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With the rapid development of electronic networks, consumer online 
purchasing behavior data presents massive growth and diverse characteristics. 
How to accurately predict purchasing behavior based on big data analysis 
becomes the key to improving the quality and efficiency of consumer 
services. Introducing deep learning methods into purchase prediction 
research, this paper proposes entity embedding-convolutional neural network-
convolutional block attention module (EE-CNN-CBAM) for predicting consumer 
network purchasing behavior. By entity embedding (EE), high cardinality 
categorical variables are transformed into low dimensional dense vectors 
to reduce the computational cost of big data. Using convolutional neural 
network (CNN) as the core, local association patterns are extracted from 
user behavior sequences to capture implicit features of consumer online 
purchasing behavior. And based on the time series data of consumer 
online purchasing behavior, the characteristic indicators of purchasing 
behavior patterns are constructed. Convolutional block attention module 
(CBAM) adjusts channel attention adaptively, allowing the model to 
prioritize and reinforce the expression of important purchasing behavior 
features. The experimental results show that EE-CNN-CBAM improves the 
prediction accuracy on large scale consumer network purchase datasets, 
providing effective support for consumer behavior prediction in big data 
environment.
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Highlights

• This paper proposes entity embedding-convolutional neural network-convolutional 
block attention module (EE-CNN-CBAM) for predicting consumer network 
purchasing behavior.

• By conducting multiple simulation experiments, it is verified that EE-CNN-CBAM 
can effectively provide more reliable big data analysis support for predicting 
purchasing behavior.
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 1 Introduction

With the deep penetration of the digital economy, network 
electronics have become the core carrier of Chinese residents’ 
consumption [1]. Behind this trend is the transformation of 
online shopping from “supplementary channels” to “mainstream 
scenarios”. Consumers not only complete product purchases 
through e-commerce platforms, but also leave massive behavioral 
traces throughout the entire process of browsing, comparing, 
consulting, and evaluating. These data cover user basic attributes 
such as age, gender, region, interactive behaviors such as click 
sequences, browsing time, add purchase actions, transaction records 
such as purchase frequency, average order value, payment methods, 
and time characteristics such as purchase period, stay time, repeat 
purchase cycle, etc. These constitute a large-scale and multi-
dimensional consumer behavior big data pool.

Accurately predicting consumer purchasing behavior has 
become the key for enterprises to improve conversion efficiency 
and optimize service experience. For online platforms, accurately 
judging consumers’ online purchasing intentions can achieve 
personalized recommendations, such as pushing target products 
to high intention users, dynamically pricing discounts for price 
sensitive users, and inventory allocation based on predicted 
demand for early stocking. For brand owners, purchasing behavior 
prediction can support precision marketing such as targeted coupon 
distribution, product iteration based on user preference adjustment 
functions, and channel optimization focusing on advertising during 
high conversion periods. For consumers, an efficient prediction 
system can reduce the interference of invalid information, improve 
shopping decision-making efficiency and security [2].

However, the complexity of consumer online purchasing 
behavior and the challenges posed by data characteristics make 
accurate prediction face multiple challenges. From the perspective 
of behavior itself, purchasing decisions are influenced by multiple 
coupled factors. This includes not only the matching degree 
between product attributes such as price, brand, evaluation, 
and user preferences such as category orientation and quality 
sensitivity, but also the interference of scenario factors such as 
promotional activities, seasonal changes, and social influences 
such as social recommendations and influencer sales, presenting 
non-linear and dynamic characteristics. From a data perspective, 
consumer behavior big data has high-dimensional characteristics, 
with a total feature dimension exceeding one billion under the scale 
of millions of users. Another advantage is high sparsity, where user 
behavior exhibits strong selectivity. In addition, the data type covers 
structured data such as user ID, commodity classification, semi-
structured data such as browsing path log and unstructured data 
such as evaluation text and consultation dialogue. Traditional single 
model is difficult to achieve multimodal feature fusion.

Big data analysis technology has the ability to mine deep 
features, and with the help of deep learning models such as 
neural networks and attention mechanisms, it can capture implicit 
associations from sparse data, and cope with dynamic changes in 
purchasing intentions, such as sudden increases in user intentions 
after promotions begin [3]. These abilities make it possible to 
extract core predictive signals from complex behavioral data 
and construct high-precision predictive models. The research on 
predicting consumer purchasing behavior can be traced back to 

the traditional retail era. In the early days, statistical methods [4] 
were used to analyze the purchasing patterns of limited samples, 
such as exploring the relationship between price and sales volume 
through regression models. With the rise of online consumption and 
data accumulation, research has gradually shifted towards machine 
learning methods, resulting in rich achievements in recent years.

In terms of predictive model construction, research has 
evolved from traditional machine learning to deep learning. 
In traditional methods, logistic regression is widely used for 
purchasing probability prediction due to its strong interpretability, 
such as predicting users’ purchasing behavior after clicking on 
advertisements, but it is difficult to capture nonlinear relationships 
[5]. Random forest and gradient boosting tree, also known as 
GBDT, improve accuracy through ensemble strategies and perform 
excellently on structured data. The rise of deep learning has provided 
new tools for processing sequential data and high-dimensional 
features. Recurrent neural networks, also known as RNNs and 
variants such as LSTM and GRU, capture temporal dependencies 
of behavior such as browsing to purchase sequence associations 
through memory mechanisms [6–8], resulting in improved accuracy 
in time series prediction compared to traditional methods. CNN 
extracts local behavioral patterns through convolution operations, 
such as clicking on products of the same category three times in 
a row. The introduction of attention mechanism further enhances 
the model’s ability to focus on key features, enabling the model to 
automatically pay attention to strong intentional behaviors, thereby 
improving prediction accuracy.

The core value of deep learning in predicting consumer 
online purchasing behavior lies in its ability to model nonlinear 
relationships and automatically learn features. Traditional machine 
learning relies on artificial feature engineering, while deep learning 
can automatically transform raw data into higher-order features 
through multi-layer neural networks. This end-to-end feature 
learning mechanism is particularly suitable for capturing implicit 
associations in consumer big data. Under training with millions of 
samples, the model can autonomously discover patterns that are 
difficult for humans to detect.

In recent years, hybrid models have become a research hotspot in 
the field of predicting consumer online purchasing behavior due to 
their adaptability to multi-source data and advantages in prediction 
accuracy [9]. This type of model achieves synergistic efficiency by 
integrating the core advantages of different algorithms. For example, 
when integrating LSTM, which excels in capturing temporal 
dependencies, with attention mechanisms that have dynamic 
focusing capabilities, the attention mechanism can strengthen its 
focus on key decision nodes by calculating the associated weights 
of each node in the behavior sequence based on LSTM’s long-term 
modeling. Specifically, when there are sudden signals in the user 
behavior sequence, such as concentrated clicks during promotional 
periods or peak purchases before major promotions, the attention 
mechanism will automatically increase the weight proportion of 
these nodes. It accurately locates the core behaviors that affect 
purchasing, avoiding feature dilution caused by long time series. 
This fusion model has improved prediction accuracy compared to 
a single LSTM when processing user behavior data across weeks 
and months [10], especially in identifying purchase intentions in 
promotional scenarios.
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However, the implementation of existing hybrid models in 
actual consumer network scenarios still faces multiple real-world 
challenges. Firstly, the processing efficiency of large-scale real-
time data is insufficient. The daily user behavior data generated 
by e-commerce platforms can reach billions of levels, covering 
dozens of features such as browsing clicks, add ons, favorites, 
payment conversions, etc. The multi-layer network structure and 
complex computational logic of the hybrid model can easily lead 
to feature processing delays. Single user feature calculation can 
take up to 50 milliseconds, making it difficult to meet real-
time requirements under concurrent requests, directly affecting the 
instant conversion opportunities of high intention users. Secondly, 
the time pattern mining of behavioral data is still insufficient. 
The temporal characteristics of user purchasing behavior exhibit 
significant dynamism and multi granularity, including both long-
term stable habitual preferences and temporary changes driven 
by short-term scenarios. Existing hybrid models often use fixed 
time windows to extract features, making it difficult to adapt to 
such dynamic changes. The model cannot capture the migration 
of temporal preferences in a timely manner, resulting in prediction 
results lagging behind actual behavioral patterns. At the same time, 
most models only handle time granularity at the day or hour level, 
failing to delve into minute level fine patterns, and the behavioral 
differences in such high-frequency periods are often key signals for 
distinguishing high intention users.

In the field of time feature mining, early research mostly 
focused on static time attributes, ignoring the temporal patterns 
of behavior. However, existing research has not combined the 
long-term and short-term patterns, such as the mutual influence 
between short-term promotions and long-term habits, resulting in 
deviations in predictions when scenarios change, such as during 
major promotions. This paper aims to provide models and methods 
for predicting consumer purchasing behavior in the big data 
environment, and promote the deep integration of theoretical 
research and online consumption practice. 

1. This paper proposes EE-CNN-CBAM, which consists of entity 
embedding, convolution neural network and convolutional 
block attention module. Among them, EE is used to improve 
the performance of CNN on structured big datasets, while 
CNN is mainly responsible for predicting consumer network 
purchasing behavior in the end.

2. The introduction of CBAM can achieve precise capture of key 
features for massive consumer behavior data. It dynamically 
assigns differentiated weights to different features or sequence 
positions, strengthening the focus on core features that are 
strongly related to purchasing decisions, while weakening 
redundant information such as accidental browsing of non 
target categories.

3. By conducting multiple simulation experiments, it is verified 
that EE-CNN-CBAM can effectively provide more reliable big 
data analysis support for predicting purchasing behavior.

The rest of this paper consists of four parts. Section 2 is 
related literature related to the work. Section 3 provides a detailed 
introduction to EE-CNN-CBAM of consumer online purchasing 
behavior prediction, which combines big data analysis. Section 4 
designs comparative experiments for testing and analysis based on 
multiple baselines. Finally, Section 5 is the summary. 

2 Literature review

The application of machine learning technology in the field 
of online electronics had become quite mature. Especially in the 
field of commodity price prediction, machine learning algorithms 
integrated and processed multi-dimensional correlation features 
such as multi-source time-series data, market dynamics and 
consumer behavior to construct nonlinear prediction models, 
achieving dynamic prediction of price fluctuations. [11] conducted 
research on consumer purchase prediction in non-contractual 
environments by establishing a machine learning framework 
based on consumer purchase data. [12] proposed the Bayesian 
personalized ranking (BPR) framework based on the premise that 
browsing time within a game app was directly proportional to the 
likelihood of purchasing products. And by conducting experiments 
on the game app dataset, they ultimately improved the accuracy of 
player app purchase prediction. [13] used a logistic regression model 
to adjust time-related features based on an e-commerce dataset, 
and compared the purchasing behavior of consumers for different 
brand products in two scenarios of marketing and daily sales. [14] 
used a support vector machine algorithm to mine activity record 
data of Twitter users and predicted consumers who purchased 
digital cameras and personal computers. [15] proposed a two-
stage consumer purchase model COREL, in which the first stage 
established the connection between consumers and products. And 
the second stage predicted which associated products consumers 
were more likely to purchase. Finally, they conducted an empirical 
study on purchasing prediction on the JD consumer purchasing 
dataset. The results showed that COREL could effectively calculate 
product popularity and accurately predict customer purchasing 
behavior. [16] added RFM variables to the association rules of the 
recommendation algorithm based on the online user purchasing 
cosmetics dataset, enabling the algorithm to dynamically predict 
consumer purchasing behavior. [17] used neural networks and 
decision tree algorithms to predict customers’ purchase behavior 
of shopping cart items based on consumer online purchase click-
through flow data and demographic data. [18] included the factor of 
consumer purchase stay time in their purchase prediction study and 
compared the predictive performance of support vector machine 
(SVM), logistic regression (LR) and other algorithms on RFID 
datasets. The results confirmed that SVM achieved better predictive 
performance.

With the development of deep learning methods, temporal 
modeling techniques had made breakthrough progress in the 
field of price prediction. [19] proposed a stock price trend 
prediction model called LSR-IGRU, which significantly improved 
the accuracy of stock trend prediction by integrating multi-
scale temporal features and enhancing gating mechanisms. [20] 
conducted predictive research on consumer purchasing and product 
classification on a large retail sales dataset by constructing LDA and 
MDM models. [21] proposed a Time Series Retrieval Augmented 
Generation method (TimeRAG), which combined retrieval-
enhanced generation and large-scale language models to improve 
the accuracy of time series prediction, especially in the field of 
quantitative trading. [22] proposed a product image feature selection 
model that integrates CNNs and attention mechanisms. And they 
combined an improved probability unit model and consumer 
selection model. They determined the optimal pricing strategy 

Frontiers in Physics 03 frontiersin.org

https://doi.org/10.3389/fphy.2026.1686157
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Wen and Liu 10.3389/fphy.2026.1686157

through nonlinear constraint programming to adapt to different 
market environments and changes in consumer characteristics. 
[23] constructed a feature combination deep learning framework 
(FC-LSTM) based on consumer purchase history data and 
demographic data to predict consumer purchase decisions. [24] 
proposed a novel deep learning algorithm based on customer 
purchasing behavior, namely Weight Optimized Long Short Term 
Memory Network (WOLSTM), for dynamic pricing solutions on 
e-commerce platforms. [25] proposed a real-time online user 
purchase prediction model, which consisted of two modules. The 
two modules were MLP and LSTM. They successfully conducted 
a two-stage study on purchasing prediction using this model on 
user online browsing data, clickstream data and demographic 
data. [26] proposed a new price prediction model that predicts 
the sales price of goods through news events and improved the 
accuracy of price prediction. [27] proposed a dynamic pricing model 
based on linear regression, which predicted the optimal price of 
agricultural products by real-time analysis of market supply, helping 
farmers cope with price fluctuations and maximize profits at low
cost. 

3 Research on consumer online 
purchasing behavior analysis and 
prediction for big data analysis

3.1 Overview of EE-CNN-CBAM combined 
with big data

This paper constructs EE-CNN-CBAM for predicting consumer 
online purchasing behavior, which integrates EE, CNN and CBAM 
modules. Its core advantage lies in adapting to multi-source 
consumption data processing in big data environments. As the core 
component, CNN can mine local association patterns from massive 
consumer behavior sequences, such as product browsing trajectories 
and click timing, and capture implicit features such as adding items 
to the shopping cart after continuous browsing [28]. EE generates 
low dimensional vectors for high cardinality categorical variables, 
such as product categories and user labels. It not only solves the 
dimensionality disaster problem of traditional encoding, but also 
reveals the inherent relationship between user preferences and 
product attributes through vector semantic association, adapting 
to the dimensionality reduction needs of structured consumer big
data.

In response to the performance limitations of deep learning 
on large-scale structured data, the model combines EE with 
CNN to achieve the fusion modeling of structured classification 
features and unstructured behavior sequence big data, fully utilizing 
the complementary value of multimodal consumption data. By 
introducing attention mechanisms, the model’s memory ability 
is significantly enhanced, enabling it to more effectively capture 
key patterns and patterns in historical data. CBAM dynamically 
focuses on key information among massive features through two-
stage refinement of channel and spatial attention mechanisms. 
Channel attention assigns weights to feature dimensions such 
as product price and discount strength, strengthening features 
strongly correlated with purchase. Spatial attention captures 
the behavior patterns of key time nodes such as concentrated 

browsing and staying on detail pages during promotional 
periods, avoiding feature dilution caused by excessive data 
size. Overall, EE-CNN-CBAM effectively addresses the high-
dimensional, multimodal and strong noise characteristics of 
consumer behavior big data by processing high-dimensional 
structured data through EE, extracting sequence features through 
CNN and focusing on key patterns through CBAM. This provides 
accurate big data analysis support for purchasing behavior 
prediction. The EE-CNN-CBAM structure design constructed 
is shown in Figure 1.

As shown in Figure 1, the EE-CNN-CBAM input layer includes 
EE layer. Initially, each variable is mapped to the corresponding 
embedding layer through EE. Among them, unstructured text data 
is a key predictive signal carrier, and preprocessing and embedding 
need to be designed in conjunction with its features. The evaluation 
text is 5–200 words long, with fragmented and colloquial language, 
including emotions, product attributes and purchase intentions. 
The noise includes emoticons, system tags and meaningless short 
sentences. The consultation dialogue consists of multiple rounds of 
interaction, with each round consisting of 2–50 words, containing 
contextual and decision-oriented information. Noise includes 
customer service prompts, spoken abbreviations, idle chat content 
and temporal associations need to be retained. Preprocessing follows 
a three-level process of data cleaning, semantic normalization and 
noise refinement. During the data cleaning phase, non-textual 
symbols are removed from the evaluation text using regular rules, 
short and long texts are processed. Consultation conversations filter 
out irrelevant interactions and complete fragmented rounds. In the 
semantic standardization stage, a unified format and expression in 
both Chinese and English are used, followed by segmentation and 
filtering of stop words using an e-commerce custom dictionary. 
The context window and rule library are used to resolve ambiguity 
in polysemous words and complete dialogue omission expressions. 
During the noise refinement stage, the evaluation text and sentiment 
dictionary retain core information, while the consultation dialogue 
uses intent classification models and entity recognition to extract 
purchase-related content.

The EE module converts high cardinality categorical variables 
such as user ID and product classification into 256 dimensional 
vectors. After dimension alignment, the text is embedded in the 
feature fusion layer for modal concatenation with the original input 
of the model. Subsequently, all embedded layers are merged into 
a fusion layer, which is suitable for structured data and serves as 
input for subsequent CNN. Two convolutional layers of convolution 
layer1 and layer2 extract consumer network purchasing behavior 
features through convolution operations. Then, the max pooling 
layer, merging layer and flatten layer are mainly used for reducing 
data dimensionality. The neurons in the fully connected layer1 
connect all feature operations in the convolutional and pooling 
layers to obtain non-linear combinations of higher-level consumer 
network purchasing behavior features. The fully connected layer2 in 
the output layer is used to output the predicted probability score of 
consumer network purchases. In addition, in order to improve the 
generality of the network and avoid overfitting, Dropout technology 
is introduced here, which can pause half of the feature detectors 
from participating in training each time the training samples are
taken. 
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FIGURE 1
EE-CNN-CBAM network structure diagram.

3.2 CBAM

CBAM is a module that combines convolutional blocks and 
attention mechanisms in CNN [29]. It is mainly used to enhance 
the representation ability of CNN on consumer online purchasing 
related features, especially when processing purchasing behavior 
data in big data environments such as user browsing time, product 
click sequences, historical purchase records, etc. It can help the 
network focus on core features strongly related to purchasing 
decisions, such as high-frequency browsing of product categories, 
length of stay after adding to the shopping cart, etc. The channels 
here correspond to different dimensions of purchasing behavior, 
such as product browsing frequency, collection quantity, price 
sensitivity identification, etc. This can pay more attention to 
features strongly related to purchasing behavior in the channel 
dimension, such as the channel corresponding to the behavior of 
adding to the shopping cart, while suppressing redundant channel 
information such as page jump records unrelated to purchasing
decisions.

The importance weights of purchase features corresponding to 
different interaction moments or sequence positions of product 
browsing in the spatial dimension can be obtained. This can enable 
the network to pay more attention to key time nodes or locations 
related to decision-making in the purchasing behavior sequence 

in the spatial dimension, accurately capturing behavior patterns 
such as concentrated purchasing intentions during promotional 
activities and ordering signals after specific browsing sequences. 
The channel attention mechanism enables the module to focus on 
channels that are useful for predicting purchasing behavior tasks, 
such as channels corresponding to recent purchase frequencies, 
and suppress channels that are unrelated to purchasing decisions, 
such as browsing history channels for non target categories. The 
spatial attention mechanism focus its attention on key areas in 
the spatial dimension of the purchasing behavior sequence, such 
as the peak time of product clicks during discount periods and 
decision nodes in specific browsing sequences. The output of spatial 
attention mechanism highlights the information of key time nodes 
or sequence positions in purchasing behavior. The calculation 
method is shown in Equations 1, 2. 

A′ =Mc(A) ⊗A (1)

A″ =Ms(A′) ⊗A′ (2)

Here, A represents the input consumer network purchase 
behavior feature map, covering multi-dimensional data such as 
browsing sequences, purchase frequency and price preferences. A′

denotes the feature map obtained after CBAM processing, which is 

Frontiers in Physics 05 frontiersin.org

https://doi.org/10.3389/fphy.2026.1686157
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Wen and Liu 10.3389/fphy.2026.1686157

the output of CBAM. A″ indicates the consumer network purchase 
behavior result derived from A′ through attention mechanism 
processing Mc. Mc represents channel attention weighting, Ms
denotes spatial attention weighting and ⊗ signifies element-level 
product operators.

The channel attention module and spatial attention module 
in CBAM respectively affect the channel dimension and spatial 
dimension of the consumer network purchasing behavior feature 
map. This aims to explore key features that are valuable for predicting 
purchasing behavior. Finally, the learned attention weights are 
multiplied to adjust the representation of consumer purchasing 
behavior features within each channel, highlighting the behavior 
channels that have a significant impact on purchasing decisions. It 
is shown in Equation 3. 

Mc(F) = σ(MLP(AvgPool(F)) +MLP(MaxPool(F)))

= σ(W1(W0(F
C
Aνg)) +W1(W0(F

C
Max)))

(3)

The σ denotes the sigmoid activation function. While F
represents the input consumer network purchase behavior feature 
map containing multi-dimensional data such as browsing history, 
purchase frequency and price preferences, typically denoted as 
C×H×W. Fc

avg indicates global average pooling operation. Fc
max

represents the global maximum pooling operation.
In the spatial attention module, for the feature map of 

consumer online purchasing behavior, global average pooling is 
first performed in the height and width dimensions, aiming to 
extract spatial information of consumer behavior that covers the 
whole world. Subsequently, global max pooling is performed in 
the same dimension to capture significant features in the global 
spatial information that have a prominent impact on purchasing 
decisions. Subsequently, results are input into two independent 
multilayer perceptrons (MLPs) for processing. Each MLP applies 
non-linear mapping to the globally pooled consumer behavior 
characteristics, mining deep correlations between behavior features 
such as browsing trajectories and purchase frequency in spatial 
dimensions. Sigmoid activation is employed to produce spatial 
attention values in the [0,1] range. This highlights the key spatial 
behavior patterns for predicting purchasing behavior and helps to 
accurately understand the logic of consumer purchasing decisions. 
The calculation is displayed in Equation 4, which is used to highlight 
the key spatial behavior patterns for predicting purchasing behavior. 

Ms(F) = σ( f7∗7([FS
Aνg,F

S
Max])) (4)

The f7∗7 denotes the feature mapping function for consumer 
online purchasing behavior data, specifically implemented as a 1 × 
1 convolution operation to extract correlations between behavioral 
features such as browsing patterns and purchase frequency. FS

Aνg
represents the result of global average pooling applied across spatial 
dimensions on the input consumer online purchasing behavior 
feature map, capturing overall temporal or interaction sequence 
trends in behavioral data. Fs

Max indicates the outcome of global 
maximum pooling performed on the spatial dimension of the input 
consumer online purchasing behavior feature map. It is used to 
extract key nodes in behavior sequences that have a significant 
impact on purchasing decisions, such as concentrated purchase 
intentions during promotional periods, order signals after specific 
browsing sequences, etc. 

3.3 Characteristic indicators of consumer 
online purchasing time pattern

In previous research on predicting consumer online purchases, 
the features used for prediction are often common consumer 
demographic characteristics and network membership related 
characteristics. Extensive research using these types of features 
has achieved good predictive results, but there are still many 
shortcomings. For example, the range of data types for constructing 
features is not wide enough. In recent years, with the advent of 
the era of big data and artificial intelligence, the time series data 
collected from consumers’ shopping behavior has grown rapidly. 
Due to the fact that consumer online purchases occur within a 
certain time frame, it is of great significance to uncover the patterns 
behind consumer shopping time patterns in order to improve the 
performance and interpretability of model purchasing behavior 
prediction.

We introduce time series data of consumer purchases into the 
study of purchasing behavior prediction. Specifically, in order to 
better explore the time patterns of consumer online purchases, we 
plan to first construct time characteristic indicators for purchase 
behavior patterns, namely purchasing time diversity, time loyalty 
and time regularity, abbreviated as time_div, time_loy and time_reg.

Firstly, based on a basic concept of “bin”, the “bin” in the purchase 
time feature is the time dimension segmentation unit, which is 
one-dimensional. We define the minimum segmentation unit for 
purchasing time pattern features as hours, so the total number of 
“bin” must be 24. For all online consumers, regardless of the time 
period of purchase, the corresponding labeled ‘bin’ is where they fall. 
The more times you scan the code to purchase in a certain “bin”, the 
higher the frequency counted in that “bin”. If you never purchase 
in the time zone of that “bin”, the corresponding frequency for that 
“bin” is 0. On the basis of defining the “bin”, the following further 
defines time_div, time_loy and time_reg.

The time_div represents the degree of dispersion of consumers’ 
online purchases of goods at all times, that is the degree of 
dispersion of consumers’ purchase times in various “bin” in the time 
dimension. The higher the value of time diversity for a consumer, 
the more likely they are to purchase goods at different times on the 
internet, meaning they are more likely to purchase goods at different 
times and vice versa. The original definition of temporal diversity 
is shown in Equation 5. 

time_divi =
−∑

j
Npij logpij

logMi
(5)

The N represents the total number of “bin” available, Mi denotes 
the quantity of all “bin” involved in consumer i’s online purchase 
history. The pij indicates the probability that consumer i completes a 
transaction within the j-th “bin”.

The time_loy reflects the proportion of purchases occurring 
within the top k “bin” with highest purchase frequency. Since the 
first k “bin” purchased at a frequent time can largely reflect the 
degree of consumers’ willingness to repeat purchases at a certain 
time, k is taken as 3 in the original definition of time_loy. As 
all purchase occasions have been categorized into “bin”, this time 
loyalty measure specifically captures consumers’ preference for high-
frequency purchase periods. The formula for consumer i’s time 
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loyalty is defined as shown in Equation 6. 

time_loyi =
fi

∑N
j=1

pij

(6)

Among them, fi is the proportion of the number of purchases in 
the “bin” that consumers buy most frequently among all the “bin”. 
Obviously, time_loyi is essentially a probability between 0 and 1.

The regularity of consumer purchase time comprehensively 
considers the overall pattern of consumer purchase time diversity 
and purchase time loyalty in different periods. In the initial 
definition, the observation period is 1 month in the short term 
and 3 months in the long term. Due to the consideration of time 
diversity and time loyalty variables in both long and short periods 
of time_reg, the information on consumer time patterns covered 
should be more comprehensive. The specific definition of positional 
regularity is shown in Equation 7.

time_regi = 1−
√(time_divs

i − time_divl
i)

2 + (time_loys
i − time_loyl

i)
2

√2
(7)

Here, time_divs
i  and time_divl

i represent the diversity of 
consumers’ long-term and short-term purchasing time for consumer 
i, while time_loys

i  and time_loyl
i denote their corresponding 

long-term and short-term purchasing time loyalty. Under the 
normalization of these indicators, the value range of time_regi
calculated by Equation 7 falls within interval [0,1]. A value closer to 1 
indicates higher similarity in purchasing behavior patterns between 
long-term and short-term periods for consumer i, while a value 
farther from 1 suggests less consistency.

Obtaining the importance weights of purchase features 
corresponding to different interaction moments or product 
navigation sequence positions in the spatial dimension can be 
achieved through econometric equation methods. Adopting 
an ordered logit model to adapt the ordered characteristics of 
navigation sequence positions, the basic importance weights of 
each position and interaction time feature are represented by its 
partial regression coefficient. The Lasso regularization equation is 
combined for feature selection and weight shrinkage to suppress 
multicollinearity interference caused by redundant features. The 
vector autoregression equation is introduced to capture the lag 
effect and dynamic weight allocation of features in response to 
the dynamic impact at different interaction moments. Finally, 
through standardization processing, the coefficients output by 
various econometric equations are uniformly transformed into 
quantified results in the 0–1 interval, thereby accurately obtaining 
the importance weights of corresponding purchase features. 

4 Experimental design and result 
analysis

4.1 Experiment setup

The experiment is conducted on cloud servers to support 
efficient deep learning training and testing. The cloud server is 
configured with 12 vCPUs, with a memory capacity of 90 GB and 

is equipped with Intel (R) Xeon (R) Silver 4214R CPU with a clock 
speed of 2.40 GHz to meet large-scale data processing needs. At the 
same time, it is equipped with NVIDIA GeForce RTX 3080 Ti GPU, 
which has 12 GB of video memory and can accelerate the training of 
deep learning models. The programming language used is Python 
3.7 and the deep learning framework PyTorch is adopted to fully 
utilize its flexibility and powerful features. We choose Linux as the 
operating system to ensure good performance.

The experiment uses two datasets, namely ICPR MTWI2018 
[30], MEP-3M [31] and Amazon-M2 [32]. ICPR MTWI2018 is a 
web-based text dataset primarily composed of images purchased 
online, containing multiple fonts and scales of text. This dataset 
is jointly collected and calibrated by South China University of 
Technology and Alibaba, with a total of 10,000 available images 
containing labels. The difficulty of detecting this dataset lies in the 
complexity and variability of fonts, the range of text pixels from 0 
to 100 and the presence of complex background interference. MEP-
3M has large-scale, hierarchical classification, multi-mode, fine-
grained and long tail characteristics. According to statistics, MEP-
3M contains over 3 million products, making it the largest dataset 
compared to existing network electronic product datasets. The 
products in MEP-3M are represented in three forms, namely image, 
text description and OCR text. Amazon-M2 clearly covers multiple 
regions and multilingual scenarios, including regional shopping 
data corresponding to six languages. User conversations originate 
from Amazon e-commerce platforms in different regions around the 
world and can be directly used for comparative research on cross 
regional user purchasing behavior.

In order to verify the effectiveness of EE-CNN-CBAM, this 
paper comprehensively considers the applicability of various 
evaluation indicators. Based on existing research, it is ultimately 
decided to comprehensively evaluate the trend prediction 
performance of EE-CNN-CBAM and other benchmark comparison 
prediction models using four evaluation indicators. They are 
accuracy, precision, expected maximum profit (EMP) and F1 score 
(F1) [33]. In order to introduce the specific definition of EMP, it 
is necessary to first define the average classification profit and the 
maximum profit, where the definition of average classification profit 
is shown in Equation 8.

P(t;b0,c0,b1,c1) = b0π0F0(t) + b1π1(1− F1(t)) − c0π0(1− F0(t)) − c1π1F1(t)
(8)

The left side of the equation represents the average classification 
benefit when the classifier threshold is set to t, while the right side 
calculates the total sum of all classification benefits and losses. Since 
both the numerator and denominator contain N in the averaging 
process, N is ultimately canceled out to obtain Equation 8. In 
addition to the average classification benefit, another maximum 
benefit feature needs to be defined, as shown in Equation 9. 

MP = argmax
∀t

P(t;b0,c0,b1,c1) = P(T;b0,c0,b1,c1) (9)

Here, T is the optimal threshold. And this most threshold T
must also satisfy the first sequence condition for maximum average 
revenue, as shown in Equation 10 below. 

f0(T)
f1(T)
=

π1(b1 + c1)
π0(b0 + c0)

=
π1θ
π0

(10)
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Among them, the parameter θ = (b1 + c1)/(b0 + c0) is also 
known as the cost-benefit ratio, which indicates that the optimal 
threshold and benefits depend on the ratio of costs to benefits. 
With the above definition, the expression of EMP can be derived, 
as shown in Equation 11.

EMP = ∫
b0
∫

c0
∫

b1
∫

c1

P(T(θ);b0,c0,b1,c1) ∗w(b0,c0b1,c1)db0dc0db1dc1

(11)

Expression 11 is the general expression of EMP. For each 
combination (b0,c0,b1,c1), the optimal parameter T is determined 
by 10. And w (b0,c0,b1,c1) is the joint probability density function 
of classification cost. 

4.2 Performance evaluation

The determination of the number of iterations for 
training consumer online purchasing behavior data requires 
a comprehensive consideration of the balance between model 
convergence efficiency and purchase accuracy. Too few iteration 
steps can lead to insufficient learning of multimodal behavioral 
features in the model, amplifying the prediction error of purchase 
intention. Excessive iteration steps may lead to overfitting, causing 
the model to overfit to the random behavior patterns in the training 
set and increasing the computational cost of big data, thereby 
reducing training efficiency. Based on this, the maximum number 
of training iterations is set to 50. By dynamically monitoring the 
trend of purchasing behavior prediction loss during the training 
process, the optimal number of steps is determined. And the training 
curve shown in Figure 2 is plotted to visually present the variation 
of accuracy with the number of iterations.

From Figure 2, it can be seen that based on the datasets 
ICPR MTWI2018 and MEP-3M, the average loss value of EE-
CNN-CBAM gradually decreases with increasing training times. 
After 33 epochs of iteration, the loss value reaches around 0.7 
and the rate of decline gradually slows down. After training for 
37 epochs, it gradually stabilizes. Although the iteration continues, 
the prediction error remains relatively flat and has not shown a 
significant decrease. Even in some subtle fluctuations, there is a slight 
upward trend, which may be due to the model overfitting high-
frequency interaction noise in the data. Overall, when the iteration 
reaches 37 steps, the model’s prediction accuracy for consumer 
purchasing behavior has stabilized. At this point, it is possible to 
fully capture multimodal behavioral features, avoid overfitting risks 
caused by excessive iterations and reduce redundant computational 
consumption in big data training. Therefore, the final number of 
network training steps is determined to be 37. 

4.3 Predictive performance analysis

Tables 1, 2 respectively present the experimental results of EE-
CNN-CBAM and comparative models under conditions without 
and with time series data. Each table provides specific experimental 
results for the four evaluation metrics of accuracy, precision, 
EMP and F1. The specific values of each evaluation indicator in 

the table are taken as the average of ten experimental results 
conducted on the dataset, with three decimal places. For conducting 
comparative experiments on predicting and analyzing consumer 
online purchasing behavior, we select CNN, LSTM [34], CNN-GRU 
[35], CNN-CBAM [36] and EE-CNN-CBAM.

4.3.1 Non time series data prediction
By analyzing Table 1, it can be concluded that on the ICPR 

MTWI2018 and MEP-3M, comparative experiments between EE-
CNN-CBAM and models such as CNN, LSTM, CNN-GRU and 
CNN-CBAM show that EE-CNN-CBAM performs the best in 
accuracy, precision, EMP and F1. In ICPR MTWI2018, the accuracy 
of EE-CNN-CBAM reaches 0.974 and F1 reaches 0.962, which are 
5.6% and 6.5% higher than CNN-CBAM, respectively. In MEP-3M, 
the accuracy of EE-CNN-CBAM is 0.959 and F1 is 0.953, which is 
12.5% and 6.1% higher than CNN-CBAM. It has fully verified its 
adaptability to consumer data in the big data environment. Through 
the collaboration of EE dimensionality reduction, CNN feature 
extraction and CBAM attention mechanism, it effectively addresses 
the high-dimensional and multimodal characteristics of consumer 
behavior big data, providing reliable support for accurate prediction 
of purchasing behavior. Figures 3, 4 are visual representations of 
experimental analysis based on different datasets in Table 1. For the 
sake of simplicity, CNN-GRU, CNN-CBAM and EE-CNN-CBAM 
in figures are represented by the abbreviations CG, CC and ECC, 
respectively.

From Figures 3, 4, it can be seen that the experimental results 
on ICPR MTWI2018 show that LSTM outperforms CNN. This is 
due to the fact that the gating mechanism of LSTM is more suitable 
for the long-term dependencies of purchasing behavior sequences, 
which can better capture the dynamic associations of browsing and 
purchasing, while the limitations of CNN in local feature extraction 
make it slightly weaker in massive temporal data. The hybrid model 
CNN-GRU has significantly improved its performance compared 
with the single model by integrating CNN’s local pattern mining 
and GRU’s time series modeling capabilities, which verifies the 
adaptability of multi structure fusion to complex consumption data. 
The introduction of attention mechanism in CNN-CBAM further 
optimizes performance, demonstrating that the channel and spatial 
attention of CBAM can focus on key signals in massive features and 
reduce the interference of invalid browsing behavior. The EE-CNN-
CBAM performs the best, thanks to the dimensionality reduction of 
high cardinality categorical variables by EE. This not only solves the 
curse of dimensionality in traditional coding, but also reveals the 
deep connection between user preferences and product attributes 
through vector semantic association. By combining CBAM with 
dynamic reinforcement of key features, the model can still maintain 
high accuracy in high-dimensional consumption big data, fully 
verifying its effectiveness in predicting purchasing behavior in big 
data environment. 

4.3.2 Time series data prediction
Similarly, using the Olist dataset [37] and the User Behavior 

Data on Taobao (User Behavior) [38], after introducing consumer 
purchase time data, the overall performance of EE-CNN-CBAM 
in Table 2 remains outstanding. After comparing the results in 
Tables 1, 2, it can be concluded that consumer purchase time data 
has a significant universal improvement effect on the performance of 
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FIGURE 2
Change in loss of EE-CNN-CBAM.

TABLE 1  Prediction experiment result without time series data.

Dataset Model Accuracy Precision EMP F1

ICPR MTWI2018

CNN 0.739 0.725 0.719 0.742

LSTM 0.806 0.817 0.804 0.833

CNN-GRU 0.873 0.857 0.813 0.865

CNN-CBAM 0.918 0.911 0.823 0.897

EE-CNN-CBAM 0.974 0.969 0.928 0.962

MEP-3M

CNN 0.768 0.784 0.758 0.771

LSTM 0.829 0.818 0.803 0.810

CNN-GRU 0.801 0.849 0.824 0.836

CNN-CBAM 0.834 0.882 0.832 0.892

EE-CNN-CBAM 0.959 0.963 0.894 0.953

consumer purchase prediction behavior models. After incorporating 
time features, all core predictive indicators of the models show 
quantifiable gains, with an average increase of 3.2%–7.8% in 
accuracy, precision and F1. For example, the accuracy of EE-CNN-
CBAM on Olist increases from 0.959 in Table 1 to 0.987 in Table 2. 
The F1 increases from 0.953 to 0.982, with increases of 2.9% and 
3.0% respectively. Both basic models such as CNN and LSTM, as well 

as hybrid models such as CNN-GRU, CNN-CBAM and EE-CNN-
CBAM, show performance improvements on datasets. This further 
proves the significance of purchasing time data in improving model 
performance.

On Amazon-M2, EE-CNN-CBAM still maintains optimal 
performance, verifying the model’s generalization ability in cross-
regional scenarios. This is due to EE’s dimensionality reduction 
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TABLE 2  Prediction experiment result with time series data.

Dataset Model Accuracy Precision EMP F1

Olist

CNN 0.743 0.744 0.728 0.741

LSTM 0.775 0.749 0.805 0.750

CNN-GRU 0.863 0.845 0.846 0.869

CNN-CBAM 0.876 0.892 0.883 0.873

EE-CNN-CBAM 0.987 0.980 0.952 0.982

User behavior

CNN 0.772 0.783 0.759 0.771

LSTM 0.809 0.818 0.802 0.810

CNN-GRU 0.853 0.854 0.821 0.836

CNN-CBAM 0.891 0.883 0.851 0.892

EE-CNN-CBAM 0.972 0.981 0.965 0.978

Amazon-M2

CNN 0.687 0.692 0.675 0.689

LSTM 0.735 0.728 0.719 0.732

CNN-GRU 0.791 0.803 0.784 0.795

CNN-CBAM 0.838 0.845 0.826 0.841

EE-CNN-CBAM 0.964 0.951 0.946 0.957

FIGURE 3
Analysis chart of prediction experiment based on ICPR MTWI2018.
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FIGURE 4
Analysis chart of prediction experiment based on MEP-3M.

of high cardinality categorical variables such as region codes and 
age groups, as well as CBAM’s dynamic focus on region-specific 
behavioral characteristics. When comparing ICPR MTWI2018 
with MEP-3M, the performance of all models on Amazon-M2 
decreases to some extent, mainly due to behavioral heterogeneity 
and data sparsity across regions. The purchase habits of users 
in different regions differ significantly. If a single model does 
not capture the regional characteristics specifically, it is prone to 
feature generalization bias. The user samples in some niche areas 
of Amazon-M2 only account for 3.2% of the total data, resulting 
in insufficient learning of behavior patterns by CNN and LSTM in 
this area. EE-CNN-CBAM alleviates the sparsity problem through 
vector semantic association and the performance degradation is 
even smaller.

Figures 5, 6 present the intuitive experimental results of the 
comparative analysis in Table 2, clearly demonstrating the dynamic 
trend of the model’s predictive performance after incorporating 
consumer purchase time data. After incorporating purchase time 
data into the initial dataset, both the base models and EE-CNN-
CBAM show significant improvements in accuracy, precision and 
F1, with an average increase of 3.2%–7.8%. EMP generally decreases 
by 2.1%–5.3%. This systematically validates the general gain effect 
of consumer purchase time data on the performance of prediction 
models, with the importance of time_div and time_loy. This 
represents the characteristics of purchasing time series data, with 
highlighted parts and time_deg also performing well.

After incorporating time series data, while accuracy and F1 
improve, EMP declines. This phenomenon primarily stems from the 

interplay between the cost-benefit ratio θ and the optimal threshold 
T. Time-series data concentrates positive sample probability density 
while dispersing negative samples. To attract high-intent users, 
companies increase marketing investments in positive samples. 
However, this strategy elevates marketing costs and user aversion 
risks while underestimating negative sample benefits, ultimately 
increasing θ. To increase θ, T must be shifted to the right to satisfy 
the probability density ratio condition, which reduces the total 
classification gain P(T). EMP is the weighted expectation of P(T). 
P(T) decreases due to TP revenue reduction and FP cost savings, 
ultimately leading to a decline in EMP. As an important component 
of consumer big data, the characteristics of consumer purchase 
time patterns not only enrich the dimensions of features, but also 
compensate for the shortcomings of traditional features in capturing 
dynamic purchasing patterns by mining deep correlations. 

4.4 Text comparison experiment

To further analyze the independent contributions of evaluation 
texts and consulting dialogues, comparative experiments were 
designed with only evaluation texts, only consulting dialogues, and 
both types of texts, as shown in Table 3.

There is a synergistic effect between the two types of text features, 
and the F1 improvement when input simultaneously is 6.0%, which 
is greater than the sum of the evaluation text and the consultation 
dialogue input separately. This proves that the post feedback of the 
evaluation text and the pre intention of the consultation dialogue 
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FIGURE 5
Experimental analysis of time characteristics on purchase prediction under Olist.

FIGURE 6
Experimental analysis of time characteristics on purchase prediction under User Behavior.

can complement each other, comprehensively covering the entire 
chain of user purchasing decisions. The independent contribution 
of the evaluation text is higher because its semantics are more 
directly related to post purchase behavior, such as repurchase. And 
consulting conversations need to be combined with behavioral 
sequences to fully realize their value, such as asking for inventory 
and requiring additional purchase actions to be a strong signal.

The time pattern characteristics of consumer online purchases 
are essentially external manifestations of the interaction between 

psychological cognition and environment. Consumers with high 
time loyalty are often driven by the theory of habit formation 
and familiarity preferences. Their long-term purchase behavior 
at fixed time periods stems from sunk cost effects and the 
principle of decision-making efficiency. These consumers are more 
inclined to rely on past experience to reduce decision-making 
risks. Users with prominent time diversity exhibit exploratory 
purchasing psychology and their behavior is influenced by novelty 
needs, price sensitivity. They are more likely to be stimulated to 
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TABLE 3  Experimental results of text type splitting.

Text input configuration Accuracy F1

No text 0.925 0.918

Only include evaluation text 0.954 0.951

Only include consultation dialogue 0.941 0.935

Including evaluation text and consultation dialogue 0.972 0.978

purchase by marketing stimuli such as limited time promotions and 
new product launches. Consumers with strong temporal regularity 
demonstrate cognitive consistency and habitual lifestyle rhythms, 
their purchasing behavior is deeply bound to daily routines, work 
rhythms and other life scenarios, which is in line with the core 
concept of behavior embedding in social physics. This study 
provides a concrete practical path for e-commerce managers to 
accurately push personalized coupons and repeat purchase product 
recommendations to users with high time loyalty during their high-
frequency purchase periods. By strengthening the habit path to 
enhance user stickiness, exploratory consumers with outstanding 
time diversity can meet their novelty needs through modules such 
as limited time flash sales and new product zones. At the same time, 
by combining browsing trajectories to optimize product association 
recommendations and reduce exploration costs, managers can use 
the model’s prediction results to adjust inventory configuration in 
advance during high intention purchase periods, avoiding shortages 
of hot selling products. In addition, store page layout can be 
optimized based on user behavior sequence characteristics, placing 
high intention products in the core visual area to reduce decision-
making friction. This study still has certain limitations as it relies on 
historical behavioral data from Taobao and OLIST at the data level. 
This lacks real-time interactive data and cross platform behavior 
trajectories, which may overlook the impact of multi scenario 
linkage on purchasing behavior. The feature dimension focuses 
on mining behavioral data, without fully integrating consumer 
psychological variables and social environmental factors. This 
is difficult to fully reveal the intrinsic transmission mechanism 
between behavior and motivation, although the model captures 
the correlation between time patterns and purchasing behavior. 
However, there is insufficient exploration of the causal relationships 
behind behavior. Future research can further integrate behavioral 
frameworks such as planned behavior theory and self-determination 
theory, introduce psychological variables such as perceived risk and 
subjective norms to enrich the feature system, deepen the academic 
interpretation of behavioral mechanisms, expand data sources, 
integrate offline consumption records, social media interaction 
data and physiological feedback data. E-commerce managers can 
embed models into customer relationship management systems 
to build a closed-loop optimization mechanism for predicting 
execution feedback. At the same time, based on the research 
results of consumer psychology, while respecting user privacy, 
emotional interaction design and personalized services are used to 
achieve a win-win situation between commercial value and user
experience. 

5 Conclusion

This paper constructs EE-CNN-CBAM, which achieves efficient 
processing of consumer online big data through EE, CNN and 
CBAM module collaboration. EE transforms million level high 
cardinality categorical variables into low dimensional vectors, 
solving traditional dimensional disaster problems. CNN extracts 
local association patterns from behavioral big data sequences. 
CBAM focuses on key features in consumer network purchasing 
big data through a two-stage mechanism of channel and spatial 
attention, effectively avoiding feature dilution caused by excessive 
data size. In addition, three major indicators of purchase time 
diversity, loyalty and regularity are constructed to address the 
temporal dependence of consumer behavior. The experimental 
results indicate that EE-CNN-CBAM has effectively addressed the 
high-dimensional characteristics of consumer purchasing behavior 
big data, improving the accuracy of online purchasing behavior 
prediction and providing support for the analysis and prediction 
of consumer network big data. However, there are still some 
shortcomings in this paper, such as the overly simplistic division 
of time series data when exploring the characteristics of purchase 
time patterns. And the previous analysis only shows a decrease in 
overall EMP, without delving into the profitability performance of 
different user groups and product categories. In addition, although 
EE-CNN-CBAM has superior performance, it still falls short in 
terms of algorithm interpretability.
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