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With the rapid development of electronic networks, consumer online
purchasing behavior data presents massive growth and diverse characteristics.
How to accurately predict purchasing behavior based on big data analysis
becomes the key to improving the quality and efficiency of consumer
services. Introducing deep learning methods into purchase prediction
research, this paper proposes entity embedding-convolutional neural network-
convolutional block attention module (EE-CNN-CBAM) for predicting consumer
network purchasing behavior. By entity embedding (EE), high cardinality
categorical variables are transformed into low dimensional dense vectors
to reduce the computational cost of big data. Using convolutional neural
network (CNN) as the core, local association patterns are extracted from
user behavior sequences to capture implicit features of consumer online
purchasing behavior. And based on the time series data of consumer
online purchasing behavior, the characteristic indicators of purchasing
behavior patterns are constructed. Convolutional block attention module
(CBAM) adjusts channel attention adaptively, allowing the model to
prioritize and reinforce the expression of important purchasing behavior
features. The experimental results show that EE-CNN-CBAM improves the
prediction accuracy on large scale consumer network purchase datasets,
providing effective support for consumer behavior prediction in big data
environment.

attention, big data analysis, consumer online, convolutional neural network, purchasing
behavior prediction

Highlights

o This paper proposes entity embedding-convolutional neural network-convolutional
block attention module (EE-CNN-CBAM) for predicting consumer network
purchasing behavior.

By conducting multiple simulation experiments, it is verified that EE-CNN-CBAM
can effectively provide more reliable big data analysis support for predicting
purchasing behavior.
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1 Introduction

With the deep penetration of the digital economy, network
electronics have become the core carrier of Chinese residents’
consumption [1]. Behind this trend is the transformation of
online shopping from “supplementary channels” to “mainstream
scenarios” Consumers not only complete product purchases
through e-commerce platforms, but also leave massive behavioral
traces throughout the entire process of browsing, comparing,
consulting, and evaluating. These data cover user basic attributes
such as age, gender, region, interactive behaviors such as click
sequences, browsing time, add purchase actions, transaction records
such as purchase frequency, average order value, payment methods,
and time characteristics such as purchase period, stay time, repeat
purchase cycle, etc. These constitute a large-scale and multi-
dimensional consumer behavior big data pool.

Accurately predicting consumer purchasing behavior has
become the key for enterprises to improve conversion efficiency
and optimize service experience. For online platforms, accurately
judging consumers online purchasing intentions can achieve
personalized recommendations, such as pushing target products
to high intention users, dynamically pricing discounts for price
sensitive users, and inventory allocation based on predicted
demand for early stocking. For brand owners, purchasing behavior
prediction can support precision marketing such as targeted coupon
distribution, product iteration based on user preference adjustment
functions, and channel optimization focusing on advertising during
high conversion periods. For consumers, an efficient prediction
system can reduce the interference of invalid information, improve
shopping decision-making efficiency and security [2].

However, the complexity of consumer online purchasing
behavior and the challenges posed by data characteristics make
accurate prediction face multiple challenges. From the perspective
of behavior itself, purchasing decisions are influenced by multiple
coupled factors. This includes not only the matching degree
between product attributes such as price, brand, evaluation,
and user preferences such as category orientation and quality
sensitivity, but also the interference of scenario factors such as
promotional activities, seasonal changes, and social influences
such as social recommendations and influencer sales, presenting
non-linear and dynamic characteristics. From a data perspective,
consumer behavior big data has high-dimensional characteristics,
with a total feature dimension exceeding one billion under the scale
of millions of users. Another advantage is high sparsity, where user
behavior exhibits strong selectivity. In addition, the data type covers
structured data such as user ID, commodity classification, semi-
structured data such as browsing path log and unstructured data
such as evaluation text and consultation dialogue. Traditional single
model is difficult to achieve multimodal feature fusion.

Big data analysis technology has the ability to mine deep
features, and with the help of deep learning models such as
neural networks and attention mechanisms, it can capture implicit
associations from sparse data, and cope with dynamic changes in
purchasing intentions, such as sudden increases in user intentions
after promotions begin [3]. These abilities make it possible to
extract core predictive signals from complex behavioral data
and construct high-precision predictive models. The research on
predicting consumer purchasing behavior can be traced back to
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the traditional retail era. In the early days, statistical methods [4]
were used to analyze the purchasing patterns of limited samples,
such as exploring the relationship between price and sales volume
through regression models. With the rise of online consumption and
data accumulation, research has gradually shifted towards machine
learning methods, resulting in rich achievements in recent years.

In terms of predictive model construction, research has
evolved from traditional machine learning to deep learning.
In traditional methods, logistic regression is widely used for
purchasing probability prediction due to its strong interpretability,
such as predicting users’ purchasing behavior after clicking on
advertisements, but it is difficult to capture nonlinear relationships
[5]. Random forest and gradient boosting tree, also known as
GBDT, improve accuracy through ensemble strategies and perform
excellently on structured data. The rise of deep learning has provided
new tools for processing sequential data and high-dimensional
features. Recurrent neural networks, also known as RNNs and
variants such as LSTM and GRU, capture temporal dependencies
of behavior such as browsing to purchase sequence associations
through memory mechanisms [6-8], resulting in improved accuracy
in time series prediction compared to traditional methods. CNN
extracts local behavioral patterns through convolution operations,
such as clicking on products of the same category three times in
a row. The introduction of attention mechanism further enhances
the model’s ability to focus on key features, enabling the model to
automatically pay attention to strong intentional behaviors, thereby
improving prediction accuracy.

The core value of deep learning in predicting consumer
online purchasing behavior lies in its ability to model nonlinear
relationships and automatically learn features. Traditional machine
learning relies on artificial feature engineering, while deep learning
can automatically transform raw data into higher-order features
through multi-layer neural networks. This end-to-end feature
learning mechanism is particularly suitable for capturing implicit
associations in consumer big data. Under training with millions of
samples, the model can autonomously discover patterns that are
difficult for humans to detect.

In recent years, hybrid models have become a research hotspot in
the field of predicting consumer online purchasing behavior due to
their adaptability to multi-source data and advantages in prediction
accuracy [9]. This type of model achieves synergistic efficiency by
integrating the core advantages of different algorithms. For example,
when integrating LSTM, which excels in capturing temporal
dependencies, with attention mechanisms that have dynamic
focusing capabilities, the attention mechanism can strengthen its
focus on key decision nodes by calculating the associated weights
of each node in the behavior sequence based on LSTM’s long-term
modeling. Specifically, when there are sudden signals in the user
behavior sequence, such as concentrated clicks during promotional
periods or peak purchases before major promotions, the attention
mechanism will automatically increase the weight proportion of
these nodes. It accurately locates the core behaviors that affect
purchasing, avoiding feature dilution caused by long time series.
This fusion model has improved prediction accuracy compared to
a single LSTM when processing user behavior data across weeks
and months [10], especially in identifying purchase intentions in
promotional scenarios.
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However, the implementation of existing hybrid models in
actual consumer network scenarios still faces multiple real-world
challenges. Firstly, the processing efficiency of large-scale real-
time data is insufficient. The daily user behavior data generated
by e-commerce platforms can reach billions of levels, covering
dozens of features such as browsing clicks, add ons, favorites,
payment conversions, etc. The multi-layer network structure and
complex computational logic of the hybrid model can easily lead
to feature processing delays. Single user feature calculation can
take up to 50 milliseconds, making it difficult to meet real-
time requirements under concurrent requests, directly affecting the
instant conversion opportunities of high intention users. Secondly,
the time pattern mining of behavioral data is still insufficient.
The temporal characteristics of user purchasing behavior exhibit
significant dynamism and multi granularity, including both long-
term stable habitual preferences and temporary changes driven
by short-term scenarios. Existing hybrid models often use fixed
time windows to extract features, making it difficult to adapt to
such dynamic changes. The model cannot capture the migration
of temporal preferences in a timely manner, resulting in prediction
results lagging behind actual behavioral patterns. At the same time,
most models only handle time granularity at the day or hour level,
failing to delve into minute level fine patterns, and the behavioral
differences in such high-frequency periods are often key signals for
distinguishing high intention users.

In the field of time feature mining, early research mostly
focused on static time attributes, ignoring the temporal patterns
of behavior. However, existing research has not combined the
long-term and short-term patterns, such as the mutual influence
between short-term promotions and long-term habits, resulting in
deviations in predictions when scenarios change, such as during
major promotions. This paper aims to provide models and methods
for predicting consumer purchasing behavior in the big data
environment, and promote the deep integration of theoretical
research and online consumption practice.

1. This paper proposes EE-CNN-CBAM, which consists of entity
embedding, convolution neural network and convolutional
block attention module. Among them, EE is used to improve
the performance of CNN on structured big datasets, while
CNN is mainly responsible for predicting consumer network
purchasing behavior in the end.
The introduction of CBAM can achieve precise capture of key
features for massive consumer behavior data. It dynamically
assigns differentiated weights to different features or sequence
positions, strengthening the focus on core features that are
strongly related to purchasing decisions, while weakening
redundant information such as accidental browsing of non
target categories.
3. By conducting multiple simulation experiments, it is verified
that EE-CNN-CBAM can effectively provide more reliable big
data analysis support for predicting purchasing behavior.

The rest of this paper consists of four parts. Section2 is
related literature related to the work. Section 3 provides a detailed
introduction to EE-CNN-CBAM of consumer online purchasing
behavior prediction, which combines big data analysis. Section 4
designs comparative experiments for testing and analysis based on
multiple baselines. Finally, Section 5 is the summary.
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2 Literature review

The application of machine learning technology in the field
of online electronics had become quite mature. Especially in the
field of commodity price prediction, machine learning algorithms
integrated and processed multi-dimensional correlation features
such as multi-source time-series data, market dynamics and
consumer behavior to construct nonlinear prediction models,
achieving dynamic prediction of price fluctuations. [11] conducted
research on consumer purchase prediction in non-contractual
environments by establishing a machine learning framework
based on consumer purchase data. [12] proposed the Bayesian
personalized ranking (BPR) framework based on the premise that
browsing time within a game app was directly proportional to the
likelihood of purchasing products. And by conducting experiments
on the game app dataset, they ultimately improved the accuracy of
player app purchase prediction. [13] used a logistic regression model
to adjust time-related features based on an e-commerce dataset,
and compared the purchasing behavior of consumers for different
brand products in two scenarios of marketing and daily sales. [14]
used a support vector machine algorithm to mine activity record
data of Twitter users and predicted consumers who purchased
digital cameras and personal computers. [15] proposed a two-
stage consumer purchase model COREL, in which the first stage
established the connection between consumers and products. And
the second stage predicted which associated products consumers
were more likely to purchase. Finally, they conducted an empirical
study on purchasing prediction on the JD consumer purchasing
dataset. The results showed that COREL could effectively calculate
product popularity and accurately predict customer purchasing
behavior. [16] added RFM variables to the association rules of the
recommendation algorithm based on the online user purchasing
cosmetics dataset, enabling the algorithm to dynamically predict
consumer purchasing behavior. [17] used neural networks and
decision tree algorithms to predict customers’ purchase behavior
of shopping cart items based on consumer online purchase click-
through flow data and demographic data. [18] included the factor of
consumer purchase stay time in their purchase prediction study and
compared the predictive performance of support vector machine
(SVM), logistic regression (LR) and other algorithms on RFID
datasets. The results confirmed that SVM achieved better predictive
performance.

With the development of deep learning methods, temporal
modeling techniques had made breakthrough progress in the
field of price prediction. [19] proposed a stock price trend
prediction model called LSR-IGRU, which significantly improved
the accuracy of stock trend prediction by integrating multi-
scale temporal features and enhancing gating mechanisms. [20]
conducted predictive research on consumer purchasing and product
classification on a large retail sales dataset by constructing LDA and
MDM models. [21] proposed a Time Series Retrieval Augmented
Generation method (TimeRAG), which combined retrieval-
enhanced generation and large-scale language models to improve
the accuracy of time series prediction, especially in the field of
quantitative trading. [22] proposed a product image feature selection
model that integrates CNNs and attention mechanisms. And they
combined an improved probability unit model and consumer
selection model. They determined the optimal pricing strategy
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through nonlinear constraint programming to adapt to different
market environments and changes in consumer characteristics.
[23] constructed a feature combination deep learning framework
(FC-LSTM) based on consumer purchase history data and
demographic data to predict consumer purchase decisions. [24]
proposed a novel deep learning algorithm based on customer
purchasing behavior, namely Weight Optimized Long Short Term
Memory Network (WOLSTM), for dynamic pricing solutions on
e-commerce platforms. [25] proposed a real-time online user
purchase prediction model, which consisted of two modules. The
two modules were MLP and LSTM. They successfully conducted
a two-stage study on purchasing prediction using this model on
user online browsing data, clickstream data and demographic
data. [26] proposed a new price prediction model that predicts
the sales price of goods through news events and improved the
accuracy of price prediction. [27] proposed a dynamic pricing model
based on linear regression, which predicted the optimal price of
agricultural products by real-time analysis of market supply, helping
farmers cope with price fluctuations and maximize profits at low
cost.

3 Research on consumer online
purchasing behavior analysis and
prediction for big data analysis

3.1 Overview of EE-CNN-CBAM combined
with big data

This paper constructs EE-CNN-CBAM for predicting consumer
online purchasing behavior, which integrates EE, CNN and CBAM
modules. Its core advantage lies in adapting to multi-source
consumption data processing in big data environments. As the core
component, CNN can mine local association patterns from massive
consumer behavior sequences, such as product browsing trajectories
and click timing, and capture implicit features such as adding items
to the shopping cart after continuous browsing [28]. EE generates
low dimensional vectors for high cardinality categorical variables,
such as product categories and user labels. It not only solves the
dimensionality disaster problem of traditional encoding, but also
reveals the inherent relationship between user preferences and
product attributes through vector semantic association, adapting
to the dimensionality reduction needs of structured consumer big
data.

In response to the performance limitations of deep learning
on large-scale structured data, the model combines EE with
CNN to achieve the fusion modeling of structured classification
features and unstructured behavior sequence big data, fully utilizing
the complementary value of multimodal consumption data. By
introducing attention mechanisms, the model’s memory ability
is significantly enhanced, enabling it to more effectively capture
key patterns and patterns in historical data. CBAM dynamically
focuses on key information among massive features through two-
stage refinement of channel and spatial attention mechanisms.
Channel attention assigns weights to feature dimensions such
as product price and discount strength, strengthening features
strongly correlated with purchase. Spatial attention captures
the behavior patterns of key time nodes such as concentrated
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browsing and staying on detail pages during promotional
periods, avoiding feature dilution caused by excessive data
size. Overall, EE-CNN-CBAM effectively addresses the high-
dimensional, multimodal and strong noise characteristics of
consumer behavior big data by processing high-dimensional
structured data through EE, extracting sequence features through
CNN and focusing on key patterns through CBAM. This provides
accurate big data analysis support for purchasing behavior
prediction. The EE-CNN-CBAM structure design constructed
is shown in Figure 1.

As shown in Figure 1, the EE-CNN-CBAM input layer includes
EE layer. Initially, each variable is mapped to the corresponding
embedding layer through EE. Among them, unstructured text data
is a key predictive signal carrier, and preprocessing and embedding
need to be designed in conjunction with its features. The evaluation
text is 5-200 words long, with fragmented and colloquial language,
including emotions, product attributes and purchase intentions.
The noise includes emoticons, system tags and meaningless short
sentences. The consultation dialogue consists of multiple rounds of
interaction, with each round consisting of 2-50 words, containing
contextual and decision-oriented information. Noise includes
customer service prompts, spoken abbreviations, idle chat content
and temporal associations need to be retained. Preprocessing follows
a three-level process of data cleaning, semantic normalization and
noise refinement. During the data cleaning phase, non-textual
symbols are removed from the evaluation text using regular rules,
short and long texts are processed. Consultation conversations filter
out irrelevant interactions and complete fragmented rounds. In the
semantic standardization stage, a unified format and expression in
both Chinese and English are used, followed by segmentation and
filtering of stop words using an e-commerce custom dictionary.
The context window and rule library are used to resolve ambiguity
in polysemous words and complete dialogue omission expressions.
During the noise refinement stage, the evaluation text and sentiment
dictionary retain core information, while the consultation dialogue
uses intent classification models and entity recognition to extract
purchase-related content.

The EE module converts high cardinality categorical variables
such as user ID and product classification into 256 dimensional
vectors. After dimension alignment, the text is embedded in the
feature fusion layer for modal concatenation with the original input
of the model. Subsequently, all embedded layers are merged into
a fusion layer, which is suitable for structured data and serves as
input for subsequent CNN. Two convolutional layers of convolution
layerl and layer2 extract consumer network purchasing behavior
features through convolution operations. Then, the max pooling
layer, merging layer and flatten layer are mainly used for reducing
data dimensionality. The neurons in the fully connected layerl
connect all feature operations in the convolutional and pooling
layers to obtain non-linear combinations of higher-level consumer
network purchasing behavior features. The fully connected layer2 in
the output layer is used to output the predicted probability score of
consumer network purchases. In addition, in order to improve the
generality of the network and avoid overfitting, Dropout technology
is introduced here, which can pause half of the feature detectors
from participating in training each time the training samples are
taken.
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EE-CNN-CBAM network structure diagram.

3.2 CBAM

CBAM is a module that combines convolutional blocks and
attention mechanisms in CNN [29]. It is mainly used to enhance
the representation ability of CNN on consumer online purchasing
related features, especially when processing purchasing behavior
data in big data environments such as user browsing time, product
click sequences, historical purchase records, etc. It can help the
network focus on core features strongly related to purchasing
decisions, such as high-frequency browsing of product categories,
length of stay after adding to the shopping cart, etc. The channels
here correspond to different dimensions of purchasing behavior,
such as product browsing frequency, collection quantity, price
sensitivity identification, etc. This can pay more attention to
features strongly related to purchasing behavior in the channel
dimension, such as the channel corresponding to the behavior of
adding to the shopping cart, while suppressing redundant channel
information such as page jump records unrelated to purchasing
decisions.

The importance weights of purchase features corresponding to
different interaction moments or sequence positions of product
browsing in the spatial dimension can be obtained. This can enable
the network to pay more attention to key time nodes or locations
related to decision-making in the purchasing behavior sequence
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in the spatial dimension, accurately capturing behavior patterns
such as concentrated purchasing intentions during promotional
activities and ordering signals after specific browsing sequences.
The channel attention mechanism enables the module to focus on
channels that are useful for predicting purchasing behavior tasks,
such as channels corresponding to recent purchase frequencies,
and suppress channels that are unrelated to purchasing decisions,
such as browsing history channels for non target categories. The
spatial attention mechanism focus its attention on key areas in
the spatial dimension of the purchasing behavior sequence, such
as the peak time of product clicks during discount periods and
decision nodes in specific browsing sequences. The output of spatial
attention mechanism highlights the information of key time nodes
or sequence positions in purchasing behavior. The calculation
method is shown in Equations 1, 2.

A'=M,(A)®A 1

A" =M(A) @A @)

Here, A represents the input consumer network purchase
behavior feature map, covering multi-dimensional data such as
browsing sequences, purchase frequency and price preferences. A’
denotes the feature map obtained after CBAM processing, which is
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the output of CBAM. A" indicates the consumer network purchase
behavior result derived from A’ through attention mechanism
processing M.. M, represents channel attention weighting, M;
denotes spatial attention weighting and ® signifies element-level
product operators.

The channel attention module and spatial attention module
in CBAM respectively affect the channel dimension and spatial
dimension of the consumer network purchasing behavior feature
map. This aims to explore key features that are valuable for predicting
purchasing behavior. Finally, the learned attention weights are
multiplied to adjust the representation of consumer purchasing
behavior features within each channel, highlighting the behavior
channels that have a significant impact on purchasing decisions. It
is shown in Equation 3.

M_(F) = o MLP( AvgPool(F)) + MLP(MaxPool(F)))
- o( WI(WO(ngg)) + WI(WO(Ff/[ax)))

The o denotes the sigmoid activation function. While F
represents the input consumer network purchase behavior feature

©)

map containing multi-dimensional data such as browsing history,
purchase frequency and price preferences, typically denoted as
CxHxW. F,, indicates global average pooling operation. F{
represents the global maximum pooling operation.

In the spatial attention module, for the feature map of
consumer online purchasing behavior, global average pooling is
first performed in the height and width dimensions, aiming to
extract spatial information of consumer behavior that covers the
whole world. Subsequently, global max pooling is performed in
the same dimension to capture significant features in the global
spatial information that have a prominent impact on purchasing
decisions. Subsequently, results are input into two independent
multilayer perceptrons (MLPs) for processing. Each MLP applies
non-linear mapping to the globally pooled consumer behavior
characteristics, mining deep correlations between behavior features
such as browsing trajectories and purchase frequency in spatial
dimensions. Sigmoid activation is employed to produce spatial
attention values in the [0,1] range. This highlights the key spatial
behavior patterns for predicting purchasing behavior and helps to
accurately understand the logic of consumer purchasing decisions.
The calculation is displayed in Equation 4, which is used to highlight
the key spatial behavior patterns for predicting purchasing behavior.

M0 =o{ £ ([Fug Fie])) @

The 7 denotes the feature mapping function for consumer
online purchasing behavior data, specifically implemented as a 1 x

1 convolution operation to extract correlations between behavioral
S

Avg
represents the result of global average pooling applied across spatial

dimensions on the input consumer online purchasing behavior

features such as browsing patterns and purchase frequency. F

feature map, capturing overall temporal or interaction sequence
trends in behavioral data. F},  indicates the outcome of global
maximum pooling performed on the spatial dimension of the input
consumer online purchasing behavior feature map. It is used to
extract key nodes in behavior sequences that have a significant
impact on purchasing decisions, such as concentrated purchase
intentions during promotional periods, order signals after specific
browsing sequences, etc.
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3.3 Characteristic indicators of consumer
online purchasing time pattern

In previous research on predicting consumer online purchases,
the features used for prediction are often common consumer
demographic characteristics and network membership related
characteristics. Extensive research using these types of features
has achieved good predictive results, but there are still many
shortcomings. For example, the range of data types for constructing
features is not wide enough. In recent years, with the advent of
the era of big data and artificial intelligence, the time series data
collected from consumers’ shopping behavior has grown rapidly.
Due to the fact that consumer online purchases occur within a
certain time frame, it is of great significance to uncover the patterns
behind consumer shopping time patterns in order to improve the
performance and interpretability of model purchasing behavior
prediction.

We introduce time series data of consumer purchases into the
study of purchasing behavior prediction. Specifically, in order to
better explore the time patterns of consumer online purchases, we
plan to first construct time characteristic indicators for purchase
behavior patterns, namely purchasing time diversity, time loyalty
and time regularity, abbreviated as time_div, time_loy and time_reg.

Firstly, based on a basic concept of “bin”, the “bin” in the purchase
time feature is the time dimension segmentation unit, which is
one-dimensional. We define the minimum segmentation unit for
purchasing time pattern features as hours, so the total number of
“bin” must be 24. For all online consumers, regardless of the time
period of purchase, the corresponding labeled ‘bin’ is where they fall.
The more times you scan the code to purchase in a certain “bin’, the
higher the frequency counted in that “bin” If you never purchase
in the time zone of that “bin’, the corresponding frequency for that
“bin” is 0. On the basis of defining the “bin’, the following further
defines time_div, time_loy and time_reg.

The time_div represents the degree of dispersion of consumers’
online purchases of goods at all times, that is the degree of
dispersion of consumers’ purchase times in various “bin” in the time
dimension. The higher the value of time diversity for a consumer,
the more likely they are to purchase goods at different times on the
internet, meaning they are more likely to purchase goods at different
times and vice versa. The original definition of temporal diversity
is shown in Equation 5.

_Zijij logp;;

logM; ®)

time_div; =

The N represents the total number of “bin” available, M; denotes
the quantity of all “bin” involved in consumer i’s online purchase
history. The p;; indicates the probability that consumer i completes a
transaction within the j-th “bin”

The time_loy reflects the proportion of purchases occurring
within the top k “bin” with highest purchase frequency. Since the
first k “bin” purchased at a frequent time can largely reflect the
degree of consumers’ willingness to repeat purchases at a certain
time, k is taken as 3 in the original definition of time_loy. As
all purchase occasions have been categorized into “bin’, this time
loyalty measure specifically captures consumers’ preference for high-
frequency purchase periods. The formula for consumer i’s time
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loyalty is defined as shown in Equation 6.
f;

ZN
j:lp ij

Among them, f; is the proportion of the number of purchases in

(6)

time_loy; =

the “bin” that consumers buy most frequently among all the “bin”
Obviously, time_loy, is essentially a probability between 0 and 1.

The regularity of consumer purchase time comprehensively
considers the overall pattern of consumer purchase time diversity
and purchase time loyalty in different periods. In the initial
definition, the observation period is 1 month in the short term
and 3 months in the long term. Due to the consideration of time
diversity and time loyalty variables in both long and short periods
of time_reg, the information on consumer time patterns covered
should be more comprehensive. The specific definition of positional
regularity is shown in Equation 7.

\j(time_divj - time_divé)2 + (time_loyf - time_loyi)2
time_reg; = 1 — (7)

V2

Here, time_div; and '[ime_divli represent the diversity of
consumers’ long-term and short-term purchasing time for consumer
i, while time_loyf and time_loy} denote their corresponding
long-term and short-term purchasing time loyalty. Under the
normalization of these indicators, the value range of time_reg,
calculated by Equation 7 falls within interval [0,1]. A value closer to 1
indicates higher similarity in purchasing behavior patterns between
long-term and short-term periods for consumer i, while a value
farther from 1 suggests less consistency.

Obtaining the importance weights of purchase features
corresponding to different interaction moments or product
navigation sequence positions in the spatial dimension can be
achieved through econometric equation methods. Adopting
an ordered logit model to adapt the ordered characteristics of
navigation sequence positions, the basic importance weights of
each position and interaction time feature are represented by its
partial regression coefficient. The Lasso regularization equation is
combined for feature selection and weight shrinkage to suppress
multicollinearity interference caused by redundant features. The
vector autoregression equation is introduced to capture the lag
effect and dynamic weight allocation of features in response to
the dynamic impact at different interaction moments. Finally,
through standardization processing, the coefficients output by
various econometric equations are uniformly transformed into
quantified results in the 0-1 interval, thereby accurately obtaining
the importance weights of corresponding purchase features.

4 Experimental design and result
analysis
4.1 Experiment setup

The experiment is conducted on cloud servers to support

efficient deep learning training and testing. The cloud server is
configured with 12 vCPUs, with a memory capacity of 90 GB and
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is equipped with Intel (R) Xeon (R) Silver 4214R CPU with a clock
speed of 2.40 GHz to meet large-scale data processing needs. At the
same time, it is equipped with NVIDIA GeForce RTX 3080 Ti GPU,
which has 12 GB of video memory and can accelerate the training of
deep learning models. The programming language used is Python
3.7 and the deep learning framework PyTorch is adopted to fully
utilize its flexibility and powerful features. We choose Linux as the
operating system to ensure good performance.

The experiment uses two datasets, namely ICPR MTWI2018
[30], MEP-3M [31] and Amazon-M2 [32]. ICPR MTWI2018 is a
web-based text dataset primarily composed of images purchased
online, containing multiple fonts and scales of text. This dataset
is jointly collected and calibrated by South China University of
Technology and Alibaba, with a total of 10,000 available images
containing labels. The difficulty of detecting this dataset lies in the
complexity and variability of fonts, the range of text pixels from 0
to 100 and the presence of complex background interference. MEP-
3M has large-scale, hierarchical classification, multi-mode, fine-
grained and long tail characteristics. According to statistics, MEP-
3M contains over 3 million products, making it the largest dataset
compared to existing network electronic product datasets. The
products in MEP-3M are represented in three forms, namely image,
text description and OCR text. Amazon-M2 clearly covers multiple
regions and multilingual scenarios, including regional shopping
data corresponding to six languages. User conversations originate
from Amazon e-commerce platforms in different regions around the
world and can be directly used for comparative research on cross
regional user purchasing behavior.

In order to verify the effectiveness of EE-CNN-CBAM, this
paper comprehensively considers the applicability of various
evaluation indicators. Based on existing research, it is ultimately
decided to comprehensively evaluate the trend prediction
performance of EE-CNN-CBAM and other benchmark comparison
prediction models using four evaluation indicators. They are
accuracy, precision, expected maximum profit (EMP) and F1 score
(F1) [33]. In order to introduce the specific definition of EMP, it
is necessary to first define the average classification profit and the
maximum profit, where the definition of average classification profit
is shown in Equation 8.

P(t;bg,co by c1) = bymgFy (1) + by (1 - Fy(£) = comy (1 — Fy (1)) — ¢y, Fy (£)
(8)

The left side of the equation represents the average classification
benefit when the classifier threshold is set to t, while the right side
calculates the total sum of all classification benefits and losses. Since
both the numerator and denominator contain N in the averaging
process, N is ultimately canceled out to obtain Equation 8. In
addition to the average classification benefit, another maximum
benefit feature needs to be defined, as shown in Equation 9.

MP = argmax P(t; by, ¢y, by, ¢;) = P(T; by, ¢, by ;) 9)
Vi

Here, T is the optimal threshold. And this most threshold T
must also satisfy the first sequence condition for maximum average
revenue, as shown in Equation 10 below.

SO mby+¢) mb

= = — 10
AT my(by+ep) 7o 1
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Among them, the parameter 6= (b, +¢;)/(b,+c,) is also
known as the cost-benefit ratio, which indicates that the optimal
threshold and benefits depend on the ratio of costs to benefits.
With the above definition, the expression of EMP can be derived,
as shown in Equation 11.

EMP:J J J J P(T(0); by cobyr ) * w(bgrcoby ¢y )dbydeydbyde,
by cgd by J ¢y (11)

Expression 11 is the general expression of EMP. For each
combination (by,cy,b;,¢;), the optimal parameter T is determined
by 10. And w (bg, ¢y, b; c;) is the joint probability density function
of classification cost.

4.2 Performance evaluation

The of
training consumer online purchasing behavior data requires

determination of the number iterations for
a comprehensive consideration of the balance between model
convergence efficiency and purchase accuracy. Too few iteration
steps can lead to insufficient learning of multimodal behavioral
features in the model, amplifying the prediction error of purchase
intention. Excessive iteration steps may lead to overfitting, causing
the model to overfit to the random behavior patterns in the training
set and increasing the computational cost of big data, thereby
reducing training efficiency. Based on this, the maximum number
of training iterations is set to 50. By dynamically monitoring the
trend of purchasing behavior prediction loss during the training
process, the optimal number of steps is determined. And the training
curve shown in Figure 2 is plotted to visually present the variation
of accuracy with the number of iterations.

From Figure 2, it can be seen that based on the datasets
ICPR MTWI2018 and MEP-3M, the average loss value of EE-
CNN-CBAM gradually decreases with increasing training times.
After 33 epochs of iteration, the loss value reaches around 0.7
and the rate of decline gradually slows down. After training for
37 epochs, it gradually stabilizes. Although the iteration continues,
the prediction error remains relatively flat and has not shown a
significant decrease. Even in some subtle fluctuations, there is a slight
upward trend, which may be due to the model overfitting high-
frequency interaction noise in the data. Overall, when the iteration
reaches 37 steps, the model’s prediction accuracy for consumer
purchasing behavior has stabilized. At this point, it is possible to
fully capture multimodal behavioral features, avoid overfitting risks
caused by excessive iterations and reduce redundant computational
consumption in big data training. Therefore, the final number of
network training steps is determined to be 37.

4.3 Predictive performance analysis

Tables 1, 2 respectively present the experimental results of EE-
CNN-CBAM and comparative models under conditions without
and with time series data. Each table provides specific experimental
results for the four evaluation metrics of accuracy, precision,
EMP and F1. The specific values of each evaluation indicator in
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the table are taken as the average of ten experimental results
conducted on the dataset, with three decimal places. For conducting
comparative experiments on predicting and analyzing consumer
online purchasing behavior, we select CNN, LSTM [34], CNN-GRU
[35], CNN-CBAM [36] and EE-CNN-CBAM.

4.3.1 Non time series data prediction

By analyzing Table 1, it can be concluded that on the ICPR
MTWI2018 and MEP-3M, comparative experiments between EE-
CNN-CBAM and models such as CNN, LSTM, CNN-GRU and
CNN-CBAM show that EE-CNN-CBAM performs the best in
accuracy, precision, EMP and F1. In ICPR MTW1I2018, the accuracy
of EE-CNN-CBAM reaches 0.974 and F1 reaches 0.962, which are
5.6% and 6.5% higher than CNN-CBAM, respectively. In MEP-3M,
the accuracy of EE-CNN-CBAM is 0.959 and F1 is 0.953, which is
12.5% and 6.1% higher than CNN-CBAM. It has fully verified its
adaptability to consumer data in the big data environment. Through
the collaboration of EE dimensionality reduction, CNN feature
extraction and CBAM attention mechanism, it effectively addresses
the high-dimensional and multimodal characteristics of consumer
behavior big data, providing reliable support for accurate prediction
of purchasing behavior. Figures 3, 4 are visual representations of
experimental analysis based on different datasets in Table 1. For the
sake of simplicity, CNN-GRU, CNN-CBAM and EE-CNN-CBAM
in figures are represented by the abbreviations CG, CC and ECC,
respectively.

From Figures 3, 4, it can be seen that the experimental results
on ICPR MTWI2018 show that LSTM outperforms CNN. This is
due to the fact that the gating mechanism of LSTM is more suitable
for the long-term dependencies of purchasing behavior sequences,
which can better capture the dynamic associations of browsing and
purchasing, while the limitations of CNN in local feature extraction
make it slightly weaker in massive temporal data. The hybrid model
CNN-GRU has significantly improved its performance compared
with the single model by integrating CNN’s local pattern mining
and GRU’s time series modeling capabilities, which verifies the
adaptability of multi structure fusion to complex consumption data.
The introduction of attention mechanism in CNN-CBAM further
optimizes performance, demonstrating that the channel and spatial
attention of CBAM can focus on key signals in massive features and
reduce the interference of invalid browsing behavior. The EE-CNN-
CBAM performs the best, thanks to the dimensionality reduction of
high cardinality categorical variables by EE. This not only solves the
curse of dimensionality in traditional coding, but also reveals the
deep connection between user preferences and product attributes
through vector semantic association. By combining CBAM with
dynamic reinforcement of key features, the model can still maintain
high accuracy in high-dimensional consumption big data, fully
verifying its effectiveness in predicting purchasing behavior in big
data environment.

4.3.2 Time series data prediction

Similarly, using the Olist dataset [37] and the User Behavior
Data on Taobao (User Behavior) [38], after introducing consumer
purchase time data, the overall performance of EE-CNN-CBAM
in Table 2 remains outstanding. After comparing the results in
Tables 1, 2, it can be concluded that consumer purchase time data
has a significant universal improvement effect on the performance of
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Change in loss of EE-CNN-CBAM.
TABLE 1 Prediction experiment result without time series data.
Dataset Model Accuracy ‘ Precision ‘ EMP F1
CNN 0.739 0.725 0.719 0.742
LSTM 0.806 0.817 0.804 0.833
ICPR MTWI2018 CNN-GRU 0.873 0.857 0.813 0.865
CNN-CBAM 0.918 0.911 0.823 0.897
EE-CNN-CBAM 0.974 0.969 0.928 0.962
CNN 0.768 0.784 0.758 0.771
LSTM 0.829 0.818 0.803 0.810
MEP-3M CNN-GRU 0.801 0.849 0.824 0.836
CNN-CBAM 0.834 0.882 0.832 0.892
EE-CNN-CBAM 0.959 0.963 0.894 0.953

consumer purchase prediction behavior models. After incorporating
time features, all core predictive indicators of the models show
quantifiable gains, with an average increase of 3.2%-7.8% in
accuracy, precision and F1. For example, the accuracy of EE-CNN-
CBAM on Olist increases from 0.959 in Table 1 to 0.987 in Table 2.
The F1 increases from 0.953 to 0.982, with increases of 2.9% and
3.0% respectively. Both basic models such as CNN and LSTM, as well
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as hybrid models such as CNN-GRU, CNN-CBAM and EE-CNN-
CBAM, show performance improvements on datasets. This further
proves the significance of purchasing time data in improving model
performance.

On Amazon-M2, EE-CNN-CBAM still maintains optimal
performance, verifying the model’s generalization ability in cross-
regional scenarios. This is due to EEs dimensionality reduction
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TABLE 2 Prediction experiment result with time series data.

10.3389/fphy.2026.1686157

Dataset Model Accuracy Precision ‘ EMP F1
CNN 0.743 0.744 0.728 0.741
LSTM 0.775 0.749 0.805 0.750
Olist CNN-GRU 0.863 0.845 0.846 0.869
CNN-CBAM 0.876 0.892 0.883 0.873
EE-CNN-CBAM 0.987 0.980 0.952 0.982
CNN 0.772 0.783 0.759 0.771
LSTM 0.809 0.818 0.802 0.810
User behavior CNN-GRU 0.853 0.854 0.821 0.836
CNN-CBAM 0.891 0.883 0.851 0.892
EE-CNN-CBAM 0.972 0.981 0.965 0.978
CNN 0.687 0.692 0.675 0.689
LSTM 0.735 0.728 0.719 0.732
Amazon-M2 CNN-GRU 0.791 0.803 0.784 0.795
CNN-CBAM 0.838 0.845 0.826 0.841
EE-CNN-CBAM 0.964 0.951 0.946 0.957
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FIGURE 3
Analysis chart of prediction experiment based on ICPR MTWI2018.
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Analysis chart of prediction experiment based on MEP-3M.

of high cardinality categorical variables such as region codes and
age groups, as well as CBAM’s dynamic focus on region-specific
behavioral characteristics. When comparing ICPR MTWI2018
with MEP-3M, the performance of all models on Amazon-M2
decreases to some extent, mainly due to behavioral heterogeneity
and data sparsity across regions. The purchase habits of users
in different regions differ significantly. If a single model does
not capture the regional characteristics specifically, it is prone to
feature generalization bias. The user samples in some niche areas
of Amazon-M2 only account for 3.2% of the total data, resulting
in insufficient learning of behavior patterns by CNN and LSTM in
this area. EE-CNN-CBAM alleviates the sparsity problem through
vector semantic association and the performance degradation is
even smaller.

Figures 5, 6 present the intuitive experimental results of the
comparative analysis in Table 2, clearly demonstrating the dynamic
trend of the model’s predictive performance after incorporating
consumer purchase time data. After incorporating purchase time
data into the initial dataset, both the base models and EE-CNN-
CBAM show significant improvements in accuracy, precision and
F1, with an average increase of 3.2%-7.8%. EMP generally decreases
by 2.1%-5.3%. This systematically validates the general gain effect
of consumer purchase time data on the performance of prediction
models, with the importance of time_div and time_loy. This
represents the characteristics of purchasing time series data, with
highlighted parts and time_deg also performing well.

After incorporating time series data, while accuracy and F1
improve, EMP declines. This phenomenon primarily stems from the
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interplay between the cost-benefit ratio 6 and the optimal threshold
T. Time-series data concentrates positive sample probability density
while dispersing negative samples. To attract high-intent users,
companies increase marketing investments in positive samples.
However, this strategy elevates marketing costs and user aversion
risks while underestimating negative sample benefits, ultimately
increasing 0. To increase 0, T must be shifted to the right to satisfy
the probability density ratio condition, which reduces the total
classification gain P(T). EMP is the weighted expectation of P(T).
P(T) decreases due to TP revenue reduction and FP cost savings,
ultimately leading to a decline in EMP. As an important component
of consumer big data, the characteristics of consumer purchase
time patterns not only enrich the dimensions of features, but also
compensate for the shortcomings of traditional features in capturing
dynamic purchasing patterns by mining deep correlations.

4.4 Text comparison experiment

To further analyze the independent contributions of evaluation
texts and consulting dialogues, comparative experiments were
designed with only evaluation texts, only consulting dialogues, and
both types of texts, as shown in Table 3.

There is a synergistic effect between the two types of text features,
and the F1 improvement when input simultaneously is 6.0%, which
is greater than the sum of the evaluation text and the consultation
dialogue input separately. This proves that the post feedback of the
evaluation text and the pre intention of the consultation dialogue
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Experimental analysis of time characteristics on purchase prediction under Olist.
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FIGURE 6

Experimental analysis of time characteristics on purchase prediction under User Behavior.

can complement each other, comprehensively covering the entire
chain of user purchasing decisions. The independent contribution
of the evaluation text is higher because its semantics are more
directly related to post purchase behavior, such as repurchase. And
consulting conversations need to be combined with behavioral
sequences to fully realize their value, such as asking for inventory
and requiring additional purchase actions to be a strong signal.

The time pattern characteristics of consumer online purchases
are essentially external manifestations of the interaction between
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psychological cognition and environment. Consumers with high
time loyalty are often driven by the theory of habit formation
and familiarity preferences. Their long-term purchase behavior
at fixed time periods stems from sunk cost effects and the
principle of decision-making efficiency. These consumers are more
inclined to rely on past experience to reduce decision-making
risks. Users with prominent time diversity exhibit exploratory
purchasing psychology and their behavior is influenced by novelty
needs, price sensitivity. They are more likely to be stimulated to
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TABLE 3 Experimental results of text type splitting.

Accuracy F1

Text input configuration

No text 0.925 0.918

Only include evaluation text 0.954 0.951

Only include consultation dialogue 0.941 0.935
Including evaluation text and consultation dialogue 0.972 0.978

purchase by marketing stimuli such as limited time promotions and
new product launches. Consumers with strong temporal regularity
demonstrate cognitive consistency and habitual lifestyle rhythms,
their purchasing behavior is deeply bound to daily routines, work
rhythms and other life scenarios, which is in line with the core
concept of behavior embedding in social physics. This study
provides a concrete practical path for e-commerce managers to
accurately push personalized coupons and repeat purchase product
recommendations to users with high time loyalty during their high-
frequency purchase periods. By strengthening the habit path to
enhance user stickiness, exploratory consumers with outstanding
time diversity can meet their novelty needs through modules such
as limited time flash sales and new product zones. At the same time,
by combining browsing trajectories to optimize product association
recommendations and reduce exploration costs, managers can use
the model’s prediction results to adjust inventory configuration in
advance during high intention purchase periods, avoiding shortages
of hot selling products. In addition, store page layout can be
optimized based on user behavior sequence characteristics, placing
high intention products in the core visual area to reduce decision-
making friction. This study still has certain limitations as it relies on
historical behavioral data from Taobao and OLIST at the data level.
This lacks real-time interactive data and cross platform behavior
trajectories, which may overlook the impact of multi scenario
linkage on purchasing behavior. The feature dimension focuses
on mining behavioral data, without fully integrating consumer
psychological variables and social environmental factors. This
is difficult to fully reveal the intrinsic transmission mechanism
between behavior and motivation, although the model captures
the correlation between time patterns and purchasing behavior.
However, there is insufficient exploration of the causal relationships
behind behavior. Future research can further integrate behavioral
frameworks such as planned behavior theory and self-determination
theory, introduce psychological variables such as perceived risk and
subjective norms to enrich the feature system, deepen the academic
interpretation of behavioral mechanisms, expand data sources,
integrate offline consumption records, social media interaction
data and physiological feedback data. E-commerce managers can
embed models into customer relationship management systems
to build a closed-loop optimization mechanism for predicting
execution feedback. At the same time, based on the research
results of consumer psychology, while respecting user privacy,
emotional interaction design and personalized services are used to
achieve a win-win situation between commercial value and user
experience.
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5 Conclusion

This paper constructs EE-CNN-CBAM, which achieves efficient
processing of consumer online big data through EE, CNN and
CBAM module collaboration. EE transforms million level high
cardinality categorical variables into low dimensional vectors,
solving traditional dimensional disaster problems. CNN extracts
local association patterns from behavioral big data sequences.
CBAM focuses on key features in consumer network purchasing
big data through a two-stage mechanism of channel and spatial
attention, effectively avoiding feature dilution caused by excessive
data size. In addition, three major indicators of purchase time
diversity, loyalty and regularity are constructed to address the
temporal dependence of consumer behavior. The experimental
results indicate that EE-CNN-CBAM has effectively addressed the
high-dimensional characteristics of consumer purchasing behavior
big data, improving the accuracy of online purchasing behavior
prediction and providing support for the analysis and prediction
of consumer network big data. However, there are still some
shortcomings in this paper, such as the overly simplistic division
of time series data when exploring the characteristics of purchase
time patterns. And the previous analysis only shows a decrease in
overall EMP, without delving into the profitability performance of
different user groups and product categories. In addition, although
EE-CNN-CBAM has superior performance, it still falls short in
terms of algorithm interpretability.
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