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The mechanical phenotype of a cell, including its viscoelastic properties, is 
recognized as a label-free biomarker for diagnosing cellular states. Optical 
microelastography (OME) assesses intracellular mechanical heterogeneity by 
mapping the shear modulus distribution within cells using time-harmonic 
elastic waves observed within an optical image plane. However, reconstructing 
viscoelastic properties at the microscale is challenging not only because 
of inherent scale limitations, but also because, in OME, the complex 3D 
wave motion is only tracked within a single 2D plane. To address this 
challenge, a 2D boundary-condition-free nonlinear inversion (2D-NoBC-NLI) 
method is introduced to reconstruct viscoelastic properties from noisy 2D 
displacement fields. Numerical simulations of a homogeneous sphere, a 
heterogeneous sphere, and an asymmetric nucleated cell were designed 
to assess the robustness of 2D-NoBC-NLI reconstructions. Experiments 
were conducted on homogeneous, 75 µm-diameter polyacrylamide (PAAm) 
microbeads, which were expected to yield uniform viscoelasticity maps. With 
optimum parameter conditions, the proposed 2D-NoBC-NLI approach achieved 
mean reconstruction errors ranging from 1 to 13% across all simulated models. 
Within homogeneous PAAm microbeads, the method demonstrated frequency 
dependency of viscoelastic parameters consistent with previous measurements. 
The proposed nonlinear inversion algorithm enables storage and loss moduli 
imaging without out-of-plane motion data, and without using simplifying 2D 
approximations. This technique supports 2D elastography imaging and may 
enable OME-based cell mechanobiology studies through spatially resolved 
viscoelastic property mapping.
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Highlights

• Introduce a new non-linear inversion for viscoelasticity 
imaging in the context of optical microelastography without 
out-of-plane data.

• Numerical simulations show viscoelastic reconstructions for 
different geometries and noise conditions.

• Experimental feasibility demonstrated on 75 µm viscoelastic 
microbeads at multiple frequencies.

• The technique represents a new tool for viscoelasticity imaging 
in the context of cell mechanobiology.

1 Introduction

The mechanical phenotype of a cell is increasingly recognized 
as a label-free biomarker that reflects its state, and can be utilized 
for both diagnostic and therapeutic purposes [1, 2]. Precise 
and reliable microscopic mechanical characterization of cells has 
become essential for a comprehensive understanding of biological 
behavior and disease progression [3, 4]. Several techniques have 
been developed to assess cell mechanics including atomic force 
microscopy, microfluidics technologies, and micropipette aspiration 
[5]. Each method is tailored to characterize the intracellular or 
surface mechanics at a local or cell wide level, with specific 
spatial and temporal parameters to consider [6]. Consequently, 
measured values can vary significantly—often by several orders 
of magnitude—due to factors such as deformation rates, applied 
mechanical stress, and the specific measurement technique and tools 
employed, including probe geometry, contact area, and length scale, 
all of which impact viscoelastic property estimation [7]. Moreover, 
the time resolution at which measurements are taken can also 
influence the estimated properties [8].

Because cellular mechanics are inherently time-dependent, 
viscoelastic characterization capturing both storage and loss moduli 
is required to fully describe mechanical cell behavior. These 
parameters not only reflect underlying cytoskeletal remodeling 
but are also directly linked to fundamental processes including 
migration, differentiation, and disease progression [9]. Compared 
to elasticity alone, a full viscoelastic assessment provides superior 
characterization, with impact to better understand cancer metastasis 
and tissue fibrosis with a mechanical perspective, underscoring its 
potential as a practical biomarker for diagnosis, prognosis, and 
therapeutic response [10, 11]. For example, Ma et al. demonstrated 
that the distinction between normal and senescent endothelial 
cells can be clearly established using viscoelastic parameters, which 
provide greater sensitivity than elasticity measurements alone [12]. 
In addition, cells display pronounced intracellular heterogeneity in 
their mechanical behavior. The cytoplasm, nucleus, and cortical 
regions each exhibit distinct viscoelastic properties arising from 
differences in cytoskeletal organization, nuclear structure, and 
intracellular crowding [13–15]. Therefore, mapping intracellular 
viscoelastic heterogeneity provides a mechanical fingerprint of the 
cell’s state, which is indispensable for advancing our understanding 
of cellular biomechanics and disease mechanisms.

Elastography is an imaging technique that retrieves mechanical 
properties of soft tissues through a reconstruction based on induced 
deformations. Traditionally applied at the macroscopic level, recent 

advances integrating high-resolution optical techniques have refined 
its spatial resolution to the microscale [16, 17], enabling the 
characterization of intracellular mechanical properties that were 
previously unobservable [18]. Optical microelastography (OME) is 
one such technique to assess intracellular mechanical properties, 
based on optical microscopy [19]. It utilizes high-frequency 
(typically 15–60 kHz) induced elastic waves that propagate through 
the cell and are detected by a high-speed camera (e.g., 100–300 
kfps) integrated into an optical microscopy platform, enabling 
detailed characterization of intracellular viscoelasticity. Grasland-
Mongrain et al. [19] demonstrated the application of OME for 
ultrafast imaging of cell elasticity, highlighting its potential for high-
resolution mechanical mapping, whereas Flé et al. [20] used OME to 
measure viscoelastic properties of mouse oocytes, underscoring its 
potential utility in reproductive biology.

In the field of elastography, one of the key challenges is 
the reconstruction of viscoelastic properties from partial or 
corrupted displacement measurements. The subzone nonlinear 
inversion (NLI) reconstruction method has been widely used in 
magnetic resonance elastography (MRE) to address this challenge 
[21], and was recently adapted for cell OME [20]. The method 
involves dividing the region of interest into smaller overlapping 
subzones. Within each subzone, the NLI approach minimizes the 
difference between displacements obtained from finite element (FE) 
simulations and the experimental data. By combining reconstructed 
material properties across all subzones, the impact of measurement 
noise is reduced. However, the FE forward problem within each 
subzone requires boundary conditions, which are constructed 
from measurement data, allowing displacement data noise to 
influence the viscoelastic property reconstruction. Additionally, 
the two-dimensional (2D) nature of optical microscopy data 
under-represents the three-dimensional (3D) nature of the cell’s 
mechanical response to external vibration [22].

To redress these dimensional limitations, elastography 
reconstruction methods based on 2D displacement data typically 
rely on plane-strain or plane-stress approximations [23, 24], which 
are only valid under specific conditions. For instance, plane-strain 
is applicable in structures with a large out-of-plane dimension, 
or structures where the measurement plane corresponds to a 
plane of symmetry, or cases where the out-of-plane motion is 
restricted. Similarly, plane stress generally applies to thin plates. 
These approximations are rarely valid in biological contexts and 
their use can significantly impact reconstruction accuracy [25]. 
Errors and artifacts in 2D reconstructions arise not only from 
measurement noise but also from systematic inaccuracies of the 
underlying 2D approximations themselves, and have been shown to 
roughly 20% in previous studies [23, 24]. In the case of OME, cells 
generally have complex geometric and physical structures, with 
diverse asymmetric morphologies and heterogeneous mechanical 
properties, rendering 2D approximations inadequate. Consequently, 
the application of plane-strain and plane-stress approximations 
is inappropriate and can introduce substantial inaccuracies and 
systematic artefacts in viscoelastic property reconstruction.

Alternatively, recent advances in NLI have introduced 
boundary-condition-free (NoBC) approaches, which utilize coupled 
adjoint field (CAF) formulations to eliminate the need for known 
boundary conditions in each subzone when solving FE forward 
problems [26–28]. Eliminating the use of measurement data as 
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boundary conditions in the forward FE problem provides a more 
robust property estimate, particularly in the presence of noise. 
Building on these CAF formulations, we propose and introduce the 
2D-NoBC-NLI approach to achieve reliable OME reconstruction 
without 2D geometry approximations. This method uses a loosely 
enforced incompressibility assumption within the NoBC-NLI 
framework to reconstruct viscoelastic properties from 2D data 
using a fully 3D model. The approach is particularly effective for 
complex incompressible materials at the microscale, as it does not 
require prior knowledge of morphology or out-of-plane motion. 
Notably, it enables the reconstruction of the intricate geometry of 
cells from 2D displacement fields available in OME. Additionally, 
it is compatible with any 2D imaging modality, offering a versatile 
solution for analyzing complex geometries.

In this study, the 2D-NoBC-NLI framework was implemented 
in OME to reconstruct viscoelastic properties at the microscale 
by mapping the complex valued shear modulus using elastic 
wave-induced 2D displacements extracted from a 3D geometry. 
Validation was performed using numerical simulations on 
homogeneous, heterogeneous, and asymmetric microscale models 
to understand the behavior of the reconstruction process in various 
3D configurations. The sensitivity of the method to NLI inversion 
parameters was further assessed using a homogeneous spherical 
model to evaluate their effect on shear modulus reconstructions, 
followed by tests on heterogeneous and asymmetric models. Noise 
was then introduced into the heterogeneous and asymmetric 
simulation models to examine the robustness of the reconstruction 
process under experimental conditions. Finally, the feasibility of the 
technique was demonstrated through experiments on 75-micron 
diameter homogeneous polyacrylamide (PAAm) microbeads across 
a range of actuation frequencies. Results demonstrate that the 2D-
NoBC-NLI method provides assessment of viscoelastic properties 
at the microscale, confirming its feasibility in the context of OME. 

2 Methods

2.1 Experimental set up (OME)

A micropipette, fabricated from borosilicate glass capillaries 
(World Precision Instruments, 1B100-6, United States), was 
tapered using a vertical pipette puller (David Kopf Instruments, 
DKI700C, United States), polished, and bent with a microforge 
(Narishige Scientific Instruments, MF-2, Japan). This micropipette 
was attached to a piezoelectric transducer (Thorlabs, PK2FQP1, 
United States) to generate elastic waves within polyacrylamide 
(PAAm) microbeads. Details of the bead preparation protocol are 
provided in Section 2.6 (Experimental validation). The piezoelectric 
transducer was connected to a voltage amplifier (Amplifier Research, 
75A250, United States) and a signal generator (Agilent Technologies, 
33250A, United States) to induce 20–60 kHz harmonic actuations. 
The micropipette slightly touched the bead surface to produce 
shear motions, as in [19, 20]. This frequency range was selected 
to provide actuation conditions compatible with 2D-NoBC-NLI 
reconstructions, as discussed in Section 2.6.

To stabilize the suspended microbead during testing, a 
second holding micropipette connected to a microinjector 
(Narishige Scientific Instruments, IM21) was employed. Both 

micropipettes were attached to micromanipulators to facilitate 
precise handling and positioning. The system was mounted on 
an inverted microscope (Olympus, IX71, Japan) equipped with 
a ×40 magnification objective lens. The microscope was coupled 
to an ultrafast camera (Photron Limited, Fastcam SA-Z, Japan), 
providing an effective resolution of 0.5 µm per pixel at an image 
acquisition rate of 250 kHz. An overview of the experimental setup 
is displayed in Figure 1a.

In-plane wave displacement tracking was done using the 
Lagrangian speckle model estimator (LSME), which is based on the 
Lucas-Kanade optical flow method [29]. This approach estimates 
a 2D displacement field by comparing each frame in a time-
series of images with an image of the microbead at rest, before 
the onset of vibration (Figure 1b). In-plane displacements were 
estimated in x and y directions, using an 18 × 18 pixel2 sliding 
window, with 90% overlap in both directions. The wave propagates 
perpendicular to the direction of particle displacements, which is 
shown along x and y directions. The shear storage (G′) and loss 
(G″) moduli were reconstructed using the 2D-NoBC-NLI method
(Figure 1c). 

2.2 2D-NoBC-NLI

As briefly introduced, the complex shear modulus was 
reconstructed from the harmonic displacement field utilizing 
the subzone NLI approach [21], which divides the total region 
of interest into a set of overlapping subzones. Each subzone is 
modeled using FE analysis to simulate the viscoelastic response 
to the excitation. Material properties are iteratively updated in each 
subzone to minimize the mismatch between the experimentally 
measured displacement field and the solution obtained from 
the FE forward model. The mismatch is minimized within 
the domain of the region of interest, Ω, through the error
function ϕ:

ϕ = 1/2∫
Ω
(u(θ) − um)

H(u(θ) − um)dΩ (1)

where the bold font denotes symbols representing tensors and 
vectors. Here, u(θ) represents displacements calculated via the FE 
forward model and the current estimate of material properties, 
θ, whereas um are measured displacements. The superscript 
H indicates the Hermitian (complex conjugate) transpose. To 
minimize this function and determine material mechanical 
properties, the conjugate gradient (CG) method was used, which 
relies on the gradient of the objective function with respect to the 
material properties, ϕ′θ, to converge toward an optimal solution
for θ.

For the forward problem used to calculate the displacement 
field u as a function of material properties θ, NLI solves a 
FE discretization of the time-harmonic Navier’s equation for 
heterogeneous, isotropic, and viscoelastic materials. The governing 
equations for elastic wave propagation in such a medium 
under harmonic excitation, written in the displacement–pressure 
formulation for nearly incompressible materials [26], are presented 
in Appendix A1. The weak form of the equilibrium system, 
detailed in [26] is given by the functional A, where we define the 
test functions, W = (w,q), consisting of the test displacement field,
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FIGURE 1
(a) Experimental set up. (b) Displacements calculated over time compared to the resting state. (c) 2D-NoBC-NLI reconstruction scheme (a.u., arbitrary 
units; equations are defined in Section 2.3; the wave propagation is perpendicular to the particle displacement shown).

w, and a test pressure field, q, which, by definition, are set to be zero 
on Γ :

A(W,U(θ);θ) = ∫
Ω

G (∇u+∇Tu):∇w− p𝕀:∇w−ω2ρu ·wdΩ

+∫
Ω
− (∇ · u) q−

pq
K

dΩ (2)

In Equation 2, u is the 3D vector displacement field in meters 
[m], p is a scalar pressure field in Pascals [Pa], and 𝕀 is the identity 
matrix representing the isotropic component of the stress tensor. 
Material properties include the complex valued shear modulus 
G, in Pascal [Pa], the bulk modulus K, in Pascal [Pa], and the 
density of the material ρ, in [kg.m-3], such that θ = {G,K,ρ}. 
In this time-harmonic case, ω is the angular frequency of the 
harmonic elastic wave excitation [rad.s-1]. These equations are 

applied within the domain Ω, which represents the region of 
the material under study. The traditional subzone NLI method 
[21] requires the full three-component measured displacement 
vector um to enforce the boundary conditions and to ensure 
a well-posed forward problem, as detailed in Appendix A1. 
However, in many practical settings, only two in-plane displacement 
components are available. To address this limitation, an alternative 
formulation has been developed to enable solution of the 
forward and adjoint problems using only in-plane displacement
data.

The aim is to enforce the constraint defined by the weak form 
of the governing equation in Equation 2, while simultaneously 
minimizing the data misfit defined in Equation 1, without relying 
on explicit boundary displacement conditions or the out-of-plane 
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motion measurement. To this end, we define the Lagrangian 
functional L, combining the objective function describing the 
displacement error, and constraints of the viscoelastic forward 
problem given by A, as expressed by:

L (W,U(θ);θ) = ϕ(U(θ)) +A(W,U(θ);θ) (3)

This Lagrangian framework enables solving the inverse problem 
as a constrained optimization problem, where material properties 
θ are identified to minimize the mismatch between measured and 
simulated displacement fields, while ensuring that the simulated 
displacement field u(θ) satisfies governing equations. To obtain the 
optimal solution, directional derivatives of the Lagrangian with 
respect to U, W, and θ are computed as follows:

L′ = L′U(δU) + L′W(δW) + L′θ(δθ) (4)

Optimal conditions for the system defined by Equation 3 are 
obtained by equating each term of Equation 4 to zero, resulting 
in three equations that form the basis of the coupled adjoint-
based gradient computation and optimization algorithm. These 
equations are:

1. L′U(δU) = 0

∫
Ω
[(u(θ) − um)H −∇ · [G(∇w+∇Tw)] −∇q−ω2ρw] · δu

−[(∇ ·w) +
q
K
]δpdΩ+∫

Γ
[G(∇w+∇Tw) · δu] · ndΓ = 0. (5)

2. L′W(δW) = 0

∫
Ω
[−∇ · [G(∇u+∇Tu)] +∇p−ω2ρu] · δw− [(∇.u) +

p
K
]δqdΩ

+∫
Γ
[G(∇u+∇Tu) − p𝕀] · δw · ndΓ = 0. (6)

3. L′θ(δθ) = 0

L′θ(δθ) = L′ = ϕ′θ(U(θ)) −A′θ(W,U(θ);θ) = 0 → ϕ′θ(U(θ))

= ∫
Ω
(∇u+∇Tu):∇wdΩ. (7)

Here, we see that the gradient of the objective function with 
respect to the material properties ϕ′θ is given directly by Equation 
7, and can be calculated given the fields w and u, provided by 
solutions of Equations 5, 6, respectively. Equation 6 describes the 
standard FE forward problem for the unknown displacement field, 
which has been described in detail in numerous sources (see, for 
example, [25]). Equation 5 describes the so-called adjoint problem, 
described in detail by Tan et al. [30]; its strong form counterpart is 
given in Appendix A2. This adjoint problem is well-posed and can 
be solved for the adjoint field w, given measured and calculated 3D 
displacement fields. However, the forward problem (Appendix A1) 
still requires explicit Dirichlet boundary data on u. To circumvent 
this, we adopted a coupled adjoint field (CAF) formulation in which 
forward and adjoint systems are solved simultaneously (Kurtz et al. 
[26]). In this framework, known boundary conditions on w (w =
0 on Γ) substitute for unknown conditions on u in a combined, 
simultaneous solution for u and w. This combined system can be 
expressed as shown below, where the three components of the elastic 
equilibrium equation (Equation 8 a–c) are expanded to illustrate the 
development that follows:

̂x · ([∇ · (G(∇w+∇Tw) − q𝕀) +ω2ρw] − (u− um)) = 0 in Ω, (a)

̂y · ([∇ · (G(∇w+∇Tw) − q𝕀) +ω2ρw] − (u− um)) = 0 in Ω, (b)

̂z · ([∇ · (G(∇w+∇Tw) − q𝕀) +ω2ρw] − (u− um)) = 0 in Ω, (c)

∇ ·w+
q
k
= 0 in Ω, (d) (8)

∇ · (G(∇u+∇Tu) − p𝕀) +ω2ρu = 0 in Ω, (e)

∇ · u+
p
k
= 0 in Ω, (f)

w = 0 on Γ. (g)

In Equation 8, ̂x, ŷ, and ̂z denote unit vectors along the Cartesian 
directions. Equation 8 c indicates that the knowledge of the out-
of-plane measured displacements in the z direction, ̂z · (um), is 
required. Here, the inherently 2D nature of the measurement 
data does not provide this measured motion component, as 
described in [20]. To circumvent this limitation to 2D data, 
we introduce a dimension reduction approach to the coupled 
equilibrium Equation 8, where we replace the condition on out-
of-plane motions used for the CAF formulation with an alternative 
condition based on the divergence free nature of the displacement 
field for incompressible materials, i.e., ( ∂uz

∂z
+ ∂ux

∂x
+

∂uy

∂y
) = 0. 

This constraint is fully consistent with the assumption of near-
incompressibility introduced earlier, which was used to ensure 
numerical stability in the formulation. Together, these elements 
represent complementary strategies for modeling incompressible 
materials. In the 2D dimension reduction formulation proposed 
here, we apply this condition to the out-of-plane component of 
the calculated displacement field, uz , to the in-plane components 
of measured displacements umx and umy. Thus, Equation 8 is 
modified to become:

̂x · ([∇ · (G(∇w+∇Tw) − q𝕀) +ω2ρw] − (u− um)) = 0 in Ω,

̂y · ([∇ · (G(∇w+∇Tw) − q𝕀) +ω2ρw] − (u− um)) = 0 in Ω,

̂z · (∇ · (G(∇w+∇Tw) − q𝕀) +ω2ρw) −(
∂uz
∂z
+

∂umx
∂x
+

∂umy

∂y
) = 0 in Ω,

∇ ·w+
q
k
= 0 in Ω, (9)

∇ · (G(∇u+∇Tu) − p𝕀) +ω2ρu = 0 in Ω,

∇ · u+
p
k
= 0 in Ω,

w = 0 on Γ.

By solving the novel formulation introduced in Equation 9 for
u and w, which enables reconstruction using only 2D in-plane 
displacement data, the gradient of the objective function can then be 
calculated directly via Equation 7 and used to minimize the objective 
function in Equation 1, via non-linear conjugate gradient methods. 
Note that for the elastography problem described here, derivatives 
with respect to material properties θ are only considered for the two 
components of the complex shear modulus G, which are described 
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TABLE 1  Parameters used in numerical models.

Model Homogeneous 
sphere 

Heterogeneous 
sphere 

Asymmetric cell 
mimic 

Geometry 75 µm diameter spherical 
domain

75 µm diameter sphere with a 
30 µm inclusion

75 µm diameter base, 35 µm 
height, with a 30 µm inclusion

Inclusion None Centered spherical inclusion Offset spherical inclusion

Boundary condition (BC)

Prescribed displacements Side cylindrical projection 
(20 µm diameter) with 

harmonic vibrations of 1 µm 
amplitude in the y-direction at 

40 kHz

Side cylindrical projection 
(20 µm diameter) with 

harmonic vibrations of 1 µm 
amplitude in the y-direction at 

40/60 kHz

Side cylindrical projection 
(10 µm diameter) with 

harmonic vibrations of 1 µm 
amplitude in the y-direction at 

40/60 kHz

Fixed Opposite side cylindrical 
projection (20 µm diameter)

Opposite side cylindrical 
projection (20 µm diameter)

Bottom surface (75 µm 
diameter) fixed to simulate the 

attachment to a substrate

Free Remaining Remaining Remaining

Material properties (G∗in Pa) Background
1,140 + i437

Background
1,140 + i437

Inclusion
0.75 × G

∗

background and 1.25 × 
G

∗

background

Background
1,140 + i437

Inclusion
0.75 × G

∗

background and 1.25 × 
G

∗

background

Number of tetrahedral elements 317914 353808 224823

by spatially distributed parameter fields, which are optimized to 
minimize ϕ and form the resulting elastography image. The density 
and bulk modulus are considered constant within the material, and 
set respectively to 1,000 kg/m3 and 2.2 × 109 Pa. Gaussian spatial 
filtering with a width of 80% of the mesh resolution was applied at 
the end of the process to further stabilize the reconstruction of G.

For the FE method used in the 2D-NoBC-NLI introduced here, 
we applied approximately 12.5 nodes per wavelength, with the 
same mesh resolution used for displacement fields (u and w) and 
material properties, G. For the out-of-plane mesh resolution, we 
used 1/5 of the in-plane mesh resolution. The subzone size was set 
to be close to one mechanical wavelength, to respect the effective 
elastography diffraction limit described in [31]. To ensure converged 
minimization of the objective function, ϕ, we performed 1,000 
iterations using the conjugate gradient method. 

2.3 Numerical validation (finite element 
model)

To investigate reconstruction capabilities of the 2D-NoBC-
NLI method in the context of OME, synthetic displacement 
datasets were generated by solving the viscoelastic forward problem 
(Appendix A1) using FE methods in 3D cell-mimicking geometries. 
Three computational models were used, as detailed in Table 1.

The first model was a 75 µm homogeneous sphere, mimicking 
microbead experiments (Figure 2a). The second model consisted of 
a 75 µm heterogeneous sphere with a concentric 30 µm spherical 
inclusion, mimicking a spherical cell with its nucleus (Figure 2b). 
The third model was developed to mimic an asymmetric cell, as 
shown in Figure 2c. The base diameter was 75 μm, the height was 

35 μm, and the nucleated inclusion was a 30-µm sphere, making 
the model asymmetric in the z-direction. Transverse displacements 
in selected 2D planes for these models are shown in Figures 2d–f, 
respectively. Note that all three of these models were subjected 
to asymmetric loading, where prescribed displacements were 
applied in the zone indicated on the >x surface, while fixed, zero 
displacement conditions were prescribed on the zone indicated on 
the <x surface.

Dirichlet boundary conditions were applied to replicate the 
experimental setup. For the first two spherical models, two 
circular projections were positioned at opposite ends of the outer 
sphere. One projection, with a diameter of 20 μm, represented the 
holding micropipette and was assigned a fixed boundary condition, 
indicated by the pink color in Figures 2a,b. The other projection, also 
20 µm in diameter, mimicked the vibrating micropipette and was 
assigned a prescribed displacement boundary condition, indicated 
by the green color in Figures 2a,b, with a harmonic displacement 
amplitude of 1 µm in the transverse direction y. For the asymmetric 
cell-mimicking model, a single circular projection at the side, shown 
in green in Figure 2c, served as the vibrating boundary condition, 
while the bottom of the model, shown in pink, was fixed to simulate 
its attachment to a substrate (as in cell culture).

Simulations were carried out using Comsol 5.5, LiveLink for 
Matlab (Comsol Inc., Sweden) and Matlab R2020b (The MathWorks, 
United States) software. The material was considered to be linear 
viscoelastic, isotropic, and nearly incompressible, and material 
property values for storage and loss moduli were computed 
using an interpolated power-law equation fitted to experimental 
multifrequency data at the prescribed actuation frequency. A model-
free linear viscoelastic approach was employed, where the complex 
shear modulus G∗= G′ + iG″ was used directly as input, without 
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FIGURE 2
(a) A homogeneous sphere viscoelastic FE model. (b) A heterogeneous sphere viscoelastic FE model with an inclusion. (c) An asymmetric cell mimic 
viscoelastic FE model with an inclusion. The y-direction displacements in reconstructed planes are shown in (d) for the homogeneous sphere model,
(e) for the heterogeneous sphere model, and (f) for the asymmetric cell mimic model. BC: boundary condition.

relying on a predefined rheological model. For the background 
material, mean experimental values at 40 kHz of G′ = 1,140 Pa 
and G′′ = 437 Pa were used based on experimental measurements 
on PAAm microbeads (see Section 2.6). Inclusion moduli were 
set as 25% lower or higher than the background, corresponding 
to G′ = 855 or 1,425 Pa and G′′ = 327 or 546 Pa, to represent 
moderate mechanical contrasts, similar to those typically observed 
between the nucleus and cytoplasm of biological cells [32–34]. The 
density and Poisson’s ratio were chosen as 1,000 kg/m3 and 0.499, 
respectively, to simulate near-incompressibility. All models were 
meshed using a tetrahedral mesh with a maximum element size 
of λ/10, where λ is the wavelength of the mechanical elastic wave 

in the background material, given by λ =
√2(G′2+G″2)

ρ(G′+√(G′2+G″2))
. 1

f
. The 

number of elements used for the FE calculations are provided in 
Table 1. The complex 2D displacement data from the FE simulation 
were interpolated to match the experimental data resolution, as 
described in Section 2.1, and transformed into the time domain 
to replicate the format of experimental displacements used in 
the inverse reconstruction process. Finally, relative errors between 
reconstructed property results and ground truth values for G were 
computed for storage moduli using: |G

′
recon−G

′
true|

G′true
× 100, and for loss 

moduli: |G
″
recon−G

″
true|

G″true
× 100. These were calculated pixel-wise and then 

averaged over the entire area of interest. 

2.4 Effect of inversion parameters

To assess the sensitivity of the reconstruction process to key 
parameters that could influence 2D-NoBC-NLI reconstructions, 
values were systematically varied for the homogeneous sphere 
model, including the subzone size, out-of-plane mesh resolution, 
number of FE nodes per wavelength (NPW), and number of shear 
wavelengths (NSW) within the material. Specifically, the zone size 

was varied from 50% to 100% of the wavelength, and out-of-
plane mesh resolutions were changed from 5% to 100% of the 
in-plane mesh resolution. The effect of the FE mesh resolution, 
indicated by the number of FE NPW, on relative errors of storage 
and loss moduli, as well as the computation time relative to 
the computation time of 8 NPW, were analyzed. Additionally, 
the NSW within the material was assessed for its impact on 
reconstruction accuracy, with the material size to shear wavelength 
ratio changing from 300% to 100%. This was achieved by increasing 
the sphere size while keeping constant the actuation frequency, the 
wavelength-to-subzone ratio, and other inversion parameters. We 
examined how variations in these parameters impacted the overall 
reconstruction accuracy. By adjusting these factors, we aimed to 
gain a deeper understanding of their effects on the precision of 
2D-NoBC-NLI reconstructed viscoelastic properties. To assess the 
reconstruction near optimal inversion parameters for asymmetric 
and heterogeneous situations, parameters were applied to both 
heterogeneous sphere and asymmetric cell mimic models with either 
softer or stiffer inclusions relative to the background. In these cases, 
the excitation frequency was increased to 60 kHz to ensure enough 
shear wavelengths within each region, while keeping storage and loss 
moduli unchanged. This adjustment enabled reconstructions to be 
performed at close to optimal inversion conditions. 

2.5 Noise stability analysis

The robustness of the 2D-NoBC-NLI reconstruction was also 
evaluated by introducing Gaussian noise into the frequency-
domain displacement data of FE models at 40 kHz, chosen 
as the midpoint of the experimental bandwidth (20–60 kHz), 
providing a representative operating condition for the study. 
The analysis was performed with softer inclusions relative 
to the background. Noise was applied with zero mean and 
standard deviations ranging from 0%, 5%, and 10% of the mean 
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displacement amplitude, reflecting displacement uncertainty 
associated with motion estimation techniques. Gaussian 
white noise was chosen because electronic/thermal noise and 
displacement tracking errors in elastography are commonly 
approximated by Gaussian processes, making it a simple and 
widely accepted model of uncertainty in the displacement
field [35]. 

2.6 Experimental validation (polymer 
microbeads)

To experimentally validate the 2D-NoBC-NLI method, OME 
was performed on polyacrylamide (PAAm) microgel beads. The 
beads were produced following the method described in [36], with 
minor modifications. Briefly, a polydimethylsiloxane-based flow-
focusing microfluidic chip with channel dimensions of 40 (width) 
× 60 (height) µm2 was used to produce PAAm beads with a mean 
diameter of 75 ± 5 µm. The PAAm pre-gel mixture was prepared 
using acrylamide (40% w/v, Sigma-Aldrich, A4058, Germany) as 
the monomer, bis-acrylamide (2% w/v, Sigma-Aldrich, M1533) as 
the cross-linker, and ammonium persulfate (0.05% w/v, Cytiva, 
GE17-1,311-01, Germany) as the free radical initiator. The PAAm 
pre-gel mixture also contained 31 × 109 latex nanoparticles/mL 
(Sigma-Aldrich, LB6, mean size of 0.6 µm) and 15% (v/v) OptiPrep 
(Sigma-Aldrich, D1556) to prevent particle sedimentation during 
droplet formation. The total pre-gel volume was 545 μL, with a total 
monomer concentration of 7.9% and a cross-linker-to-monomer 
concentration ratio of 2.6%. The continuous phase consisted 
of 2% dSURF surfactant as an emulsion stabilizer (Fluigent, 
France) in Novec 7,500 oil (3M, United States), supplemented 
with 0.4% (v/v) N,N,N′,N′-tetramethylethylenediamine (TEMED) 
as a catalyst (Sigma-Aldrich, T9281, CAS 110-18-9). Following 
in-drop polymerization, beads were washed and resuspended 
in 1× phosphate-buffered saline (pH 7.4, Gibco, United States). 
Beads were stored at 4 °C and shipped between laboratories 
(Erlangen to Montreal) under controlled temperature conditions. 
Beads were vortexed to resuspend them uniformly, and 
allowed to equilibrate to the ambient temperature before 
experiments. The latex nanoparticles embedded within PAAm 
microbeads allowed optical contrasted images for elastic wave
tracking.

Experiments were conducted over a frequency range of 
20–60 kHz, corresponding to wavelengths of approximately 
70 μm at 20 kHz and 35 μm at 60 kHz in PAAm. This ensured 
that one to two shear wavelengths were present within each 
bead, aiding reliable 2D-NoBC-NLI viscoelastic reconstructions. 
Since the reconstructed shear modulus is frequency dependent, 
results were analyzed using a power-law relationship, G′ ∝ 
f α and G′′ ∝ f β. The power-law model was chosen because 
it effectively captures the frequency-dependent shear modulus 
observed in biological and polymeric materials, which exhibit a 
broad distribution of relaxation times [8, 37–39]. Coefficients α
and β were determined using least-squares regressions. Reported 
results are based on measurements over 10 microbeads. These 
experimentally measured viscoelastic parameters were also used as 
input reference values for the finite-element simulations described in
Section 2.3. 

3 Results

3.1 Finite element model

3.1.1 Effect of 2D-NoBC-NLI inversion 
parameters

The homogeneous sphere FE model with a cell-scale diameter 
exhibited a storage modulus reconstruction error of 1% and a 
loss modulus error of 9%. The effect of inversion parameters on 
reconstruction accuracy for this model is summarized in Figure 3, 
with optimal parameter ranges highlighted in gray. As shown in 
Figure 3a, increasing the zone size to wavelength ratio resulted in 
enhanced accuracy for both storage and loss moduli. Mean relative 
errors for storage and loss moduli were minimized for zone sizes 
larger than 70% of the shear wavelength, consistent with [31]. 
Relative errors of storage and loss moduli remained constant when 
the out-of-plane mesh resolution was between 20% and 100% of the 
in-plane mesh resolution (Figure 3b). By increasing the number of 
FE nodes per wavelength in the homogeneous sphere model, relative 
errors of storage and loss moduli were reduced overall (Figure 3c). 
However, the computation time increased with the NPW. Figure 3d 
shows relative errors of storage and loss moduli as a function of the 
NSW within the homogeneous sphere model. The material size to 
shear wavelength ratio changed from 3 to 1, and it is observed that 
if fewer than 2 wavelengths are present in the material, the relative 
error for the storage modulus increased from 2% to 24%, while the 
error for the loss modulus increased from 43% to 84%.

Based on the parameter sweeps shown in Figure 3, the following 
2D-NoBC-NLI settings were selected as optimal and used in all 
subsequent reconstructions (Table 2).

Figure 4 illustrates storage and loss moduli in representative 
slices of the heterogeneous sphere and asymmetric cell mimic 
models using optimal inversion parameters. Panels (a) and (d) show 
ground truth values for storage and loss moduli, while (b) and (e) 
display the corresponding reconstructed storage and loss moduli. 
Panels (c) and (f) display relative reconstruction error maps for 
storage and loss moduli, computed as described in Section 2.3. 
Across the entire region of interest, relative errors for the 
heterogeneous sphere model were 3.5% for the storage modulus 
and 10.4% for the loss modulus; for the asymmetric cell-mimic 
model, they were 5.0% for the storage modulus and 12.9% for the 
loss modulus.

Figure 5 illustrates storage and loss moduli in representative 
slices of the heterogeneous sphere and asymmetric cell mimic 
models with a stiffer inclusion relative to the background. Panels 
(a) and (d) show ground truth storage and loss moduli, panels (b) 
and (e) present corresponding reconstructions, and panels (c) and 
(f) display relative reconstruction error maps. For the heterogeneous 
sphere model with a stiffer inclusion, average errors across the 
heterogeneous region were 4.7% (storage) and 20.0% (loss). For the 
asymmetric cell mimic model, average errors were 9.5% (storage) 
and 22.6% (loss).

Detailed relative errors for background and inclusion regions, 
for both softer and stiffer inclusions, are summarized in Table 3.

3.1.2 Noise level analysis
Reconstruction errors were examined for both heterogeneous 

sphere and asymmetric cell mimic models under different noise 
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FIGURE 3
Relative errors of storage (blue) and loss (red) moduli as functions of (a) zone size to wavelength ratio, (b) out-of-plane to in-plane mesh resolution, (c)
number of finite element nodes per wavelength (NPW), and (d) number of shear wavelengths (NSW) within the homogeneous sphere model.

TABLE 2  Optimal inversion parameters.

Parameter Selected value

Nodes per wavelength (NPW) 12

Out-of-plane mesh resolution 20% of in-plane resolution

Subzone size/wavelength ratio ≈0.7 (∼1 shear wavelength)

conditions. Both models contained a softer inclusion relative to 
the background. Note that these reconstructions were performed 
at 40 kHz, which yields a smaller NSW in each region compared 
to the 60 kHz reconstructions shown in Figure 4. In Figure 6 
(heterogeneous sphere model), panel (a) shows y-direction 
displacement fields at 0%, 5%, and 10% noise; panel (b) presents 
corresponding storage modulus relative error maps; and panel (c) 
displays loss modulus relative error maps. Figure 7 shows the same 
results for the asymmetric cell mimic model.

For the heterogeneous sphere model (Figure 6), at 0% noise, 
background errors were 3.0% (storage) and 21.0% (loss), whereas 
inclusion errors were 19.0% (storage) and 51.0% (loss). With 
increasing noise levels (0%, 5%, and 10%), relative errors of the 

storage modulus in the background rose from 3.0% to 24.0%, 
whereas in the inclusion they decreased from 22.0% to 3.0%. 
Errors for the loss modulus remained approximately 17% in the 
background and declined slightly from 51.0% to 39.0% in the 
inclusion. Across noise levels, overall storage modulus relative errors 
were 6.0%, 13.8%, and 20.4%, while overall loss modulus relative 
errors remained around 22%.

Similarly, for the asymmetric cell-mimic model (Figure 7), 
at 0% noise background relative errors were 6.0% (storage) and 
14.0% (loss), whereas inclusion relative errors were 10.0% (storage) 
and 51.0% (loss). With increasing noise (0%, 5%, 10%), relative 
errors of storage modulus in the background increased to 18.6%, 
whereas in the inclusion they decreased to 7.0%; relative errors 
of loss modulus in the background remained around 11%, and 
in the inclusion they declined from 50.0% to 44.0%. Across noise 
levels, the overall storage modulus relative errors were 6.6%, 14.0%, 
and 17.6%, whereas overall loss modulus relative errors remained
around 22%. 

3.2 Microbead experiments

Two representative examples of reconstructed storage and loss 
moduli from the estimated 2D-displacement field in a PAAm 
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FIGURE 4
(a) Ground truth storage and loss moduli for the heterogeneous sphere model, (b) reconstructed storage and loss moduli, and (c) relative 
reconstruction errors map. (d–f) Same as (a–c) but for the asymmetric cell mimic model. The average error across the entire heterogeneous region 
was 3.5% (storage) and 10.4% (loss) for the heterogeneous sphere model, and 5.0% (storage) and 12.9% (loss) for the asymmetric cell mimic model.

microbead actuated at 20 kHz and 60 kHz are shown in Figure 8. 
Each panel includes a bright-field microscopy image (a), 2D 
displacements along y and x directions (b), and reconstructed 
storage and loss moduli (c) at 20 kHz (top) and 60 kHz (bottom). 
Mean values were G′ (20 kHz) = 600 ± 3 Pa, G″ (20 kHz) = 407 
± 4 Pa, G′ (60 kHz) = 3451 ± 14 Pa, and G″ (60 kHz) = 1848 
± 21 Pa (Figure 8c).

Figure 9 presents storage (G′) and loss (G″) moduli for 
measurements between 20 and 60 kHz. Results were modeled 
with power-law relationships (G′ ∝ f α and G′′ ∝ f β). Power-
law coefficients are α = 1.234 and β = 1.125. Mean coefficients of 
variation (CV) for reconstructed samples were 0.7% for the storage 
modulus and 0.9% for the loss modulus.

4 Discussion

This study proposed a two-dimensional, boundary condition 
free, nonlinear inversion approach to solve the inverse problem 
of microelastography in the presence of incomplete, 2D planar 
data. The technique was evaluated using a finite element-based 
simulation study and through experiments on PAAm microbeads. 
Results suggest potential for applications in cellular elastography, 

and mapping of viscoelastic properties in complex, heterogeneous, 
and asymmetric morphologies. The 2D-NoBC-NLI method was 
validated in experimentally realistic scenarios and was robust in 
the presence of noise. Compared to previous work, this method 
offers significant advantages in 2D imaging scenarios, enabling 
the quantitative measurement of mechanical properties that were 
previously only measurable qualitatively [40]. Unlike previous OME 
approaches, which assumed either out-of-plane symmetry [20] 
or plane strain and stress conditions [40], the proposed method 
can reconstruct quantitative viscoelastic properties without such 
assumptions.

Optimization of inversion parameters is crucial for specific 
applications. In this study, the optimization process was 
demonstrated using the homogeneous sphere model, which served 
as a representative case. As demonstrated, the effect of the out-of-
plane mesh size on reconstruction accuracy indicated an accuracy 
becoming stable for out-of-plane mesh resolutions between 20% 
and 100% of the in-plane mesh resolution. A resolution of 20% was 
chosen in this study due to faster convergence speed. Furthermore, 
previous findings indicated that having more than eight nodes per 
wavelength is critical for robust reconstructions [41]. As observed, 
increasing the NPW from 8 to 14 in the homogeneous sphere model 
reduced relative errors of both storage and loss moduli. While 
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FIGURE 5
(a) Ground truth storage and loss moduli for the heterogeneous sphere model, (b) reconstructed storage and loss moduli, and (c) relative 
reconstruction errors map. (d–f) Same as (a–c) but for the asymmetric cell mimic model. Average errors across the entire heterogeneous region were 
4.7% (storage) and 20.0% (loss) for the heterogeneous sphere model, and 9.5% (storage) and 22.6% (loss) for the asymmetric cell mimic model.

TABLE 3  Relative reconstruction errors (%) in storage and loss moduli for heterogeneous sphere and asymmetric cell mimic models.

Case Modulus Heterogeneous sphere (relative 
error in %)

Asymmetric cell mimic (relative 
error in %)

Background Inclusion Background Inclusion

Softer inclusion
Storage modulus 3.3 5.5 3.9 8.4

Loss modulus 9.1 17.9 11.6 18.5

Stiffer inclusion
Storage modulus 3.2 10.4 9.5 7.3

Loss modulus 23.0 12.8 23.9 19.2

increasing the NPW improves resolution and reduces the relative 
error, it comes at the cost of increased computation time compared 
to using 8 NPW (Figure 3c).

Additionally, the NLI is inherently influenced by the ratio of 
the zone size to wavelength [42]. It has been demonstrated that 
the subzone size can affect reconstruction accuracy. The mechanical 
property characterization is dependent on the portion of the 
mechanical shear wavelength present within the reconstruction 
domain, and when less than half of the mechanical shear wavelength 
is present, accurate reconstruction is only possible in certain 
conditions [31]. In this study, we investigated the effect of these 

ratios on the accuracy of the reconstruction in the in silico model. 
Increasing the zone size resulted in enhanced accuracy in both 
storage and loss moduli. As observed (Figure 3a), the optimal 
zone size-to-wavelength ratio of 0.7 minimized relative errors and 
stabilized the reconstruction process.

Another limitation at the microscale is that boundary effects 
can influence the propagation of elastic waves and the type of 
waves present in the material, potentially affecting the accuracy 
of the reconstruction if a specific wave type is assumed. The NLI 
forward problem inherently accounts for different wave types in the 
wave propagation model, including guided waves, shear waves, and 
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FIGURE 6
(a) Displacement in the y-direction for the heterogeneous sphere model with a softer inclusion relative to the background at 0%, 5%, and 10% added 
Gaussian noise, (b) relative error maps of the storage modulus, and (c) relative error maps of the loss modulus corresponding to these noise levels. 
Across noise levels, storage modulus relative errors were 6.0% (0% noise), 13.8% (5% noise), and 20.4% (10% noise); loss modulus errors were 23.0%, 
21.0%, and 21.6%, respectively.

surface waves, by directly solving the governing elastic equilibrium 
equations. This approach ensures that the method is robust in 
a variety of experimental conditions, as it does not rely on any 
assumptions about the wave type. Nonetheless, due to the limitation 
to in-plane data, the 2D-NoBC-NLI method remains sensitive to 
the number of shear wavelength available within the material or 
material size-to-wavelength ratio. By maintaining this optimal ratio 
and varying the number of shear wavelength within the material 
from 1 to 3, we found that results remained stable when more than 
two shear wavelengths were present within the entire mimicked 
cells. For smaller numbers of wavelengths, source-related artifacts 
in the simplified sphere simulations became more pronounced, 
particularly within the first wavelength inside the material. For 
quantitative reconstruction, at least half a wavelength must be 
present within the material, as previously established for the zone 
size criterion [31].

Based on these findings (Figure 3; Table 2), the optimal inversion 
parameters were determined to be 12 NPW. The out-of-plane mesh 
resolution was defined as 20% of the in-plane mesh resolution. The 
subzone size was selected to be as close as possible to one mechanical 

wavelength. By applying these optimal inversion parameters and 
ensuring close to two shear wavelengths within each region for the 
heterogeneous and asymmetric cell mimic models, the 2D-NoBC-
NLI reconstruction achieved good accuracy.

Under these conditions, the relative error for the storage 
modulus in the softer-than-background case was reduced to below 
10% for both models, in both the background and inclusion. For 
the loss modulus, the error was reduced to below 20% in both 
the background and inclusion. In the stiffer-than-background case, 
the storage modulus error remained below 10% in both regions, 
while the loss modulus error was below 23%. This demonstrates 
the method’s capability to achieve accurate reconstruction at the 
microscale, even under complex material conditions and geometric 
asymmetry, using only 2D plane displacements.

Numerical simulation results demonstrated the ability of the 
2D-NoBC-NLI to reconstruct heterogeneous viscoelasticity maps 
without prior information. These in silico experiments showed 
that even in the presence of up to 10% Gaussian noise, storage 
modulus reconstructions maintained an error below 20%, in both 
heterogeneous and asymmetric models. The loss modulus had a 
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FIGURE 7
(a) Displacement in the y-direction for the asymmetric cell-mimic model with a softer inclusion relative to the background at 0%, 5%, and 10% added 
Gaussian noise, (b) relative error maps of the storage modulus, and (c) relative error maps of the loss modulus corresponding to these noise levels. 
Across noise levels, storage modulus relative errors were 6.6% (0% noise), 14.0% (5% noise), and 17.6% (10% noise); loss modulus errors were 23.2%, 
22.5%, and 21.4%, respectively.

higher percentage of errors (up to 24%) due to the low sensitivity 
to this property in regions comprising limited wave content [31]. 
However, despite the presence of high noise levels, the stability of 
the loss modulus was still observed, with errors remaining below 
20% in the background and stable across different noise levels. This 
behavior arises because noise partially compensates for the inherent 
overestimation of the loss modulus near boundaries and in regions 
with limited wavelength content, leading to an apparently more 
stable reconstruction under noisy conditions. In our study, we found 
that storage modulus errors were generally due to underestimation, 
particularly in the background regions, whereas loss modulus errors 
tended to be due to overestimation in both regions.

It should be noted that errors in reconstructed loss moduli 
were generally larger than those in storage moduli. This limitation 
is well recognized in elastography [24], as the loss modulus 
estimation relies on the phase component of the displacement 
field, which is inherently more sensitive to noise and boundary 
effects, and errors are thus higher than for the storage modulus. 
The effect is particularly pronounced when the number of nodes 
is limited relative to available wavelengths, leading to higher 

biases and reduced symmetry in reconstructions. In our results, 
this manifested as elevated loss modulus errors, especially near 
boundaries and wave source regions. Similar observations have 
been reported in prior elastography studies [41, 43]. Nonetheless, 
the present method achieved robust reconstructions, and the 
accuracy of the loss modulus recovery could be further improved by 
refining or coarsening the mesh resolution depending on available 
wavelengths [41]. The error for the storage modulus within the 
inclusion appeared to be influenced by underestimation in the 
background and boundary regions, leading to artificially lower error 
values as the background error increased. This effect was particularly 
pronounced in the inclusion because it contains a limited number of 
pixels, making it more sensitive to boundary underestimation.

There was also an asymmetry/asymmetrical behavior in 
reconstruction errors. This asymmetry primarily arises from source-
related artifacts near the vibration actuator, and from boundary 
effects near edges of the domain. In cases where the inclusion 
was stiffer than the background, wave reflection and refraction 
at the material interface could further contribute to the asymmetry 
and increase the error due to the amplified boundary artifacts, 
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FIGURE 8
(a) Optical images of the PAAm microbead in bright field microscopy. (b) Displacements within the microbead in y and x directions. (c) Reconstructed 
storage and loss moduli of the microbead. Top panel results are at 20 kHz and bottom panel results are at 60 kHz.

FIGURE 9
Storage and loss moduli of PAAm microbeads (N = 10) measured with the 2D-NoBC-NLI reconstruction method between 20 and 60 kHz.

which distort the reconstruction accuracy. The maximum local 
errors were mainly observed near inclusion boundaries and source 
regions, where wave interactions and strain gradients were highest. 
Despite these limitations, the proposed 2D-NoBC-NLI framework 
achieved robust reconstructions across heterogeneous domains, 
with storage modulus errors remaining low and loss modulus 
errors within ranges tolerated in elastography studies. For example, 
Tomita et al. reported that in a homogeneous viscoelastic cubic 
models, the maximum error between the recovered and true 
storage moduli reached 22.7% in 2D inversion [44]. Similarly, 
Zhang et al. observed that in a 2D inversion of an inclusion model 

with 3% Gaussian noise, the reconstructed inclusion exhibited an 
underestimation of about 20% for the storage modulus, whereas 
the loss modulus showed greater instability [24]. These findings 
confirm that the magnitude of errors observed in our study is 
consistent with prior reports, further validating the reliability of 
the proposed approach. Most importantly, the method avoided any 
out-of-plane assumptions, offering a methodological advance that 
enabled viscoelastic mapping in microscale materials under realistic 
experimental conditions. This ability to accurately model complex 
three-dimensional behavior without relying on simplifications 
makes the approach particularly suitable for studying heterogeneous 
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and asymmetric materials, such as biological cells, where traditional 
methods may fall short.

For heterogeneous materials, spatial resolution plays a crucial 
role in characterization. Shorter wavelengths (higher frequencies) 
can theoretically improve resolution and provide more accurate 
mapping of material properties. Improving the resolution of optical 
images and displacement maps also contributes to better material 
property resolution. However, achieving these improvements often 
comes at the cost of higher computational demands and increased 
attenuation and noise, particularly at higher frequencies and frame 
rates. In low-SNR conditions, down sampling displacement maps 
may improve the stability and robustness of the reconstructed 
material properties [41], though this comes with a reduction in 
spatial resolution. Maintaining a minimum NPW of 8 is essential 
for reliable reconstructions. Under optimal SNR conditions, the 
achievable spatial resolution aligns with the displacement mesh 
or acquisition resolution and can approach the optical resolution 
of the system. For quantitative reconstruction of heterogeneous 
regions in real-world noisy conditions, it is important that at least 
half a wavelength is present within the region of interest [31]. 
Meeting this criterion enables reliable estimation of viscoelastic 
properties. While increasing the number of nodes per wavelength 
improves reconstruction accuracy, it also increases computation 
time. In general, successful experimental applications of the 
2D-NoBC-NLI method should consider a balance between the 
spatial resolution, excitation frequency, computational time, and 
robustness. By optimizing these parameters, it is possible to achieve 
high-quality viscoelastic property reconstructions, even for complex 
heterogeneous materials.

Experimental measurements in microbeads offer advantages 
over traditional rheology methods [6] due to the very short 
acquisition times (≈0.4 ms) needed to provide quantitative spatial 
distributions of the complex viscoelastic shear modulus. This rapid 
data acquisition makes the method suitable for dynamic cellular 
processes such as cytoskeletal remodeling. For example, each 
measurement cycle for the 60 kHz excitation took 17 μs, and for 
all 25 measurements on a single bead, the total acquisition time 
corresponds to 0.4 ms. These multiple acquisitions provided more 
robust/reliable displacement data for the inverse problem.

At high frequencies, both storage and loss moduli increased 
(Figure 9), confirming the frequency-dependent behavior of PAAm 
microbeads, consistent with previously reported findings for PAAm 
gels [39, 45]. The discrepancy between the equivalent Young’s 
modulus in our results and that of a previously published study 
by our team [36], which measured purely elastic properties using 
the same microbead fabrication method, is approximately 20% at 
the lowest tested frequency (20 kHz). These discrepancies may stem 
not only from differences in the pre-gel mixture and bead size, 
but also from the experimental measurement method employed 
(atomic force microscopy or real-time deformability cytometry), 
and the frequency at which mechanical properties were measured 
[36]. Indeed, at low frequencies (several Hz), mechanical properties 
of entangled macromolecular networks are predominant, while at 
higher frequencies the behavior of individual polymer dynamics 
becomes prevailing [37, 38]. In this way, OME, which operates at 
these high frequencies, is able to reveal the behavior of cytoskeletal 
filaments and probes local properties of the cytoskeleton rather 
than the collective dynamics of the entire cytoskeletal network 

[19]. While advantageous to improve the spatial resolution, a high-
frequency excitation may limit wave propagation distance due to 
increased attenuation. The limit frequency at which elastic waves 
propagate could be determined by the ratio of the loss modulus 
(viscosity behavior) to the storage modulus (elastic behavior) [46, 
47]. A lower ratio leads to a higher frequency limit. PAAm 
microbeads, due to their dominant elastic behavior, can propagate 
waves at high frequencies without significant attenuation for the 
size of particles considered in this study. Microbead experiments 
performed here revealed a consistent and uniform distribution of 
mechanical properties, with CV = 0.7% and 0.9% for storage and loss 
moduli, in accordance with the inherent mechanical homogeneity 
of samples, as previously described [36]. The homogeneity of 2D-
NoBC-NLI results presented here (Figure 8) for PAAm particles 
highlights the ability of this method to reconstruct viscoelastic 
properties of microscale materials in true experimental conditions. 
Notably, the displacement field behavior in the microbeads mirrors 
that of the homogeneous sphere simulations, with shear wavelengths 
spanning one to two wavelengths, highlighting the precision of our 
model and reinforcing the method’s power in capturing complex 
material behaviors.

Importantly, the proposed method is not limited to microbeads 
of 75 µm in diameter. It can be applied to any microscale material, 
provided that the excitation wavelength is comparable to the 
specimen size. This can be achieved by selecting an optimal 
excitation frequency that provides sufficient shear wavelengths 
while maintaining an acceptable signal amplitude. It is important 
that the amplitude is sufficiently high to capture the wave’s 
displacement (vibration) inside the material, despite attenuation. 
Therefore, experimental designs should balance both high and 
low-frequency applicable values, considering that a higher spatial 
resolution at high frequency implies more wave attenuation than 
at lower frequencies. The wavelength to specimen size criterion 
ensures that the approach remains valid for smaller cells and for 
irregular morphologies, consistent with our simulations. Ensuring 
sufficient shear-wave content improves reconstruction stability and 
accuracy, as boundary effects dominate when fewer than one or 
two wavelengths are present. This criterion is important across 
various elastography frameworks to avoid reconstruction bias. 
When the shear wavelength is comparable to the material size, direct 
methods, such as wavelength- or shear-speed-based approaches 
are particularly sensitive to geometric effects, leading to significant 
reconstruction bias. Model-based inversion methods, like nonlinear 
inversion, reduce these effects by solving the full elastic wave 
equations. However, even with advanced methods, it remains crucial 
to have at least one to two effective wavelengths within the region of 
interest for reliable reconstructions [48].

As a proof of concept, it is also worth noting that at the lowest 
excitation frequency of 20 kHz tested in microbead experiments, 
the shear wavelength approximately corresponded to the diameter 
of the specimen. Despite this challenging condition, reconstructed 
results remained consistent with those obtained using another 
established method [36], demonstrating the robustness of the 
proposed approach. Based on our experimental results with PAAm 
microbeads, we found that frequencies in the range of 20–60 kHz 
were optimal for our application and for reliably reconstructing 
material properties. Beyond OME, the 2D-NoBC-NLI approach 
is also applicable to other elastography techniques, such as MR 
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elastography, ultrasound, and optical elastography. The method’s 
ability to handle complex materials without relying on simplified 
2D assumptions makes it versatile for a variety of 2D imaging 
modalities.

Despite promising results, the 2D-NoBC-NLI approach has 
some limitations that need further investigation. Source artifacts 
(i.e., due to the vibrating micropipette) affect the quality of 
reconstructions, and the relatively higher percentage of errors 
observed for the loss modulus in this region requires further 
refinement. This led to an underestimation of the shear modulus. 
While the viscoelastic model used for reconstruction provides a 
more realistic portrayal of material properties compared to purely 
elastic models, it still has limitations, such as potential errors 
introduced by incompressibility assumptions. These issues need 
to be further examined, particularly in microscale experiments at 
high frequencies, including comparison with other reconstruction 
methods using the same frequency range. Addressing these 
challenges will be essential to improving the overall accuracy and 
robustness of the method, particularly in applications involving 
complex biological cell morphologies. 

5 Conclusion

In conclusion, this study investigated high-frequency 
OME using the new 2D-NoBC-NLI method as an image 
reconstruction approach, demonstrating its ability to robustly 
reconstruct viscoelastic material properties in 3D geometries 
from 2D displacement data without the use of 2D geometry 
approximations. The feasibility of the technique was validated 
with data obtained from FE simulations and experimental results 
on PAAm microbeads. The coupled adjoint-based optimization 
technique effectively determined homogeneous and heterogeneous 
viscoelastic properties, and the sensitivity analysis highlighted the 
importance of optimizing factors such as zone size, out-of-plane 
mesh size, and wavelengths within the material to improve the 
reconstruction accuracy. Overall, the 2D-NoBC-NLI technique 
showed great potential for broad applications in complex and noisy 
2D displacement fields, particularly in 2D imaging modalities, 
including mechanical cell phenotyping and mapping of cellular 
viscoelastic properties.
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Appendix A

A1 Forward (displacement–pressure) 
problem

The time harmonic elastic wave propagation in a 
heterogeneous, isotropic, nearly incompressible viscoelastic 
medium is formulated in mixed displacement–pressure 
form. The governing equations in strong form are given 
as follows:

x̂ · (∇ · (G(∇u+∇Tu) − p𝕀) +ω2ρu) = 0 in Ω, (a)

ŷ · (∇ · (G(∇u+∇Tu) − p𝕀) +ω2ρu) = 0 in Ω, (b)

̂z · (∇ · (G(∇u+∇Tu) − p𝕀) +ω2ρu) = 0 in Ω, (c)

∇ · u+
p
K
= 0 in Ω, (d) (A1)

u = um on Γ. (e)

In Equation A1, u is the 3D vector displacement field in meters 
[m], ̂x, ̂y, and ̂z are unit vectors along the Cartesian directions,
p is a scalar pressure field in Pascals [Pa], and 𝕀 is the identity 
matrix representing the isotropic component of the stress 
tensor. Material properties include the complex valued shear 
modulus G, in Pascal [Pa], the bulk modulus K, in Pascal 
[Pa], and the density of the material ρ, in [kg.m-3], such that 

θ = {G,K,ρ}. In this time-harmonic case, ω is the angular 
frequency of the harmonic elastic wave excitation [rad.s-1]. 
These equations are applied within the domain Ω, which 
represents the region of the material under study, typically 
with Dirichlet boundary conditions u = um specified on the
boundary Γ.

A2 Adjoint problem

The strong form of the adjoint problem for the fields 
(w,q) is expressed as:

x̂ · ([∇ · (G(∇w+∇Tw) − q𝕀) +ω2ρw] − (u− um)) = 0, in Ω

ŷ · ([∇ · (G(∇w+∇Tw) − q𝕀) +ω2ρw] − (u− um)) = 0, in Ω

̂z · ([∇ · (G(∇w+∇Tw) − q𝕀) +ω2ρw] − (u− um)) = 0, in Ω

∇ ·w+
q
k
= 0, in Ω (A2)

w = 0, on Γ

System Equation A2 is well-posed and can be solved 
for the adjoint field w, given measured and calculated 
3D displacement fields, u and um. Here, w denotes 
the complex 3D adjoint displacement field and q the 
adjoint pressure; all other parameters are defined as in
Appendix A1.
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