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A new kind of science
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We discuss whether science is in the process of being transformed from a quest 
for causality to a quest for correlation in light of the recent development in 
artificial intelligence. We observe that while a blind trust in the most seductive 
promises of AI is surely to be avoided, a judicious combination of computer 
simulation based on physical insight and the machine learning ability to explore 
ultra-dimensional spaces, holds potential for transformative progress in the way 
science is going to be pursued in the years to come.
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 1 Introduction

On 8 October 2024 the Nobel Prize in Physics was awarded to John J. Hopfield 
and Geoffrey E. Hinton with the following motivation “for foundational discoveries and 
inventions that enable machine learning with artificial neural networks” [1].

The day after the Chemistry Nobel was awarded to David Baker (Washington University) 
for “for computational protein design,” and to Demis Hassabis and John M. Jumper of 
DeepMind for “for protein structure prediction” [2].

John Hopfield was saluted with great satisfaction by the (statistical) physics community 
as a champion of that kind of interdisciplinary statistical physics that decisively impacts 
on different fields, in this case biology and neuroscience. Geoffrey Hinton came as a bit 
of a surprise, as he is a highly distinguished authority but rather in computer science 
than physics, as witnessed by his recent award of the Turing Prize, along with Yan LeCun 
and Joshua Bengio, for their groundbreaking work on neural networks. Yet, Hinton’s work 
certainly related to physics, especially his celebrated recursive Boltzmann machines.

The Nobel Prize in Chemistry, on the other hand, came as a direct hommage to Artificial 
Intelligence (AI), a statement which is particularly true for the DeepMind winners.

In short, the main critique is that, at variance with most bombastic headlines, AlfaFold is 
a monumental and extremely impressive tour de force of computer science and engineering, 
but does not really “solve” the protein folding problem.

Many scientists think it does not, mainly because it did not deliver any real insight into 
the phenomenon of protein folding, namely the dynamics taking from primary structures to 
their native form. The point may seem far-fetched and kind of artificial, but it is not. Protein 
folding is a dynamical process and if we are to gain useful insights to cure neurological 
diseases, we need not just the end points but the entire trajectory, i.e., the dynamics. Maybe 
in five or 10 years from now AlfaFold will bridge this gap, but till then the claim that the 
protein folding problem is cracked, is simply overstated.

The reactions are hot and split: for some this is the end of Galilean science, as 
provocatively announced in C. Anderson’s 2008 Wire Magazine article [3], namely the 
triumph of Correlation over Causation (for quick and direct counter-arguments see [4, 
5]). For others, it is a mere fact of life that Machine Learning (ML) algorithms, no matter

Frontiers in Physics 01 frontiersin.org

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2025.1760758
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2025.1760758&domain=pdf&date_stamp=
2026-01-10
mailto:alex.hansen@ntnu.no
mailto:alex.hansen@ntnu.no
https://doi.org/10.3389/fphy.2025.1760758
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphy.2025.1760758/full
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Hansen and Succi 10.3389/fphy.2025.1760758

how empirical, manage to capture levels of complexity unattainable 
by any other method, including our most powerful theories and 
computer simulations. One may find a weak echo of this debate in 
that which surrounded the proof of the four color theorem in the 
seventies, which involved the use of computers doing parts of the 
proof that would be beyond human capability [6]. This time around, 
however, the questions raised need answers. Be as it may, some large 
pinch of caution is needed. 

2 The power of insight

One of the main criticism to most intensive ML applications, 
such as AlfaFold and even more so latest chatGPT Large Language 
Model (LLM) algorithms, is the astronomical number of weights 
used, rapidly moving into the hundred billion regime. This is 
problematic in many respects, both fundamental and practical.

The fundamental aspect is that in theoretical physics, parameters 
are traditionally held as fudge factors, i.e., temporary fixes for our 
holes of understanding. Hence, the fewer parameters the better. 
Newton’s law of gravitation epitomizes the beauty and universality of 
a good theory. Once you understand that two material bodies attract 
with a force F proportional to the product of their masses m1 and m2
inversely proportional to the square of their distance r, all you need 
to fix by experiment is the ratio

G = Fr2

m1m2
. (1)

The beauty of this expression rests with its universality: any
experiment, whether you are using apples, billiard balls or the moon 
orbiting around planet Earth, will return the same value for this ratio, 
G ≈ 6.67× 10−11 Nm2/kg2. All data, big or small, are captured within 
a single parameter (as long as gravitation is weak enough and non-
quantum)! This is the power of Insight and explains why physicists 
place so much value in it. To this regard, it is worth recalling 
the famous Fermi’s anecdote reported by Freeman Dyson, when 
he approach Fermi to discuss with him his pseudo-scalar theory 
for pions. Fermi asks “how many parameters do you have in your 
model?” “Five” replies Dyson. “My friend John von Neumann told 
me that with four parameters he can fit an elephant, and with five he 
can wriggle his trunk.” And with that the conversation was over [7].

The practical aspect has to do with sustainability: it is estimated 
that training next-generation chatbots with some hundreds billion 
parameter may easily move into the GWatt power demand, 
corresponding to the output from a substantial nuclear power plant. 
The comparison with the 10 W of our brain is embarrassing, but that 
is another story [8].

One could observe that present-day top-end supercomputers are 
also pretty energy-thirsty with a power request in the order of ten 
MWatts, a million times more than human brain. The point though is 
that there a return for this: exascale computers compute some twenty 
orders of magnitude faster than our brain (a tiny fraction of Flops/s). 
So, the question becomes social and ethical: is it worth exhausting 
a substantial fraction of the worldwide energy budget to feed the 
insatiable appetite of chat-bots?

Science-wise, the astronomical disparity between the LLM’s 
power request and that of our brain provide a strong pointer towards 
the need for a much better theory of machine learning [9]. This may 

spawn a genuinely new way of doing science but to achieve this goal 
it is important to keep an open mind. Here comes the point.

As noted above, centuries of physics (since Galileo) have taught 
us that the least number of parameters the best. So, let us call P the 
number of parameters required to produce a satisfactory fit to an 
ensemble consisting of D data. We may define a fitting efficiency 
as the ratio

f = D
P
. (2)

Clearly, the scientific method aims at large values of f, the zero-
parameter limit f→∞ denoting the “Perfect Theory”, one with no 
free-parameters at all. The Standard Model, still our most accurate 
description of fundamental interactions, is regarded by some as 
“ugly” because it demands 19 free parameters.

Machine learning, and most notably LLM’s, work instead in 
the opposite limit f ≪ 1, f < 1 denoting the infamous “over-fitting” 
regime: more parameters than data. Over-fitting is a notorious 
problem for ML, as it hinders the capability of extrapolate to 
capture unseen data, the whole purpose of the ML ordeal. Fact 
remains, though, that ML practitioners have proven capable of 
turning around it under circumstances where it was supposed to 
hit hard, the famous google transformer paper being an adamant 
example in point [10]: No systematic theory, a mathematical 
framework based on billions of free parameters, augmented with a 
set of semi-empirical hunches and recipes. Yet, in the end, it often 
works and sometimes big time so. Hence, while it is entirely healthy 
to remain skeptical of occasional success stories, no matter how 
spectacular, one should also be open to the possibility of making the 
most of this “unsuspected” capability of machine learning to bypass 
overfitting. 

3 Fermi’s belt in Los Alamos

This said, the Nobel Prize for Chemistry raises a point which 
goes beyond science. Let us assume that from now on that we have 
passed the Singularity and live in a world where radical Empiricism 
takes the lead in science: Correlation does supersede Causation and 
science can advance with just a little ancillary help of theory and 
simulation. Let us say that this is the ugly but effective winning route.

Our point here that at a deeper level, this is no longer about 
Correlation versus Causation, but rather Control versus Insight.

Current chat-bots can write pretty decent code in seconds, 
in the face of the hours or days for a skilled programmer. You 
could hail at this as to a major time-saver and for sure it is. But 
if you dig just a bit deeper, a poisoned apple pops out in plain
sight.

Let’s go back to Fermi again. There is little question that 
Fermi was one of the most versatile physicist of all time, with 
several achievements under his belt each worth a Nobel prize 
(fission, Fermi-Dirac statistics, beta decay, Thomas-Fermi theory of 
nuclei etc.).

Amazingly, once interviewed about what he regarded as his 
most impressive achievement, none of these were to come up in his 
reply. Instead, he quoted an episode from the Los Alamos period, 
when his Jeep got stuck in the desert because the transmission 
belt went bust. Not your best cup of tea if you are left alone in 
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the Los Alamos desert …Fermi being Fermi, he managed to get 
out of the hook by replacing the transmission belt with …his own
belt!

That means being able to face tough problems and adversity, 
something that the relentless promise to relieve us, in fact our brain, 
from any burden, is rapidly grinding to a halt. A few high-tech 
companies will take care of writing codes for you, that is where 
Control of a few over the rest of us, shows up beyond any reasonable 
doubt: chat-bots write codes in seconds, no need of programming 
for the new generations, Google brains will take care of this
for you.

Now, leaving aside Fermi, even on our modest personal scale, we 
can quote many instances in which we were sure we had it all sorted 
out, but when it was time to finally code it up, we actually realized 
that we did not really know how to do it exactly. So we had to pedal 
our way back and figure out where the loophole was, a process of 
immense value for our scientific growth.

One may see a concrete example of this in comparing Refs. 
[11, 12]. The first paper, based entirely on theory, missed a 
crucial ingredient—the co-moving velocity—which is of increasing 
importance in the field of two-phase flow in porous media. It 
was only through computations that we discovered it, and with it 
in hand, we realized that Ref. [11] was not correct, replacing it
with [12].

So, the question is: is it worth saving our time to code it up? 
Our answer is yes, but only to a point; We surely welcome automatic 
help, but not to the point where it would kick us completely out 
of the show.

We all speculate about the Singularity as the day when AI 
supersedes Natural Intelligence, (NI) where the latter is typically 
thought of a constant in time. It is not, at least on average, 
some of the most aggressive AI applications do lower NI levels, 
thereby accelerating the Singularity. Hence, the Singularity itself 
is probably not as much of a problem as the degradation of NI. 
This is not to say that AI is should be rejected, but rather to 
stand for a cooperative pattern whereby the ultimate control is left
to NI. 

4 The bright side of machine learning

In the previous sections we have raised a number of warnings 
against the backsides of AI, and particularly to its most aggressive 
claims. The “grumpy old men” part of the paper ends here.

Indeed, it would be poor-sighted to deny that machine-learning 
has brought a new dimension to scientific investigation along the 
three standard pillars of Theory, Simulation and Experiment. AI 
is contributing in many respects to the scientific endeavour but 
here we focus on one that appears to be particularly relevant across 
many scientific and societal applications: the infamous Curse of 
Dimensionality (CoD) [13].

Our brain, as well as much of our math, is notoriously at 
odds with handling high-dimensional information, the main reason 
being the exponential growth of the volume with dimensions 
VD = VD

1 . Assuming a uniform density of information, ρ, the total 
information I(V) = ρV stored in a given volume of state space also 
scales exponentially with the number of dimensions. Take standard 
four-dimensional spacetime, with N = 103 degrees of freedom per 

FIGURE 1
A schematic representation of the transformer architecture. Note that 
each layer carries the same number of neurons.

dimension and unit density everywhere, we obtain I4 = 1012, which 
is basically as much as we can accomodate on present-day Exascale 
computers. Many problems in science and engineering live in much 
higher dimensional state spaces with thousands, millions or even 
billions of dimensions, spelling complete doom for most of our 
mathematical methods. Fortunately, Nature is usually merciful and 
the amount of information does not grow accordingly because most 
of these ultra-dimensional spaces are empty and the relevant (active) 
degrees of freedom use to populate a much smaller manifold of 
dimension d≪ D (d is usually known as Intrinsic Dimension). 
Finding such manifolds is a highly non-trivial task, not only because 
they occupy an extremely tiny portion of state-space but also because 
their topology is often highly irregular and scattered out. This is a 
central issue in modern computational statistical physics and many 
other fields of modern science. Machine learning in general and 
transformers in particular can be viewed as highly non-ergodic 
discrete dynamical systems, targeted to locate the solution manifold 
as efficiently as possible, without wasting resources to visit empty 
regions of state-space. Let us spell the idea out in some more detail. 
Transformer operation (see Figure 1) can be paralleled to a discrete 
dynamical system of the form [14]:

y = fL [Wx− b] , (3)

where x is the input state in D-dimensional feature space, y is the 
corresponding output, the pair (W,b) indicates the set of weights 
and biases connecting the hidden layers {z1,z2…zL} and f is the 
activation function applied across each of the L hidden layers. 
The above “forward-step” is complemented by a backward-error 
propagation step in which the weights are adjusted in such a way 
as to minimize the departure from the desired target (“truth”) yT, 
also known as Loss Function

L = ‖y− yT‖, (4)

where ‖.‖ indicates a suitable metric in feature space. Such 
minimization is usually performed with steepest-descent-like 
techniques

W′ =W− α ∂L
∂W
, (5)
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where α is a relaxation parameter known as “learning rate”. 
The above backward-forward loop is repeated over a huge 
set of data (x,y) until the optimal weight configuration is
found.

By paralleling the layers to discrete time steps, the above 
procedure amounts to a discrete dynamical system starting at z0 =
x and ending at zL+1 = y, evolving under the feed-back control of the 
backward error propagation step.

The analogy has been discussed in detail in [14] and here we 
only point out that such trajectories appear to be efficient in catching 
the desired target yT in ultra-dimensional space. For instance 
leading-edge LLM’s with near trillions weights can find solutions 
in manifolds with d ∼ 40. Leaving aside all reservations about 
computational and energetic parsimony as well as lack of physical 
insight and explainability, this is unquestionably a remarkable
deed.

The magic is probably less arcane than it may seem at first 
sight. The transformer loop discussed above typically lands on 
random matrix solutions for the weights, even in the case where the 
problem has a definite structure, say a sparse matrix using standard 
discretization techniques. This may seem weird at first glance, but 
it actually reflects the fact that the ensemble of random matrices 
is astronomically larger than the ensemble of ordered (structured) 
matrices arising from grid discretization methods. It is therefore 
no surprise that machine-learning search ends up in this huge 
ensemble rather than on the incommensurably smaller ensemble 
of structured matrices. In the end, the usual entropic argument. 
The price, of course, is a vastly larger number of parameters and 
training costs, aggravated by the lack of a systematic convergence 
theory. Ignoring the latter dark-sides, as it is typical of the most 
aggressive AI claims, is to be highly deprecated and must be 
countered: the Fermi’s belt anedocte should not go forgotten. Yet, 
the fact remains that developing suitable strategies combining the 
conceptual transparency of the scientific method with the ability 
of transformers to chase “golden nuggets” in ultra-dimensional 
spaces, holds major potential to transformative progress in 
the way scientific investigation will be pursued in the years
to come. 

5 Outlook

Machine Learning is often hyped as a universal panacea, which 
is most certainly not. Hence it is crucial to keep a critical attitude 
towards the most bombastic and aggressive AI claims. However a 
judicious and clever combination of computer simulation based on 
physical insight and the machine learning power to explore active 
regioins of ultra-dimensional spaces, may lead to transformative 
progress in the future of science.
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