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Neural network–based approach 
for improving the evaluation of 
antibody–antigen docking poses
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The role of artificial intelligence (AI)–based approaches in computational biology 
and molecular biophysics has become increasingly central over the past decade; 
however, many challenges remain unresolved, such as the accurate prediction 
of protein–protein complexes, the complete solution of which would have a 
significant impact both on our understanding of cellular mechanisms and on 
the development of therapeutic and diagnostic strategies. Here, we present a 
protocol based on multiple minimal neural network (NN)–based approaches, 
trained on a set of carefully selected physicochemical features, to discriminate 
docking decoy poses (structurally distant from the experimental complex) 
from native-like poses (structurally close to the native conformation) within 
a specific class of biologically relevant protein–protein complexes, namely 
antibody–antigen systems in which the antigen is a protein. A specific version 
of the proposed method, trained on a set of antibody–antigen interface 
descriptors, some of which are derived from graph theory to capture the 
geometric complexity of intermolecular interactions, was compared with 
ITScore-PP, the docking score provided by HDOCK. This NN-based approach, 
demonstrates the ability not only to distinguish native-like poses from decoys, 
but also, more challengly, to discriminate intermediate poses from native-
like ones. Furthermore, it was also able to predict the DockQ score, a widely 
used metric for assessing docking pose quality, showing a larger absolute 
Pearson correlation coefficient than ITScore-PP. The ability of our NN-based 
approach, which relies solely on structural interface features, to identify 
accurate dockings highlights its potential as a valuable tool for improving the 
ranking of antibody–antigen docking poses and underscores the importance of 
sppropriate feature selection in protein-protein interaction modeling.
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AI-driven approaches, antibody–antigen systems, binding modes, binding properties, 
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 1 Introduction

The field of protein science has experienced a profound transformation in recent 
years, largely fueled by the rapid development of artificial intelligence (AI) and machine 
learning approaches [1, 2]. The continuous growth of experimental datasets, together 
with increasingly sophisticated learning algorithms and advances in high-performance 
computing infrastructures, especially GPU-based platforms, has led to unprecedented
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progress in tackling complex questions in computational biology, 
bioinformatics, and molecular biophysics [3].

One of the most striking breakthroughs enabled by AI has been 
the prediction of tertiary protein structures [4]. Algorithms such 
as AlphaFold2 [5, 6] and RoseTTAFold [7] have fundamentally 
changed the landscape of structural biology by providing near-
experimental accuracy in structural predictions, with a significant 
impact on protein modeling and rational drug design. Traditional 
drug discovery is both time-consuming and expensive, but emerging 
computational methods, including AI-driven approaches, have 
demonstrated their potential to substantially accelerate the process 
while reducing costs [8].

Notably, the most significant advances in protein design for 
therapeutic purposes, including monoclonal antibody engineering, 
depend not only on accurate single-protein structure prediction 
but also on the ability to model protein–protein interactions 
[9–13]. These interactions are central to understanding cellular 
mechanisms, both physiological and pathological, and are crucial 
for structure-based drug design strategies. Although the AlphaFold3 
algorithm [14] has shown remarkable improvements in predicting 
biomolecular interactions, further approaches are required to 
fully exploit both computational power and predictive structural 
models. In particular, biomolecular binding interfaces display 
diverse physicochemical properties depending on the molecular 
partners involved (e.g., protein–protein versus protein–nucleic 
acid interfaces), highlighting the need for problem-specific feature 
engineering [15, 16].

Therefore, despite significant progress, predicting the structure 
of protein–protein complexes remains a challenging task, 
particularly in the case of antibody–antigen systems [17, 18], which 
are extensively studied due to their importance in both therapeutic 
and diagnostic applications. AI-based methods offer unique 
advantages in this context [19, 20], providing data-driven strategies 
that can complement physics-based approaches and capture subtle 
structural patterns associated with molecular recognition.

Over the past decade, antibodies have emerged as powerful 
therapeutic agents, benefiting from technological advances that 
allow their structure and function to be characterized with 
increasing precision. Effective antibody design requires a deep 
understanding of the structural determinants of antibody–antigen 
recognition. While experimental methods such as X-ray 
crystallography, cryo-electron microscopy, NMR, and mutagenesis 
provide high-resolution insights, they are resource-intensive 
and time-demanding. Computational approaches, particularly 
molecular docking, represent a valuable and efficient alternative. 
Several docking platforms, including ClusPro [21], LightDock 
[22], ZDOCK [23], HDOCK [24], and HADDOCK [25], have 
been developed to generate docking poses of antibody–antigen 
complexes [26, 27]. However, identifying near-native conformations 
remains challenging, as current scoring functions are often 
optimized for binding affinity rather than structural accuracy. Deep 
learning methods are increasingly being explored to overcome 
these limitations by directly extracting informative patterns from 
structural data [28, 29]. In this context, we present a study 
emphasizing the role of careful feature selection and combination 
strategies in describing antibody–antigen interfaces for predictive 
modeling using both supervised and unsupervised machine 
learning methods.

Here, we explore the application of minimal yet effective 
machine learning (ML) techniques, in particular using Neural 
Network (NN), to the analysis and discrimination of docking 
poses in antibody–antigen complexes. We take into account 
both supervised and unsupervised approaches, considering in 
particular the principal component analysis (PCA), to evaluate 
their ability to distinguish between native-like and fully decoy 
docking conformations. Furthermore, we demonstrate that a 
simple NN trained on a set of interface descriptors, some of 
which are derived from graph-theoretical representations, can 
not only separate native-like from decoy poses but also correlate 
strongly with DockQ score [30], a widely used metric for evaluating 
docking quality (which is defined as a linear combination of 
rescaled CAPRI-standard evaluation metrics [31] (see Equations 
1–3). Finally, we compare the performance of this minimal NN-
based framework with the docking score produced by HDOCK, 
which has already been used to test the predictive capability 
of antibody–antigen structural models [26], highlighting its 
potential as a complementary strategy to improve the ranking 
of antibody–antigen docking poses. In this context, the choice 
of the docking method is not central, since the methodological 
requirement is solely to generate both native-like and decoy docking 
poses, which serve as the basis for training the predictive algorithm, 
regardless of the success rate of the docking method employed. 
More specifically, we analyze a dataset of approximately 2,200 
experimentally resolved antibody–antigen complexes. For each 
complex, docking was performed using HDOCK to generate a 
pool of docking poses, which were then classified as decoys or 
native-like according to the DockQ score. Overall, the presented 
approach demonstrates how feature engineering combined with 
AI-driven approaches can effectively classify and predict the quality 
descriptor of docking poses of antibody–antigen conformations, 
thereby supporting future developments in structure-based
antibody design. 

2 Results

Despite the significant progress that ML techniques have 
brought to the field of computational biology, improving the 
evaluation of docking poses remains a challenge that is not yet 
fully solved [32–35]. Here, we show that the appropriate selection 
of features capable of capturing the geometric properties of the 
interface between predicted dimeric structures, when used in simple 
NN models, can help improve the assessment of docking poses 
provided by the docking score.

In particular, we employed a set of antibody–antigen complexes 
(considering only protein antigens), since incorrectly predicted 
poses may involve regions other than the complementarity-
determining regions (CDRs), which consist of six hypervariable 
loops and exhibit physicochemical properties that differ 
considerably from those of the native conformations.

This work focuses on discussing the selection of the number of 
parameters in a simple NN to achieve generalizable discrimination 
between decoy and native-like docking poses, as well as accurate 
prediction of the DockQ score, which is typically used to evaluate 
the quality of a docking pose. The results are discussed in the 
following sections. 
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2.1 Dataset analysis and definition of 
native-like and decoy docking poses

As a first analysis, we investigated the composition of 
the dataset used, focusing in particular on the docking poses 
classified as well-predicted (i.e., structurally similar to the 
experimentally resolved native conformation of the complex) 
and on those incorrectly predicted (i.e., with structures that 
are considerably different from the corresponding experimental 
native conformation). To this end, we employed the DockQ 
score (see Methods for a more detailed description), which is 
able to classify native-like poses and decoy poses according to a
threshold value.

In Figure 1a, we report the DockQ distribution for all docking 
poses generated by the HDOCK method. In particular, for each 
antibody–antigen docking simulation, we considered the top 10 
docking poses ranked by score. The distribution shows that the two 
main peaks of the probability density function (PDF) are centered 
at low DockQ values, which are less then 0.24, and at high DockQ 
values, which are higher than 0.81, indicating that only a small 
fraction of poses are predicted as native-like (DockQ > 0.81), while 
the majority correspond to decoy poses (DockQ < 0.24). A cartoon 
representation of the structural alignment between the docking pose 
and the native structure, for different ranges of DockQ values, is 
shown in Figure 1c. This clearly highlights the difficulty of docking 
algorithms in accurately predicting the native conformation of 
interacting proteins. Very high DockQ values (close to 1) typically 
correspond to very small Root Mean Square Deviation (RMSD) 
values, which can be interpreted as structural fluctuations within 
thermal noise of experimentally determined native conformations 
[36, 37]. Therefore, the ability of the approaches proposed in 
the following sections must rely on identifying, based on specific 
interfacial structural properties, the decoy docking poses. In 
this way, the algorithm can be trained to discriminate between 
decoy and native-like conformations in a fully general manner, 
even when the predicted antibody–antigen complex exhibits 
an interface significantly different from those included in the
training set.

In particular, according to the DockQ values calculated for 
each docking pose, the overall dataset is composed as follows: 
19,406 decoy docking poses, 790 intermediate docking poses, 
and 1,684 native-like docking poses (see Figure 1a; Table 1). As 
shown by the bimodal trend in the distribution in Figure 1a, in 
most cases the docking method returns a pose that is structurally 
distant from the reference structure (i.e., the experimentally resolved 
complex). However, for 59% of the complexes in the dataset, 
the top-ranked pose generated by the algorithm is classified 
as native-like, in some cases with a very high DockQ score, 
making the docking model and the experimentally determined 
native structure nearly indistinguishable. This behavior may be 
due to the algorithm’s prior knowledge of the native structure 
(or its homologs), as well as particularly easy cases for the 
algorithm to predict. Nevertheless, this does not hinder the aims 
of the present work, which first seeks to classify docking poses 
according to their DockQ value and subsequently to predict the 
descriptor. In light of this, the development of computational 
methods capable of identifying decoy docking poses is crucial, as 
it helps reduce the space of possible binding conformations (by 

removing these from the candidate solutions) that require further 
investigation. A deeper insight on the overall dataset is presented
in Table 1.

In this study, we defined two different subsets. The first, 
referred to as the Decoy–Native-like dataset (DNL dataset), includes 
only decoy and native-like docking poses and is used for the 
classification approach. The second, which comprises all three 
classes (decoy, intermediate, and native-like) and is referred to 
as the DINL dataset, is used to predict the DockQ value of a 
generic docking pose. The DNL dataset consists of 1,587 decoy 
docking poses and an equal number of native-like docking poses. 
Conversely, the DINL dataset, in which the DockQ value of each 
docking pose is taken into account, is composed of 1,000 decoy 
poses, 790 intermediate poses, and 1,000 native-like docking poses
(see Figure 1a).

Each docking pose is characterized by a docking score, ITScore-
PP [38], which is a numerical value used to rank the predicted 
binding modes of molecules—more negative scores indicate more 
stable and likely interactions. The distribution of ITScore-PP 
values is shown in Figure 1b for the native-like and decoy groups 
separately. The difference between the two distributions is evident, 
and the classification based on the ITscore-PP descriptor provided 
by the HDOCK docking method yields an Area Under the 
Receiver Operating Characteristic (ROC) Curve (AUC) of 0.78
(Equation 24).

The aim of this work is to investigate how a minimal neural 
network–based approach can improve the classification of docking 
poses into native-like and decoy categories when an appropriate 
selection of binding properties is adopted, and how it can directly 
predict the DockQ value on which this classification is based. 

2.2 Correlation analysis among the features

To evaluate the docking poses, an initial set of 21 features was 
defined and is listed and described in Table 2 (see Equations 4–19 for 
further details). The selected features primarily describe geometric 
properties at the interface between antibody–antigen docking poses, 
some of which are based on graph theory to better capture the 
complexity of the geometric organization of the residues involved 
in intermolecular interactions.

An initial Pearson correlation analysis was performed to 
remove pairs of features showing high correlation (absolute Pearson 
correlation coefficient > 0.75, for both positive and negative 
correlations). The correlation matrices for all pairs of features, 
both for the initial 21 features and for the 15 features remaining 
after filtering, are shown in Figure 2a. In particular, in order to 
remove highly correlated feature pairs while minimizing feature 
pruning, the absolute Pearson correlation coefficients were mapped 
onto a graph in which pairs of strongly correlated features were 
connected. The resulting problem is equivalent to a minimum 
vertex cover problem, which was solved exactly using integer 
linear programming (ILP), given the small number of highly 
correlated features (see Equation 20). In addition, for both 
matrices, the corresponding graphs are displayed, where each 
node represents a feature and each edge between two features is 
weighted (using a red-to-blue color scale) according to their Pearson
correlation.
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FIGURE 1
Docking pose dataset analysis and class definition. (a) Probability density function of DockQ values for all docking poses in the dataset. The inset shows 
the fraction (and absolute number) of poses in the three classes: Decoy (DockQ <  0.24), Intermediate (0.24 <  DockQ <  0.81), and Native-like (DockQ 
>  0.81). On the right, the class proportions (and absolute numbers) are reported for the DNL and DINL datasets, respectively. (b) Probability density 
function of the docking score (ITScore-PP) provided by the HDOCK method. Red and blue curves represent the distributions for the decoy and 
native-like classes, respectively. (c) Cartoon representation (example) of antibody–antigen docking structures across different DockQ ranges. The 
experimentally resolved antibody and antigen structures are shown in blue and gray, respectively, while the antigen structures placed by the docking 
algorithm are shown in red (decoy, DockQ <  0.24), yellow (intermediate, 0.24 <  DockQ <  0.81), and pink (native-like, DockQ >  0.81).

2.3 Unsupervised classification of 
native-like and decoy docking poses 
through PCA

The selection of 15 largely independent features, after 
appropriate normalization (see Methods), allowed us to perform 
a Principal Component Analysis (PCA). For each docking pose in 
the DNL dataset, which is used to classify docking poses as decoy or 
native-like, a vector of 15 normalized features was associated. The 
PCA results are shown in Figure 2b, and the proportion of variance 
explained by each eigenvector is reported in Figure 2c, showing 
that the first two principal components account for 32% of the 
total variance. The unsupervised PCA approach was employed here 
to explore a potential blind classification of the two docking pose 
classes (decoy and native-like). Each point in Figure 2b represents 
the projection of the 15-dimensional feature vector (associated with 
a single docking pose) onto the essential plane defined by the first 
two principal components (PC1–PC2). Points are colored red and 
blue according to their membership in the decoy or native-like class, 
respectively.

The analysis of the two distributions (decoy and native-like) 
along PC1 does not reveal a clear separation between the two classes, 
as evidenced by the strong overlap between distributions. This is 
also confirmed by the ROC curve shown in Figure 2b, with an 
AUC of 0.52, which is effectively close to random classification. 

By contrast, the distributions of decoy and native-like poses 
along PC2 are noticeably more separated, yielding an ROC AUC 
of 0.68 (see Figure 2e). Therefore, the use of PC2 alone, in a 
fully unsupervised manner, provides a moderate but non-negligible 
discriminative power between decoy and native-like classes.

The loading analysis in this context reveals the contribution 
of each feature to the definition of each principal component. In 
particular, the interface properties most relevant for the separation 
between decoy and native-like poses are pca_flatten_ratio, pca_
alignment_score, pca_stretch_ratio_bs and pca_flatten_ratio_bs 
(features 2, 3, 9 and 10, see Table 2), which show a more pronounced 
difference compared to the corresponding loadings of PC1. The first 
two features are related to the geometry of the antibody–antigen 
interaction. Specifically, the first feature reflects the globularity of 
the complex, which increases when the interface lies in proximity 
to the CDR, while the second describes the relative orientation 
of the two molecules. Instead, the last two features capture the 
circularity and concavity of the binding interface, with higher PC2 
values corresponding to a flatter interaction surface. A comparison 
between the ROC curves of PC1 and PC2 (with ROC AUCs of 
0.52 and 0.68, respectively) and that of the HDOCK docking score 
(ROC AUC of 0.80, which was calculated using the DNL dataset) is 
reported in Figure 2e, highlighting the need to develop supervised 
methods to better evaluate each docking pose based on interfacial 
geometric properties. 
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TABLE 1  Overall dataset distribution.

All the docking poses

Decoy docking poses 88.69%

Intermediate docking poses 3.61%

Native-like docking poses 7.70%

All the native complexes

Complexes with at least one decoy 
docking pose

99.95%

Complexes with at least one 
intermediate docking pose

20.02%

Complexes with at least one 
native-like docking pose

73.17%

The top-ranked docking poses

Top-ranked best docking poses 57.54%

Native-like top-ranked docking poses 59.28%

The second column indicates the percentage of the class presented in the first column. For 
the first group of classes the frequency has to be intended among all the docking poses, for 
the second group among all the native complexes, while for the third one among the 
top-ranked docking poses.

2.4 A minimal neural network–based 
approach to classify native-like and decoy 
docking poses

In this section, a minimal neural network (see Methods and 
Equations 21–23) is employed with the aim of improving the 
classification between native-like and decoy docking poses as 
provided by the docking score. The goal is to investigate the 
contribution of neural network–based approaches to enhancing 
docking pose evaluation. As a first step, the training and test 
sets were randomly selected. Subsequently, in order to make the 
procedure as general as possible, multiple training and test datasets 
were generated so as to be maximally distinct with respect to the 
features selected for this study.

The first approach was therefore performed by considering 
one training set and multiple test groups, both drawn from the 
DNL dataset (see Methods for further details). The predictive 
performance, in terms of the Area Under the ROC Curve (AUC), 
was analyzed as a function of the number of network parameters, 
varying both the total amount of available data and the ratio between 
training and test samples. The results of this preliminary analysis 
are shown in Figure 3a, which highlights that, for a number of 
parameters equal to 70, a plateau in the test AUC curve (in red) 
is observed in almost all cases considered. By selecting the total 
number of available complexes—after verifying that this amount 
is sufficient to capture the information required to discriminate 
between the two classes—together with a 0.5 ratio between training 
and test data and a total of 70 network parameters, we obtained 
an average test set ROC AUC value of 0.90. This value exceeds the 
ROC AUC calculated using only the docking score. The comparison 

between the corresponding ROC curves is also reported in Figure 3c. 
An analogous analysis performed on the discrimination between 
native-like and intermediate docking poses in the DINL dataset 
yields a ROC AUC of 0.77, indicating a promising classification 
performance on this substantially more challenging and subtle 
task, where the structural differences between the pose classes are 
markedly smaller than in the native-like vs. decoy scenario.

The importance of the selected descriptors, as indicated by the 
PC2 loadings, can be assessed by training the NN after removing the 
descriptors with loadings greater than 0.20 (i.e., those contributing 
most to the separation between decoy and native-like docking 
poses according to PC2). This procedure results in a classification 
performance on the test set that is 14% lower than the performance 
obtained when retaining all selected features.

In addition, we propose training the NN on training and 
test sets that are as different as possible in terms of the selected 
features, in order to make the NN-based classification procedure as 
generalizable as possible. To this end, the entire dataset was split into 
two parts (training and test sets, and then swapped) according to the 
value of PC1, i.e., the projection of the feature vector onto the first 
principal component of each docking pose. Docking poses with PC1 
values below the mean were assigned to one group, while those with 
higher PC1 values were assigned to the other.

The choice of PC1 as the reference distribution for defining 
the two groups was motivated by two considerations: (i) PC1, by 
definition, is the eigenvector associated with the largest proportion 
of explained variance, thus carrying the highest amount of 
information; and (ii) the distributions of the PC1 values for the 
decoy and native-like docking poses show no clear separation 
(and therefore no intrinsic discriminative power between the two 
classes), unlike PC2 (see Figure 2). This ensures that, before and 
after splitting by the PC1 mean, the relative proportion of decoy 
and native-like poses within each subset remains approximately 
the same, see Figure 3b.

The results are shown in Figure 3c, which illustrates a neural 
network discriminative capability between decoy and native-like 
docking poses that is intermediate between the ITScore-PP docking 
score provided by HDOCK (ROC AUC of 0.80) and the NN 
previously trained on randomly selected training and test subsets. 
A ROC AUC of 0.90 was measured for the NN trained and tested 
on randomly selected sets, decreasing to values that span between 
0.81 and 0.82, when the training and test sets are separated based 
on the PC1 values associated with each docking pose. In particular, 
the improved classification capability of the proposed NN-based 
approach is further confirmed by the steep initial rise of the 
ROC curves corresponding to the NN-based methods, observed 
in the early phase (at low true positive rate and false positive rate 
values). This result highlights the ability of an NN-based approach, 
when coupled with properly selected features, to improve docking 
classification performance even when the training and test sets are 
deliberately constructed to have different underlying properties. 

2.5 The use of neural networks to improve 
the evaluation of docking poses

In the previous section, we demonstrated the importance of 
employing simple NN models for the classification of docking 
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TABLE 2  Table of features (see methods for a more detailed description).

1 pca_stretch_ratio Ratio between the values of the first and second components of the explained variance of a PCA performed on the residues 
coordinates. It represents the stretching of the complex shape

2 pca_flatten_ratio Ratio between the values of the second and third components of the explained variance of a PCA performed on the residues 
coordinates. It represents the flatness of the complex shape

3 pca_alignment_score Absolute cosine of the angle between the main principal components of a PCA performed both on the antibody and the 
antigen residues coordinates

4 bs_sasa_ratio The fraction of the complex SASA (solvent-accessible surface area) involved in the binding sites

5 bs_size Number of residues in the binding site

6 ab_bs_size Number of residues in the antibody binding site

7 ag_bs_size Number of residues in the antigen binding site

8 pca_normalized_centroid_distance Distance between the centroids of the antibody and the antigen, normalized through the main principal component of the PCA 
performed on the coordinates of the whole complex residues

9 pca_stretch_ratio_bs Equivalent to feature 1 for the binding sites residues

10 pca_flatten_ratio_bs Equivalent to feature 2 for the binding sites residues

11 bs_mean_hydrophobicity Average hydrophobicity of the binding sites residues

12 bs_delta_hydrophobicity Absolute difference of average hydrophobicity between the antibody and the antigen binding sites

13 edge_density Edge density of the unweighted network composed by the complex residues interactions

14 mean_degree Average degree of the unweighted network

15 mean_strength Average strength of the weighted network (w(A,B) = 1/dist(A,B) for any couple of interacting residues)

16 network_diameter Diameter of the weighted network

17 network_radius Radius of the weighted network

18 mean_assortativity Average degree assortativity of the networks

19 unweighted_mean_clustering Average clustering coefficient of the unweighted network

20 weighted_mean_clustering Average clustering coefficient of the weighted network

21 network_transitivity Transitivity of the networks

poses into decoy and native-like categories in antibody–antigen 
complexes. Furthermore, we emphasized the crucial role of 
accurate feature selection, which, combined with supervised 
machine learning methods, can significantly improve predictive 
performance. Here, a minimal feedforward neural network is 
trained to directly correlate (rather than classify) with the DockQ 
value, which is one of the standard metrics used to assess the quality 
of a docking pose. For this purpose, the DINL dataset was taken into 
account (see Methods for further details).

In this case as well, the scatterplot of the first two principal 
components obtained from the PCA of the feature vectors of all 
docking poses is shown in Figure 4a, where each point (docking 
pose) is colored according to its corresponding DockQ value. 
Given the inherent difficulty of capturing, through unsupervised 
approaches such as PCA, the relationship between the interface 

descriptors of predicted antibody–antigen complexes and their 
structural deviation from the corresponding experimentally 
resolved native structures (quantified by DockQ), we developed 
a neural network (NN) model trained on the DINL dataset.

By randomly selecting the training and test sets (see Methods for 
further details), we statistically analyzed how the Pearson correlation 
(Equation 25) in the test set between the experimental DockQ and 
the predicted DockQ (pDockQ) varies as a function of the number of 
NN parameters. The results for a NN trained on 80% of the available 
poses, reported in Figure 4a, show that a substantial performance 
gain is achieved by increasing the number of parameters up 
to approximately 70. Beyond this point, the correlation between 
DockQ and pDockQ increases much more slowly, while the mean 
square error (MSE) on the training set reaches a plateau for ≈86,400 
parameters (Figure 4a).
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FIGURE 2
Correlation analysis and PCA. (a) Pearson correlation matrices for all initial features (top) and for the selected features after removing highly correlated 
pairs (bottom). For each matrix, a fully connected graph is shown, where each node represents a feature and each edge is weighted by the 
corresponding Pearson correlation value. (b) Projection of the 15-dimensional feature vectors onto the essential plane defined by PC1 and PC2. Red 
and blue points represent decoy and native-like docking poses, respectively. Probability density functions for PC2 (top) and PC1 (right) are shown. (c)
Explained variance ratio for each of the 15 principal components. (d) Feature loadings for PC1 (top) and PC2 (bottom). (e) ROC curves for the decoy vs. 
native-like distributions along PC1 (blue), PC2 (cyan), and for the docking score ITScore-PP (orange).

Furthermore, the variation in correlation between pDockQ 
(computed with an 86,400 parameters NN) and DockQ has been 
studied as a function of the training set size, spanning from 50% of 
the DINL dataset to 93%, alongside the difference in MSE (ΔMSE) 
between training and test set. For both the measures, the results, 
reported in Figure 4b, show an optimal average value for the 80% 
training set proportion.

For the NN trained with 86,400 parameters, on a set composed 
by 80% of the docking poses, the correlation between DockQ and 
pDockQ in the DINL set is 0.59.

The comparison between neural network predictions (pDockQ) 
and the docking score (ITScore-PP) was performed by evaluating 
the correlation with the DockQ score. In addition, we used 
projections onto the first two principal components (PC1 and 
PC2) of each docking score as potential predictors of DockQ. The 
scatter plots showing the relationship between DockQ and each 
proposed predictor (supervised and unsupervised) are reported
in Figure 4c.

In particular, the correlations between DockQ and PC1, PC2, 
ITScore-PP (the docking score), and pDockQ are −0.04, −0.27, 
−0.41, 0.59 respectively (Table 3). This indicates that the NN-based 
approach, which uses as input the 15 selected features, substantially 
improves the quantitative evaluation of docking poses compared 
to the original docking score. Of particular note is the correlation 
between DockQ and the second principal component (PC2) of the 
PCA performed on the features. As a fully unsupervised descriptor, 

PC2 provides insight into the features that contribute most to 
the definition of the component (loadings), thereby offering the 
opportunity to further refine NN-based models through preliminary 
feature selection procedures.

To better illustrate the ability of the neural network–based 
predictive method to estimate DockQ values even in intermediate 
cases (0.24 <  DockQ <  0.81), a probability density function 
(PDF) was computed for each DockQ range (analogous to 
the boxplot analysis shown in Figure 4c). The distributions 
of the pDockQ descriptor are progressively shifted with 
increasing DockQ ranges (see Figure 4d), thereby confirming 
the method’s ability not only to classify docking poses as native-
like or decoy—as also supported by this DockQ estimation 
procedure—but also to correlate with intermediate DockQ values, 
with slightly lower yet satisfactory accuracy compared to the
docking score.

Furthermore, to assess the overall quality of the pDockQ 
descriptor, it has been benchmarked in terms of Pearson correlation 
coefficient against both ITScore-PP and the predicted binding free 
energy (ΔG), obtained using an MM/GBSA-based predictor [39] via 
the HawkDock server [40]. This comparison has been performed 
on a randomly selected small subset of the DINL dataset composed 
by 84 docking poses (30 decoy, 24 intermediate and 30 native-like 
poses, in order to maintain the proportions of the DINL dataset). 
For this analysis, the pDockQ values have been computed by a 86,400 
parameters NN trained on all the DINL docking poses that do not 
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FIGURE 3
Performance of the neural network (NN) in docking pose classification. (a) Each plot shows the ROC AUC as a function of the number of parameters 
used in the NN for the DNL dataset. From left to right, the test set proportion increases, while from bottom to top, the number of complexes used 
increases. (b) The scatterplot displays the first two principal components (PC1 and PC2) obtained from the PCA of normalized feature vectors, along 
with the probability density function of PC1. Values below the mean (zero) are colored in purple, while those above the mean are colored in green. On 
the right, the number of complexes classified as decoy and native-like are reported for the first (PC1 < 0) and second (PC1 > 0) groups, respectively. (c)
ROC curves are shown for classifications based on the first two principal components of the features (blue and light blue for PC1 and PC2, 
respectively), the docking score (ITScore-PP, orange), the NN trained and tested on randomly selected sets (green), and the NN trained and tested on 
sets defined according to differences in docking poses along PC1 (red).

FIGURE 4
Performance of the neural network (NN) in DockQ prediction. (a) The Pearson correlation coefficient between the predicted DockQ (pDockQ) and the 
measured DockQ is shown as a function of the number of parameters used to train the NN across different test sets from the DINL dataset. The inset 
reports the trend of the mean squared error (MSE) for both training and test sets as a function of the number of parameters. (b) The Pearson correlation 
coefficient between the predicted DockQ (pDockQ) and the measured DockQ is shown as a function of the training set size used to train the NN 
across different test sets from the DINL dataset. The inset reports the difference in mean squared error (ΔMSE) between training and test sets as a 
function of the training set size. (c) For each panel, the scatterplot (blue points) is combined with a boxplot (in gray) of the measured DockQ, together 
with the four descriptors: PC1, PC2, docking score (ITScore-PP), and the NN-predicted DockQ (pDockQ). (d) Probability density function (PDF) of 
pDockQ for different DockQ ranges.
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TABLE 3  Results recap. The reported correlation value refers to the 
Pearson correlation coefficient.

Descriptor DNL ROC 
AUC

Split sets 
ROC AUC

Corr. with 
DockQ 

(p-value)

PC1 0.52 0.54 −0.04 (0.03)

PC2 0.68 0.62 −0.27 ( < 10−7)

ITScore-PP 0.80 0.84 −0.41 ( < 10−7)

pDockQ 0.90 0.81 0.59 ( < 10−7)

The p-value refers to the null hypothesis that the distributions underlying the samples are 
uncorrelated and normally distributed.

share the reference native complex with any test set element. While 
ΔG and pDockQ show a comparable performance (respectively 
−0.62 and 0.67), both have a significantly larger Pearson correlation 
coefficient in magnitude than ITScore-PP (−0.43). Although the 
small size of the test set of this assessment does not allow a definitive 
statement, the pDockQ approach results are promising, even when 
compared with one of the state-of-the-art methods reported in the 
literature. 

3 Conclusion

In this work, we addressed the role of minimal neural networks 
(NNs) in tackling the still unresolved problem of accurately 
evaluating docking poses. Specifically, for a set of experimentally 
determined antibody–antigen complexes, structural predictions 
were generated using the HDOCK docking method. Each predicted 
pose is associated with a docking score that is intended to reflect its 
reliability based on an internal scoring function. The main idea of 
this study is to improve the assessment of docking scores through 
the use of neural networks. Each docking pose was evaluated 
by structural comparison with the experimentally resolved native 
complex using the DockQ metric, which is commonly employed to 
assess the performance of molecular docking prediction methods. 
Threshold values of DockQ were then used to classify docking 
poses as decoy or native-like. A set of physicochemical features, 
some of which are derived from graph theory to capture the 
complexity of residue–residue interactions at the antibody–antigen 
interface, was defined with the aim of training one NN for the 
classification between decoy and native-like poses, and another NN 
for the direct prediction of DockQ. The results show that, unlike the 
unsupervised descriptors obtained from the principal components 
(PCA) of normalized features, the two trained NNs significantly 
improved both the classification between native-like and decoy 
poses, as well as between intermediate and native-like docking poses, 
and the direct prediction of DockQ compared to the docking score 
provided by HDOCK. These findings highlight the importance of 
neural network–based approaches, combined with the selection 
of chemically and physically relevant features, in improving the 
evaluation of docking poses and in describing antibody–antigen 
binding interactions. 

4 Methods

4.1 Dataset of antibody-antigen complexes

The initial dataset consisted of 9,780 experimentally 
resolved antibody–antigen complexes retrieved from the 
SAbDab database [41]. A first filtering step was applied to retain 
only complexes in which the antigen was classified as a protein 
or peptide and consisted of a single chain (thus preserving only 
monomeric antigens), resulting in 9,486 structures. Structures 
containing missing residues were either repaired or removed from 
the dataset, yielding 9,463 structures.

A multiple sequence alignment among all antibody–antigen 
complexes in the dataset was performed to remove redundancy. 
Specifically, for each complex we considered a single sequence 
obtained by concatenating the antibody sequence (heavy and light 
chains) with the sequence of the corresponding antigen. These 
sequences were then processed with CD-HIT [42–44] using a 
sequence identity cutoff of 0.9, resulting in 2,517 centroids, which 
represent the most representative sequences in the entire dataset. 
Since the study focuses on the calculation of interface properties, it 
was crucial to ensure that the interfaces were complete, i.e., without 
missing residues in the binding region. Therefore, complexes with 
incomplete interfaces were excluded, reducing the dataset from 
2,517 to 2,244 structures.

Finally, energy minimization was performed on all structures, 
resulting in a final set of 2,188 properly minimized complexes. 

4.2 Docking simulation of 
antibody–antigen complexes and decoy 
pose selection

Each antibody–antigen complex with a known experimental 
structure was split into two separate structures, antibody and 
antigen, which were then subjected to molecular docking 
simulations using the HDOCK method (thus considering the 
interacting structures in their bound conformations). For each 
antibody–antigen docking simulation, the top ten poses proposed by 
the method were retained. Each docking pose was evaluated using 
the DockQ metric, which is defined according to the following 
formula:

DockQ =
Fnat + lRMSscaled + iRMSscaled

3
(1)

with

lRMSscaled =
1

1+ ( lRMS
8.5Å
)2

(2)

and

iRMSscaled =
1

1+ ( iRMS
1.5Å
)2
, (3)

where Fnat, lRMS and iRMS are the CAPRI-standard classification 
metrics [30, 31].

In particular, for the DNL dataset, we selected for each 
experimental complex the “decoy” docking pose as the one 
associated with the lowest DockQ value among the ten poses 
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considered (ensuring in all cases that DockQ < 0.24), and identified 
the “native-like” pose as the one with the highest DockQ value 
among the ten poses generated by HDOCK (with DockQ > 0.81). 
Furthermore, 1,000 docking poses classified as decoy (based on their 
DockQ values) and 1,000 docking poses classified as native-like (also 
based on DockQ) were randomly selected from the docking poses 
obtained after the previous filtering steps. These poses were used 
to define the DINL dataset, which served as the training set for the 
neural network designed to predict DockQ values. 

4.3 Feature description

The features used throughout the whole paper can be divided 
into three groups: complex geometry features, interface features, 
complex graph features. The first group comprises all the measures 
related to the geometrical arrangement of the antibody-antigen 
complex α-carbon atoms. The first group is composed by

• pca_stretch_ratio:

l1 =
λ2

λ1
, (4)

where λ1, λ2 and λ3 are the first, second and third component of the 
explained variance of a PCA performed on the coordinates related 
to the α-carbons of the whole complex;

• pca_flatten_ratio:

l2 =
λ3

λ2
; (5)

• pca_alignment_score:

θ = |v̂ab
1 ⋅ v̂

ag
1 |, (6)

where v̂ab
1  and v̂ab

1  are the two unit vectors on the direction of the 
main principal component of the PCAs performed separately on the 
antibody and the antigen;

• pca_normalized_centroid_distance:

CD =
dist(Cab,Cag)

λ1
, (7)

where dist(Cab,Cag) is the distance between the centroids of the 
antibody and the antigen.

The second group is composed by features accounting for several 
properties of the antibody-antigen binding site (BS). For this group, 
we defined as BS residues those residues whose α-carbon is within 
12Å to an α-carbon atom from a different molecule (i.e. the antibody 
residues closer than 12Å to an antigen residue and vice versa). The 
second group features are

• bs_sasa_ratio:

SASABS

SASAtot
=

SASABS
ab + SASABS

ag

SASAab + SASAag
, (8)

where SASAab and SASAag are the solvent-accessible surface area 
(SASA), respectively, of the unbound antibody and antigen, while 
SASABS

ab  and SASABS
ag  represent the SASA values of the corresponding 

unbound antibody and antigen BS residues;

• bs_size: number of BS residues;
• ab_bs_size: number of antibody BS residues;
• ag_bs_size: number of antigen BS residues;
• pca_stretch_ratio_bs:

lBS
1 =

λBS
2

λBS
1

, (9)

where λBS
1 , λBS

2  and λBS
3  are the first, second and third component 

of the explained variance of a PCA performed on the coordinates 
related to the α-carbons of the BS residues;

• pca_flatten_ratio_bs:

lBS
2 =

λBS
3

λBS
2

; (10)

• bs_mean_hydrophobicity: average hydrophobicity of the BS 
residues, according to the water orientation probability 
hydropathy scale (WOPHS) [45];

• bs_delta_hydrophobicity: absolute difference in average 
hydrophobicity (according to the WOPHS) between the 
antibody and antigen BS residues.

The SASA values are measured using the Shrake-Rupley “rolling 
ball” algorithm with probe radius of 1.40Å and definition of 100 
points/Å2 via the Biophyton library [46].

The third group features are common graph theory descriptors 
measured on two networks: an unweighted network, where all 
nodes corresponding to residues whose α-carbons are within 12Å
are linked, and a weighted network, where to any edge (i, j) of 
the unweighted network is assigned a weight Wij = 1/dist(i, j). The 
following features belong to the third group:

• edge_density: edge density of the unweighted network

ρ = 1
N (N− 1)

1,N

∑
i,j

Lij, (11)

where N is the number of nodes, L is the adjacency matrix, i.e. Lij =
1 if i and j are connected, 0 otherwise, and ki = ∑

N
j=1Lij is the node i

degree.

• mean_degree: average degree of the unweighted network

k = 1
N

N

∑
i=1

ki =
1
N

1,N

∑
i,j

Lij; (12)
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• mean_strength: average strength of the weighted network

s = 1
N

1,N

∑
i,j

Wij; (13)

• network_diameter: diameter of the weighted network

d =maxj {maxi {eij}} , (14)

where eij is the length of the shortest path between nodes i and j on 
the weighted network and it is measured via Dijkstra’s algorithm;

• network_radius: radius of the weighted network

r =minj {maxi {eij}} ; (15)

• mean_assortativity: average degree assortativity of 
the networks

a =
∑

n,m
nm( f (n,m) − qnqm)

σ2
q

, (16)

where f(n,m) is the frequency of edges linking nodes with degree n+
1 and m+ 1, qn is the probability of a link to connect to a node with 
degree n+ 1, i.e. qn = ∑m f(n,m) and σq is the standard deviation of 
the distribution qx.

• unweighted_mean_clustering: average clustering coefficient of 
the unweighted network

Cuw =
1
N

N

∑
i=1

1
ki (ki − 1)

1,N

∑
j,h

LijLjhLhi; (17)

• weighted_mean_clustering: average clustering coefficient of 
the weighted network

Cw =
1
N

N

∑
i=1

1
ki (ki − 1)

1,N

∑
j,h
(WijWjhWhi)

1
3 ; (18)

• network_transitivity: transitivity of the networks

T = 2
∑N

i=1
ki (ki − 1)

1,N

∑
i,j,h

LijLjhLhi. (19)

The network-related features are measured via the 
NetworkX library [47].

The set of 21 features has been reduced in order to avoid 
redundancy due to the presence of highly correlated features. In this 
instance, the least amount of features such that any remaining couple 
has absolute Pearson correlation < 0.75 was removed. Linking the 
highly correlated features in an undirected unweighted network, this 
problem results to be equivalent to a minimum vertex cover problem 
(pruning the least amount of nodes such that each remaining node is 

isolated), therefore exactly solvable via integer linear programming 
(ILP). The corresponding ILP formulation, with E the set of edges,

Given:xi =
{
{
{

1, ifnode i is removed

0, otherwise

Minimize:
N

∑
i=1

xi

Subject to:xi + xj ≥ 1, ∀(i, j) ∈ E

(20)

was solved via the PuLP modeler [48]. The remaining features 
were 15: pca_stretch_ratio, pca_flatten_ratio, pca_alignment_
score, bs_sasa_ratio, ab_bs_size, ag_bs_size, pca_stretch_ratio_bs, 
pca_flatten_ratio_bs, bs_mean_hydrophobicity, mean_strength, 
network_radius, mean_assortativity, weighted_mean_clustering, 
network_transitivity.

For processing, each feature was normalized via the scikit-
learn library [49], such that all the features share the same weight. 
The PCA was performed via scikit-learn, as well. 

4.4 Neural network architecture and 
optimization

Every NN in this work has been defined via Tensorflow [50] 
and has the same structure: two-hidden-layers feed forward NN. 
Each hidden layer has reLu activaction function, furthermore, the 
output layer of the NNs used in Section 2.5 are provided with a 
sigmoid activation function, in order to retrieve pDockQ ∈ [0,1]. 
While varying the number of parameters the proportion of nodes 
in the first and second hidden layer is kept fixed at 1:2. Therefore, 
naming M the number of first layer nodes, one can retrieve the 
number of parameters N:

N = (F+ 1)M+ 1
2

M2, (21)

where F = 15 is the number of input features. The NN weights 
are fitted via AdamW algorithm with learning rate 0.001, through 
300 epochs for the classifiers (Section 2.4) and 400 epochs for the 
predictor NNs (Section 2.5). In Section 2.4 binary cross-entropy was 
used as loss function:

C(ppred‖ptrue) = − ∑
i∈{0,1}

ppred (i) ln[ptrue (i)] (22)

where {0,1} is the set of the possible classifications, i.e. “Decoy” or 
“Native-like”. In Section 2.5 mean square error (MSE) was the loss 
function, instead:

MSE = 1
N

N

∑
i=1
(pDockQi −DockQi)

2, (23)

where N is the number of docking predictions in the dataset 
and pDockQi and DockQi are the values of pDockQ and DockQ 
associated to the i-th prediction. In Section 2.5, in order to obtain 
the pDockQ values for the whole DINL dataset, it has been split into 
several complementary subsets, according to the proportion of the 
training set. The pDockQ values of each subset have been computed 
using the others as training set.
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4.5 Statistical analysis

The area under the receiver operating characteristic curve 
(ROC AUC) was used to assess the quality of the classifications 
throughout Section 2.4. Given two classes (Positive and Negative) 
and the distribution of a measure for each of the classes, the 
ROC curve is the parametric curve ROC curve = ( fpr(t), tpr(t))
representing the variation of the false positive rate fpr(t) and the true 
positive rate tpr(t) in function of the measure threshold t used to split 
the classes, where

tpr (t) =
# truepositives
#positives

,

fpr (t) =
# falsepositives
#negatives

.
(24)

The ROC AUC equates the probability that, given a random 
negative element and a random positive element, the negative 
element correspond to a measure larger than the positive. In this 
instance the Negative and the Positive classes were “Decoy” and 
“Native-like”. The ROC curves and the ROC AUCs were computed 
via the scikit-learn library [49].

Regarding the regression tasks (Section 2.5), the assessment was 
done via Pearson correlation coefficient (ρ) between any measure x
and the DockQ score of the docking prediction:

ρ (x) =
〈(x− ⟨x⟩) (DockQ− ⟨DockQ⟩)

σxσDockQ
. (25)

The validity of the Pearson correlation was assessed performing a 
p-value test of the null hypothesis that the distributions underlying 
the samples are uncorrelated and normally distributed. Both the 
Pearson correlation coefficient and the p-value were computed via 
the SciPy library [51].
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