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Special cavities like Figure-8 and Figure-9 are exploited in lasers to enable self-
starting passive mode-locking using nonlinear amplifying loop mirrors (NALMs) 
or nonlinear optical loop mirrors (NOLMs). Their significance lies in enhanced 
nonlinearity and intracavity feedback, enabling stable, self-sustained mode-
locked pulses suitable for ultrafast fiber lasers. In this paper, we propose the 
design of femtosecond pulse width passively mode-locked Holmium-doped 
fiber laser (HDFL) operating at 2090 nm and 12.5 MHz repetition rate based 
on Figure-9 (F9) cavity. The F9 cavity is implemented utilizing three different 
reflectors, including saturable absorber (SA), simple mirror (SM), and fiber loop 
mirror (FLM). The performance of the proposed laser is compared for different 
reflectors considering characteristics of slope efficiency (SE), pulse width, optical 
signal to noise ratio (OSNR), peak power, and pulse energy. SA, SM, and FLM 
configurations yield mode-locked pulses with SEs of 35.6%, 8%, and 8.8%, pulse 
widths of 357.2 fs, 294 fs, and 231 fs, OSNRs of 36.4 dB, 46 dB, and 50 dB, peak 
powers of 13.53 kW, 6.12 kW, and 9 kW, and pulse energies of 4.83 nJ, 2 nJ, and 
2.1 nJ, respectively. The analysis reveals that the FLM-based reflector achieves 
the shortest pulse width and highest OSNR, while the SA-based reflector delivers 
the highest peak power and pulse energy, highlighting trade-offs between pulse 
quality and energy performance in the proposed laser design.

KEYWORDS

fiber loop mirror, figure-9 cavity, holmium-doped fiber laser, nonlinear amplifying 
loopmirror, passive mode-locking, pulse energy, saturable absorber, slope efficiency 

 1 Introduction

An ultrashort pulsed laser has an extremely short pulse width and high peak 
power and is used for a variety of specialized applications [1]. For example, ultrashort 
high peak power mode-locked HDFLs operating around 2100 nm eye-safe optical 
window have got significant research interest due to their applications in different
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important areas such as remote sensing, LiDAR, deep space optical 
communications, and surgical procedures due to reduced light 
scattering in human tissues and atmospheric absorption [1,2]. The 
primary active fibers for 2100 nm applications include Thulium-
doped fibers (TDFs), Thulium-Holmium co-doped fibers (THDFs), 
and Holmium-doped fibers (HDFs) [3]. Notably, HDFs offer 
superior gain performance compared to TDFs and THDFs at 
wavelengths exceeding 2100 nm [4].

Mode-locked HDFLs can be implemented through either 
passive or active techniques [5]. Passive mode-locking employs a 
SA within the laser cavity, whereas active mode-locking utilizes 
an external modulator, such as Mach-Zehnder modulator (MZM) 
driven by a pulse generator to create periodic loss modulation [5]. 
Among these approaches, passively mode-locking offers distinct 
advantages for generating ultrashort pulses entirely in optical 
domain, including simpler cavity design, higher SE, higher peak 
power and easier implementation compared to active techniques 
[6]. Due to these advantages, numerous mode-locking mechanisms 
have been explored in HDFLs, including semiconductor saturable 
absorber mirrors (SESAMs), carbon nanotubes, graphene, and black 
phosphorus [3]. However, recent research has increasingly focused 
on specialized cavity designs, such as F8 and F9 configurations, 
which leverage NOLMs and NALMs for robust, self-starting mode-
locking [3]. These configurations offer superior performance in 
terms of pulse stability, environmental insensitivity, and power 
scalability compared to above mentioned approaches. The F9 cavity, 
in particular, has gained significant attention due to its simpler 
architecture and enhanced nonlinearity control, making it ideal 
for high-repetition-rate, ultrashort-pulse generation in the 2100 nm 
spectral region [7].

The F9 laser cavities have been extensively investigated utilizing 
different configurations of amplifying loops in recent years due to its 
unique advantages in self-starting mode-locking and environmental 
stability. For instance, F9 Erbium-doped fiber laser (EDFL) based 
on simple mirror [7], nonlinear phase shifter [8,9], NALM [10,11], 
and liquid crystal variable retarders [12], F9 Ytterbium-doped fiber 
laser (YDFL) based on NALM [13], chirped fiber Bragg grating 
(CFBG) [14], wave plates incorporated with grating pairs [15], 
and NALM incorporated with FBG [16], F9 Thulium-doped fiber 
laser (TDFL) based on NALM incorporated with CFBG [17] and 
FLM Kharitonov and [18], and F9 HDFL based on NALM [2]. 
The above discussed comprehensive literature review reveals that 
F9 HDFLs have not yet been extensively researched earlier. We 
report a 12.5 MHz femtosecond pulse width F9 HDFL operating 
at 2090 nm wavelength based on a single 0.3 W 1950 nm forward 
pump and external reflector. The F9 HDFL is implemented by using 
three different reflectors. The proposed F9 HDFL's performance 
is compared across different reflectors using key laser output 
parameters. SA, SM, and FLM configurations yield mode-locked 
pulses with SEs of 35.6%, 8%, and 8.8%, pulse widths of 357.2 fs, 
294 fs, and 231 fs, OSNRs of 36.4 dB, 46 dB, and 50 dB, peak powers 
of 13.53 kW, 6.12 kW, and 9 kW, and pulse energies of 4.83 nJ, 2 nJ, 
and 2.1 nJ, respectively.

Based on above discussion, the novel findings of this work are:

• Demonstration of passively mode-locked F9 HDFL operating 
at 2090 nm implemented with different external reflectors.

• In contrast to earlier loop-mirror based designs, this work 
systematically investigates different reflection methods, 
revealing their significant impact on pulse quality, 
and providing new design guidelines for the 2000 nm 
spectral region.

• Comparison of three different reflectors (SA, SM, and FLM) 
reveals FLM's superior pulse quality (231 fs pulse width, 50 dB 
OSNR) versus SA's energy advantage (13.53 kW peak power).

• Achievement of 12.5 MHz repetition rate femtosecond pulses 
enabled by the F9 cavity's nonlinearity management.

The proposed design and analysis of passively mode-locked 
F9 HDFL is performed using OptiSystem 21 commercial software 
developed by Optiwave Inc., Ontario, Optiwave Inc [19]. This 
paper is organized as follows: Section 2 presents the theoretical 
framework, Section 3 describes the proposed design implemented 
using OptiSystem software, Section 4 provides a comprehensive 
analysis of the results, and finally Section 5 concludes with key 
findings and implications. 

2 Theoretical background

To completely understand the operating mechanism of the 
proposed F9 HDFL operating in mode-locking regime, it is essential 
to understand the main dynamics of Ho3+ doped in silica through 
spectroscopic analysis along with the working of F9 cavity. 

2.1 Spectroscopic analysis of holmium

Figure 1 shows the normalized absorption and emission 
cross-section spectra of Ho3+ ions in a silica host, along with 
a four-level energy diagram illustrating the most commonly 
occurring transitions. The Ho3+ ions exhibit a broad absorption 
band extending from 1800 nm up to 2100 nm, with maximum 
absorption occurs at approximately 1950 nm [20,21]. In practical 
implementations, these ions are efficiently excited through in-
band pumping at either 1950 nm or 1840 nm wavelengths, 
typically achieved using TDFL based pump sources. The Ho3+

ions residing at ground energy state 5I8 are excited to the 5I7
level through ground state absorption (GSA) using in-band 
pumping as mentioned above. The transition governing the 
GSA and corresponding lasing at 2000 nm is 5I7→5I8. This GSA 
process and the corresponding lasing transitions are clearly 
indicated by red arrows at the absorption and emission spectra
of Figure 1a.

2.2 Operating principle of F9 HDFL cavity

The F9 HDFL cavity is implemented utilizing three 
different external reflectors in this work. The mode-locking 
of the proposed laser is achieved through a combination of 
interference and nonlinear pulse shaping. The laser cavity 
splits into two paths at a 50:50 optical coupler where one 
path contains the gain medium which is HDF while the other 
consists of an external reflector. Pumping the HDF generates 
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FIGURE 1
(a) Ho3+ absorption and emission cross-section (b) Energy level diagram.

FIGURE 2
F9 HDFL block diagram, HDF: Holmium-doped fiber, SMF: Single-mode fiber, PC: Pump combiner, OC: Optical coupler, OPM: Optical power meter, 
OSA: Optical spectrum analyzer, OTDV: Optical time-domain visualzer.

a wideband amplified spontaneous emission (ASE) signal in 
the NALM loop that is combined with the seed laser for 
injection seeding. The ASE is allowed to propagate through 
the HDF repeatedly and gets amplified. When light circulates 
in the NALM loop, part of it travels through the HDF where 
intensity-dependent nonlinear effects sharpen the pulse while 
the rest reflects off the reflector and recombines with the main 
beam. This interference selectively reinforces high-intensity 
pulses while suppressing weaker continuous wave (CW) light, 
effectively working like an artificial saturable absorber. The 
mirror's fixed reflection ensures consistent pulse timing and 
its distance from the coupler fine-tunes the pulse duration, 
resulting into stable and self-sustaining pulses. The mode-locking 
threshold in a F9 HDFL is determined by the nonlinear phase 
accumulation in the cavity. When the nonlinear phase shift 
ΔϕNL exceeds π/2, the system transitions from CW to mode-
locked operation. This phase shift depends on the peak power
Ppeak as [22]:

ΔϕNL = 2γPpeakLeff (1)

In Equation 1, γ = n2ω0/(cAeff) represents the nonlinear 
coefficient (n2 ≈ 2.6× 10−20 m2/W for silica fibers), and 
Leff = (1− e−αL)/α is the effective fiber length accounting 

for attenuation α at 2090 nm. The threshold condition 
ΔϕNL ≥ π/2 yields the critical peak power as given in 
Equation 2 [22].

Pth =
π

4γLeff
(2)

For typical HDF parameters with Leff ≈ 5 m and Aeff = 50 μm2, 
this threshold occurs at approximately 100.6 W peak power. The 
FLM's power-dependent reflectivity R = sin2 [(Δϕ0 +ΔϕNL)/2]
creates intensity discrimination essential for passive mode-
locking, where Δϕ0 is the static phase bias introduced by the
50:50 coupler.

Equation 3 defines the pulse evolution in HDF by modified 
Ginzburg–Landau equation [23].

∂A
∂z
=

g
2

A+ i
β2

2
∂2 A
∂T2 + iγ|A|2A+

g
2Ω2

g

∂2A
∂T2 (3)

accounting for gain (g), dispersion (β2 ≈ −50 ps2/km at 
2090 nm), Kerr nonlinearity, and gain bandwidth (Ωg ∼ 10
nm). The quasi-three-level nature of Ho3+ ions introduces 
additional threshold considerations through the pump power
requirement [23].

Ppump,th ≈
hνp

σaτ
(1+

σe

σa
) (4)
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TABLE 1  Simulation parameters of F9 HDFL.

Sr. No Parameter Value

1 Pump wavelength 1950 nm

2 Pump power 300 mW

3 Seed wavelength 2050 nm

4 Seed power −157 dBm

5 HDF length 5 m

6 Ho3+ concentration 15× 1024 m−3

7 HDF core radius 4 μm

8 HDF doping radius 2 μm

9 Numerical aperture 0.3 nm

10 Length of SMF 7 m

11 Attenuation 0.2 dB/km

12 Reflectivities of reflectors 99%

13 Resolution bandwidth of OSA 0.01 nm

14 Coupling ratio of OC 50%

15 Sequence length 1 bit

16 Samples per bit 1024

FIGURE 3
Pump power versus output power plots of F9 HDFL using three 
different reflectors.

In Equation 4, σa and σe are the absorption and emission 
cross-sections respectively, and τ ≈ 2 ms is the upper-state lifetime. 
Compared to SM or SA configurations, the FLM approach 
offers superior stability against environmental perturbations while 
maintaining lower mode-locking thresholds, as evidenced by the 
simulation results showing 50 dB OSNR and 231 fs pulse width 
in this work. 

3 Proposed passively mode-locked F9 
HDFL

Figure 2 illustrates the block diagram of the proposed passively 
mode-locked F9 HDFL. The F9 cavity consists of a NALM loop, an 
external reflector, a seed laser for injection seeding, and 1950 nm laser 
diode for pumping the gain fiber. Injection seeding is a technique which 
is mostly applied to pulsed lasers and optical parametric oscillators, 
usually with the main goal of achieving single-longitudinal mode 
operation alongwith reduced pulse build-up time, increases pulse 
energy, and reduces timing jitter in Q-switched lasers. The NALM 
loop consists of two short pieces of HDF and single-mode fiber 
(SMF) having lengths of 5 m and 7 m, respectively, a pump combiner 
(PC) used to combine the pump and seed laser with the HDF, and 
an output optical x-coupler (OC) with 50:50 splitting ratio whose 
power dependent reflectivity contributes in enabling the passive mode-
locking. PC component in OptiSystem is basically pump-coupler 
for combining signals and pumps. It is bidirectional component 
with wavelength dependent isolation, insertion loss, and return loss. 
Commercially, different variants of PCs with N number of pumps and 
one signal input are available, denoted as (N+ 1) × 1. PCs without a 
signal input are denoted as N× 1. The 50:50 OC's transfer function is 
defined by Equation 5 [24]. 

[

[

E3

E4

]

]
= 1
√2
[

[

1 i

i 1
]

]

[

[

E1

E2

]

]
(5)

where E1 and E2 are input optical fields while E3 and E4 are output 
optical fields. The parameters of HDF used in this work are similar to 
the commercial HDF (Model#iXblue IXF-HDF-PM-8–125) [25]. To 
achieve optimum operating conditions, the length of HDF and Ho3+

concentration are very similar to operating conditions described 
in [26]. The external reflector is connected to one of the output 
ports of the 50:50 OC, as shown in Figure 2. The F9 HDFL cavity is 
implemented using three different external reflectors including SA, 
SM, and FLM having 99% reflectivity in this work. The reflectivity of 
SA is modelled by the transfer function as given in Equation 6 [27].

R (t) = Runsat +
Rsat −Runsat

1+ P (t)/Psat
(6)

where Runsat represents the unsaturable reflectance, Rsat is the 
saturable reflectance, Psat denotes the saturation power, and P(t)
corresponds to the instantaneous pulse peak power. Similarly, 
reflectivity of SM is modelled by the transfer function given in 
Equation 7 [28].

Eout = EinR (7)

where R is the surface reflection coefficient. The reflectivity of FLM 
is modelled by the trasnfer function given in Equation 8 [24].

RFLM = sin2(
Δϕ
2
) (8)

where Δϕ = ϕ1 −ϕ2 is the phase difference between counter-
propagating waves and ϕ1,ϕ2 are the phases accumulated in each 
direction. Different optical visualizers, such as optical power meter 
(OPM), optical spectrum analyzer (OSA), and optical time-domain 
visualizer (OTDV) are used for monitoring of the results by 
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FIGURE 4
Time-domain traces of mode-locked pulses generated from F9 HDFL using different reflectors (a) Saturable absorber (b) Simple mirror (c) Fiber loop 
mirror. Cavity runs with a same repetition rate of 12.5 MHz for each reflector case.

FIGURE 5
Time-domain traces of mode-locked pulse trains generated from F9 HDFL using different reflectors (a) Saturable absorber (b) Simple mirror (c) Fiber 
loop mirror. Cavity runs with a same repetition rate of 12.5 MHz for each reflector case.

connecting with second output port of 50:50 OC as shown in 
Figure 2. Table 1 shows the important simulation parameters used 
in this work.

Each of the different reflectors used in the F9 HDFL interacts 
and affects the lasing mechanism in a different way. The FLM based 
design of F9 HDFL acts like SM with different behavior which is 
related to suppressing half of the reflected noise into the cavity. 
The SM does not have such behavior as it reflects both the lasing 
signal and noise equally. Also, both the FLM and SM do not have 
interaction with the lasing power as they are passive devices, which 
avoids any nonlinear interaction. On the other hand, the FLM length 
is short, which will not cause any dispersion to the produced pulses. 
However, it affects the width of the produced pulses as it affects the 
laser cavity length. The SA based design of F9 HDFL interacts with 
the lasing signal power and pump power which affects the reflected 
signal ratio into the laser cavity. The interaction eventually affects 
the final pulse width of the laser. Moreover, the laser cavity is fixed 
for all reflector cases because the fiber length is constant. However, 
the percentage of the reflected signal into the cavity varies from one 
type to another. As described above, the SA reflection depends on 
the power applied on it, while the FLM reflects 3 dB less power into 

the loop for the ASE, while reflecting all the lasing signal. However, 
the SM reflects both the ASE and lasing signal fully into the cavity. 
As a result, the mode-locking threshold varies for each reflector. 

4 Results and discussion

Figure 3 shows pump power versus output power plots of 
passively mode-locked F9 HDFL for three different reflectors such 
as SA, SM, and FLM. The relationship between output power and 
pump power, as shown in Figure 3 is clearly demonstrating a 
linear dependence. As evidenced by the plots, the measured SEs 
are 35.5%, 8%, and 8.8% for SA, SM, and FLM based designs of F9 
HDFL, respectively. The SEs differ for each design primarily due to 
variations in intracavity losses and nonlinear effects introduced by 
the different reflectors.

Figure 4 shows the time-domain traces of mode-locked pulses 
measured by OTDV generated from passively mode-locked F9 
HDFL using SA, SM, and FLM configurations as shown in Figure 2. 
It is clearly evident that the pulse widths of 357.2 fs, 294 fs, and 
231 fs, peak powers (Pp) of 13.53 kW, 6.12 kW, and 9 kW, and pulse 
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FIGURE 6
Frequency-domain plots of mode-locked pulses generated from F9 HDFL using different reflectors (a) Saturable absorber (b) Simple mirror (c) Fiber 
loop mirror. Cavity runs with a same repetition rate of 12.5 MHz for each reflector case.

FIGURE 7
Auto-correlation traces of generated mode-locked pulses for different reflectors (a) Saturable absorber (b) Simple mirror (c) Fiber loop mirror. Cavity 
runs with a same repetition rate of 12.5 MHz for each reflector case.

FIGURE 8
Time-domain traces of mode-locked pulses generated from F9 HDFL with Gaussian fittings using different reflectors (a) Saturable absorber (b) Simple 
mirror (c) Fiber loop mirror. Cavity runs with a same repetition rate of 12.5 MHz for each reflector case.
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TABLE 2  Performance benchmarking and comparison of the proposed work with related published experimental studies.

Ref. Cavity Rate SE Energy Pulse width Avg. power OSNR

Wang et al. [2] F9, NALM 1.855 MHz 16.6% 280 nJ - 520 mW 56 dB

Filatova et al. [30] Ring, NPE 20.4 MHz - 0.3 nJ 1.3 ps 6.12 mW 65 dB

Proposed F9, NALM 12.5 MHz 35.6% 4.83 nJ 357.2 fs 60.4 mW 36.4 dB

energies (Ep) of 4.83 nJ, 2 nJ, and 2.1 nJ are obtained using SA, 
SM, and FLM configurations, respectively. Figure 5 shows the time 
domain plots of mode-locked pulse trains for SA, SM, and FLM 
configurations as shown in Figure 2 at wavelengths and repetition 
rate of 2090 nm and 12.5 MHz, respectively.

Figure 6 shows the spectral plots of mode-locked pulses 
measured by OSA generated from passively mode-locked F9 HDFL 
using SA, SM, and FLM configurations as shown in Figure 2. It 
is clearly evident that the OSNRs of 36.4 dB, 46 dB, and 50 dB 
are obtained using SA, SM, and FLM configurations, respectively. 
The OSNRs differ because each reflector filters noise differently. 
The FLM's interferometric design suppresses noise most effectively 
compared to the SA and SM designs. The FLM is a passive module 
acts as a mirror with noise filter characteristics [29]. As a result, the 
FLM produces better OSNR compared to the SA and SM, that do not 
have the noise reduction mechanisms. Moreover, the residual pump 
is clearly visible in spectral plots due to small conversion efficiency 
and length of the HDF. It doesn't absorb all the pump. However there 
should be enough ASE to start the lasing process to overcome the 
loss in the HDF. Often it has been observed that all pump power 
does not fully absorb in the gain fiber and residual pump power can 
be extracted and used for different purposes such as pumping the 
gain fiber in dual stage amplifier, pump recycling, SE improvement, 
and self-pulsing.

Figure 7 shows the auto-correlation traces of mode-locked 
pulses measured by OTDV generated from passively mode-
locked F9 HDFL using SA, SM, and FLM configurations 
as shown in Figure 2. The auto-correlation traces show that the FLM 
produces the shortest and cleanest pulses, while the SA generates 
longer but more energetic pulses. The SM results in pulses with 
intermediate characteristics. These measurements confirm the pulse 
duration differences. The cleaner trace of the FLM also aligns with 
its higher OSNR performance.

The Gaussian fitting of the mode-locked pulses generated from 
the passively mode-locked F9 HDFL reveals critical insights into 
the temporal characteristics of each reflector design as shown 
in Figure 8. For the SM configuration, Figure 8b illustrates the 
close Gaussian fit (R2 > 0.98) confirms near-transform-limited 
pulses with minimal chirp, though the broader FWHM of 294fs
indicates some residual dispersion effects. Similarly, Figure 8c 
shows the FLM's excellent Gaussian match (R2 > 0.99) validates 
its ability to generate near-ideal, symmetric pulses of 231fs
pulse width, consistent with its superior OSNR performance, 
suggesting optimal nonlinear phase compensation. Notably in SA 
based design, Figure 8a shows slight deviation from Gaussian 
shape at pulse wings hints at minor uncompensated nonlinearities, 
explaining its intermediate performance. These fits quantitatively 
demonstrate how SA prioritizes energy retention while FLM 

optimizes temporal purity which is the key considerations for 
applications demanding either high peak power or precision pulse 
shaping. The Gaussian analysis further supports the cavity's ability 
to sustain stable soliton-like pulses across all configurations.

For performance benchmarking, we have compared the 
main results of the proposed F9 HDFL with related published 
experimental works in Table 2. 

5 Conclusion

This work demonstrated femtosecond passively mode-locked 
Holmium-doped fiber laser operating at 2090 nm based upon a 
Figure-9 cavity which was implemented with three distinct reflectors 
including saturable absorber, simple mirror, and fiber loop mirror. 
A comparative analysis of the laser's performance based on metrics 
including slope efficiency, pulse duration, optical signal to noise 
ratio, peak power, and pulse energy was conducted for each 
reflector configuration. The figure-9 Holmium-doped fiber laser 
performed differently with each reflector. The saturable absorber 
based design gave the highest slope efficiency and peak power 
of 35.6% and 13.53 kW, respectively with pulse width of 357 fs. 
The fiber loop mirror configuration generated the mode-locked 
pulses having pulse width of 231 fs and optical signal to noise 
ratio of 50 dB OSNR with 9 kW peak power. The performance of 
simple mirror based design was in between. The figure-9 cavity's 
versatility enables tailored operation across ultrafast and high-
energy regimes, advancing 2000 nm laser technology for optical 
wireless communication and beyond.
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