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Critical infrastructures increasingly rely on Al-generated content (AIGC) for
monitoring, decision support, and autonomous control. This dependence
creates new attack surfaces: forged maintenance imagery, manipulated
diagnostic scans, or spoofed sensor visualisations can trigger unsafe actions,
regulatory violations, or systemic disruption. This paper proposes a post-
quantum watermarking framework designed for critical infrastructure security.
We embed robust provenance markers directly into the latent space of
diffusion models, rather than at the pixel level, and reinforce them using
error-correcting codes (ECC) to ensure watermark recoverability even after
aggressive distortions such as compression, cropping, noise injection, and
filtering. To secure watermark keys in transit and at rest, we integrate Kyber,
a lattice-based key encapsulation mechanism standardised for post-quantum
cryptography, to protect the watermark stream key against quantum-enabled
interception. The resulting scheme (i) preserves visual fidelity, (i) supports
reliable forensic attribution and auditability under hostile conditions, and (iii)
remains cryptographically secure in the post-quantum era. Experiments show
that the proposed ECC-hardened latent watermarking achieves consistently
high extraction accuracy across diverse attacks while maintaining image
quality, outperforming state-of-the-art diffusion watermarking baselines. We
position this watermarking—encryption pipeline as an enabling mechanism for
privacy-aware traceability, zero-trust validation, and quantum-resilient content
governance in next-generation critical infrastructure.

KEYWORDS

critical infrastructure security, diffusion model, diffusion models, error-correcting
codes, infrastructure resilience, kyber, post-quantum cryptography, privacy and
provenance

1 Introduction

In recent years, Diffusion Models (DM) [1-5] have garnered significant attention and
emerged as a cornerstone technology in artificial intelligence (AI), owing to their ability
to efficiently generate high-fidelity images [4-7]. When trained on large-scale datasets,
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these models can synthesize high-resolution, high-quality images
from text descriptions. Despite their utility in daily life and work,
these technologies inevitably pose societal risks, including the
dissemination of misinformation and copyright infringement [8,9].
In the context of critical infrastructure—such as energy grids,
transportation systems, healthcare, finance, and communication
networks—the misuse of Al-generated content (AIGC) could
lead to severe operational disruptions, safety hazards, and legal
accountability gaps. For instance, synthetically generated inspection
reports, facility schematics, or sensor data simulations must be
traceable to their origin to ensure integrity and compliance in
regulated environments. Therefore, it is imperative to develop
technical solutions capable of reliably identifying images synthesized
by latent diffusion models and tracing their provenance, thereby
enabling accountable data governance and forensic auditing in
critical infrastructure applications.

Digital watermarking [10] has long provided a mechanism for
copyright protection and content authentication. By embedding
imperceptible identifiers into multimedia data, watermarking
enables ownership verification and source tracking. For critical
infrastructure, where data authenticity and non-repudiation are
paramount, watermarking can establish a verifiable chain of
custody for synthetic assets, such as diagnostic imagery or
sensor visualizations, thereby supporting auditability throughout
the content lifecycle. Nowadays, we can also embed watermark
information into the generated image [11-17], allowing subsequent
copyright authentication and tracking of false content. The existing
watermarking methods for diffusion models can be divided
into three categories. One is the post-processing watermark
[18-21], which method usually adds watermarking information
to the generated image by adjusting the image features, but this
method may lead to the degradation of image quality. The other
method [22-28] based combines the watermark embedding process
within the image generation process, and embeds the watermark
information into the image by fine-tuning the model. Although this
method can avoid the degradation of the generated image quality, it
also increases the computational cost and may affect the generation
performance. These limitations become particularly acute in critical
infrastructure environments, where watermarks must withstand
not only common image manipulations but also domain-specific
perturbations—such as compression in telemedicine systems or
noise in industrial sensor networks—while maintaining strict
performance and compliance standards.

To address these challenges, this study integrates error
correction coding (ECC) [29] into the watermark embedding
process of diffusion models. ECC augments watermark data
with redundant bits, forming codewords that correct errors
introduced by distortions like compression or cropping. By
preprocessing watermark data with ECC schemes such as BCH
[30] or LDPC [31], we enhance extraction accuracy and robustness
without significant overhead.

Additionally, the Kyber algorithm [32]—a post-quantum
key encapsulation mechanism (KEM) based on the Module
Learning with Errors (MLWE) problem and standardized as
FIPS 203—secures the stream key against quantum-era threats.
Kyber ensures efficient, compact encryption, bolstering watermark
confidentiality. This study proposes a robust digital watermarking
framework for diffusion models with post-quantum integrity that
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significantly enhances watermark robustness while preserving the
quality of generated images. Compared to the Gaussian Shading [12]
technique—which involves repeatedly expanding watermark
information to match latent feature dimensions and resampling
initial latent features after stream key encryption—the proposed
method reduces watermark-induced image quality degradation
but suffers from limited extraction accuracy. To address this
limitation, we introduce an error-correcting code (ECC) precoding
mechanism. Prior to stream key encryption and distributed hold
sampling, the watermark information undergoes ECC encoding
to construct an error-correcting structure, significantly enhancing
watermark robustness. Therefore, the contributions of this work can
be summarized as follows:

1. Our method enhances robustness by distributing watermark
information throughout the entire latent space using
error correction codes. The error correction capability
against other forms of attacks is also enhanced to varying
degrees.

2. The
encryption for the watermark system's stream key, securing

Post-Quantum Kyber algorithm provides robust

key transmission to significantly enhance watermark
protection and augment the copyright protection capabilities
of the diffusion model-based system. This is especially
critical in distributed infrastructure networks where key
exchange must remain resilient against eavesdropping and
man-in-the-middle attacks.

The remainder of this paper is structured as follows. Section 2
reviews related work. Section 3 presents the watermark embedding
and extraction framework. Section 4 details the experimental
results and compares robustness and visual quality with existing
techniques. Section 5 concludes this study.

2 Related work
2.1 Diffusion models

Diffusion models are a class of deep generative models grounded
in non-equilibrium thermodynamics. They aim to synthesizing
novel samples matching the original data distribution by learning
the generative process. Specifically, the forward diffusion process
gradually perturbs data into Gaussian noise through iterative noise
addition, while the reverse denoising process trains a neural network
to iteratively restore the data distribution, thereby yielding high-
quality samples.

Diffusion models learn to approximate the target distribution
py(x,) from the real data distribution g(x) through forward and
reverse Markov diffusion processes. Specifically, these models
train a noise predictor €(x,t) and generate images x, from
Gaussian noise x; through iterative noise estimation and T-step
denoising. To accelerate generation [3], proposed the Denoising
Diffusion Implicit Model (DDIM), which reduces the sampling
steps from approximately 1000 to about 50. To further reduce
computational costs while maintaining output quality, the Latent
Diffusion Model (LDM) [33] performs the diffusion process in
a compressed latent space, establishing the current mainstream
paradigm for image generation with diffusion models. The
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forward diffusion process of the diffusion model is defined as
Markov:

T
q(x1.7l%0) = HQ(xt|xr—1) 1)
=1

q(xlx, ) = /\/’(xt; Vi _ﬁtxt—l’ﬁtl) (2)

q(x,.71x,) denotes the probability distribution of the noisy image
xp obtained from the original image x, via a T-step noise-addition
process. It is a Gaussian distribution with mean /1 -f,x,_; and
variance f3,, where f3, is a predetermined noise-variance coefficient
and I is the identity matrix.

The goal of the reverse diffusion of LDM is to learn the joint
distribution:

T
pe(xor) :P(xT)l_[PG (x1lx,) (3)
t=1

where the prior distribution is given as p(xr) = N(0,I). The Latent
Diffusion Model (LDM) generates images by executing the reverse
diffusion process on a latent feature z;.

1 I-a
z -
V1-a

where «, = /1 -, and &, = [];_,«; the noise predictor ¢(z,,1) is
trained to estimate the noise introduced in the forward diffusion

2 = ¢ (2pt)

R

process. In this paper, we employ the classical Stable Diffusion model
to illustrate our watermarking method. The dimensionalities of the
original image x and the latent feature z, are (3, 512, 512) and (1, 4,
64, 64), respectively.

2.2 Watermarks for latent diffusion models

Latent Diffusion Models (LDMs) allow users to create style-
specific images via training and fine-tuning. Yet these capabilities
raise concerns about misuse, particularly the unauthorized
commercial exploitation of LDM outputs that lack intrinsic
copyright safeguards. Therefore, enhancing copyright protection
and traceability for LDMs is crucial. Digital watermarking
technology offers a proven approach to mitigate these issues by
embedding imperceptible information into content. This technique
involves embedding watermarks into generated images to enable
source identification and verification. As shown in Figure 1, the
existing digital watermarking methods for LDMs can be categorized
into three types: postprocessing, generative, and latent feature-based
watermarking.

Post-processing watermarking embeds watermarks after image
synthesis to assert copyright. Representative schemes include
DwtDct [18] and RivaGAN [19]. The approach is straightforward
to integrate into open-source frameworks such as Stable Diffusion,
enabling direct watermark injection into output images. However, its
fundamental limitation lies in the direct modification of pixel data,
which introduces artifacts or texture distortion and consequently
degrades visual quality. Additionally, such watermarks remain
vulnerable to targeted attacks (e.g., cropping, filtering), thereby
compromising the reliability of copyright identification.
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Generative watermarking integrates embedding with the
generation pipeline, eliminating post-processing. Representative
methods including Stable Signature [23] and AquaLora [24] enhance
watermark concealment while preserving image generation quality.
A key advantage of this approach is the deep fusion of watermarks
with image content, resulting in significantly enhanced resistance to
attacks compared to post-processing methods. However, limitations
include the requirement for model retraining or fine-tuning,
substantial computational overhead, and the necessity to repeat
training processes when adapting to different style-specific models,
consequently restricting flexibility.

Latent feature-based watermarking technology operates within
the latent space of diffusion models, enabling watermark embedding
without parameter modification. Representative approaches include
Tree-ring [34], which encodes watermarks in the frequency domain
of latent noise using ring-shaped patterns to achieve robust
traceability. However, this approach does not incorporate user
identity information, permitting only model origin verification
rather than specific user tracking, thereby limiting capabilities for
pursuing legal accountability. DiffuseTrace [35] employs an encoder
to modify the initial latent noise. Gaussian Shading [12] maps
watermarks to latent feature following Gaussian distributions. These
methods avoid fine-tuning overhead and provide high deployment
convenience, but face challenges in watermark robustness that
require further optimization of interference resistance.

2.3 Error correcting code

codes (ECQC) fundamental

technologies in information theory and communications, employed

Error-correcting represent
to detect and correct errors during data transmission or storage
through the introduction of redundancy. The fundamental principle
involves encoding original information into codewords containing
redundant bits using specific algorithms, utilizing the Hamming
distance between codewords to detect and correct errors: a larger
minimum Hamming distance corresponds to stronger error
correction capabilities. ECC is primarily categorized into two
types: block codes [30,31,36] and convolutional codes [37,38].
Block codes encode fixed-length data blocks independently, making
them suitable for storage systems. Convolutional codes process
continuous data streams through shift registers and utilize the
Viterbi algorithm for soft-decision decoding, rendering them widely
applicable in wireless communications. This study focuses on
applying block codes to watermarking in diffusion models.

While numerous ECC families exist, this work concentrates on
BCH and LDPC codes due to their inherent alignment with the
characteristics of latent-space watermark embedding in diffusion
models. First, the watermark is encoded as a binary sequence, and
the perturbations introduced during latent inversion and image-
level attacks predominantly manifest as independent bit flips rather
than symbol-level erasures. BCH and LDPC codes operate natively
in the binary domain, enabling them to directly address this bit-
level distortion pattern. In contrast, Reed-Solomon codes [36]
are symbol-oriented and optimized for burst errors over large
finite fields. Consequently, they are less efficient against the sparse,
randomly distributed distortions typical of latent representations.
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Second, BCH and LDPC codes offer flexible code lengths and
rates, which can be adapted to the spatial capacity constraints
of latent feature maps. Their encoding and decoding processes
incur low computational overhead and are compatible with iterative
extraction pipelines. LDPC decoding performs well when soft
information (e.g., log-likelihood ratios) is available, whereas BCH
decoding provides deterministic algebraic correction that remains
stable even under low initial bit reliability. Therefore, these
two codes together facilitate a balanced comparative analysis of
deterministic versus iterative decoding strategies under latent-space
perturbations.

Therefore, BCH and LDPC codes represent complementary
and practically deployable ECC structures for diffusion-model
watermarking, making them well-suited for the comparative
analysis conducted in this study.

2.3.1 BCH code

BCH codes [30] are a class of linear block codes in error-
correcting coding theory. They can be integrated into watermarking
systems to enhance robustness. For example, in video watermarking,
adaptive BCH coding has been successfully combined with ring
tensor features, markedly improving resilience against a range
of attacks [39]. Their core principle involves constructing redundant
parity bits through generator polynomials and performing error
location and correction via algebraic operations over finite fields.
The construction of BCH codes relies on finite fields (Galois fields,
GF) and minimal polynomials. BCH code encoding involves the
following main steps.

Consider a finite field GF(q), where g represents a prime
power. Binary BCH codes are most commonly defined over GF(2).
Their extension field GF(2™) can be constructed using primitive
polynomials. The code length for such BCH codes is typically n =
2M—1.

The generator polynomial g(x) is the fundamental component of
a BCH code. It is defined as the least common multiple (LCM) of the
minimal polynomials corresponding to a set of consecutive powers
of the primitive element:

g(x) = LCM{m, (x),my (x),...,my, (x)} (5)

where m;(x) denotes the minimal polynomial of element o over
GF(2), « is a primitive element of GF(2™), and ¢ represents the
error-correction capability of the code. The degree of the generator
polynomial determines the number of check bits r = n—k, which
satisfies r < mt.

The encoding process of BCH codes systematically converts
the information polynomial into a codeword polynomial. Let the
information polynomial be denoted as:

u(x) = g+t X+ -+ + ty_ x5 (6)

The encoding operation is realized by generating polynomial
8(x):

c(x) =ux)-x"F+ [u(x) -x"* mod g(x)] (7)

where the remainder term constitutes the check polynomial. This

encoding can be efficiently implemented using a linear feedback

shift register, which ensures all generated codewords maintain the
necessary cyclic properties.
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BCH decoding locates and corrects errors by adjoint. The
process is as follows: The calculation of adjoint: accept vector r(x) =
c(x) + e(x) (e(x) is the error polynomial), calculate the adjoint.

n—1
szr(ocj)=2ri-(ocj)i, j=12,...,2t (8)
i=0
if §; =0 holds for all j, then there is no error; otherwise enter the
error correction process.
Error localization polynomial error correction: Using the
Berlekamp-Massey (BM) algorithm to solve the error localization
polynomial U(x):

v
U@ =[[(1-xX) =1+ Upx+ -+ Ux" 9)
i=1
where X; = o denotes the i-th error location and v <t represents
the actual number of errors. By solving for the roots of U(x), their
reciprocals correspond to the error locations p;,. For binary BCH
codes, error correction is accomplished by directly performing bit-
flipping operations on the identified error positions.

2.3.2 LDPC code

Low-density parity-check (LDPC) codes [31] are a class
of linear block codes characterized by a sparse parity-check
matrix. The “low-density” property refers to the fact that the
vast majority of entries in this matrix are zeros. Owing to
their excellent error-correction performance, LDPC codes can be
incorporated into watermarking systems to significantly improve
robustness. For instance, semi-random LDPC codes have been
integrated with a spatial-chromaticity Fourier transform to develop
image watermarking schemes that achieve both high robustness
and capacity [40]. LDPC codes are error-correcting codes based
on sparse graphs, typically featuring large-sized low-density parity-
check matrices, meaning that most elements in the matrix are 0 while
only a few are 1. LDPC codes are primarily used to correct bit-level,
random errors in codewords.

Let the information bit sequence be denoted by u=
[y, Uy, ... »Cals
where n > k and the code rate is R = k/n. A valid codeword ¢ must

,u;] and the resulting codeword by c={[c,c,,...

satisfy all constraints imposed by the parity-check matrix H; that is:
Hc =0 (10)

This equation represents the fundamental constraint for LDPC
codes, where all operations are performed under modulo-2
arithmetic in the binary Galois Field GF(2).

To achieve systematic coding, where the codeword directly
contains the original information bits, the corresponding generator
matrix G is derived from the parity-check matrix H, with dimensions
kxn. Through algorithms like Gaussian elimination, H can be
transformed into systematic form via row operations:

H=[P|L,| (1)

where I is an m x m identity matrix and P is a k x m dense matrix.
The corresponding generator matrix G can then be constructed as:

G =[L,|P] (12)
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The encoding operation involves the matrix multiplication of the
information vector u and the generator matrix G, expressed as:
c=u-G=[uluP] (13)
The resulting codeword c¢ is systematically composed of the
original information bits u and the calculated check bits p = uP, and
therefore inherently satisfies the constraint Hc” = 0.
Decoding is performed using the min-sum algorithm [41]. First,
the log-likelihood ratios are initialized according to the received
vector y, yielding LE,O):

(14)

Each check node is updated and forwards the least-reliable
adjacent information to its connected variable nodes, prioritizing
adjustment of the least-reliable bits:

(11 se(sn))
n'eN(m)\n

Variable point update, if most check nodes support the current

L(L)

m—n

(L-1)

n'—m

min
n'eN(m)\n

(15)

bit value, enhance its confidence; if there is a conflict, the reliability
of the current value is weakened:

L(L)

n—m

0 L
=1+ A

m'eM(n)\m

(16)

where N(m) denotes the set of variable nodes adjacent to the m-th
check node, and M(n) denotes the set of check nodes adjacent to the
n-th variable node.

Finally, the judgment process is performed:

o it o

(17)
1 otherwise

if the verification matrix multiplied by ¢ equals 0 or the maximum
number of iterations is reached, decoding is terminated and the
decoded information is output.

2.4 Post-quantum key encapsulation
mechanism

Kyber [32] is a post-quantum key encapsulation mechanism
(KEM) whose security is based on the hardness of the
Module Learning with Errors (MLWE) problem, providing a
rigorous foundation in lattice-based cryptography. In a related
advancement [42], pioneered a white-box watermarking signature
scheme, demonstrating the practical synergy between post-
quantum KEMs and watermarking for enhanced model copyright
protection. Algorithmically, Kyber employs a matrix-vector
arithmetic structure over a polynomial ring, achieving a provable
security guarantee while maintaining high computational efficiency.
The three core algorithmic components are detailed in the following
subsections.
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2.4.1 KeyGen

The key generation phase produces a key pair: a public key for
encryption and a private key for decryption. During initialization,
security parameters including the dimension nk and the polynomial
ring are defined R, and the public matrix A € RZXb is randomly
generated, where b depends on the security level. Subsequently, a
secret vector d € Rg and an error vector e € RZ are sampled, with
their coefficients drawn from a centered binomial distribution or
a discrete Gaussian distribution to maintain the requisite small-
norm properties. Finally, the public key pk = (A, dt) and the private
key sk = d are computed as shown in Equation 18.

dt=A-d+eeR} (18)

2.4.2 Encapsulate

During the encapsulation phase, a sender can encapsulate
a random session key using the recipient's public key. The
vectors g € R];, el € RZ, and e, € R, are randomly generated, with
their coefficients drawn from a small-error distribution. The two
ciphertext components are then computed using Equations 19, 20.

du:AT-g+eIER2 (19)

dv:AT-g+eZ+m€Rq (20)

where km € R, represents the encoded message. The shared session
key K is then derived via K = H(km), producing the final ciphertext
C = (du, dv) and session key K.

This construction guarantees ciphertext security. Even if an
adversary obtains the public values A and dt, the secret values g
and km cannot be efficiently recovered due to the computational
hardness of the underlying MLWE problem.

2.4.3 Decapsulate

During decryption, the recipient employs their private key to
recover the session key from the ciphertext. Using Equation 21, error
compensation yields w, which is then decoded via Equation 22 to
obtain km'. The shared key K’ is subsequently reconstructed using
the hash function K’ = H(km').

w=dv-d"-dueR, (1)
km' :dv—dT-du:(dT~A‘g+dT~el+62+km)—dT-(AT-g+el):km
(22)

The Kyber algorithm implements secure key exchange
through the aforementioned three-phase procedure. Its design
incorporates both post-quantum security and practical deployment
efficiency. This combination makes it suitable for diverse secure
communication scenarios, including stream-key protection within
this paper's watermarking framework.

3 Methods

This section details the robust image watermarking method with
error correction coding technology intergrated into the diffution
model. The complete process consists of two parts: watermark
embedding and watermark extraction.
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FIGURE 1
Existing watermarking frameworks are broadly categorized into three types: post-processing-based, model fine-tuning-based, and latent
feature-based methods. Our latent-representation approach significantly outperforms prior schemes in robustness. (a) Post-processing-based.
(b) Fine-tuning-based. (c) Latent-representation-based.

3.1 Watermark embedding

The watermark embedding process aims to achieve robustness,
security, and statistical imperceptibility within latent diffusion
models, and therefore, it integrates error correction, cryptographic
protection, and distribution-aware sampling into a unified
embedding process: (1) the original watermark sequence is encoded
using ECC to bolster robustness against noise and distortions;
(2) the watermark security against unauthorized extraction is
guaranteed via a post-quantum cryptographic mechanism; (3)
the encrypted watermark is embedded into latent feature using a
distribution-preserving sampling strategy, ensuring alignment with
the original latent prior. Collectively, these steps form the complete
embedding pipeline, whose architecture is illustrated in Figure 2
and detailed in Sections 3.1.1-3.1.3.

3.1.1 Error correcting schemes for robust
watermark

Before formal embedding and encryption, it is necessary to
implement Error Eorrection measures on the original watermark
information u so as to ensure that the original watermark u can
be recovered even after critical infrastructures undergo attacks. To
maximize the robustness, we designed a two-layer error correction
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scheme: the first layer applies a block-based ECC to impose global
structural constraints on the watermark sequence; the second layer
introduces repetition coding to mitigate fine-grained, random bit
flips induced by stochastic sampling and quantization. This two-
layer strategy provides significantly higher robustness than single-
layer schemes.

In the first encoding layer, the original binary watermark
sequence u € {0,1}Z is encoded using linear block codes, such
as BCH, LDPC or their cascaded combinations, producing an
intermediate sequence ¢, € {0, 1}". Such block-level coding corrects
correlated or structured errors that may accumulate during diffusion
sampling and latent inversion. As detailed in Section 2.3, BCH and
LDPC codes are particularly suited for this role due to their binary-
domain operation and efficacy in correcting multiple distributed
bit errors.

In the second encoding layer, repetition coding is applied to
strengthen the intermediate sequence ¢, into ¢. In the layer of
repetition coding, each bit is replicated r times to form the final
encoded sequence c € {0, 1}2, which is embedded into independent
latent variables using the distribution-preserving sampling
strategy from Section 3.1.3. This layer primarily counteracts
localized random bit flips caused by sampling stochasticity and

quantization uncertainty. Distributing replicas across independent
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FIGURE 2
Error-correcting code watermarking framework. A binary sequence u represents the watermark. It is first encoded by ECC; to yield ¢, then by ECC, to
yield c. After encryption, ¢, is mapped to the initial latent feature via distribution-preserving sampling. Denoising produces the watermarked image X°.
Extraction reverses the DDIM inversion and subsequent steps.

latent positions ensures that random perturbations affect them
independently.

When attacked, the second layer's majority voting across the bit
repetition suppresses dominant random errors, yielding a stabilized
estimate of ¢,. The block-level ECC decoder subsequently corrects
residual inconsistencies to recover the original watermark. Thus, the
hierarchical design allocates roles clearly: repetition coding handles
prevalent random noise, while block-based ECC performs precise
correction of the global structure.

By incorporating the two-layer Error Correcting scheme,
the proposed encoding strategy achieves a level of robustness
unattainable by either repetition coding or block-level ECC alone.
This two-layer framework constitutes a core component of the
watermarking method and directly explains the robustness gains
demonstrated experimentally.

3.1.2 Apply kyber algorithm

First, a Kyber key pair (pk, sk) is generated. The public key, pk, is
used to encrypt the stream key, while the private key, sk, is retained
by the authorized party for decryption. The randomly generated
stream key is then encapsulated using the Kyber algorithm.

(Ckyher, Kshmd) = Kyber.Encapsulate (pk) (23)
Using the shared key K;,,..; to encrypt the stream key:
Kenc =AES (Kshared’Kstream) (24)

where AES denotes the symmetric encryption algorithm.
During decapsulation, the private key sk and the ciphertext Cy .,
are employed to recover the shared key.

K40 = Kyber.Decapsulate (Ckyher,sk) (25)
Following decryption, the original stream key K., is

recovered and utilized for subsequent watermark decoding
operations.

K

stream = AES?I (Kshured’Kenc) (26)
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The security of the proposed framework relies on the Kyber
algorithm, whose architecture is illustrated in Figure 3. Even if an
adversary acquires the ciphertext C;,, and the encapsulated key
K., the original stream key cannot be recovered without the private
key sk. This ensures the confidentiality of the embedded watermark
information.

3.1.3 Distribution preserving sampling

This section presents a watermark-guided sampling strategy for
initial latent features, designed to address a core challenge in latent-
space watermarking: the embedding of discrete watermark bits while
preserving consistency with the continuous prior distribution (e.g., a
standard Gaussian, A/(0,1)) assumed by the diffusion model. Direct
modification of latent variables to encode watermark information
can introduce detectable distributional shifts, compromising both
the quality of generated images and the stealth of the watermark.
To overcome this, we introduce a distribution-preserving sampling
strategy that ensures watermark embedding does not alter the
underlying latent distribution. Specifically, the method employs
a deterministic probabilistic mapping mechanism, guaranteeing
that the latent features carrying the embedded watermark remain
conformant to the original Gaussian prior A/(0,1).

First, a random binary key matching the dimensions of the
carrier signal is combined with the encoded watermark information
to produce a randomized watermark. The encrypted data follows
a discrete uniform distribution. Let the latent feature space follow
Z~N(0,]), with probability density function f(x), cumulative
distribution function cd f(x), and quantile function pp f(p).

In the initial stage of sampling, the watermark information ¢,
with length of k after error correction coding and random stream
key encryption is divided into k groups. Each group is mapped
to an integer value y € [0,2k — 1], which follows a discrete uniform
distribution, i.e., p(y=1i)= % (i=0,1,... 2k 1). The standard
Gaussian distribution is partitioned into 2 intervals of equal
probability. When y = i, the watermarked latent feature z7. is sampled
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FIGURE 3

Schematic of the watermark encryption and decryption process based on the Kyber key-encapsulation mechanism. During encryption, a key pair
(pk,sk) is first generated via Kyber.KeyGen. The stream key Ky, is then protected by Kyber. Encaps to produce a ciphertext Cy ., and a shared key
Ksnareq: the latter is used in a subsequent AES symmetric encryption to obtain K,,,.. Finally, Ke,, and encoded watermark ¢ are combined via a bitwise
XOR operation to produce the secure watermark data c,. The decryption phase reverses these steps: Kyber.Decaps recovers Ky, g from Cyype, Using
the private key sk, after which AES™ reconstructs K,e.m. The watermark is then retrieved by decrypting ¢, with the stream key Ky e, Via a bitwise XOR
operation. The resulting noisy codeword ¢’ is then output for subsequent error correction and decoding.

from the conditional distribution of the i-th interval:
i
2 f(z) ppf<?> sz£pr<

0

1)
p(zly=1i)= 2* 27)

otherwise

The probability distribution of z. is given by the
following formula:
2k-1
p(z)= Y p(Ely=i)Ply=1=f(z) (28)
i=0
Equation 28 shows that z;. obeys the same distribution of the
random sampling potential representation z; ~ A/(0,I). Next, we
describe the sampling method in detail.
We can get the cumulative distribution function of the equation
according to the above:

o aeml2)
F(Zly=i)={ 2" cdf(z}) i ppf(;l)SfTSPPf<i;Tl>
1 ZST>PPf<i;—kl>

(29)

When the condition y =i holds, the latent feature zST is
sampled from the interval [ ppf ( ﬁ) ppf ( ';’—kl)] Sampling from the
conditional cdf F(z}.| y = i) provides a direct method for obtaining
zy. Since F(zy. | y =) is [0,1] takes values in [0,1], sampling from
it is equivalent to sampling from a standard uniform distribution,
denoted as u=F(z}.|y=1) ~ U(0,1). By shifting each term of
Equation 29 and considering the inverse function relationship
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between the cumulative distribution function and the probability
density function, Equation 30 describes the sampling process of the
hidden representation z;. of the watermark driven by the random

)

watermark ¢,.
u+ti

o (30

Zp :PPf<

3.2 Watermark extraction

The watermark extraction process is designed to reliably recover
the embedded watermark from potentially distorted images by
systematically inverting the embedding operations. It proceeds
through three sequential stages: latent inversion, distribution-
preserving bit recovery, and layered error-correction decoding.
These stages progressively suppress distortions to restore the original
watermark sequence.The details are as follows.

First, the watermarked image X'* is encoded into the latent space
using the Stable Diffusion encoder &, yielding the latent feature
zy' = £(X*). Subsequently, the DDIM inversion process is applied
to predict the cumulative noise added during the forward process.
This method deterministically reconstructs the noise-addition path,
ensuring that the final latent feature approximates the original, i.e.,

Zp = 2.

Watermark information extraction from latent features: After

Is
=

obtaining z', the watermark integer value is first recovered through
the inverse quantile function operation:

i=[2% cdf(2])] (31)
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where i denotes the watermark bit recovered after decryption and
reverse diffusion.

Following the transformation of the message into binary format,
a majority voting scheme is employed to decode the repetition-
encoded information. The value for each bit position is ascertained
based on the majority value across all repetition instances. This
process yields the reconstructed repetition-encoded information ¢’.

For BCH-based decoding, the received codeword ¢’ is
represented as the polynomial ¢’'(x) and may contain errors.
On the finite field GF(2™), the syndromes are first calculated
using Equation 8. Based on these computed values, it is
determined whether solving the error-locator polynomial is
necessary in the subsequent step. If required, error correction
is performed using Equation 9, ultimately yielding the decoded
watermark information u'.

When LDPC decoding is adopted, the received encoded
information ¢/, which may contain errors, is first converted to
LLR values using Equation 14. These LLR values are stored in a
message matrix that shares the same dimensions as the parity-
check matrix H, serving as the initial inputs to the variable nodes.
The algorithm then enters an iterative decoding process. Each
iteration comprises two stages: check node updating and variable
node updating. During the check node update phase, each check
node j gathers messages from all connected variable nodes except
the target node i (denoted as the set N(j)\i. It then performs
minimum value filtering and sign propagation: Firstly, the minimum
(min;) and the second minimum (min,) of the absolute value of
the adjacent message are found. If the target node i corresponds
to min,, the output magnitude is set to min,; otherwise, it is set
to min;. Concurrently, the output sign is determined by taking
the product of the signs of all incoming messages, as specified in
Equation 15. During the variable node update phase, each variable
node i combines the initial channel LLR with messages from all
connected check nodes except the target node j, as described by
Equation 16. After either completing the predetermined number of
iterations or meeting the convergence criteria, the decoding process
proceeds to the decision phase, implemented using Equation 17.
Finally, the decoded watermark information ' is recovered based
on the decision values obtained. For the combined LDPC and BCH
decoding scheme, the LDPC decoding process is first performed to
obtain the intermediate decoded information c|. This output then
serves as the input to the BCH decoder, ultimately yielding the final
recovered watermark information u’.

4 Experiments

This section presents the experimental analysis, which
comprises the experimental setup, a comprehensive evaluation of
the proposed approach, comparisons with baseline methods, and a
performance analysis of different error correction codes.

4.1 Experimental settings

This section outlines the experimental design for evaluating
the robustness, visual quality, and security of the proposed
watermarking framework. The specific configurations detailed
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include the diffusion model architecture, sampling strategy, dataset
selection, and watermark payload size. These established settings
provide a consistent baseline for analyzing the impact of different
ECC schemes and embedding mechanisms on watermark extraction
accuracy and image fidelity.

Implemental Settings: We employed the Stable Diffusion model
to evaluate the efficacy of the watermarking method. The generated
watermark images had a resolution of 512 x 512 pixels, with a
latent spatial dimension of 4 x 64 x 64. We employed the Stable-
Diffusion-Prompt dataset and the DPM-solver scheduler to perform
sampling for a total of 50 steps. During the extraction stage, DDIM
inversion was performed using the same number of steps and empty
text prompts.

Robustness Evaluation against Image Processing: We evaluated
the robustness of various watermarking methods against common
image distortions. The evaluation was conducted on 1000 generated
watermarked images. The specific parameters for each distortion
method are detailed in Figure 4.

For baseline comparisons, this study selected the following
representative methods: including the post-processing techniques
DwtDct, DwtDctSvd [18], and RivaGAN [19]; the generative
method Stable Signature [23]; and the latent feature-based technique
Latent Watermark [43] and Gaussian Shading [12]. These baselines
were compared against the concatenated BCH-repetition code
scheme proposed herein. To ensure fair comparison, we standardize
the watermark capacity to 256 bits.

4.2 Evaluation metrics

We use the average watermark extraction bit accuracy of
all the extracted watermark samples as the watermark accuracy
performance index to evaluate our method. To assess the quality of
the generated watermarked images, the Fréchet Inception Distance
(FID) [44] and CLIP Score [45] were employed as primary metrics.
FID assesses the fidelity and variation of generated images by
measuring the divergence between their feature distributions and
those of real images. The CLIP Score quantifies the degree of
semantic alignment between an image and its corresponding
text prompt.

4.3 Comparison with baselines

To provide a more rigorous and balanced comparison, we
further analyze the robustness performance of the proposed method
against baseline approaches under a variety of common image
distortions. In addition to reporting average extraction accuracy,
we emphasize scenario-specific behaviors to better reflect practical
robustness characteristics.

As shown in Table 1, the proposed method achieves overall
competitive performance across most attack types. In certain mild
distortion scenarios, such as low-intensity compression or resizing,
the robustness of our method is comparable to that of the strongest
baseline. This observation indicates that the proposed framework
does not sacrifice general robustness in favor of specific attack
resilience.
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FIGURE 4

Watermarked image is attacked by different noise. (a) Watermarked image. (b) JPEG, QF =10. (c) 60% area Random Crop (RandCr). (d) 80% area
Random Drop (RandDr). (e) Gaussian Blur, r = 6 (GauBlur). (f) Median Filter, k = 11 (MedFilter). (g) Gaussian Noise, u =0, o= 0.1 (GauNoise). (h) Salt and
Pepper Noise, p = 0.05 (S& PNoise). (i) Brightness, factor =2.5. (J) Resize and restore, factor =0.3.

(d)

More importantly, under stochastic and noise-dominated
perturbations, the proposed method exhibits consistent and
statistically significant improvements over competing approaches.
Specifically, under Gaussian blur, Gaussian noise, random drop,
and salt-and-pepper noise, the extraction accuracy of our method
surpasses the baselines by a noticeable margin. These gains
can be attributed to the two-stage error correction mechanism
introduced in Section 3.1.1, which combines block-level ECC with
repetition coding to jointly address both large-scale corruption and
fine-grained random bit fluctuations.

In contrast, baseline methods that rely on single-layer error
correction or direct latent perturbation are more sensitive to random
and impulsive noise. While they may perform competitively in
structured or deterministic distortions, their robustness degrades
more rapidly when confronted with unpredictable bit-level
perturbations. This difference explains why competing methods
may match or slightly outperform our approach in some controlled
settings, yet fall behind in noise-intensive scenarios.

Opverall, this analysis highlights that the primary advantage of
the proposed framework lies not merely in average performance,
but in its robustness stability across challenging and highly
stochastic attack conditions, which are common in real-world image
dissemination pipelines. These results support the claim that the
proposed method offers a more reliable watermarking solution
under practical and adverse conditions.

4.4 Comparison with other ECC

The performance of three concatenated schemes—BCH-
repetition, LDPC-repetition, and a hybrid LDPC-BCH-repetition
structure—was compared and analyzed. Their anti-distortion
robustness, extraction accuracy, and impact on generated image
quality were systematically evaluated.
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As indicated in Table 2, the BCH-repetition code scheme
maintains superior watermark extraction bit accuracy across various
distortion conditions. Under Gaussian blur distortion, its extraction
accuracy exceeds that of the LDPC-BCH-repetition method by
3.96%. This enhanced performance stems from the statistical
nature of errors in the latent space: perturbations caused by
diffusion inversion and image-level attacks predominantly manifest
as random, sparse bit flips, not as burst or symbol-level errors.
In such an error regime, BCH codes offer a distinct advantage.
Their compact codewords enable a higher repetition factor,
effectively reducing the bit-error rate prior to decoding. In contrast,
LDPC-based schemes generate longer codewords. This limits the
available repetition count and increases the probability that the
initial error rate will exceed the threshold necessary for iterative
convergence. Moreover, BCH decoding employs deterministic
algebraic correction for up to terrors, whereas LDPC decoding relies
on belief propagation. The latter can become unstable when the
initial log-likelihood ratios are unreliable. Consequently, the BCH-
repetition scheme is inherently better suited to the error patterns
in latent diffusion spaces, achieving an optimal balance between
redundancy efficiency and robust error correction.

4.4.1 Quality assessment

As summarized in Table 3, the achieved FID and CLIP scores
closely approach the watermark-free baseline values, with the
minimal discrepancy between these metrics indicating that the
method does not substantially compromise image quality.

4.5 Unauthorized extraction attack
Beyond evaluations of robustness, we designed security

experiments to test resistance against key-less watermark extraction.
This involved a large-scale unauthorized extraction attempt on
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TABLE 3 FID and CLIP Scores assess the image quality of the
error-correcting watermarking scheme.

Methods FID CLIP-score
Stable diffusion 25.23 0.3629
LDPC 24.50 0.3642
LDPC + BCH 2478 0.3640
BCH 24.82 0.3608

N = 1000 images. The adversary in this simulation is granted full
system knowledge (the diffusion model, DDIM inversion, and ECC
parameters) but is denied access to the Kyber private key.

For each image, the attacker first applies DDIM inversion to
obtain the latent feature z/¢. They then attempt to infer the watermark
bits directly by mapping the latent values to binary sequences,
thus trying to circumvent the cryptographic protection entirely.
The recovered bit sequences are compared with the corresponding
ground-truth watermark bits.

ACC=0.5017+0.0083 (32)

The watermark extraction bit accuracy remained statistically
indistinguishable from the random-guess baseline of 0.50.
The negligible variance observed across 1000 trials indicates
no measurable information leakage from the encrypted latent
watermark. These results collectively demonstrate that, even under
a strong inversion-based attack, unauthorized extraction remains
infeasible without the requisite cryptographic key.

4.6 Discussion on limitations

Despite its demonstrated effectiveness and robustness, the
proposed framework has several limitations to discuss.

First, computational overhead presents a practical constraint.
The framework relies on diffusion-based image generation and
DDIM inversion, processes that are computationally more intensive
than conventional spatial-domain watermarking. Specifically, the
watermark extraction requires a DDIM inversion step, which
introduces non-negligible latency. While acceptable for offline
verification or forensic analysis, this overhead necessitates further
optimization for real-time or large-scale deployment.

Second, the framework's security guarantees depend on specific
assumptions. Although post-quantum security is provided via the
Kyber key encapsulation mechanism, the system's security critically
depends on secure key management and trusted distribution
channels. Compromise or improper management of private keys
could therefore undermine the cryptographic protection layer.
Moreover, the current security analysis focuses on unauthorized
extraction and does not address active adversaries who might
attempt to forge watermarks using compromised credentials.

Finally, the current design emphasizes robustness and security
at the expense of payload capacity. The redundancy introduced
by error-correcting and repetition coding limits the maximum
watermark length that can be embedded without degrading visual
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quality. Consequently, developing more efficient coding strategies
to improve this robustness—capacity trade-off remains an open
challenge.

These limitations point to clear directions for future work:
computational optimization, stronger adversarial security models,
and more efficient encoding schemes.

5 Conclusion

This
watermarking framework for diffusion models that integrates latent-

work presents a unified post-quantum-resilient
space watermark embedding, error-correcting codes, and secure
key encapsulation. The proposed method embeds watermark signals
directly into the latent features of diffusion models, thereby avoiding
pixel-level degradation and maintaining high visual fidelity. By
incorporating ECC into the embedding pipeline, the system gains
strong resilience against a wide spectrum of distortions—including
noise, compression, and spatial manipulation—without requiring
model retraining or architectural modification. In parallel, the
adoption of the Kyber key encapsulation mechanism ensures secure
watermark key management under quantum-era threat models.

Extensive experiments demonstrate that the framework
achieves high watermark extraction accuracy across challenging
attack scenarios while preserving image quality comparable to
unwatermarked outputs. The comparative analysis further shows
that different ECC configurations offer distinct performance
trade-offs, with BCH-based schemes providing particularly strong
robustness in latent-space perturbation regimes.

Opverall, this study highlights the feasibility and effectiveness of
combining latent watermarking with post-quantum cryptography
and classical error-correction coding. The resulting system provides
a practical pathway for trustworthy AIGC governance, secure
provenance tracking, and resilient content authentication in critical
infrastructure applications. Future work may explore adaptive
ECC allocation, content-aware embedding strategies, and broader
integration with multimodal generative models.

Future work will focus on two key directions to extend
this research. First, a systematic evaluation of alternative secure
key-exchange mechanisms is warranted. This includes hybrid
lattice schemes, code-based KEMs, and lightweight authenticated
protocols. Such a study would elucidate their deployment trade-ofts
in heterogeneous infrastructure environments. Second, the security
architecture of large-scale generative systems could be strengthened
by extending the analysis of watermark-encryption strategies.
Promising extensions include adaptive key rotation, hierarchical
multi-party key management, and layered encryption models.
Pursuing these directions will advance watermarking pipelines
toward more comprehensive, resilient, and scalable protection for
next-generation Al-generated content ecosystems.
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