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The mechanical phenotype of a cell, including its viscoelastic properties, is
recognized as a label-free biomarker for diagnosing cellular states. Optical
microelastography (OME) assesses intracellular mechanical heterogeneity by
mapping the shear modulus distribution within cells using time-harmonic
elastic waves observed within an optical image plane. However, reconstructing
viscoelastic properties at the microscale is challenging not only because
of inherent scale limitations, but also because, in OME, the complex 3D
wave motion is only tracked within a single 2D plane. To address this
challenge, a 2D boundary-condition-free nonlinear inversion (2D-NoBC-NLI)
method is introduced to reconstruct viscoelastic properties from noisy 2D
displacement fields. Numerical simulations of a homogeneous sphere, a
heterogeneous sphere, and an asymmetric nucleated cell were designed
to assess the robustness of 2D-NoBC-NLI reconstructions. Experiments
were conducted on homogeneous, 75 um-diameter polyacrylamide (PAAmM)
microbeads, which were expected to yield uniform viscoelasticity maps. With
optimum parameter conditions, the proposed 2D-NoBC-NLI approach achieved
mean reconstruction errors ranging from 1 to 13% across all simulated models.
Within homogeneous PAAm microbeads, the method demonstrated frequency
dependency of viscoelastic parameters consistent with previous measurements.
The proposed nonlinear inversion algorithm enables storage and loss moduli
imaging without out-of-plane motion data, and without using simplifying 2D
approximations. This technique supports 2D elastography imaging and may
enable OME-based cell mechanobiology studies through spatially resolved
viscoelastic property mapping.
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cell mechanics, inverse problem, loss modulus, optical microelastography, optical
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Highlights

o Introduce a new non-linear inversion for viscoelasticity
imaging in the context of optical microelastography without
out-of-plane data.

o Numerical simulations show viscoelastic reconstructions for
different geometries and noise conditions.

o Experimental feasibility demonstrated on 75 pm viscoelastic
microbeads at multiple frequencies.

o The technique represents a new tool for viscoelasticity imaging
in the context of cell mechanobiology.

1 Introduction

The mechanical phenotype of a cell is increasingly recognized
as a label-free biomarker that reflects its state, and can be utilized
for both diagnostic and therapeutic purposes [1, 2]. Precise
and reliable microscopic mechanical characterization of cells has
become essential for a comprehensive understanding of biological
behavior and disease progression [3, 4]. Several techniques have
been developed to assess cell mechanics including atomic force
microscopy, microfluidics technologies, and micropipette aspiration
[5]. Each method is tailored to characterize the intracellular or
surface mechanics at a local or cell wide level, with specific
spatial and temporal parameters to consider [6]. Consequently,
measured values can vary significantly—often by several orders
of magnitude—due to factors such as deformation rates, applied
mechanical stress, and the specific measurement technique and tools
employed, including probe geometry, contact area, and length scale,
all of which impact viscoelastic property estimation [7]. Moreover,
the time resolution at which measurements are taken can also
influence the estimated properties [8].

Because cellular mechanics are inherently time-dependent,
viscoelastic characterization capturing both storage and loss moduli
is required to fully describe mechanical cell behavior. These
parameters not only reflect underlying cytoskeletal remodeling
but are also directly linked to fundamental processes including
migration, differentiation, and disease progression [9]. Compared
to elasticity alone, a full viscoelastic assessment provides superior
characterization, with impact to better understand cancer metastasis
and tissue fibrosis with a mechanical perspective, underscoring its
potential as a practical biomarker for diagnosis, prognosis, and
therapeutic response [10, 11]. For example, Ma et al. demonstrated
that the distinction between normal and senescent endothelial
cells can be clearly established using viscoelastic parameters, which
provide greater sensitivity than elasticity measurements alone [12].
In addition, cells display pronounced intracellular heterogeneity in
their mechanical behavior. The cytoplasm, nucleus, and cortical
regions each exhibit distinct viscoelastic properties arising from
differences in cytoskeletal organization, nuclear structure, and
intracellular crowding [13-15]. Therefore, mapping intracellular
viscoelastic heterogeneity provides a mechanical fingerprint of the
cell’s state, which is indispensable for advancing our understanding
of cellular biomechanics and disease mechanisms.

Elastography is an imaging technique that retrieves mechanical
properties of soft tissues through a reconstruction based on induced
deformations. Traditionally applied at the macroscopic level, recent
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advances integrating high-resolution optical techniques have refined
its spatial resolution to the microscale [16, 17], enabling the
characterization of intracellular mechanical properties that were
previously unobservable [18]. Optical microelastography (OME) is
one such technique to assess intracellular mechanical properties,
based on optical microscopy [19]. It utilizes high-frequency
(typically 15-60 kHz) induced elastic waves that propagate through
the cell and are detected by a high-speed camera (e.g., 100-300
kfps) integrated into an optical microscopy platform, enabling
detailed characterization of intracellular viscoelasticity. Grasland-
Mongrain etal. [19] demonstrated the application of OME for
ultrafast imaging of cell elasticity, highlighting its potential for high-
resolution mechanical mapping, whereas Flé et al. [20] used OME to
measure viscoelastic properties of mouse oocytes, underscoring its
potential utility in reproductive biology.

In the field of elastography, one of the key challenges is
the reconstruction of viscoelastic properties from partial or
corrupted displacement measurements. The subzone nonlinear
inversion (NLI) reconstruction method has been widely used in
magnetic resonance elastography (MRE) to address this challenge
[21], and was recently adapted for cell OME [20]. The method
involves dividing the region of interest into smaller overlapping
subzones. Within each subzone, the NLI approach minimizes the
difference between displacements obtained from finite element (FE)
simulations and the experimental data. By combining reconstructed
material properties across all subzones, the impact of measurement
noise is reduced. However, the FE forward problem within each
subzone requires boundary conditions, which are constructed
from measurement data, allowing displacement data noise to
influence the viscoelastic property reconstruction. Additionally,
the two-dimensional (2D) nature of optical microscopy data
under-represents the three-dimensional (3D) nature of the cell’s
mechanical response to external vibration [22].

To redress these dimensional limitations, elastography
reconstruction methods based on 2D displacement data typically
rely on plane-strain or plane-stress approximations [23, 24], which
are only valid under specific conditions. For instance, plane-strain
is applicable in structures with a large out-of-plane dimension,
or structures where the measurement plane corresponds to a
plane of symmetry, or cases where the out-of-plane motion is
restricted. Similarly, plane stress generally applies to thin plates.
These approximations are rarely valid in biological contexts and
their use can significantly impact reconstruction accuracy [25].
Errors and artifacts in 2D reconstructions arise not only from
measurement noise but also from systematic inaccuracies of the
underlying 2D approximations themselves, and have been shown to
roughly 20% in previous studies [23, 24]. In the case of OME, cells
generally have complex geometric and physical structures, with
diverse asymmetric morphologies and heterogeneous mechanical
properties, rendering 2D approximations inadequate. Consequently,
the application of plane-strain and plane-stress approximations
is inappropriate and can introduce substantial inaccuracies and
systematic artefacts in viscoelastic property reconstruction.

Alternatively, recent advances in NLI have introduced
boundary-condition-free (NoBC) approaches, which utilize coupled
adjoint field (CAF) formulations to eliminate the need for known
boundary conditions in each subzone when solving FE forward
problems [26-28]. Eliminating the use of measurement data as
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boundary conditions in the forward FE problem provides a more
robust property estimate, particularly in the presence of noise.
Building on these CAF formulations, we propose and introduce the
2D-NoBC-NLI approach to achieve reliable OME reconstruction
without 2D geometry approximations. This method uses a loosely
enforced incompressibility assumption within the NoBC-NLI
framework to reconstruct viscoelastic properties from 2D data
using a fully 3D model. The approach is particularly effective for
complex incompressible materials at the microscale, as it does not
require prior knowledge of morphology or out-of-plane motion.
Notably, it enables the reconstruction of the intricate geometry of
cells from 2D displacement fields available in OME. Additionally,
it is compatible with any 2D imaging modality, offering a versatile
solution for analyzing complex geometries.

In this study, the 2D-NoBC-NLI framework was implemented
in OME to reconstruct viscoelastic properties at the microscale
by mapping the complex valued shear modulus using elastic
wave-induced 2D displacements extracted from a 3D geometry.
Validation was performed using numerical simulations on
homogeneous, heterogeneous, and asymmetric microscale models
to understand the behavior of the reconstruction process in various
3D configurations. The sensitivity of the method to NLI inversion
parameters was further assessed using a homogeneous spherical
model to evaluate their effect on shear modulus reconstructions,
followed by tests on heterogeneous and asymmetric models. Noise
was then introduced into the heterogeneous and asymmetric
simulation models to examine the robustness of the reconstruction
process under experimental conditions. Finally, the feasibility of the
technique was demonstrated through experiments on 75-micron
diameter homogeneous polyacrylamide (PAAm) microbeads across
a range of actuation frequencies. Results demonstrate that the 2D-
NoBC-NLI method provides assessment of viscoelastic properties
at the microscale, confirming its feasibility in the context of OME.

2 Methods
2.1 Experimental set up (OME)

A micropipette, fabricated from borosilicate glass capillaries
(World Precision Instruments, 1B100-6, United States), was
tapered using a vertical pipette puller (David Kopf Instruments,
DKI700C, United States), polished, and bent with a microforge
(Narishige Scientific Instruments, MF-2, Japan). This micropipette
was attached to a piezoelectric transducer (Thorlabs, PK2FQP1,
United States) to generate elastic waves within polyacrylamide
(PAAm) microbeads. Details of the bead preparation protocol are
provided in Section 2.6 (Experimental validation). The piezoelectric
transducer was connected to a voltage amplifier (Amplifier Research,
75A250, United States) and a signal generator (Agilent Technologies,
33250A, United States) to induce 20-60 kHz harmonic actuations.
The micropipette slightly touched the bead surface to produce
shear motions, as in [19, 20]. This frequency range was selected
to provide actuation conditions compatible with 2D-NoBC-NLI
reconstructions, as discussed in Section 2.6.

To stabilize the suspended microbead during testing, a
second holding micropipette connected to a microinjector
(Narishige Scientific Instruments, IM21) was employed. Both
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micropipettes were attached to micromanipulators to facilitate
precise handling and positioning. The system was mounted on
an inverted microscope (Olympus, IX71, Japan) equipped with
a x40 magnification objective lens. The microscope was coupled
to an ultrafast camera (Photron Limited, Fastcam SA-Z, Japan),
providing an effective resolution of 0.5 um per pixel at an image
acquisition rate of 250 kHz. An overview of the experimental setup
is displayed in Figure la.

In-plane wave displacement tracking was done using the
Lagrangian speckle model estimator (LSME), which is based on the
Lucas-Kanade optical flow method [29]. This approach estimates
a 2D displacement field by comparing each frame in a time-
series of images with an image of the microbead at rest, before
the onset of vibration (Figure 1b). In-plane displacements were
estimated in x and y directions, using an 18 x 18 pixel® sliding
window, with 90% overlap in both directions. The wave propagates
perpendicular to the direction of particle displacements, which is
shown along x and y directions. The shear storage (G') and loss
(G") moduli were reconstructed using the 2D-NoBC-NLI method
(Figure 1c).

2.2 2D-NoBC-NLI

As briefly introduced, the complex shear modulus was
reconstructed from the harmonic displacement field utilizing
the subzone NLI approach [21], which divides the total region
of interest into a set of overlapping subzones. Each subzone is
modeled using FE analysis to simulate the viscoelastic response
to the excitation. Material properties are iteratively updated in each
subzone to minimize the mismatch between the experimentally
measured displacement field and the solution obtained from
the FE forward model. The mismatch is minimized within
the domain of the region of interest, ), through the error
function ¢:

o=1/2] (u®)~u,)"(u®)-u,)d0 B
where the bold font denotes symbols representing tensors and
vectors. Here, u(0) represents displacements calculated via the FE
forward model and the current estimate of material properties,
0, whereas u,, are measured displacements. The superscript
H indicates the Hermitian (complex conjugate) transpose. To
minimize this function and determine material mechanical
properties, the conjugate gradient (CG) method was used, which
relies on the gradient of the objective function with respect to the
material properties, ¢, to converge toward an optimal solution
for 6.

For the forward problem used to calculate the displacement
field u as a function of material properties 6, NLI solves a
FE discretization of the time-harmonic Navier’s equation for
heterogeneous, isotropic, and viscoelastic materials. The governing
equations for elastic wave propagation in such a medium
under harmonic excitation, written in the displacement-pressure
formulation for nearly incompressible materials [26], are presented
in Appendix Al. The weak form of the equilibrium system,
detailed in [26] is given by the functional A, where we define the
test functions, W = (w,q), consisting of the test displacement field,
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A(W,U(0);0) = j G (Vu + VTu):Vw - pI:Vw — w*pu - wdQ
Q

+J —v-wq-Mao @)
Q K

In Equation 2, u is the 3D vector displacement field in meters
[m], p is a scalar pressure field in Pascals [Pa], and I is the identity
matrix representing the isotropic component of the stress tensor.
Material properties include the complex valued shear modulus
G, in Pascal [Pa], the bulk modulus K, in Pascal [Pa], and the
density of the material p, in [kg.m’3], such that 0 ={G,K,p}.
In this time-harmonic case, w is the angular frequency of the
harmonic elastic wave excitation [rad.s']. These equations are
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applied within the domain Q, which represents the region of
the material under study. The traditional subzone NLI method
[21] requires the full three-component measured displacement
vector u,, to enforce the boundary conditions and to ensure
a well-posed forward problem, as detailed in Appendix Al.
However, in many practical settings, only two in-plane displacement
components are available. To address this limitation, an alternative
formulation has been developed to enable solution of the
forward and adjoint problems using only in-plane displacement
data.

The aim is to enforce the constraint defined by the weak form
of the governing equation in Equation 2, while simultaneously
minimizing the data misfit defined in Equation 1, without relying
on explicit boundary displacement conditions or the out-of-plane
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motion measurement. To this end, we define the Lagrangian
functional L, combining the objective function describing the
displacement error, and constraints of the viscoelastic forward
problem given by A, as expressed by:

L(W,U(8);:6) = $(U(6)) + A(W, U(6);6) )

This Lagrangian framework enables solving the inverse problem
as a constrained optimization problem, where material properties
0 are identified to minimize the mismatch between measured and
simulated displacement fields, while ensuring that the simulated
displacement field u(0) satisfies governing equations. To obtain the
optimal solution, directional derivatives of the Lagrangian with

respect to U, W, and 0 are computed as follows:
L' = L{;(0U) + Ly, (W) + Ly (86) (4)

Optimal conditions for the system defined by Equation 3 are
obtained by equating each term of Equation 4 to zero, resulting
in three equations that form the basis of the coupled adjoint-
based gradient computation and optimization algorithm. These
equations are:

1.L,(8U)=0

J [(u(ﬁ) —u,)t-Vv. [G(Vw+ VTW)] -Vq- wzpw] -du
Q

~[-w)+ 2 Jopac+ L[G(Vw+ Viw)-u]-ndr=0. (5)
2.1, (6W) =0

JQ[—V- [G(Vu+VTu)] +Vp —wzpu] -Ow— [(V.u) + % ]équ

+J [G(Vu+V'u)-plI|-dw-ndl =0. (6)
r
3.L)(36) = 0
L4(30) = L' = §4(U(8)) — Ag(W, U(6);0) =0 — ¢(U())
= j (Vu+ VTu):deQ. )
Q

Here, we see that the gradient of the objective function with
respect to the material properties ¢y is given directly by Equation
7, and can be calculated given the fields w and u, provided by
solutions of Equations 5, 6, respectively. Equation 6 describes the
standard FE forward problem for the unknown displacement field,
which has been described in detail in numerous sources (see, for
example, [25]). Equation 5 describes the so-called adjoint problem,
described in detail by Tan et al. [30]; its strong form counterpart is
given in Appendix A2. This adjoint problem is well-posed and can
be solved for the adjoint field w, given measured and calculated 3D
displacement fields. However, the forward problem (Appendix Al)
still requires explicit Dirichlet boundary data on u. To circumvent
this, we adopted a coupled adjoint field (CAF) formulation in which
forward and adjoint systems are solved simultaneously (Kurtz et al.
[26]). In this framework, known boundary conditions on w (w =
0 on T) substitute for unknown conditions on u in a combined,
simultaneous solution for u and w. This combined system can be
expressed as shown below, where the three components of the elastic
equilibrium equation (Equation 8 a-c) are expanded to illustrate the
development that follows:

% ([V . (G(Vw+ VTW) - q]I) + wzpw] —(u- um)) =0 in Q,(a)
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7 ([V-(G(Vw+VTw) - gI) + w’pw| - (u-wu,,)) =0 inQ,(b)
2 ([v-(G(Vw+VTw) - qI) + w?pw] - (u-u,)) =0 inQ,(c)
Vawel=0 0@ ®
V- (G(Vu+VTu)-pl)+w’pu=0  inQ,(e)
vaurfoo o
w=0  onl. (g)

In Equation 8, %, j, and Z denote unit vectors along the Cartesian
directions. Equation 8 ¢ indicates that the knowledge of the out-
of-plane measured displacements in the z direction, Z-(uy,), is
required. Here, the inherently 2D nature of the measurement
data does not provide this measured motion component, as
described in [20]. To circumvent this limitation to 2D data,
we introduce a dimension reduction approach to the coupled
equilibrium Equation 8, where we replace the condition on out-
of-plane motions used for the CAF formulation with an alternative

condition based on the divergence free nature of the displacement
ou,  OJu,  Ouy )
== )=0.
Jz ox ay
This constraint is fully consistent with the assumption of near-

field for incompressible materials, i.e., (

incompressibility introduced earlier, which was used to ensure
numerical stability in the formulation. Together, these elements
represent complementary strategies for modeling incompressible
materials. In the 2D dimension reduction formulation proposed
here, we apply this condition to the out-of-plane component of
the calculated displacement field, u,, to the in-plane components

of measured displacements u

mx and L - Thus, Equation 8 is

modified to become:

% ([V . (G(Vw+ VTw) - q]I) + wzpw] —(u- um)) =0inQ,

7-([v-(G(Vw+VTw) —qI) + w?pw]| - (u-u,,)) =0in Q,

):OinQ,

©)

aumx aumy

ox dy

ou,
+
0z

2.(V.(G(VW+VTW)—qII)+w2pw)—<
V~w+% =0in (),
V-(G(Vu+VTu)—pII)+w2pu:0 in Q,
V~u+§ =0inQ,

w=0onT.

By solving the novel formulation introduced in Equation 9 for
u and w, which enables reconstruction using only 2D in-plane
displacement data, the gradient of the objective function can then be
calculated directly via Equation 7 and used to minimize the objective
function in Equation 1, via non-linear conjugate gradient methods.
Note that for the elastography problem described here, derivatives
with respect to material properties 0 are only considered for the two
components of the complex shear modulus G, which are described
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TABLE 1 Parameters used in numerical models.

Homogeneous

sphere

Heterogeneous
sphere

10.3389/fphy.2025.1734499

Asymmetric cell
mimic

Geometry 75 pum diameter spherical 75 um diameter sphere with a 75 um diameter base, 35 um
domain 30 pum inclusion height, with a 30 um inclusion
Inclusion None Centered spherical inclusion Offset spherical inclusion

Prescribed displacements

Side cylindrical projection
(20 um diameter) with
harmonic vibrations of 1 pm
amplitude in the y-direction at
40 kHz

Side cylindrical projection
(20 um diameter) with
harmonic vibrations of 1 pm
amplitude in the y-direction at
40/60 kHz

Side cylindrical projection
(10 um diameter) with
harmonic vibrations of 1 um
amplitude in the y-direction at
40/60 kHz

Boundary condition (BC)

Fixed Opposite side cylindrical Opposite side cylindrical Bottom surface (75 pm
projection (20 um diameter) projection (20 um diameter) diameter) fixed to simulate the
attachment to a substrate
Free Remaining Remaining Remaining
Material properties (G*in Pa) Background Background Background
1,140 + 437 1,140 + 437 1,140 + i437
Inclusion Inclusion
0.75 X G jiground and 1.25 0.75 X G yiground and 1.25 x
G background G background
Number of tetrahedral elements 317914 353808 224823

by spatially distributed parameter fields, which are optimized to
minimize ¢ and form the resulting elastography image. The density
and bulk modulus are considered constant within the material, and
set respectively to 1,000 kg/m? and 2.2 x 10° Pa. Gaussian spatial
filtering with a width of 80% of the mesh resolution was applied at
the end of the process to further stabilize the reconstruction of G.

For the FE method used in the 2D-NoBC-NLI introduced here,
we applied approximately 12.5 nodes per wavelength, with the
same mesh resolution used for displacement fields (u and w) and
material properties, G. For the out-of-plane mesh resolution, we
used 1/5 of the in-plane mesh resolution. The subzone size was set
to be close to one mechanical wavelength, to respect the effective
elastography diffraction limit described in [31]. To ensure converged
minimization of the objective function, ¢, we performed 1,000
iterations using the conjugate gradient method.

2.3 Numerical validation (finite element
model)

To investigate reconstruction capabilities of the 2D-NoBC-
NLI method in the context of OME, synthetic displacement
datasets were generated by solving the viscoelastic forward problem
(Appendix A1) using FE methods in 3D cell-mimicking geometries.
Three computational models were used, as detailed in Table 1.

The first model was a 75 um homogeneous sphere, mimicking
microbead experiments (Figure 2a). The second model consisted of
a 75 pm heterogeneous sphere with a concentric 30 um spherical
inclusion, mimicking a spherical cell with its nucleus (Figure 2b).
The third model was developed to mimic an asymmetric cell, as
shown in Figure 2c. The base diameter was 75 pm, the height was
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35 um, and the nucleated inclusion was a 30-pm sphere, making
the model asymmetric in the z-direction. Transverse displacements
in selected 2D planes for these models are shown in Figures 2d-f,
respectively. Note that all three of these models were subjected
to asymmetric loading, where prescribed displacements were
applied in the zone indicated on the >x surface, while fixed, zero
displacement conditions were prescribed on the zone indicated on
the <x surface.

Dirichlet boundary conditions were applied to replicate the
experimental setup. For the first two spherical models, two
circular projections were positioned at opposite ends of the outer
sphere. One projection, with a diameter of 20 pum, represented the
holding micropipette and was assigned a fixed boundary condition,
indicated by the pink color in Figures 2a,b. The other projection, also
20 um in diameter, mimicked the vibrating micropipette and was
assigned a prescribed displacement boundary condition, indicated
by the green color in Figures 2a,b, with a harmonic displacement
amplitude of 1 um in the transverse direction y. For the asymmetric
cell-mimicking model, a single circular projection at the side, shown
in green in Figure 2¢, served as the vibrating boundary condition,
while the bottom of the model, shown in pink, was fixed to simulate
its attachment to a substrate (as in cell culture).

Simulations were carried out using Comsol 5.5, LiveLink for
Matlab (Comsol Inc., Sweden) and Matlab R2020b (The MathWorks,
United States) software. The material was considered to be linear
viscoelastic, isotropic, and nearly incompressible, and material
property values for storage and loss moduli were computed
using an interpolated power-law equation fitted to experimental
multifrequency data at the prescribed actuation frequency. A model-
free linear viscoelastic approach was employed, where the complex
shear modulus G*= G’ + iG" was used directly as input, without
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viscoelastic FE model with an inclusion. The y-direction displacements in reconstructed planes are shown in (d) for the homogeneous sphere model,
(e) for the heterogeneous sphere model, and (f) for the asymmetric cell mimic model. BC: boundary condition.

relying on a predefined rheological model. For the background
material, mean experimental values at 40 kHz of G' = 1,140 Pa
and G'' = 437 Pa were used based on experimental measurements
on PAAm microbeads (see Section 2.6). Inclusion moduli were
set as 25% lower or higher than the background, corresponding
to G' = 855 or 1,425Pa and G'’ = 327 or 546 Pa, to represent
moderate mechanical contrasts, similar to those typically observed
between the nucleus and cytoplasm of biological cells [32-34]. The
density and Poisson’s ratio were chosen as 1,000 kg/m* and 0.499,
respectively, to simulate near-incompressibility. All models were
meshed using a tetrahedral mesh with a maximum element size

of M/10, where X is the wavelength of the mechanical elastic wave

in the background material, given by A = _pemen) o

p(G’+\/m).f. The

number of elements used for the FE calculations are provided in
Table 1. The complex 2D displacement data from the FE simulation
were interpolated to match the experimental data resolution, as
described in Section 2.1, and transformed into the time domain
to replicate the format of experimental displacements used in
the inverse reconstruction process. Finally, relative errors between
reconstructed property results and ground truth values for G were
computed for storage moduli using: lG;“”G”,M % 100, and for loss

" " true
|Grfcon_Gtrue|

moduli: = x 100. These were calculated pixel-wise and then

true.
averaged over the entire area of interest.

2.4 Effect of inversion parameters

To assess the sensitivity of the reconstruction process to key
parameters that could influence 2D-NoBC-NLI reconstructions,
values were systematically varied for the homogeneous sphere
model, including the subzone size, out-of-plane mesh resolution,
number of FE nodes per wavelength (NPW), and number of shear
wavelengths (NSW) within the material. Specifically, the zone size
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was varied from 50% to 100% of the wavelength, and out-of-
plane mesh resolutions were changed from 5% to 100% of the
in-plane mesh resolution. The effect of the FE mesh resolution,
indicated by the number of FE NPW, on relative errors of storage
and loss moduli, as well as the computation time relative to
the computation time of 8 NPW, were analyzed. Additionally,
the NSW within the material was assessed for its impact on
reconstruction accuracy, with the material size to shear wavelength
ratio changing from 300% to 100%. This was achieved by increasing
the sphere size while keeping constant the actuation frequency, the
wavelength-to-subzone ratio, and other inversion parameters. We
examined how variations in these parameters impacted the overall
reconstruction accuracy. By adjusting these factors, we aimed to
gain a deeper understanding of their effects on the precision of
2D-NoBC-NLI reconstructed viscoelastic properties. To assess the
reconstruction near optimal inversion parameters for asymmetric
and heterogeneous situations, parameters were applied to both
heterogeneous sphere and asymmetric cell mimic models with either
softer or stiffer inclusions relative to the background. In these cases,
the excitation frequency was increased to 60 kHz to ensure enough
shear wavelengths within each region, while keeping storage and loss
moduli unchanged. This adjustment enabled reconstructions to be
performed at close to optimal inversion conditions.

2.5 Noise stability analysis

The robustness of the 2D-NoBC-NLI reconstruction was also
evaluated by introducing Gaussian noise into the frequency-
domain displacement data of FE models at 40 kHz, chosen
as the midpoint of the experimental bandwidth (20-60 kHz),
providing a representative operating condition for the study.
The analysis was performed with softer inclusions relative
to the background. Noise was applied with zero mean and
standard deviations ranging from 0%, 5%, and 10% of the mean
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displacement amplitude, reflecting displacement uncertainty

associated with motion estimation techniques. Gaussian
white noise was chosen because electronic/thermal noise and
displacement tracking errors in elastography are commonly
approximated by Gaussian processes, making it a simple and
widely accepted model of uncertainty in the displacement

field [35].

2.6 Experimental validation (polymer
microbeads)

To experimentally validate the 2D-NoBC-NLI method, OME
was performed on polyacrylamide (PAAm) microgel beads. The
beads were produced following the method described in [36], with
minor modifications. Briefly, a polydimethylsiloxane-based flow-
focusing microfluidic chip with channel dimensions of 40 (width)
x 60 (height) um* was used to produce PAAm beads with a mean
diameter of 75 + 5 um. The PAAm pre-gel mixture was prepared
using acrylamide (40% w/v, Sigma-Aldrich, A4058, Germany) as
the monomer, bis-acrylamide (2% w/v, Sigma-Aldrich, M1533) as
the cross-linker, and ammonium persulfate (0.05% w/v, Cytiva,
GE17-1,311-01, Germany) as the free radical initiator. The PAAm
pre-gel mixture also contained 31 x 10° latex nanoparticles/mL
(Sigma-Aldrich, LB6, mean size of 0.6 um) and 15% (v/v) OptiPrep
(Sigma-Aldrich, D1556) to prevent particle sedimentation during
droplet formation. The total pre-gel volume was 545 uL, with a total
monomer concentration of 7.9% and a cross-linker-to-monomer
concentration ratio of 2.6%. The continuous phase consisted
of 2% dSURF surfactant as an emulsion stabilizer (Fluigent,
France) in Novec 7,500 oil (3M, United States), supplemented
with 0.4% (v/v) N,N,N’,N’-tetramethylethylenediamine (TEMED)
as a catalyst (Sigma-Aldrich, T9281, CAS 110-18-9). Following
in-drop polymerization, beads were washed and resuspended
in 1x phosphate-buffered saline (pH 7.4, Gibco, United States).
Beads were stored at 4°C and shipped between laboratories
(Erlangen to Montreal) under controlled temperature conditions.
Beads were vortexed to resuspend them uniformly, and
allowed to equilibrate to the ambient temperature before
experiments. The latex nanoparticles embedded within PAAm
microbeads allowed optical contrasted images for elastic wave
tracking.

Experiments were conducted over a frequency range of
20-60 kHz, corresponding to wavelengths of approximately
70 um at 20 kHz and 35 um at 60 kHz in PAAm. This ensured
that one to two shear wavelengths were present within each
bead, aiding reliable 2D-NoBC-NLI viscoelastic reconstructions.
Since the reconstructed shear modulus is frequency dependent,
results were analyzed using a power-law relationship, G'
f% and G’ o fP. The power-law model was chosen because
it effectively captures the frequency-dependent shear modulus
observed in biological and polymeric materials, which exhibit a
broad distribution of relaxation times [8, 37-39]. Coeflicients «
and f were determined using least-squares regressions. Reported
results are based on measurements over 10 microbeads. These
experimentally measured viscoelastic parameters were also used as
input reference values for the finite-element simulations described in
Section 2.3.
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3 Results
3.1 Finite element model

3.1.1 Effect of 2D-NoBC-NLI inversion
parameters

The homogeneous sphere FE model with a cell-scale diameter
exhibited a storage modulus reconstruction error of 1% and a
loss modulus error of 9%. The effect of inversion parameters on
reconstruction accuracy for this model is summarized in Figure 3,
with optimal parameter ranges highlighted in gray. As shown in
Figure 3a, increasing the zone size to wavelength ratio resulted in
enhanced accuracy for both storage and loss moduli. Mean relative
errors for storage and loss moduli were minimized for zone sizes
larger than 70% of the shear wavelength, consistent with [31].
Relative errors of storage and loss moduli remained constant when
the out-of-plane mesh resolution was between 20% and 100% of the
in-plane mesh resolution (Figure 3b). By increasing the number of
FE nodes per wavelength in the homogeneous sphere model, relative
errors of storage and loss moduli were reduced overall (Figure 3c).
However, the computation time increased with the NPW. Figure 3d
shows relative errors of storage and loss moduli as a function of the
NSW within the homogeneous sphere model. The material size to
shear wavelength ratio changed from 3 to 1, and it is observed that
if fewer than 2 wavelengths are present in the material, the relative
error for the storage modulus increased from 2% to 24%, while the
error for the loss modulus increased from 43% to 84%.

Based on the parameter sweeps shown in Figure 3, the following
2D-NoBC-NLI settings were selected as optimal and used in all
subsequent reconstructions (Table 2).

Figure 4 illustrates storage and loss moduli in representative
slices of the heterogeneous sphere and asymmetric cell mimic
models using optimal inversion parameters. Panels (a) and (d) show
ground truth values for storage and loss moduli, while (b) and (e)
display the corresponding reconstructed storage and loss moduli.
Panels (c) and (f) display relative reconstruction error maps for
storage and loss moduli, computed as described in Section 2.3.
Across the entire region of interest, relative errors for the
heterogeneous sphere model were 3.5% for the storage modulus
and 10.4% for the loss modulus; for the asymmetric cell-mimic
model, they were 5.0% for the storage modulus and 12.9% for the
loss modulus.

Figure 5 illustrates storage and loss moduli in representative
slices of the heterogeneous sphere and asymmetric cell mimic
models with a stiffer inclusion relative to the background. Panels
(a) and (d) show ground truth storage and loss moduli, panels (b)
and (e) present corresponding reconstructions, and panels (c) and
(f) display relative reconstruction error maps. For the heterogeneous
sphere model with a stiffer inclusion, average errors across the
heterogeneous region were 4.7% (storage) and 20.0% (loss). For the
asymmetric cell mimic model, average errors were 9.5% (storage)
and 22.6% (loss).

Detailed relative errors for background and inclusion regions,
for both softer and stiffer inclusions, are summarized in Table 3.

3.1.2 Noise level analysis

Reconstruction errors were examined for both heterogeneous
sphere and asymmetric cell mimic models under different noise
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TABLE 2 Optimal inversion parameters.

Parameter Selected value

Nodes per wavelength (NPW) 12

Out-of-plane mesh resolution 20% of in-plane resolution

Subzone size/wavelength ratio =0.7 (~1 shear wavelength)

conditions. Both models contained a softer inclusion relative to
the background. Note that these reconstructions were performed
at 40 kHz, which yields a smaller NSW in each region compared
to the 60 kHz reconstructions shown in Figure 4. In Figure 6
(heterogeneous sphere model), panel (a) shows y-direction
displacement fields at 0%, 5%, and 10% noise; panel (b) presents
corresponding storage modulus relative error maps; and panel (c)
displays loss modulus relative error maps. Figure 7 shows the same
results for the asymmetric cell mimic model.

For the heterogeneous sphere model (Figure 6), at 0% noise,
background errors were 3.0% (storage) and 21.0% (loss), whereas
inclusion errors were 19.0% (storage) and 51.0% (loss). With
increasing noise levels (0%, 5%, and 10%), relative errors of the
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storage modulus in the background rose from 3.0% to 24.0%,
whereas in the inclusion they decreased from 22.0% to 3.0%.
Errors for the loss modulus remained approximately 17% in the
background and declined slightly from 51.0% to 39.0% in the
inclusion. Across noise levels, overall storage modulus relative errors
were 6.0%, 13.8%, and 20.4%, while overall loss modulus relative
errors remained around 22%.

Similarly, for the asymmetric cell-mimic model (Figure 7),
at 0% noise background relative errors were 6.0% (storage) and
14.0% (loss), whereas inclusion relative errors were 10.0% (storage)
and 51.0% (loss). With increasing noise (0%, 5%, 10%), relative
errors of storage modulus in the background increased to 18.6%,
whereas in the inclusion they decreased to 7.0%; relative errors
of loss modulus in the background remained around 11%, and
in the inclusion they declined from 50.0% to 44.0%. Across noise
levels, the overall storage modulus relative errors were 6.6%, 14.0%,
and 17.6%, whereas overall loss modulus relative errors remained
around 22%.

3.2 Microbead experiments
Two representative examples of reconstructed storage and loss

moduli from the estimated 2D-displacement field in a PAAm
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FIGURE 4

(a) Ground truth storage and loss moduli for the heterogeneous sphere model, (b) reconstructed storage and loss moduli, and (c) relative
reconstruction errors map. (d—f) Same as (a—c) but for the asymmetric cell mimic model. The average error across the entire heterogeneous region
was 3.5% (storage) and 10.4% (loss) for the heterogeneous sphere model, and 5.0% (storage) and 12.9% (loss) for the asymmetric cell mimic model.

microbead actuated at 20 kHz and 60 kHz are shown in Figure 8.  and mapping of viscoelastic properties in complex, heterogeneous,
Each panel includes a bright-field microscopy image (a), 2D  and asymmetric morphologies. The 2D-NoBC-NLI method was
displacements along y and x directions (b), and reconstructed  validated in experimentally realistic scenarios and was robust in
storage and loss moduli (¢) at 20 kHz (top) and 60 kHz (bottom).  the presence of noise. Compared to previous work, this method
Mean values were G’ (20 kHz) = 600 + 3 Pa, G” (20kHz) = 407  offers significant advantages in 2D imaging scenarios, enabling
+ 4Pa, G' (60kHz) = 3451 * 14 Pa, and G” (60kHz) = 1848  the quantitative measurement of mechanical properties that were
+ 21 Pa (Figure 8c). previously only measurable qualitatively [40]. Unlike previous OME

Figure 9 presents storage (G') and loss (G”) moduli for  approaches, which assumed either out-of-plane symmetry [20]
measurements between 20 and 60 kHz. Results were modeled  or plane strain and stress conditions [40], the proposed method

with power-law relationships (G’ oc f* and G'' oc fP). Power-  can reconstruct quantitative viscoelastic properties without such
law coefficients are a = 1.234 and f = 1.125. Mean coefficients of =~ assumptions.

variation (CV) for reconstructed samples were 0.7% for the storage Optimization of inversion parameters is crucial for specific
modulus and 0.9% for the loss modulus. applications. In this study, the optimization process was

demonstrated using the homogeneous sphere model, which served

. . as a representative case. As demonstrated, the effect of the out-of-

4 Discussion plane mesh size on reconstruction accuracy indicated an accuracy
becoming stable for out-of-plane mesh resolutions between 20%

This study proposed a two-dimensional, boundary condition  and 100% of the in-plane mesh resolution. A resolution of 20% was
free, nonlinear inversion approach to solve the inverse problem  chosen in this study due to faster convergence speed. Furthermore,
of microelastography in the presence of incomplete, 2D planar  previous findings indicated that having more than eight nodes per
data. The technique was evaluated using a finite element-based  wavelength is critical for robust reconstructions [41]. As observed,
simulation study and through experiments on PAAm microbeads.  increasing the NPW from 8 to 14 in the homogeneous sphere model
Results suggest potential for applications in cellular elastography,  reduced relative errors of both storage and loss moduli. While
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(a) Ground truth storage and loss moduli for the heterogeneous sphere model, (b) reconstructed storage and loss moduli, and (c) relative
reconstruction errors map. (d—f) Same as (a—c) but for the asymmetric cell mimic model. Average errors across the entire heterogeneous region were
4.7% (storage) and 20.0% (loss) for the heterogeneous sphere model, and 9.5% (storage) and 22.6% (loss) for the asymmetric cell mimic model.

Relative errors of storage modulus (%) Relative errors of loss modulus (%)

TABLE 3 Relative reconstruction errors (%) in storage and loss moduli for heterogeneous sphere and asymmetric cell mimic models.

Modulus

Heterogeneous sphere (relative
error in %)

Asymmetric cell mimic (relative
error in %)

Background Inclusion Background Inclusion
Storage modulus 33 5.5 3.9 8.4
Softer inclusion
Loss modulus 9.1 17.9 11.6 18.5
Storage modulus 32 10.4 9.5 7.3
Stiffer inclusion
Loss modulus 23.0 12.8 23.9 19.2

increasing the NPW improves resolution and reduces the relative
error, it comes at the cost of increased computation time compared
to using 8 NPW (Figure 3c).

Additionally, the NLI is inherently influenced by the ratio of
the zone size to wavelength [42]. It has been demonstrated that
the subzone size can affect reconstruction accuracy. The mechanical
property characterization is dependent on the portion of the
mechanical shear wavelength present within the reconstruction
domain, and when less than half of the mechanical shear wavelength
is present, accurate reconstruction is only possible in certain
conditions [31]. In this study, we investigated the effect of these
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ratios on the accuracy of the reconstruction in the in silico model.
Increasing the zone size resulted in enhanced accuracy in both
storage and loss moduli. As observed (Figure 3a), the optimal
zone size-to-wavelength ratio of 0.7 minimized relative errors and
stabilized the reconstruction process.

Another limitation at the microscale is that boundary effects
can influence the propagation of elastic waves and the type of
waves present in the material, potentially affecting the accuracy
of the reconstruction if a specific wave type is assumed. The NLI
forward problem inherently accounts for different wave types in the
wave propagation model, including guided waves, shear waves, and
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FIGURE 6
(a) Displacement in the y-direction for the heterogeneous sphere model with a softer inclusion relative to the background at 0%, 5%, and 10% added
Gaussian noise, (b) relative error maps of the storage modulus, and (c) relative error maps of the loss modulus corresponding to these noise levels.
Across noise levels, storage modulus relative errors were 6.0% (0% noise), 13.8% (5% noise), and 20.4% (10% noise); loss modulus errors were 23.0%,
21.0%, and 21.6%, respectively.

surface waves, by directly solving the governing elastic equilibrium
equations. This approach ensures that the method is robust in
a variety of experimental conditions, as it does not rely on any
assumptions about the wave type. Nonetheless, due to the limitation
to in-plane data, the 2D-NoBC-NLI method remains sensitive to
the number of shear wavelength available within the material or
material size-to-wavelength ratio. By maintaining this optimal ratio
and varying the number of shear wavelength within the material
from 1 to 3, we found that results remained stable when more than
two shear wavelengths were present within the entire mimicked
cells. For smaller numbers of wavelengths, source-related artifacts
in the simplified sphere simulations became more pronounced,
particularly within the first wavelength inside the material. For
quantitative reconstruction, at least half a wavelength must be
present within the material, as previously established for the zone
size criterion [31].

Based on these findings (Figure 3; Table 2), the optimal inversion
parameters were determined to be 12 NPW. The out-of-plane mesh
resolution was defined as 20% of the in-plane mesh resolution. The
subzone size was selected to be as close as possible to one mechanical
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wavelength. By applying these optimal inversion parameters and
ensuring close to two shear wavelengths within each region for the
heterogeneous and asymmetric cell mimic models, the 2D-NoBC-
NLI reconstruction achieved good accuracy.

Under these conditions, the relative error for the storage
modulus in the softer-than-background case was reduced to below
10% for both models, in both the background and inclusion. For
the loss modulus, the error was reduced to below 20% in both
the background and inclusion. In the stiffer-than-background case,
the storage modulus error remained below 10% in both regions,
while the loss modulus error was below 23%. This demonstrates
the method’s capability to achieve accurate reconstruction at the
microscale, even under complex material conditions and geometric
asymmetry, using only 2D plane displacements.

Numerical simulation results demonstrated the ability of the
2D-NoBC-NLI to reconstruct heterogeneous viscoelasticity maps
without prior information. These in silico experiments showed
that even in the presence of up to 10% Gaussian noise, storage
modulus reconstructions maintained an error below 20%, in both
heterogeneous and asymmetric models. The loss modulus had a
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(a) Displacement in the y-direction for the asymmetric cell-mimic model with a softer inclusion relative to the background at 0%, 5%, and 10% added
Gaussian noise, (b) relative error maps of the storage modulus, and (c) relative error maps of the loss modulus corresponding to these noise levels.
Across noise levels, storage modulus relative errors were 6.6% (0% noise), 14.0% (5% noise), and 17.6% (10% noise); loss modulus errors were 23.2%,
22.5%, and 21.4%, respectively.
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higher percentage of errors (up to 24%) due to the low sensitivity
to this property in regions comprising limited wave content [31].
However, despite the presence of high noise levels, the stability of
the loss modulus was still observed, with errors remaining below
20% in the background and stable across different noise levels. This
behavior arises because noise partially compensates for the inherent
overestimation of the loss modulus near boundaries and in regions
with limited wavelength content, leading to an apparently more
stable reconstruction under noisy conditions. In our study, we found
that storage modulus errors were generally due to underestimation,
particularly in the background regions, whereas loss modulus errors
tended to be due to overestimation in both regions.

It should be noted that errors in reconstructed loss moduli
were generally larger than those in storage moduli. This limitation
is well recognized in elastography [24], as the loss modulus
estimation relies on the phase component of the displacement
field, which is inherently more sensitive to noise and boundary
effects, and errors are thus higher than for the storage modulus.
The effect is particularly pronounced when the number of nodes
is limited relative to available wavelengths, leading to higher
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biases and reduced symmetry in reconstructions. In our results,
this manifested as elevated loss modulus errors, especially near
boundaries and wave source regions. Similar observations have
been reported in prior elastography studies [41, 43]. Nonetheless,
the present method achieved robust reconstructions, and the
accuracy of the loss modulus recovery could be further improved by
refining or coarsening the mesh resolution depending on available
wavelengths [41]. The error for the storage modulus within the
inclusion appeared to be influenced by underestimation in the
background and boundary regions, leading to artificially lower error
values as the background error increased. This effect was particularly
pronounced in the inclusion because it contains a limited number of
pixels, making it more sensitive to boundary underestimation.
There was also an asymmetry/asymmetrical behavior in
reconstruction errors. This asymmetry primarily arises from source-
related artifacts near the vibration actuator, and from boundary
effects near edges of the domain. In cases where the inclusion
was stiffer than the background, wave reflection and refraction
at the material interface could further contribute to the asymmetry
and increase the error due to the amplified boundary artifacts,
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storage and loss moduli of the microbead. Top panel results are at 20 kHz and bottom panel results are at 60 kHz.
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which distort the reconstruction accuracy. The maximum local
errors were mainly observed near inclusion boundaries and source
regions, where wave interactions and strain gradients were highest.
Despite these limitations, the proposed 2D-NoBC-NLI framework
achieved robust reconstructions across heterogeneous domains,
with storage modulus errors remaining low and loss modulus
errors within ranges tolerated in elastography studies. For example,
Tomita etal. reported that in a homogeneous viscoelastic cubic
models, the maximum error between the recovered and true
storage moduli reached 22.7% in 2D inversion [44]. Similarly,
Zhang et al. observed that in a 2D inversion of an inclusion model
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with 3% Gaussian noise, the reconstructed inclusion exhibited an
underestimation of about 20% for the storage modulus, whereas
the loss modulus showed greater instability [24]. These findings
confirm that the magnitude of errors observed in our study is
consistent with prior reports, further validating the reliability of
the proposed approach. Most importantly, the method avoided any
out-of-plane assumptions, offering a methodological advance that
enabled viscoelastic mapping in microscale materials under realistic
experimental conditions. This ability to accurately model complex
three-dimensional behavior without relying on simplifications
makes the approach particularly suitable for studying heterogeneous
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and asymmetric materials, such as biological cells, where traditional
methods may fall short.

For heterogeneous materials, spatial resolution plays a crucial
role in characterization. Shorter wavelengths (higher frequencies)
can theoretically improve resolution and provide more accurate
mapping of material properties. Improving the resolution of optical
images and displacement maps also contributes to better material
property resolution. However, achieving these improvements often
comes at the cost of higher computational demands and increased
attenuation and noise, particularly at higher frequencies and frame
rates. In low-SNR conditions, down sampling displacement maps
may improve the stability and robustness of the reconstructed
material properties [41], though this comes with a reduction in
spatial resolution. Maintaining a minimum NPW of 8 is essential
for reliable reconstructions. Under optimal SNR conditions, the
achievable spatial resolution aligns with the displacement mesh
or acquisition resolution and can approach the optical resolution
of the system. For quantitative reconstruction of heterogeneous
regions in real-world noisy conditions, it is important that at least
half a wavelength is present within the region of interest [31].
Meeting this criterion enables reliable estimation of viscoelastic
properties. While increasing the number of nodes per wavelength
improves reconstruction accuracy, it also increases computation
time. In general, successful experimental applications of the
2D-NoBC-NLI method should consider a balance between the
spatial resolution, excitation frequency, computational time, and
robustness. By optimizing these parameters, it is possible to achieve
high-quality viscoelastic property reconstructions, even for complex
heterogeneous materials.

Experimental measurements in microbeads offer advantages
over traditional rheology methods [6] due to the very short
acquisition times (=0.4 ms) needed to provide quantitative spatial
distributions of the complex viscoelastic shear modulus. This rapid
data acquisition makes the method suitable for dynamic cellular
processes such as cytoskeletal remodeling. For example, each
measurement cycle for the 60 kHz excitation took 17 ps, and for
all 25 measurements on a single bead, the total acquisition time
corresponds to 0.4 ms. These multiple acquisitions provided more
robust/reliable displacement data for the inverse problem.

At high frequencies, both storage and loss moduli increased
(Figure 9), confirming the frequency-dependent behavior of PAAm
microbeads, consistent with previously reported findings for PAAm
gels [39, 45]. The discrepancy between the equivalent Young’s
modulus in our results and that of a previously published study
by our team [36], which measured purely elastic properties using
the same microbead fabrication method, is approximately 20% at
the lowest tested frequency (20 kHz). These discrepancies may stem
not only from differences in the pre-gel mixture and bead size,
but also from the experimental measurement method employed
(atomic force microscopy or real-time deformability cytometry),
and the frequency at which mechanical properties were measured
[36]. Indeed, at low frequencies (several Hz), mechanical properties
of entangled macromolecular networks are predominant, while at
higher frequencies the behavior of individual polymer dynamics
becomes prevailing [37, 38]. In this way, OME, which operates at
these high frequencies, is able to reveal the behavior of cytoskeletal
filaments and probes local properties of the cytoskeleton rather
than the collective dynamics of the entire cytoskeletal network
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[19]. While advantageous to improve the spatial resolution, a high-
frequency excitation may limit wave propagation distance due to
increased attenuation. The limit frequency at which elastic waves
propagate could be determined by the ratio of the loss modulus
(viscosity behavior) to the storage modulus (elastic behavior) [46,
47]. A lower ratio leads to a higher frequency limit. PAAm
microbeads, due to their dominant elastic behavior, can propagate
waves at high frequencies without significant attenuation for the
size of particles considered in this study. Microbead experiments
performed here revealed a consistent and uniform distribution of
mechanical properties, with CV = 0.7% and 0.9% for storage and loss
moduli, in accordance with the inherent mechanical homogeneity
of samples, as previously described [36]. The homogeneity of 2D-
NoBC-NLI results presented here (Figure 8) for PAAm particles
highlights the ability of this method to reconstruct viscoelastic
properties of microscale materials in true experimental conditions.
Notably, the displacement field behavior in the microbeads mirrors
that of the homogeneous sphere simulations, with shear wavelengths
spanning one to two wavelengths, highlighting the precision of our
model and reinforcing the method’s power in capturing complex
material behaviors.

Importantly, the proposed method is not limited to microbeads
of 75 um in diameter. It can be applied to any microscale material,
provided that the excitation wavelength is comparable to the
specimen size. This can be achieved by selecting an optimal
excitation frequency that provides sufficient shear wavelengths
while maintaining an acceptable signal amplitude. It is important
that the amplitude is sufficiently high to capture the wave’s
displacement (vibration) inside the material, despite attenuation.
Therefore, experimental designs should balance both high and
low-frequency applicable values, considering that a higher spatial
resolution at high frequency implies more wave attenuation than
at lower frequencies. The wavelength to specimen size criterion
ensures that the approach remains valid for smaller cells and for
irregular morphologies, consistent with our simulations. Ensuring
sufficient shear-wave content improves reconstruction stability and
accuracy, as boundary effects dominate when fewer than one or
two wavelengths are present. This criterion is important across
various elastography frameworks to avoid reconstruction bias.
When the shear wavelength is comparable to the material size, direct
methods, such as wavelength- or shear-speed-based approaches
are particularly sensitive to geometric effects, leading to significant
reconstruction bias. Model-based inversion methods, like nonlinear
inversion, reduce these effects by solving the full elastic wave
equations. However, even with advanced methods, it remains crucial
to have at least one to two effective wavelengths within the region of
interest for reliable reconstructions [48].

As a proof of concept, it is also worth noting that at the lowest
excitation frequency of 20 kHz tested in microbead experiments,
the shear wavelength approximately corresponded to the diameter
of the specimen. Despite this challenging condition, reconstructed
results remained consistent with those obtained using another
established method [36], demonstrating the robustness of the
proposed approach. Based on our experimental results with PAAm
microbeads, we found that frequencies in the range of 20-60 kHz
were optimal for our application and for reliably reconstructing
material properties. Beyond OME, the 2D-NoBC-NLI approach
is also applicable to other elastography techniques, such as MR
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elastography, ultrasound, and optical elastography. The method’s
ability to handle complex materials without relying on simplified
2D assumptions makes it versatile for a variety of 2D imaging
modalities.

Despite promising results, the 2D-NoBC-NLI approach has
some limitations that need further investigation. Source artifacts
(i.e., due to the vibrating micropipette) affect the quality of
reconstructions, and the relatively higher percentage of errors
observed for the loss modulus in this region requires further
refinement. This led to an underestimation of the shear modulus.
While the viscoelastic model used for reconstruction provides a
more realistic portrayal of material properties compared to purely
elastic models, it still has limitations, such as potential errors
introduced by incompressibility assumptions. These issues need
to be further examined, particularly in microscale experiments at
high frequencies, including comparison with other reconstruction
methods using the same frequency range. Addressing these
challenges will be essential to improving the overall accuracy and
robustness of the method, particularly in applications involving
complex biological cell morphologies.

5 Conclusion

In conclusion, this study investigated high-frequency
OME using the new 2D-NoBC-NLI method as an image
reconstruction approach, demonstrating its ability to robustly
reconstruct viscoelastic material properties in 3D geometries
from 2D displacement data without the use of 2D geometry
approximations. The feasibility of the technique was validated
with data obtained from FE simulations and experimental results
on PAAm microbeads. The coupled adjoint-based optimization
technique effectively determined homogeneous and heterogeneous
viscoelastic properties, and the sensitivity analysis highlighted the
importance of optimizing factors such as zone size, out-of-plane
mesh size, and wavelengths within the material to improve the
reconstruction accuracy. Overall, the 2D-NoBC-NLI technique
showed great potential for broad applications in complex and noisy
2D displacement fields, particularly in 2D imaging modalities,
including mechanical cell phenotyping and mapping of cellular
viscoelastic properties.
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Appendix A

Al Forward (displacement—pressure)
problem

The time harmonic elastic wave propagation in a
heterogeneous, isotropic, nearly incompressible viscoelastic
medium is formulated in mixed displacement-pressure

form. The governing equations in strong form are given
as follows:

X- (V . (G(Vu + VTu) —pII) + wzpu) =0inQ,(a)

y- (V . (G(Vu+ VTu) - p]I) + wzpu) =0in Q,(b)
Z- (V . (G(Vu+ VTu) - p]I) + wzpu) =0in Q,(c)
V-u+%:0in0,(d) (A1)

u=u, onTl.(e)

In Equation A1, u is the 3D vector displacement field in meters
[m], %, y, and Z are unit vectors along the Cartesian directions,
p is a scalar pressure field in Pascals [Pa], and I is the identity
matrix representing the isotropic component of the stress
tensor. Material properties include the complex valued shear
modulus G, in Pascal [Pa], the bulk modulus K, in Pascal
[Pa], and the density of the material p, in [kg.m™], such that
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0={G,K,p}. In this time-harmonic case, w is the angular
frequency of the harmonic elastic wave excitation [rad.s™].
These equations are applied within the domain Q, which
represents the region of the material under study, typically
with Dirichlet boundary conditions u=u,, specified on the
boundary T

A2 Adjoint problem

The strong form of the adjoint problem for the fields
(w,q) is expressed as:

x- ([V . (G(Vw+ VTw) - q]I) + u)zpw] —(u- um)) =0,inQ

. ([V . (G(Vw+ VTw) - q]I) + wzpw] —(u- um)) =0,inQ

<

. ([V . (G(Vw+ VTw) - qII) + wzpw] —(u- um)) =0,inQ

N>

V-w+%:0, inQ (A2)

w=0,o0nT

System Equation A2 is well-posed and can be solved
for the adjoint field w,
fields,
adjoint

given measured and calculated
3D displacement Here, w denotes
the field and q the
adjoint pressure; all other parameters are defined as in
Appendix Al.

u and up,.

complex 3D displacement
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