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Critical infrastructures increasingly rely on AI-generated content (AIGC) for 
monitoring, decision support, and autonomous control. This dependence 
creates new attack surfaces: forged maintenance imagery, manipulated 
diagnostic scans, or spoofed sensor visualisations can trigger unsafe actions, 
regulatory violations, or systemic disruption. This paper proposes a post-
quantum watermarking framework designed for critical infrastructure security. 
We embed robust provenance markers directly into the latent space of 
diffusion models, rather than at the pixel level, and reinforce them using 
error-correcting codes (ECC) to ensure watermark recoverability even after 
aggressive distortions such as compression, cropping, noise injection, and 
filtering. To secure watermark keys in transit and at rest, we integrate Kyber, 
a lattice-based key encapsulation mechanism standardised for post-quantum 
cryptography, to protect the watermark stream key against quantum-enabled 
interception. The resulting scheme (i) preserves visual fidelity, (ii) supports 
reliable forensic attribution and auditability under hostile conditions, and (iii) 
remains cryptographically secure in the post-quantum era. Experiments show 
that the proposed ECC-hardened latent watermarking achieves consistently 
high extraction accuracy across diverse attacks while maintaining image 
quality, outperforming state-of-the-art diffusion watermarking baselines. We 
position this watermarking–encryption pipeline as an enabling mechanism for 
privacy-aware traceability, zero-trust validation, and quantum-resilient content 
governance in next-generation critical infrastructure.

KEYWORDS

critical infrastructure security, diffusion model, diffusion models, error-correcting 
codes, infrastructure resilience, kyber, post-quantum cryptography, privacy and 
provenance 

 1 Introduction

In recent years, Diffusion Models (DM) [1–5] have garnered significant attention and 
emerged as a cornerstone technology in artificial intelligence (AI), owing to their ability 
to efficiently generate high-fidelity images [4–7]. When trained on large-scale datasets,
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these models can synthesize high-resolution, high-quality images 
from text descriptions. Despite their utility in daily life and work, 
these technologies inevitably pose societal risks, including the 
dissemination of misinformation and copyright infringement [8,9]. 
In the context of critical infrastructure—such as energy grids, 
transportation systems, healthcare, finance, and communication 
networks—the misuse of AI-generated content (AIGC) could 
lead to severe operational disruptions, safety hazards, and legal 
accountability gaps. For instance, synthetically generated inspection 
reports, facility schematics, or sensor data simulations must be 
traceable to their origin to ensure integrity and compliance in 
regulated environments. Therefore, it is imperative to develop 
technical solutions capable of reliably identifying images synthesized 
by latent diffusion models and tracing their provenance, thereby 
enabling accountable data governance and forensic auditing in 
critical infrastructure applications.

Digital watermarking [10] has long provided a mechanism for 
copyright protection and content authentication. By embedding 
imperceptible identifiers into multimedia data, watermarking 
enables ownership verification and source tracking. For critical 
infrastructure, where data authenticity and non-repudiation are 
paramount, watermarking can establish a verifiable chain of 
custody for synthetic assets, such as diagnostic imagery or 
sensor visualizations, thereby supporting auditability throughout 
the content lifecycle. Nowadays, we can also embed watermark 
information into the generated image [11–17], allowing subsequent 
copyright authentication and tracking of false content. The existing 
watermarking methods for diffusion models can be divided 
into three categories. One is the post-processing watermark 
[18–21], which method usually adds watermarking information 
to the generated image by adjusting the image features, but this 
method may lead to the degradation of image quality. The other 
method [22–28] based combines the watermark embedding process 
within the image generation process, and embeds the watermark 
information into the image by fine-tuning the model. Although this 
method can avoid the degradation of the generated image quality, it 
also increases the computational cost and may affect the generation 
performance. These limitations become particularly acute in critical 
infrastructure environments, where watermarks must withstand 
not only common image manipulations but also domain-specific 
perturbations—such as compression in telemedicine systems or 
noise in industrial sensor networks—while maintaining strict 
performance and compliance standards.

To address these challenges, this study integrates error 
correction coding (ECC) [29] into the watermark embedding 
process of diffusion models. ECC augments watermark data 
with redundant bits, forming codewords that correct errors 
introduced by distortions like compression or cropping. By 
preprocessing watermark data with ECC schemes such as BCH 
[30] or LDPC [31], we enhance extraction accuracy and robustness 
without significant overhead.

Additionally, the Kyber algorithm [32]—a post-quantum 
key encapsulation mechanism (KEM) based on the Module 
Learning with Errors (MLWE) problem and standardized as 
FIPS 203—secures the stream key against quantum-era threats. 
Kyber ensures efficient, compact encryption, bolstering watermark 
confidentiality. This study proposes a robust digital watermarking 
framework for diffusion models with post-quantum integrity that 

significantly enhances watermark robustness while preserving the 
quality of generated images. Compared to the Gaussian Shading [12] 
technique—which involves repeatedly expanding watermark 
information to match latent feature dimensions and resampling 
initial latent features after stream key encryption—the proposed 
method reduces watermark-induced image quality degradation 
but suffers from limited extraction accuracy. To address this 
limitation, we introduce an error-correcting code (ECC) precoding 
mechanism. Prior to stream key encryption and distributed hold 
sampling, the watermark information undergoes ECC encoding 
to construct an error-correcting structure, significantly enhancing 
watermark robustness. Therefore, the contributions of this work can 
be summarized as follows: 

1. Our method enhances robustness by distributing watermark 
information throughout the entire latent space using 
error correction codes. The error correction capability 
against other forms of attacks is also enhanced to varying
degrees.

2. The Post-Quantum Kyber algorithm provides robust 
encryption for the watermark system's stream key, securing 
key transmission to significantly enhance watermark 
protection and augment the copyright protection capabilities 
of the diffusion model-based system. This is especially 
critical in distributed infrastructure networks where key 
exchange must remain resilient against eavesdropping and 
man-in-the-middle attacks.

The remainder of this paper is structured as follows. Section 2 
reviews related work. Section 3 presents the watermark embedding 
and extraction framework. Section 4 details the experimental 
results and compares robustness and visual quality with existing 
techniques. Section 5 concludes this study. 

2 Related work

2.1 Diffusion models

Diffusion models are a class of deep generative models grounded 
in non-equilibrium thermodynamics. They aim to synthesizing 
novel samples matching the original data distribution by learning 
the generative process. Specifically, the forward diffusion process 
gradually perturbs data into Gaussian noise through iterative noise 
addition, while the reverse denoising process trains a neural network 
to iteratively restore the data distribution, thereby yielding high-
quality samples.

Diffusion models learn to approximate the target distribution 
pθ(xt) from the real data distribution q(x) through forward and 
reverse Markov diffusion processes. Specifically, these models 
train a noise predictor ϵθ(xt, t) and generate images x0 from 
Gaussian noise xT through iterative noise estimation and T-step 
denoising. To accelerate generation [3], proposed the Denoising 
Diffusion Implicit Model (DDIM), which reduces the sampling 
steps from approximately 1000 to about 50. To further reduce 
computational costs while maintaining output quality, the Latent 
Diffusion Model (LDM) [33] performs the diffusion process in 
a compressed latent space, establishing the current mainstream 
paradigm for image generation with diffusion models. The 
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forward diffusion process of the diffusion model is defined as
Markov:

q(x1:T|x0) =
T

∏
t=1

q(xt|xt−1) (1)

q(xt|xt−1) =N (xt;√1− βtxt−1,βtI) (2)

q(x1:T|x0) denotes the probability distribution of the noisy image 
xT obtained from the original image x0 via a T-step noise-addition 
process. It is a Gaussian distribution with mean √1− βtxt−1 and 
variance βt, where βt is a predetermined noise-variance coefficient 
and I is the identity matrix.

The goal of the reverse diffusion of LDM is to learn the joint 
distribution:

pθ (x0:T) = p (xT)
T

∏
t=1

pθ (xt−1|xt) (3)

where the prior distribution is given as p(xT) = N(0, I). The Latent 
Diffusion Model (LDM) generates images by executing the reverse 
diffusion process on a latent feature zT.

zt−1 =
1
√αt
(zt −

1− αt

√1− ᾱt

ϵθ (zt, t)) (t = 1,2,…,T) (4)

where αt = √1− βt and ᾱt =∏
t
i=1αi, the noise predictor ϵθ(zt, t) is 

trained to estimate the noise introduced in the forward diffusion 
process. In this paper, we employ the classical Stable Diffusion model 
to illustrate our watermarking method. The dimensionalities of the 
original image x and the latent feature zt are (3, 512, 512) and (1, 4, 
64, 64), respectively. 

2.2 Watermarks for latent diffusion models

Latent Diffusion Models (LDMs) allow users to create style-
specific images via training and fine-tuning. Yet these capabilities 
raise concerns about misuse, particularly the unauthorized 
commercial exploitation of LDM outputs that lack intrinsic 
copyright safeguards. Therefore, enhancing copyright protection 
and traceability for LDMs is crucial. Digital watermarking 
technology offers a proven approach to mitigate these issues by 
embedding imperceptible information into content. This technique 
involves embedding watermarks into generated images to enable 
source identification and verification. As shown in Figure 1, the 
existing digital watermarking methods for LDMs can be categorized 
into three types: postprocessing, generative, and latent feature-based 
watermarking.

Post-processing watermarking embeds watermarks after image 
synthesis to assert copyright. Representative schemes include 
DwtDct [18] and RivaGAN [19]. The approach is straightforward 
to integrate into open-source frameworks such as Stable Diffusion, 
enabling direct watermark injection into output images. However, its 
fundamental limitation lies in the direct modification of pixel data, 
which introduces artifacts or texture distortion and consequently 
degrades visual quality. Additionally, such watermarks remain 
vulnerable to targeted attacks (e.g., cropping, filtering), thereby 
compromising the reliability of copyright identification.

Generative watermarking integrates embedding with the 
generation pipeline, eliminating post-processing. Representative 
methods including Stable Signature [23] and AquaLora [24] enhance 
watermark concealment while preserving image generation quality. 
A key advantage of this approach is the deep fusion of watermarks 
with image content, resulting in significantly enhanced resistance to 
attacks compared to post-processing methods. However, limitations 
include the requirement for model retraining or fine-tuning, 
substantial computational overhead, and the necessity to repeat 
training processes when adapting to different style-specific models, 
consequently restricting flexibility.

Latent feature-based watermarking technology operates within 
the latent space of diffusion models, enabling watermark embedding 
without parameter modification. Representative approaches include 
Tree-ring [34], which encodes watermarks in the frequency domain 
of latent noise using ring-shaped patterns to achieve robust 
traceability. However, this approach does not incorporate user 
identity information, permitting only model origin verification 
rather than specific user tracking, thereby limiting capabilities for 
pursuing legal accountability. DiffuseTrace [35] employs an encoder 
to modify the initial latent noise. Gaussian Shading [12] maps 
watermarks to latent feature following Gaussian distributions. These 
methods avoid fine-tuning overhead and provide high deployment 
convenience, but face challenges in watermark robustness that 
require further optimization of interference resistance. 

2.3 Error correcting code

Error-correcting codes (ECC) represent fundamental 
technologies in information theory and communications, employed 
to detect and correct errors during data transmission or storage 
through the introduction of redundancy. The fundamental principle 
involves encoding original information into codewords containing 
redundant bits using specific algorithms, utilizing the Hamming 
distance between codewords to detect and correct errors: a larger 
minimum Hamming distance corresponds to stronger error 
correction capabilities. ECC is primarily categorized into two 
types: block codes [30,31,36] and convolutional codes [37,38]. 
Block codes encode fixed-length data blocks independently, making 
them suitable for storage systems. Convolutional codes process 
continuous data streams through shift registers and utilize the 
Viterbi algorithm for soft-decision decoding, rendering them widely 
applicable in wireless communications. This study focuses on 
applying block codes to watermarking in diffusion models.

While numerous ECC families exist, this work concentrates on 
BCH and LDPC codes due to their inherent alignment with the 
characteristics of latent-space watermark embedding in diffusion 
models. First, the watermark is encoded as a binary sequence, and 
the perturbations introduced during latent inversion and image-
level attacks predominantly manifest as independent bit flips rather 
than symbol-level erasures. BCH and LDPC codes operate natively 
in the binary domain, enabling them to directly address this bit-
level distortion pattern. In contrast, Reed-Solomon codes [36] 
are symbol-oriented and optimized for burst errors over large 
finite fields. Consequently, they are less efficient against the sparse, 
randomly distributed distortions typical of latent representations.

Frontiers in Physics 03 frontiersin.org

https://doi.org/10.3389/fphy.2025.1750515
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Hu et al. 10.3389/fphy.2025.1750515

Second, BCH and LDPC codes offer flexible code lengths and 
rates, which can be adapted to the spatial capacity constraints 
of latent feature maps. Their encoding and decoding processes 
incur low computational overhead and are compatible with iterative 
extraction pipelines. LDPC decoding performs well when soft 
information (e.g., log-likelihood ratios) is available, whereas BCH 
decoding provides deterministic algebraic correction that remains 
stable even under low initial bit reliability. Therefore, these 
two codes together facilitate a balanced comparative analysis of 
deterministic versus iterative decoding strategies under latent-space 
perturbations.

Therefore, BCH and LDPC codes represent complementary 
and practically deployable ECC structures for diffusion-model 
watermarking, making them well-suited for the comparative 
analysis conducted in this study. 

2.3.1 BCH code
BCH codes [30] are a class of linear block codes in error-

correcting coding theory. They can be integrated into watermarking 
systems to enhance robustness. For example, in video watermarking, 
adaptive BCH coding has been successfully combined with ring 
tensor features, markedly improving resilience against a range 
of attacks [39]. Their core principle involves constructing redundant 
parity bits through generator polynomials and performing error 
location and correction via algebraic operations over finite fields. 
The construction of BCH codes relies on finite fields (Galois fields, 
GF) and minimal polynomials. BCH code encoding involves the 
following main steps.

Consider a finite field GF(q), where q represents a prime 
power. Binary BCH codes are most commonly defined over GF(2). 
Their extension field GF(2m) can be constructed using primitive 
polynomials. The code length for such BCH codes is typically n =
2m − 1.

The generator polynomial g(x) is the fundamental component of 
a BCH code. It is defined as the least common multiple (LCM) of the 
minimal polynomials corresponding to a set of consecutive powers 
of the primitive element:

g (x) = LCM{m1 (x) ,m2 (x) ,…,m2t (x)} (5)

where mi(x) denotes the minimal polynomial of element αi over 
GF(2), α is a primitive element of GF(2m), and t represents the 
error-correction capability of the code. The degree of the generator 
polynomial determines the number of check bits r = n− k, which 
satisfies r ≤mt.

The encoding process of BCH codes systematically converts 
the information polynomial into a codeword polynomial. Let the 
information polynomial be denoted as:

u (x) = u0 + u1x+⋯+ uk−1xk−1 (6)

The encoding operation is realized by generating polynomial 
g(x):

c (x) = u (x) ⋅ xn−k + [u (x) ⋅ xn−k mod g (x)] (7)

where the remainder term constitutes the check polynomial. This 
encoding can be efficiently implemented using a linear feedback 
shift register, which ensures all generated codewords maintain the 
necessary cyclic properties.

BCH decoding locates and corrects errors by adjoint. The 
process is as follows: The calculation of adjoint: accept vector r(x) =
c(x) + e(x) (e(x) is the error polynomial), calculate the adjoint.

Sj = r(αj) =
n−1

∑
i=0

ri ⋅ (αj)i, j = 1,2,…,2t (8)

if Sj = 0 holds for all j, then there is no error; otherwise enter the 
error correction process.

Error localization polynomial error correction: Using the 
Berlekamp-Massey (BM) algorithm to solve the error localization 
polynomial U(x):

U (x) =
v

∏
i=1
(1− xXi) = 1+U1x+⋯+Uvxv (9)

where Xi = αpi  denotes the i-th error location and v ≤ t represents 
the actual number of errors. By solving for the roots of U(x), their 
reciprocals correspond to the error locations pi. For binary BCH 
codes, error correction is accomplished by directly performing bit-
flipping operations on the identified error positions. 

2.3.2 LDPC code
Low-density parity-check (LDPC) codes [31] are a class 

of linear block codes characterized by a sparse parity-check 
matrix. The “low-density” property refers to the fact that the 
vast majority of entries in this matrix are zeros. Owing to 
their excellent error-correction performance, LDPC codes can be 
incorporated into watermarking systems to significantly improve 
robustness. For instance, semi-random LDPC codes have been 
integrated with a spatial-chromaticity Fourier transform to develop 
image watermarking schemes that achieve both high robustness 
and capacity [40]. LDPC codes are error-correcting codes based 
on sparse graphs, typically featuring large-sized low-density parity-
check matrices, meaning that most elements in the matrix are 0 while 
only a few are 1. LDPC codes are primarily used to correct bit-level, 
random errors in codewords.

Let the information bit sequence be denoted by u =
[u1,u2,…,uk] and the resulting codeword by c = [c1,c2,…,cn], 
where n > k and the code rate is R = k/n. A valid codeword c must 
satisfy all constraints imposed by the parity-check matrix H; that is:

HcT = 0 (10)

This equation represents the fundamental constraint for LDPC 
codes, where all operations are performed under modulo-2 
arithmetic in the binary Galois Field GF(2).

To achieve systematic coding, where the codeword directly 
contains the original information bits, the corresponding generator 
matrix G is derived from the parity-check matrix H, with dimensions 
k× n. Through algorithms like Gaussian elimination, H can be 
transformed into systematic form via row operations:

H = [PT|Im] (11)

where I is an m×m identity matrix and P is a k×m dense matrix. 
The corresponding generator matrix G can then be constructed as:

G = [Ik|P] (12)
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The encoding operation involves the matrix multiplication of the 
information vector u and the generator matrix G, expressed as:

c = u ⋅G = [u|uP] (13)

The resulting codeword c is systematically composed of the 
original information bits u and the calculated check bits p = uP, and 
therefore inherently satisfies the constraint HcT = 0.

Decoding is performed using the min-sum algorithm [41]. First, 
the log-likelihood ratios are initialized according to the received 
vector y, yielding L(0)n :

L(0)n = ln
P(yn|cn = 0)
P(yn|cn = 1)

(14)

Each check node is updated and forwards the least-reliable 
adjacent information to its connected variable nodes, prioritizing 
adjustment of the least-reliable bits:

L(L)m→n ≈ ( ∏
n′∈N(m)\n

sgn(L(L−1)n′→m)) ⋅ min
n′∈N(m)\n

|L(L−1)n′→m| (15)

Variable point update, if most check nodes support the current 
bit value, enhance its confidence; if there is a conflict, the reliability 
of the current value is weakened:

L(L)n→m = L(0)n + ∑
m′∈M(n)\m

L(L)m′→n (16)

where N(m) denotes the set of variable nodes adjacent to the m-th 
check node, and M(n) denotes the set of check nodes adjacent to the 
n-th variable node.

Finally, the judgment process is performed:

cn =
{
{
{

0 ifL(lmax)
n ≥ 0

1 otherwise
(17)

if the verification matrix multiplied by c equals 0 or the maximum 
number of iterations is reached, decoding is terminated and the 
decoded information is output. 

2.4 Post-quantum key encapsulation 
mechanism

Kyber [32] is a post-quantum key encapsulation mechanism 
(KEM) whose security is based on the hardness of the 
Module Learning with Errors (MLWE) problem, providing a 
rigorous foundation in lattice-based cryptography. In a related 
advancement [42], pioneered a white-box watermarking signature 
scheme, demonstrating the practical synergy between post-
quantum KEMs and watermarking for enhanced model copyright 
protection. Algorithmically, Kyber employs a matrix-vector 
arithmetic structure over a polynomial ring, achieving a provable 
security guarantee while maintaining high computational efficiency. 
The three core algorithmic components are detailed in the following 
subsections. 

2.4.1 KeyGen
The key generation phase produces a key pair: a public key for 

encryption and a private key for decryption. During initialization, 
security parameters including the dimension nk and the polynomial 
ring are defined Rq, and the public matrix A ∈ Rb×b

q  is randomly 
generated, where b depends on the security level. Subsequently, a 
secret vector d ∈ Rb

q and an error vector e ∈ Rb
q are sampled, with 

their coefficients drawn from a centered binomial distribution or 
a discrete Gaussian distribution to maintain the requisite small-
norm properties. Finally, the public key pk = (A,dt) and the private 
key sk = d are computed as shown in Equation 18.

dt = A ⋅ d+ e ∈ Rb
q (18)

 

2.4.2 Encapsulate
During the encapsulation phase, a sender can encapsulate 

a random session key using the recipient's public key. The 
vectors g ∈ Rk

q, e1 ∈ Rb
q, and e2 ∈ Rq are randomly generated, with 

their coefficients drawn from a small-error distribution. The two 
ciphertext components are then computed using Equations 19, 20.

du = AT ⋅ g+ e1 ∈ Rb
q (19)

dv = AT ⋅ g+ e2+m ∈ Rq (20)

where km ∈ Rq represents the encoded message. The shared session 
key K is then derived via K =H(km), producing the final ciphertext 
C = (du,dv) and session key K.

This construction guarantees ciphertext security. Even if an 
adversary obtains the public values A and dt, the secret values g
and km cannot be efficiently recovered due to the computational 
hardness of the underlying MLWE problem. 

2.4.3 Decapsulate
During decryption, the recipient employs their private key to 

recover the session key from the ciphertext. Using Equation 21, error 
compensation yields w, which is then decoded via Equation 22 to 
obtain km′. The shared key K′ is subsequently reconstructed using 
the hash function K′ =H(km′).

w = dv− dT ⋅ du ∈ Rq (21)

km′ = dv− dT ⋅ du = (dT ⋅A ⋅ g+ dT ⋅ e1+ e2+ km) − dT ⋅ (AT ⋅ g+ e1) ≈ km
(22)

The Kyber algorithm implements secure key exchange 
through the aforementioned three-phase procedure. Its design 
incorporates both post-quantum security and practical deployment 
efficiency. This combination makes it suitable for diverse secure 
communication scenarios, including stream-key protection within 
this paper's watermarking framework. 

3 Methods

This section details the robust image watermarking method with 
error correction coding technology intergrated into the diffution 
model. The complete process consists of two parts: watermark 
embedding and watermark extraction. 
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FIGURE 1
Existing watermarking frameworks are broadly categorized into three types: post-processing-based, model fine-tuning-based, and latent 
feature-based methods. Our latent-representation approach significantly outperforms prior schemes in robustness. (a) Post-processing-based.
(b) Fine-tuning-based. (c) Latent-representation-based.

3.1 Watermark embedding

The watermark embedding process aims to achieve robustness, 
security, and statistical imperceptibility within latent diffusion 
models, and therefore, it integrates error correction, cryptographic 
protection, and distribution-aware sampling into a unified 
embedding process: (1) the original watermark sequence is encoded 
using ECC to bolster robustness against noise and distortions; 
(2) the watermark security against unauthorized extraction is 
guaranteed via a post-quantum cryptographic mechanism; (3) 
the encrypted watermark is embedded into latent feature using a 
distribution-preserving sampling strategy, ensuring alignment with 
the original latent prior. Collectively, these steps form the complete 
embedding pipeline, whose architecture is illustrated in Figure 2 
and detailed in Sections 3.1.1–3.1.3.

3.1.1 Error correcting schemes for robust 
watermark

Before formal embedding and encryption, it is necessary to 
implement Error Eorrection measures on the original watermark 
information u so as to ensure that the original watermark u can 
be recovered even after critical infrastructures undergo attacks. To 
maximize the robustness, we designed a two-layer error correction 

scheme: the first layer applies a block-based ECC to impose global 
structural constraints on the watermark sequence; the second layer 
introduces repetition coding to mitigate fine-grained, random bit 
flips induced by stochastic sampling and quantization. This two-
layer strategy provides significantly higher robustness than single-
layer schemes.

In the first encoding layer, the original binary watermark 
sequence u ∈ {0,1}l is encoded using linear block codes, such 
as BCH, LDPC or their cascaded combinations, producing an 
intermediate sequence c1 ∈ {0,1}l1 . Such block-level coding corrects 
correlated or structured errors that may accumulate during diffusion 
sampling and latent inversion. As detailed in Section 2.3, BCH and 
LDPC codes are particularly suited for this role due to their binary-
domain operation and efficacy in correcting multiple distributed 
bit errors.

In the second encoding layer, repetition coding is applied to 
strengthen the intermediate sequence c1 into c. In the layer of 
repetition coding, each bit is replicated r times to form the final 
encoded sequence c ∈ {0,1}l2 , which is embedded into independent 
latent variables using the distribution-preserving sampling 
strategy from Section 3.1.3. This layer primarily counteracts 
localized random bit flips caused by sampling stochasticity and 
quantization uncertainty. Distributing replicas across independent 
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FIGURE 2
Error-correcting code watermarking framework. A binary sequence u represents the watermark. It is first encoded by ECC1 to yield c1, then by ECC2 to 
yield c. After encryption, ck is mapped to the initial latent feature via distribution-preserving sampling. Denoising produces the watermarked image Xs. 
Extraction reverses the DDIM inversion and subsequent steps.

latent positions ensures that random perturbations affect them 
independently.

When attacked, the second layer's majority voting across the bit 
repetition suppresses dominant random errors, yielding a stabilized 
estimate of c1. The block-level ECC decoder subsequently corrects 
residual inconsistencies to recover the original watermark. Thus, the 
hierarchical design allocates roles clearly: repetition coding handles 
prevalent random noise, while block-based ECC performs precise 
correction of the global structure.

By incorporating the two-layer Error Correcting scheme, 
the proposed encoding strategy achieves a level of robustness 
unattainable by either repetition coding or block-level ECC alone. 
This two-layer framework constitutes a core component of the 
watermarking method and directly explains the robustness gains 
demonstrated experimentally. 

3.1.2 Apply kyber algorithm
First, a Kyber key pair (pk, sk) is generated. The public key, pk, is 

used to encrypt the stream key, while the private key, sk, is retained 
by the authorized party for decryption. The randomly generated 
stream key is then encapsulated using the Kyber algorithm.

(Ckyber,Kshared) = Kyber.Encapsulate (pk) (23)

Using the shared key Kshared to encrypt the stream key:
Kenc = AES(Kshared,Kstream) (24)

where AES denotes the symmetric encryption algorithm.
During decapsulation, the private key sk and the ciphertext Ckyber

are employed to recover the shared key.
Kshared = Kyber.Decapsulate(Ckyber, sk) (25)

Following decryption, the original stream key Kstream is 
recovered and utilized for subsequent watermark decoding 
operations.

Kstream = AES−1 (Kshared,Kenc) (26)

The security of the proposed framework relies on the Kyber 
algorithm, whose architecture is illustrated in Figure 3. Even if an 
adversary acquires the ciphertext Ckyber and the encapsulated key 
Kenc, the original stream key cannot be recovered without the private 
key sk. This ensures the confidentiality of the embedded watermark 
information.

3.1.3 Distribution preserving sampling
This section presents a watermark-guided sampling strategy for 

initial latent features, designed to address a core challenge in latent-
space watermarking: the embedding of discrete watermark bits while 
preserving consistency with the continuous prior distribution (e.g., a 
standard Gaussian, N (0, I)) assumed by the diffusion model. Direct 
modification of latent variables to encode watermark information 
can introduce detectable distributional shifts, compromising both 
the quality of generated images and the stealth of the watermark. 
To overcome this, we introduce a distribution-preserving sampling 
strategy that ensures watermark embedding does not alter the 
underlying latent distribution. Specifically, the method employs 
a deterministic probabilistic mapping mechanism, guaranteeing 
that the latent features carrying the embedded watermark remain 
conformant to the original Gaussian prior N (0, I).

First, a random binary key matching the dimensions of the 
carrier signal is combined with the encoded watermark information 
to produce a randomized watermark. The encrypted data follows 
a discrete uniform distribution. Let the latent feature space follow 
Z ∼N (0, I), with probability density function f(x), cumulative 
distribution function cd f(x), and quantile function pp f(p).

In the initial stage of sampling, the watermark information ck
with length of k after error correction coding and random stream 
key encryption is divided into k groups. Each group is mapped 
to an integer value y ∈ [0,2k − 1], which follows a discrete uniform 
distribution, i.e., p(y = i) = 1

2k (i = 0,1,…,2k − 1). The standard 
Gaussian distribution is partitioned into 2k intervals of equal 
probability. When y = i, the watermarked latent feature zs

T is sampled 
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FIGURE 3
Schematic of the watermark encryption and decryption process based on the Kyber key-encapsulation mechanism. During encryption, a key pair 
(pk,sk) is first generated via Kyber.KeyGen. The stream key Kstream is then protected by Kyber. Encaps to produce a ciphertext Ckyber and a shared key 
Kshared; the latter is used in a subsequent AES symmetric encryption to obtain Kenc. Finally, Kstream and encoded watermark c are combined via a bitwise 
XOR operation to produce the secure watermark data ck. The decryption phase reverses these steps: Kyber.Decaps recovers Kshared from Ckyber using 
the private key sk, after which AES−1 reconstructs Kstream. The watermark is then retrieved by decrypting c′k with the stream key Kstream via a bitwise XOR 
operation. The resulting noisy codeword c′ is then output for subsequent error correction and decoding.

from the conditional distribution of the i-th interval:

p(zs
T|y = i) =

{{
{{
{

2k ⋅ f (zs
T) pp f( i

2k
) ≤ zs

T ≤ pp f( i+ 1
2k
)

0 otherwise
(27)

The probability distribution of zs
T is given by the 

following formula:

p(zs
T) =

2k−1

∑
i=0

p(zs
T|y = i)P (y = i) = f (zs

T) (28)

Equation 28 shows that zs
T obeys the same distribution of the 

random sampling potential representation zT ∼N (0, I). Next, we 
describe the sampling method in detail.

We can get the cumulative distribution function of the equation 
according to the above:

F(zs
T|y = i) =

{{{{{{{{
{{{{{{{{
{

0 zs
T < pp f( i

2k
)

2k ⋅ cd f (zs
T) − i pp f( i

2k
) ≤ zs

T ≤ pp f( i+ 1
2k
)

1 zs
T > pp f( i+ 1

2k
)

(29)

When the condition y = i holds, the latent feature zs
T is 

sampled from the interval [pp f ( i
2k ) ,pp f ( i+1

2k )]. Sampling from the 
conditional cdf F(zs

T ∣ y = i) provides a direct method for obtaining 
zs

T. Since F(zs
T ∣ y = i) is [0,1] takes values in [0,1], sampling from 

it is equivalent to sampling from a standard uniform distribution, 
denoted as u = F(zs

T ∣ y = i) ∼ U(0,1). By shifting each term of 
Equation 29 and considering the inverse function relationship 

between the cumulative distribution function and the probability 
density function, Equation 30 describes the sampling process of the 
hidden representation zs

T of the watermark driven by the random 
watermark c1.

zs
T = pp f(u+ i

2l
) (30)

 

3.2 Watermark extraction

The watermark extraction process is designed to reliably recover 
the embedded watermark from potentially distorted images by 
systematically inverting the embedding operations. It proceeds 
through three sequential stages: latent inversion, distribution-
preserving bit recovery, and layered error-correction decoding. 
These stages progressively suppress distortions to restore the original 
watermark sequence.The details are as follows.

First, the watermarked image X′s is encoded into the latent space 
using the Stable Diffusion encoder E , yielding the latent feature 
z′s0 = E(X

′s). Subsequently, the DDIM inversion process is applied 
to predict the cumulative noise added during the forward process. 
This method deterministically reconstructs the noise-addition path, 
ensuring that the final latent feature approximates the original, i.e., 
z′sT ≈ zs

T.
Watermark information extraction from latent features: After 

obtaining z′sT , the watermark integer value is first recovered through 
the inverse quantile function operation:

i = [2k ⋅ cd f (z′sT )] (31)
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where i denotes the watermark bit recovered after decryption and 
reverse diffusion.

Following the transformation of the message into binary format, 
a majority voting scheme is employed to decode the repetition-
encoded information. The value for each bit position is ascertained 
based on the majority value across all repetition instances. This 
process yields the reconstructed repetition-encoded information c′.

For BCH-based decoding, the received codeword c′ is 
represented as the polynomial c′(x) and may contain errors. 
On the finite field GF(2m), the syndromes are first calculated 
using Equation 8. Based on these computed values, it is 
determined whether solving the error-locator polynomial is 
necessary in the subsequent step. If required, error correction 
is performed using Equation 9, ultimately yielding the decoded 
watermark information u′.

When LDPC decoding is adopted, the received encoded 
information c′, which may contain errors, is first converted to 
LLR values using Equation 14. These LLR values are stored in a 
message matrix that shares the same dimensions as the parity-
check matrix H, serving as the initial inputs to the variable nodes. 
The algorithm then enters an iterative decoding process. Each 
iteration comprises two stages: check node updating and variable 
node updating. During the check node update phase, each check 
node j gathers messages from all connected variable nodes except 
the target node i (denoted as the set N(j)\i. It then performs 
minimum value filtering and sign propagation: Firstly, the minimum 
(min1) and the second minimum (min2) of the absolute value of 
the adjacent message are found. If the target node i corresponds 
to min1, the output magnitude is set to min2; otherwise, it is set 
to min1. Concurrently, the output sign is determined by taking 
the product of the signs of all incoming messages, as specified in 
Equation 15. During the variable node update phase, each variable 
node i combines the initial channel LLR with messages from all 
connected check nodes except the target node j, as described by 
Equation 16. After either completing the predetermined number of 
iterations or meeting the convergence criteria, the decoding process 
proceeds to the decision phase, implemented using Equation 17. 
Finally, the decoded watermark information u′ is recovered based 
on the decision values obtained. For the combined LDPC and BCH 
decoding scheme, the LDPC decoding process is first performed to 
obtain the intermediate decoded information c′1. This output then 
serves as the input to the BCH decoder, ultimately yielding the final 
recovered watermark information u′. 

4 Experiments

This section presents the experimental analysis, which 
comprises the experimental setup, a comprehensive evaluation of 
the proposed approach, comparisons with baseline methods, and a 
performance analysis of different error correction codes. 

4.1 Experimental settings

This section outlines the experimental design for evaluating 
the robustness, visual quality, and security of the proposed 
watermarking framework. The specific configurations detailed 

include the diffusion model architecture, sampling strategy, dataset 
selection, and watermark payload size. These established settings 
provide a consistent baseline for analyzing the impact of different 
ECC schemes and embedding mechanisms on watermark extraction 
accuracy and image fidelity.

Implemental Settings: We employed the Stable Diffusion model 
to evaluate the efficacy of the watermarking method. The generated 
watermark images had a resolution of 512× 512 pixels, with a 
latent spatial dimension of 4× 64× 64. We employed the Stable-
Diffusion-Prompt dataset and the DPM-solver scheduler to perform 
sampling for a total of 50 steps. During the extraction stage, DDIM 
inversion was performed using the same number of steps and empty 
text prompts.

Robustness Evaluation against Image Processing: We evaluated 
the robustness of various watermarking methods against common 
image distortions. The evaluation was conducted on 1000 generated 
watermarked images. The specific parameters for each distortion 
method are detailed in Figure 4.

For baseline comparisons, this study selected the following 
representative methods: including the post-processing techniques 
DwtDct, DwtDctSvd [18], and RivaGAN [19]; the generative 
method Stable Signature [23]; and the latent feature-based technique 
Latent Watermark [43] and Gaussian Shading [12]. These baselines 
were compared against the concatenated BCH-repetition code 
scheme proposed herein. To ensure fair comparison, we standardize 
the watermark capacity to 256 bits. 

4.2 Evaluation metrics

We use the average watermark extraction bit accuracy of 
all the extracted watermark samples as the watermark accuracy 
performance index to evaluate our method. To assess the quality of 
the generated watermarked images, the Fréchet Inception Distance 
(FID) [44] and CLIP Score [45] were employed as primary metrics. 
FID assesses the fidelity and variation of generated images by 
measuring the divergence between their feature distributions and 
those of real images. The CLIP Score quantifies the degree of 
semantic alignment between an image and its corresponding 
text prompt. 

4.3 Comparison with baselines

To provide a more rigorous and balanced comparison, we 
further analyze the robustness performance of the proposed method 
against baseline approaches under a variety of common image 
distortions. In addition to reporting average extraction accuracy, 
we emphasize scenario-specific behaviors to better reflect practical 
robustness characteristics.

As shown in Table 1, the proposed method achieves overall 
competitive performance across most attack types. In certain mild 
distortion scenarios, such as low-intensity compression or resizing, 
the robustness of our method is comparable to that of the strongest 
baseline. This observation indicates that the proposed framework 
does not sacrifice general robustness in favor of specific attack 
resilience.
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FIGURE 4
Watermarked image is attacked by different noise. (a) Watermarked image. (b) JPEG, QF = 10. (c) 60% area Random Crop (RandCr). (d) 80% area 
Random Drop (RandDr). (e) Gaussian Blur, r = 6 (GauBlur). (f) Median Filter, k = 11 (MedFilter). (g) Gaussian Noise, μ = 0, σ = 0.1 (GauNoise). (h) Salt and 
Pepper Noise, p = 0.05 (S& PNoise). (i) Brightness, factor = 2.5. (J) Resize and restore, factor = 0.3.

More importantly, under stochastic and noise-dominated 
perturbations, the proposed method exhibits consistent and 
statistically significant improvements over competing approaches. 
Specifically, under Gaussian blur, Gaussian noise, random drop, 
and salt-and-pepper noise, the extraction accuracy of our method 
surpasses the baselines by a noticeable margin. These gains 
can be attributed to the two-stage error correction mechanism 
introduced in Section 3.1.1, which combines block-level ECC with 
repetition coding to jointly address both large-scale corruption and 
fine-grained random bit fluctuations.

In contrast, baseline methods that rely on single-layer error 
correction or direct latent perturbation are more sensitive to random 
and impulsive noise. While they may perform competitively in 
structured or deterministic distortions, their robustness degrades 
more rapidly when confronted with unpredictable bit-level 
perturbations. This difference explains why competing methods 
may match or slightly outperform our approach in some controlled 
settings, yet fall behind in noise-intensive scenarios.

Overall, this analysis highlights that the primary advantage of 
the proposed framework lies not merely in average performance, 
but in its robustness stability across challenging and highly 
stochastic attack conditions, which are common in real-world image 
dissemination pipelines. These results support the claim that the 
proposed method offers a more reliable watermarking solution 
under practical and adverse conditions. 

4.4 Comparison with other ECC

The performance of three concatenated schemes—BCH-
repetition, LDPC-repetition, and a hybrid LDPC-BCH-repetition 
structure—was compared and analyzed. Their anti-distortion 
robustness, extraction accuracy, and impact on generated image 
quality were systematically evaluated.

As indicated in Table 2, the BCH-repetition code scheme 
maintains superior watermark extraction bit accuracy across various 
distortion conditions. Under Gaussian blur distortion, its extraction 
accuracy exceeds that of the LDPC-BCH-repetition method by 
3.96%. This enhanced performance stems from the statistical 
nature of errors in the latent space: perturbations caused by 
diffusion inversion and image-level attacks predominantly manifest 
as random, sparse bit flips, not as burst or symbol-level errors. 
In such an error regime, BCH codes offer a distinct advantage. 
Their compact codewords enable a higher repetition factor, 
effectively reducing the bit-error rate prior to decoding. In contrast, 
LDPC-based schemes generate longer codewords. This limits the 
available repetition count and increases the probability that the 
initial error rate will exceed the threshold necessary for iterative 
convergence. Moreover, BCH decoding employs deterministic 
algebraic correction for up to terrors, whereas LDPC decoding relies 
on belief propagation. The latter can become unstable when the 
initial log-likelihood ratios are unreliable. Consequently, the BCH-
repetition scheme is inherently better suited to the error patterns 
in latent diffusion spaces, achieving an optimal balance between 
redundancy efficiency and robust error correction.

4.4.1 Quality assessment
As summarized in Table 3, the achieved FID and CLIP scores 

closely approach the watermark-free baseline values, with the 
minimal discrepancy between these metrics indicating that the 
method does not substantially compromise image quality.

4.5 Unauthorized extraction attack

Beyond evaluations of robustness, we designed security 
experiments to test resistance against key-less watermark extraction. 
This involved a large-scale unauthorized extraction attempt on 

Frontiers in Physics 10 frontiersin.org

https://doi.org/10.3389/fphy.2025.1750515
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Hu et al. 10.3389/fphy.2025.1750515

T
A

B
LE

 1
  W

at
er

m
ar

k 
ex

tr
ac

ti
o

n
 b

it
 a

cc
u

ra
cy

 u
n

d
er

 d
iff

er
en

t 
d

is
to

rt
io

n
 c

o
n

d
it

io
n

s.
 A

lt
h

o
u

g
h

 t
h

e 
er

ro
r-

co
rr

ec
ti

n
g

 c
o

d
e-

en
co

d
ed

 w
at

er
m

ar
k 

sl
ig

h
tl

y 
u

n
d

er
p

er
fo

rm
s 

th
e 

G
au

ss
ia

n
 S

h
ad

in
g

 t
ec

h
n

iq
u

e 
in

 c
er

ta
in

 
in

d
iv

id
u

al
 d

is
to

rt
io

n
 c

as
es

, i
t 

d
em

o
n

st
ra

te
s 

su
p

er
io

r 
o

ve
ra

ll
 r

o
b

u
st

n
es

s 
an

d
 s

ta
b

ili
ty

 w
h

en
 c

o
n

si
d

er
in

g
 a

ll
 n

o
is

e 
ty

p
es

 c
o

ll
ec

ti
ve

ly
.

M
e

th
o

d
s

N
o

is
e

N
o

n
e

G
au

B
lu

r
G

au
N

o
is

e
JP

E
G

M
e

d
Fi

lt
e

r
R

an
d

D
r

R
an

d
C

r
B

ri
g

h
tn

e
ss

S 
an

d
 P

N
o

is
e

R
e

si
ze

A
ve

ra
g

e

D
w

tD
ct

 [1
8]

0.
80

56
0.

50
01

0.
46

96
0.

50
21

0.
50

96
0.

55
41

0.
77

90
0.

50
97

0.
57

23
0.

51
89

0.
57

21

D
w

tD
ct

Sv
d 

[1
8]

0.
99

95
0.

56
67

0.
52

41
0.

49
17

0.
79

68
0.

58
62

0.
82

47
0.

50
93

0.
51

91
0.

88
92

0.
67

07

Ri
va

G
A

N
 [1

9]
0.

98
68

0.
59

83
0.

71
43

0.
58

65
0.

88
79

0.
96

85
0.

97
52

0.
84

11
0.

85
58

0.
97

36
0.

83
88

St
ab

le
 S

ig
na

tu
re

 [2
3]

0.
99

83
0.

40
79

0.
53

89
0.

57
24

0.
52

23
0.

97
66

0.
99

26
0.

95
33

0.
67

43
0.

58
93

0.
72

26

La
te

nt
 W

at
er

m
ar

k 
[4

3]
0.

99
96

0.
81

63
0.

68
69

0.
87

80
0.

92
09

0.
59

65
0.

63
28

0.
97

03
0.

73
20

0.
98

52
0.

82
19

G
au

ss
ia

n 
Sh

ad
in

g 
[1

2]
0.

99
99

0.
91

92
0.

86
19

0.
94

48
0.

98
39

0.
96

71
0.

97
95

0.
97

24
0.

93
60

0.
99

58
0.

95
63

EC
C

 (t
he

 p
ro

po
se

d)
0.

99
99

0.
96
27

0.
87
36

0.
94
88

0.
98

29
0.
97
78

0.
97

94
0.

97
24

0.
94
77

0.
99

61
0.

96
41

Bo
ld

ed
 to

 in
di

ca
te

 o
pt

im
al

 p
er

fo
rm

an
ce

.

T
A

B
LE

 2
  T

h
e 

w
at

er
m

ar
k 

ex
tr

ac
ti

o
n

 b
it

 a
cc

u
ra

cy
 a

ch
ie

ve
d

 b
y 

d
iff

er
en

t 
er

ro
r-

co
rr

ec
ti

n
g

 a
n

d
 r

ep
et

it
io

n
 c

o
d

e 
co

n
ca

te
n

at
io

n
 s

ch
em

es
 w

as
 c

o
m

p
ar

ed
. R

es
u

lt
s 

d
em

o
n

st
ra

te
 t

h
at

 B
C

H
–

re
p

et
it

io
n

 a
ch

ie
ve

s 
th

e 
h

ig
h

es
t 

o
ve

ra
ll

 r
o

b
u

st
n

es
s 

ac
ro

ss
 d

is
to

rt
io

n
s.

M
e

th
o

d
s

N
o

is
e

N
o

n
e

G
au

B
lu

r
G

au
N

o
is

e
JP

E
G

M
e

d
Fi

lt
e

r
R

an
d

D
r

R
an

d
C

r
B

ri
g

h
tn

e
ss

S 
an

d
 P

N
o

is
e

R
e

si
ze

A
ve

ra
g

e

LD
PC

0.
99

99
0.

91
67

0.
86

58
0.

94
85

0.
98

32
0.

96
02

0.
95

83
0.

97
21

0.
93

99
0.

99
51

0.
95

40

LD
PC

 + 
BC

H
0.

99
99

0.
92

31
0.

87
05

0.
95

08
0.

98
34

0.
96

08
0.

96
22

0.
97

27
0.

93
99

0.
99

56
0.

95
59

BC
H

0.
99

99
0.
96
27

0.
87
36

0.
94
88

0.
98

29
0.
97
78

0.
97

94
0.

97
24

0.
94
77

0.
99

61
0.

96
41

Bo
ld

ed
 to

 in
di

ca
te

 o
pt

im
al

 p
er

fo
rm

an
ce

.

Frontiers in Physics 11 frontiersin.org

https://doi.org/10.3389/fphy.2025.1750515
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Hu et al. 10.3389/fphy.2025.1750515

TABLE 3  FID and CLIP Scores assess the image quality of the 
error-correcting watermarking scheme.

Methods FID CLIP-score

Stable diffusion 25.23 0.3629

LDPC 24.50 0.3642

LDPC + BCH 24.78 0.3640

BCH 24.82 0.3608

N = 1000 images. The adversary in this simulation is granted full 
system knowledge (the diffusion model, DDIM inversion, and ECC 
parameters) but is denied access to the Kyber private key.

For each image, the attacker first applies DDIM inversion to 
obtain the latent feature z′sT . They then attempt to infer the watermark 
bits directly by mapping the latent values to binary sequences, 
thus trying to circumvent the cryptographic protection entirely. 
The recovered bit sequences are compared with the corresponding 
ground-truth watermark bits.

ACC = 0.5017± 0.0083 (32)

The watermark extraction bit accuracy remained statistically 
indistinguishable from the random-guess baseline of 0.50. 
The negligible variance observed across 1000 trials indicates 
no measurable information leakage from the encrypted latent 
watermark. These results collectively demonstrate that, even under 
a strong inversion-based attack, unauthorized extraction remains 
infeasible without the requisite cryptographic key. 

4.6 Discussion on limitations

Despite its demonstrated effectiveness and robustness, the 
proposed framework has several limitations to discuss.

First, computational overhead presents a practical constraint. 
The framework relies on diffusion-based image generation and 
DDIM inversion, processes that are computationally more intensive 
than conventional spatial-domain watermarking. Specifically, the 
watermark extraction requires a DDIM inversion step, which 
introduces non-negligible latency. While acceptable for offline 
verification or forensic analysis, this overhead necessitates further 
optimization for real-time or large-scale deployment.

Second, the framework's security guarantees depend on specific 
assumptions. Although post-quantum security is provided via the 
Kyber key encapsulation mechanism, the system's security critically 
depends on secure key management and trusted distribution 
channels. Compromise or improper management of private keys 
could therefore undermine the cryptographic protection layer. 
Moreover, the current security analysis focuses on unauthorized 
extraction and does not address active adversaries who might 
attempt to forge watermarks using compromised credentials.

Finally, the current design emphasizes robustness and security 
at the expense of payload capacity. The redundancy introduced 
by error-correcting and repetition coding limits the maximum 
watermark length that can be embedded without degrading visual 

quality. Consequently, developing more efficient coding strategies 
to improve this robustness–capacity trade-off remains an open 
challenge.

These limitations point to clear directions for future work: 
computational optimization, stronger adversarial security models, 
and more efficient encoding schemes. 

5 Conclusion

This work presents a unified post-quantum–resilient 
watermarking framework for diffusion models that integrates latent-
space watermark embedding, error-correcting codes, and secure 
key encapsulation. The proposed method embeds watermark signals 
directly into the latent features of diffusion models, thereby avoiding 
pixel-level degradation and maintaining high visual fidelity. By 
incorporating ECC into the embedding pipeline, the system gains 
strong resilience against a wide spectrum of distortions—including 
noise, compression, and spatial manipulation—without requiring 
model retraining or architectural modification. In parallel, the 
adoption of the Kyber key encapsulation mechanism ensures secure 
watermark key management under quantum-era threat models.

Extensive experiments demonstrate that the framework 
achieves high watermark extraction accuracy across challenging 
attack scenarios while preserving image quality comparable to 
unwatermarked outputs. The comparative analysis further shows 
that different ECC configurations offer distinct performance 
trade-offs, with BCH-based schemes providing particularly strong 
robustness in latent-space perturbation regimes.

Overall, this study highlights the feasibility and effectiveness of 
combining latent watermarking with post-quantum cryptography 
and classical error-correction coding. The resulting system provides 
a practical pathway for trustworthy AIGC governance, secure 
provenance tracking, and resilient content authentication in critical 
infrastructure applications. Future work may explore adaptive 
ECC allocation, content-aware embedding strategies, and broader 
integration with multimodal generative models.

Future work will focus on two key directions to extend 
this research. First, a systematic evaluation of alternative secure 
key-exchange mechanisms is warranted. This includes hybrid 
lattice schemes, code-based KEMs, and lightweight authenticated 
protocols. Such a study would elucidate their deployment trade-offs 
in heterogeneous infrastructure environments. Second, the security 
architecture of large-scale generative systems could be strengthened 
by extending the analysis of watermark-encryption strategies. 
Promising extensions include adaptive key rotation, hierarchical 
multi-party key management, and layered encryption models. 
Pursuing these directions will advance watermarking pipelines 
toward more comprehensive, resilient, and scalable protection for 
next-generation AI-generated content ecosystems.
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