quantum processors.

Taken together, the articles in this research area show that 
we need a complete, joined-up way to use NISQ quantum 
computing. This involves bringing together integrated ways of 
setting up problems, specific methods for running them, and 
mixing classical and quantum steps. Instead of relying on future 
fault-tolerant regimes, these contributions demonstrate how 
innovative algorithmic design and problem-specific insights can 
extract meaningful computational advantages from current NISQ 
technologies.

Therefore, the broader context reflects the transitional nature 
of the NISQ era. While noise and limited coherence time 
remains significant challenges for some years, targeted advances in 
algorithm optimization and error-mitigating quantum computation 
meaningfully extend the class of problems accessible today. Future 

quantum research will benefit from systematic benchmarking on 
larger instances, adaptive error-mitigation techniques, and the 
development of theoretical performance bounds under realistic 
noise models.
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