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This paper presents a framework for quantum partial adiabatic evolution 
and applies it to re-examine the well-known quantum search problem. We 
particularly focus on a detailed analysis of the algorithm’s success probability, 
which serves as a clear criterion for differentiating valid implementations from 
invalid ones. Specifically, when the time complexity aligns with the optimal 
quantum computation, the algorithm achieves a substantially high success 
probability. Conversely, so-called “improved” versions that exceed the quadratic 
speedup characteristic of quantum computing exhibit a negligibly low success 
probability with the increase of target elements. These findings underscore the 
critical importance of selecting the appropriate evolution interval and the correct 
method for calculating the success probability in studies of quantum partial 
adiabatic evolution.
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 1 Introduction

The framework of quantum adiabatic evolution Farhi et al. [1, 2] provides a 
Hamiltonian-based model of quantum computation that is computationally equivalent 
to the standard gate-based model [3, 4]. Its utility is demonstrated by the range of 
novel algorithms it has inspired [5–8], offering a critical approach in a field where 
designing efficient algorithms is notably difficult. The core premise, rooted in the quantum 
adiabatic theorem [9], is to prepare the system in the ground state of an initial Hamiltonian 
and then adiabatically evolve it into a problem-encoding final Hamiltonian. A sufficiently 
slow evolution ensures the system remains in the ground state with high probability, 
allowing the solution to be obtained by measurement.

In early studies [2, 10], it was observed that a direct adiabatic implementation of 
Grover’s search problem yielded no quantum advantage over classical computation, in 
contrast to the quadratic speedup of the original Grover algorithm [11]. This limitation 
was addressed by the introduction of quantum local adiabatic evolution in [10, 12], 
which successfully recovered the quadratic speedup. Furthermore, it was proven that this 
performance represents the fundamental limit for quantum local adiabatic computation Das 
et al. [10]. Moreover, quantum local adiabatic evolution has found other applications, such 
as in the well-known Deutsch-Jozsa problem [13].

In Tulsi [14], Tulsi studied a class of quantum adiabatic evolutions where either the initial 
or final Hamiltonian is a one-dimensional projector onto its ground state. It was shown 
that the minimum energy gap governing the evolution time is proportional to the overlap
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between the ground states of the initial and final Hamiltonians. 
Moreover, such evolutions can exhibit a rapid crossover near the 
point of minimum gap, where the ground state changes abruptly. 
This insight led to the proposal of a faster partial adiabatic evolution, 
confined to a narrow interval around the minimum gap point.

The problem of searching an unstructured database for a 
marked item is a fundamental task in computer science. Classically, 
this requires O(N) queries to the database. In a seminal work, 
Grover demonstrated that quantum mechanics provides a quadratic 
speedup, solving the problem with only O(√N) queries [11]. 
This quantum advantage arises from the coherent amplification of 
the amplitude associated with the target state. Subsequently, this 
algorithm was adapted into the framework of quantum adiabatic 
computation [2]. A key development was the local adiabatic search 
algorithm by Roland and Cerf [10], which achieved the optimal 
time complexity of T = O(√N/M) for finding M target items. 
The critical insight of this approach is the strategic relaxation of 
the standard global adiabatic condition. The traditional adiabatic 
theorem mandates a slow evolution rate across the entire duration 
s ∈ [0,1] to prevent transitions to any excited state. However, for 
the quantum search problem, the dynamics are effectively confined 
to a two-dimensional subspace where the minimum energy gap 
Δmin, which dictates the necessary evolution time, occurs at a single 
point s = s

∗
. The partial adiabatic approach recognizes that it is 

sufficient to enforce the adiabatic condition only near this avoided 
crossing s ≈ s

∗
, where the gap is small and transitions are most likely. 

Away from this critical region, the system can be evolved much 
more rapidly. This focused application of the adiabatic condition 
leads to Tulsi’s proposal of quantum partial adiabatic evolution 
[14]. The works of Zhang et al. [15, 16] further explored this 
framework to study quantum search problem. It was established a 
time complexity of T = O(√N/M) for finding M target items in a 
database of size N [15], which achieves an O(√M) improvement 
over local adiabatic search. It retains a square-root speedup over 
classical search even for a single target Zhang et al. [16]. In Sun 
et al. [17], we introduced a quantum micro-local adiabatic search, 
a refinement in which the local adiabatic evolution is confined to a 
narrow interval, in contrast to a global evolution spanning the entire 
parameter range. However, it exhibited the same asymptotic scaling 
as earlier partial adiabatic schemes [15, 16], namely, with a time 
complexity of O(√N/M), suggesting their optimality. Furthermore, 
in Sun et al. [18], we demonstrated that both quantum global 
and local adiabatic computation can be recovered from the partial 
adiabatic evolution by appropriately adjusting the evolution interval.

Nevertheless, the claimed O(√N/M) complexity raises concerns, 
as it appears to contradict the established optimality of quadratic 
quantum speedup [10, 19]. Kay first identified this discrepancy 
and pointed out an oversight in Tulsi’s original proof [20]. He 
showed that while the argument in Tulsi [14] could be corrected 
to validate the scheme, the same recovery is not generally 
possible for subsequent studies [15–17, 18, 21], leaving their 
conclusions in doubt.

Motivated by Tulsi’s work and aiming to simplify the problem 
setting, this paper introduces a framework for quantum partial 
adiabatic evolution and investigates its application to quantum 
search. A central focus of our analysis is the rigorous evaluation 
of the algorithmic success probability. The main conclusions 
are as follows. Firstly, a valid partial search algorithm, whose 

time complexity is consistent with the fundamental limits of 
quantum computation, can achieve a high success probability, 
provided the constant defining the evolution interval is chosen 
sufficiently large. Conversely, in certain “improved” partial adiabatic 
search schemes [15, 16], as the number of the targets increases, 
the success probability is found to be remarkably small. This 
dichotomy establishes a clear demarcation between valid and invalid 
quantum partial adiabatic computations and underscores the critical 
importance of both the selection of the evolution interval and the 
accurate computation of success probability.

The organization of this paper is as follows. In Section 2, 
the proposed framework for quantum partial adiabatic evolution 
is detailed. Section 3 is devoted to the analysis of the quantum 
search problem within this framework, including comprehensive 
derivations of the success probability for both the valid algorithm 
and its invalid counterparts. The paper concludes with a summary 
and discussion in Section 4. 

2 The framework of quantum partial 
adiabatic evolution

We define the system Hamiltonian as

H (s) = (1− s)Hi − sH f , (1)

parametrized by s ∈ [0,1]. The initial and final Hamiltonians 
are given by

Hi = I− |α〉〈α|,H f = |β〉〈β|, (2)

The parameter s(t) evolves with time from s(0) = 0 to s(T) = 1.
The problem setting of Equation 1 with Equation 2 in this 

work is closely aligned with that of [14]. However, following the 
crucial insight from Kay [20], our method for calculating the 
success probability of the quantum partial adiabatic evolution is 
fundamentally distinct. Crucially, for any finite constant defining the 
evolution interval, the difference between the two resulting success 
probabilities is strictly greater than zero. This critical point will be 
elucidated soon in this section.

It is known that a standard quantum adiabatic algorithm for 
the above problem requires a time complexity of T = O(a−2) [2, 10], 
while a quantum local adiabatic search achieves T = O(a−1), where 
a = |⟨α|β⟩| [10]. The goal of quantum partial adiabatic evolution is 
to achieve the same quadratic speedup over classical computation as 
the local adiabatic approach, but without requiring a finely-tuned, 
time-dependent evolution rate ds/dt. The main procedure of this 
method can be summarized as follows. 

1. Initialize the system in the known ground state |α⟩.
2. Evolve the system adiabatically by sweeping the parameter s

from s− = 1
2
− δ to s+ = 1

2
+ δ.

3. Measure the final state in the computational basis and verify if 
the outcome is a solution.

These steps are repeated until a marked state is found. The 
parameter δ is tunable; in our study of quantum partial adiabatic 
evolution, we set δ = ca for a positive constant c.

Before presenting the time complexity analysis, we begin 
by calculating the success probability of a single round of the 
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quantum partial adiabatic evolution. For this, as suggested 
in Kay [20], We should first verify that the overlap between 
the initial state and the eigenstate at s− is sufficiently large. 
Following [20], the verification condition is given by the
inequality

|⟨E0 (s−) |α⟩| > 1/√2, (3)

where E0(s) denotes the ground state of H(s). Having established this, 
our next objectives are to determine the two lowest eigenvalues and 
the ground state of H(s).

The initial state of the system is prepared within |α〉, |β〉, and the 
action of the Hamiltonian H(s) throughout the adiabatic evolution 
only induces transitions between |α〉 and |β〉, without coupling to 
states outside this subspace. This is because states orthogonal to 
this subspace belong to different symmetry sectors or have vastly 
different energies. Thus, the Hamiltonian effectively acts as the 
identity on the orthogonal subspace, and the relevant dynamics are 
entirely captured by the two-dimensional model. So we restrict to 
the subspace spanned by |α〉 and the part of |β〉 orthogonal to 
|α〉. Define an orthonormal basis |α〉 and |β′〉 with |β〉 = a|α〉 +
b|β′〉,b = √1− a2. In this basis, the matrix representation of H(s)
is given by

H (s) = (
−sa2 −sab
−sab 1− 2s+ sa2). (4)

The eigenvalues E of Equation 4 satisfy the characteristic 
equation det(H(s) −EI) = 0:

det(
−sa2 −E −sab
−sab 1− 2s+ sa2 −E

). (5)

Computing the determinant in Equation 5

(−sa2 −E)(1− 2s+ sa2 −E) − (−sab) (−sab) = 0. (6)

Thus, the characteristic Equation 6 becomes

E2 + (2s− 1)E− sa2 (1− s) = 0. (7)

Solving the quadratic Equation 7, we can get the eigenvalues of 
H(s), i.e.,

E0,1 (s) =
1− 2s∓Δ

2
,Δ = √1− 4s (1− s) (1− a2). (8)

We next seek the ground state

|E0 (s)⟩ = cos θ|α⟩ + sin θ|β′⟩. (9)

Substituting Equation 9 into the eigenvalue equation 
H(s)|E0(s)〉 = E0|E0(s)〉 for E0 = E0(s),

(
−sa2 −sab
−sab 1− 2s+ sa2)(

cos θ
sin θ
) = E0(

cos θ
sin θ
). (10)

Equation 10 gives two equations

−sa2 cos θ− sab sin θ = E0 cos θ,−sab cos θ+ (1− 2s+ sa2) sin

θ = E0 sin θ. (11)

From these two equations in Equation 11, it can be verified that

tan θ = −
E0 + sa2

sab
, (12)

Equation 12 together with the equality sin 2θ = 2 tan θ
1+tan2 θ

 leads to
that

cos (2θ) = 1− 2sb2

Δ
, sin (2θ) = 2sab

Δ
. (13)

By the equations in Equation 13, the following equality is 
easy to obtain

|⟨E0 (s) |α⟩| = cos θ = √1+ cos 2θ
2
= √Δ+ 1− 2b2s

2Δ
, (14)

and the equality (Equation 3) is verified directly,

|⟨E0(s−) ∣ α⟩| = √
1
2
+ 1

√1+ 4c2(1− a2)
(a

2
+ c(1− a2)) > 1/√2.

(15)

Denote P as the success probability of one round of quantum 
partial adiabatic evolution. It has been corrected and can be 
calculated from Equation 15 as follows

P = (2|⟨E0 (s−) |α⟩|2 − 1)2 =
[a+ 2c(1− a2)]2

1+ 4c2 (1− a2)
. (16)

Then it can be found out that

P ≈ 4c2

1+ 4c2 (17)

for a≪ 1 by some direct calculations.
Our next step is to show an analysis of the time complexity 

of the quantum partial adiabatic evolution. For this, we 
adopt the following formula which is also used in the prior 
works like Sun et al. [22] and Mei et al. [23] for the one 
round time cost estimation, defined as the duration needed 
to evolve the system from the initial state at s− to the final
state at s+,

T′ ≥ s+ − s−

Δ2
min
, (18)

in which

Δmin = min
s∈[s−,s+]
(E1 (s) −E0 (s)) . (19)

By Equation 8, it can be inferred that Δmin = a from Equation 
19. Meanwhile, by noting that s− = 1

2
− ca, s+ = 1

2
+ ca, we are 

led to that T′ ≥ 2ca−1. Combined with Equation 17, the total 
time complexity can therefore be estimated and is shown as
follows

T = T′

P
≥ 1+ 4c2

2c
× a−1 = O(a−1) , (20)

which obviously provides an quadratic speedup over the native 
quantum adiabatic evolution.

We remark that the original success probability defined in Tulsi 
[14] for the one round of quantum partial adiabatic evolution 
was given by

P′ = |〈E0 (s−) |α〉|2 × |〈E0 (s+) |β〉|2, (21)
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while in our context here it can be calculated as
follows

P′ = |⟨E0 (s
−) |α⟩|4 ≈ (1

2
+ c
√1+ 4c2

)
2
, (22)

From Equations 21, 22, we have used that

|〈E0 (s−) |α〉|2 = |〈E0 (s+) |β〉|2. (23)

Equation 23 is a symmetry property and easy to verify. As a 
result, it is easy to check that P′ > P for any c > 0 by some simple 
algebraic manipulations, indicating that the per-round success 
probability defined in Tulsi [14] is overestimated. 

3 The quantum partial adiabatic 
search problem

In this section, we study the quantum search problem using 
the quantum partial adiabatic evolution framework proposed in 
the previous section. Suppose we are interested in finding M target 
elements from a total of N items in an unstructured database. 
We consider separately the correct and incorrect versions of the 
quantum partial adiabatic evolution for this problem.

Firstly, for the case exhibiting the optimal quadratic speedup, 
we do not need to repeat the quantum partial adiabatic evolution 
procedure, as it directly aligns with our prior discussion. 
We need only specify that the evolution interval is [s−, s+]
with s± = 1

2
± c√M/N. The time complexity, verified using 

the states |α〉 = 1
√N
∑N

i=1|i〉 and |β〉 = 1
√M
∑j∈S,|S|=M|j〉, is T =

O(√N/M) by Equation 20 with a = |⟨α|β⟩| = √M
N

. The single-round 

success probability remains P ≈ 4c2

1+4c2  for M≪ N.
In several previous works [16, 18, 21, 23], it can be checked that 

the choices of the evolution intervals are consistent with ours here, 
and therefore may be considered valid in isolation. Also it leads to 
a per-round time complexity of T′ = O(√N) or T′ = O(√N/M) for 
M > 1, figures that appear consistent even under slightly different 
problem settings. However, the key flaw identified by Kay Kay [20] 
concerns the method of calculating the success probability. This 
error ultimately compromises the overall time complexity analysis 
in these references, as we will explain.

Next, we turn to the incorrect variant of the quantum 
partial adiabatic search algorithm, which purports to surpass the 
established optimality limit of quantum computation. Early works 
such as those in [15, 17] fall into this category. Our objective is to 
pinpoint the fundamental flaw in their approach. In these works, 
the evolution interval was specified as s± = 1

2
± c/√N for a search 

with M > 1 targets out of N total items. Consequently, the time 
complexity T′ for a single round of the computation can be directly 
calculated using Equation 18. Then it follows that T′ ≥ O(√N/M). 
Having established this, we proceed to calculate the single-round 
success probability. By substituting the parameters s− = 1

2
− c/√N, 

a = √M/N, and b = √1−M/N into Equation 14 and simplifying, we 
obtain the following expression:

|⟨E0 (s−) |α⟩| ≈ √
1
2
+ c
√M+ 4c2

> 1
√2
, (24)

in which we have used that M≪ N. The success probability from 
Equation 16 is thus obtained as follows from Equation 24

P ≈ 4c2

M+ 4c2 . (25)

This would imply that for fixed constant c > 0, the success 
probability approaches zero as M increases. This is both incorrect 
and counterintuitive, as we would naturally expect that having 
more attempts for a larger M should monotonically increase the 
chance of success. Moreover, when the constant c > 0 is chosen 
sufficiently large but fixed such that P approaches 1, the overall time 
complexity becomes

T = T′/P ≥ O(√N/M) , (26)

Equation 26 for the quantum adiabatic evolution directly contradicts 
the proven optimality of O(√N/M) for quantum computation. 
Based on this analysis, we conclude that the choice of the evolution 
interval [ 1

2
− c
√N
, 1

2
+ c
√N
] is invalid.

Kay pointed out that the results in the works like [15, 17] were 
not correct and argued in detail especially why the quantum partial 
adiabatic search could not achieve an algorithmic performance of 
O(√N/M) Kay [20]. The root cause of the problem is an insufficient 
estimate of the algorithm’s single-run success probability. This 
insufficiency, in turn, arises because the overlap between the initial 
state and the system’s ground state was incorrectly bounded by a 
constant smaller than 1/√2. However, as shown here, even for the 
uncorrected quantum partial adiabatic search, this overlap remains 
greater than 1/√2. So we have to take a further step to calculate 
the success probability to see what the actual issue is. Furthermore, 
Kay proposed that by setting δ = c√ M

N−M
, the issue identified in the 

earlier work of Tulsi [14] could be addressed. This parameter choice, 
which aligns with the interval selection we presented in the previous 
section, provides additional support for its validity.

Finally, it can be observed that the success probabilities of 
quantum partial adiabatic evolutions under the two aforementioned 
circumstances differ. This difference, to some extent, reflects the 
validity of the quantum partial adiabatic search. Specifically, for the 
correct version of the quantum adiabatic search, if the constant 
c is set sufficiently large, the success probability remains close 
to 1. In contrast, for the incorrect quantum partial adiabatic 
search algorithm, the success probability decreases monotonically 
as M increases. Although it can be made arbitrarily close to 
1 by adjusting the parameter c, its monotonic decrease with 
M contradicts our intuition and indicates that the algorithm is
flawed. 

4 Numerical simulations

In this section, we perform numerical simulations to supplement 
our analytical results and enhance their credibility. We have 
conducted two groups of simulations for this purpose, namely, for 
the valid and the invalid quantum partial adiabatic search.

For the valid quantum partial adiabatic search algorithm, 
the simulation results are shown as follows. This result examine 
a complex mathematical function through six complementary 
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FIGURE 1
Simulation results for valid quantum partial adiabatic search.

visualizations, providing deep insights into the behavior of the 
analytic expression of the success probability

P =
[√M

N
+ 2c(1− M

N
)]

2

1+ 4c2 (1− M
N
)

(27)

and its relationship with the asymptotic approximation (Equation 25).
The top-left panel of Figure 1 depicts P in Equation 27 as a 

function of M for a fixed, large value of N = 10,000. Multiple curves 
are shown for different values of c(0.5,1,2,3), each consisting of a 
solid line (exact solution) and a dashed line (approximation). It can 
be clearly observed that for any fixed c, P increases smoothly and 
monotonically with M. In the top-middle panel, we see that for fixed 
M, P rises rapidly with c eventually saturating near 1. Larger values 
of M cause the system to saturate at a lower value of c. As shown, 
the analytic expression and approximated result match so closely 
for each curve that they are nearly indistinguishable, except when 
M is large. To examine how P depends on N and to identify the 
regime in which the large N approximation is valid, we show in 
the top-right panel a plot of P against N(on a logarithmic scale) for 
different (M,c) pairs. The results indicate that P is highly sensitive 
to N only when N is small. As N increases, the value of P for each 
curve plateaus and approaches a constant. Furthermore, the success 
probability decreases with increasing N, reflecting the growing 
difficulty of identifying the marked elements in the quantum partial 
adiabatic search algorithm. This challenge is mitigated when the 
target elements are relatively large and the constant c is not too small, 
as also illustrated in Plot 3.

In the bottom-left and bottom-middle panels of Figure 1, we 
show two-dimensional visualizations of P as a function of M and 

c, and of M and N, respectively. Plot 4 synthesizes the relationships 
from Plots 1 and 2 into a unified representation. The color gradient 
clearly indicates that high values of P occur in regions where both c
and M are large. The function increases smoothly with either M or 
c. Plot 5 presents a 2D heatmap of P as a function of M and N(on 
a log10 scale) for fixed c = 1. As shown, when M is comparable to 
N(bottom-left region), P is highly sensitive to both parameters, as 
indicated by the rapid variation in color. In contrast, when M≪ N
(top-right region), P depends primarily on M, as evidenced by the 
vertical banding of colors. In this regime, the value of N becomes 
less irrelevant, which explains why the approximation performs 
well here. To quantify the accuracy of the approximate formula 
relative to the exact calculation across the studied parameter space, 
we include Plot 6. As shown, the relative error is consistently very 
low, demonstrating a high level of accuracy over almost the entire 
range. This provides quantitative evidence of the high quality of 
the approximation for N = 10,000. A slight increase in error is 
observed for the largest values of M (toward the right edge), which 
occurs because as M approaches 100, the ratio M/N increases, 
making the condition M≪ N less strictly satisfied. Nevertheless, the 
approximation remains excellent across the entire range.

Figure 2 presents the simulation results for the invalid quantum 
partial adiabatic search algorithm, illustrating the behavior of the 
analytic success probability

P =
[1− (1− M

N
)(1− 2c

√N
)]

2

1− (1− M
N
)(1− 4c2

N
)

(28)

and its relationship with the asymptotic approximation given in
Equation 25.
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FIGURE 2
Simulation results for invalid quantum partial adiabatic search.

The top-left panel of Figure 2 shows the success probability P in 
Equation 28 as a function of M for N = 10,000, with curves plotted 
for different values of c(0.5,1,2,3). Each curve is presented in two 
forms: the exact solution (solid line) and the approximate solution 
(dashed line). As seen in Plot 1, for any fixed c, the value of P
monotonically decreases with M, which contrasts with the behavior 
observed in Figure 1. The approximation becomes increasingly 
inaccurate as M grows, consistent with the assumption M≪ N used 
to derive the simplified expression for P. In the top-middle panel, 
we observe that for fixed M, P increases rapidly with c, but only 
for small M does it saturate near 1. This reveals a counterintuitive 
feature of the quantum partial adiabatic search algorithm: a larger 
number of target elements does not necessarily facilitate the search 
process. Furthermore, in sharp contrast to the behavior in Figure 1, 
we observe that the top-middle panel of Figure 2 shows that the exact 
and approximate results for each curve are in close agreement only 
for M = 1, with a clear discrepancy for all other cases. The top-right 
panel (Plot 3) examines the dependence of P on N (on a logarithmic 
scale) for different (M,c) pairs. It confirms that P is sensitive to 
N only when N is small. As N increases, each curve flattens and 
approaches a constant value. The decrease in success probability with 
larger N is intuitive, reflecting the increased difficulty of locating 
marked elements in a larger search space. However, this difficulty is 
not mitigated by having more target elements, as larger M still results 
in lower P, as seen in the plot.

In the bottom-left and bottom-middle panels of Figure 2, we 
present two-dimensional visualizations of P as a function of M and c, 
and of M and N, respectively. Plot 4 integrates the trends from Plots 
1 and 2 into a single comprehensive view. The color gradient clearly 

indicates that high values of P are concentrated in regions with high 
c and low M. The function P decreases gradually as M increases or 
as c decreases. Plot 5 shows a 2D heatmap of P as a function of M
and N(on a log10 scale) for fixed c = 1. When M is comparable to N
(bottom-left region), P remains highly sensitive to both parameters, 
as indicated by the sharp color variations. In the top-right region, 
where M is large and N is fixed at a high value, P becomes extremely 
small, which is consistent with the expression given in Equation 25. 
Finally, Plot 6 quantifies the accuracy of the approximate formula 
across the studied parameter space. The relative error remains low 
only when M is small and c is large. As M increases or c decreases, the 
approximation deteriorates. The rise in error for large M is expected: 
as M approaches 100, the ratio M/N increases, making the condition 
M≪ N less strictly satisfied. Nevertheless, the overall behavior of the 
approximation remains consistent and interpretable.

In summary, Figures 1, 2 clearly differentiate the valid and 
invalid quantum partial adiabatic search algorithms by their distinct 
dynamic behaviors. 

5 Conclusions and discussions

In this paper, we propose a framework for quantum partial 
adiabatic evolution and apply it to the quantum search problem. 
Our main findings are summarized as follows. As can be seen, 
our setting here is simple enough to analyze compared with 
that of Tulsi [14]. For a valid quantum partial adiabatic search, which 
means that its time complexity matches the established optimality 
of quantum computation, the evolution interval must be chosen as 
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[ 1
2
− ca, 1

2
+ ca]. Here, c > 0 is a constant and a is the overlap between 

the initial and final states. Furthermore, we show that the success 
probability of a single round of adiabatic evolution can be made 
arbitrarily close to 1 by selecting a sufficiently large value of c.

On the other hand, the so-called “improved” quantum partial 
adiabatic search, which claims to achieve a performance beyond the 
standard quadratic speedup, such as O(√N/M), is in fact incorrect. 
This judgment holds even when the evolution interval is specified as 
[ 1

2
− c/√N, 1

2
+ c/√N] and the overlap between the initial state and 

the ground state at s− still satisfies the constraint, i.e., being greater 
than 1/√2 outlined in Kay [20]. Furthermore, it is observed that the 
success probability can become arbitrarily small as the number of 
target elements increases, a result that clearly contradicts intuitive 
expectations. The result on the invalidity of the quantum partial 
adiabatic evolution here, is corroborated by prior research. The 
findings of Sun et al. [24] and the optimality proof in Mei et al. [23] 
collectively imply that any attempt to exceed the fundamental 
quadratic speedup of quantum over classical computation cannot 
succeed in the circumstance of quantum partial adiabatic search.

Our findings provide a clear framework for re-evaluating the 
literature on quantum partial adiabatic computations. We identify 
two distinct types of flaws in prior works. The first type, exemplified 
by studies such as Zhang et al. [16]; Sun et al. [18, 21], Sun and Lu 
[25], stems from an incorrect method for calculating the success 
probability. While their choice of evolution interval is itself valid, 
their analytical approach to estimating the probability of success 
within that interval is flawed, and our results offer a direct corrective. 
The second, more fundamental type of flaw, as also noted by Kay [20] 
and evident in works like Zhang and Lu [15]; Sun et al. [17], concerns 
the choice of the evolution interval itself. Our results unequivocally 
demonstrate that their selected intervals are incorrect, as they 
do not satisfy the theoretical prerequisites for achieving a high 
success probability. Additionally, our analysis is further confirmed 
by numerical simulations, which show a clear distinction between 
the valid and invalid quantum partial adiabatic search algorithms.

Our work complements recent efforts to establish criteria for 
valid partial adiabatic search, including those in related studies 
Sun et al. [22], Sun and Zheng [26]. We hope our results will 
contribute to a deeper understanding of the quantum partial 
adiabatic evolution paradigm, which, despite its potential, remains 
less explored compared to other quantum adiabatic computing 
approaches.

The implications of our framework extend beyond the 
specific model studied here. A promising future direction is its 
application to more general quantum optimization problems, such 
as combinatorial optimization tasks encoded in Hamiltonian-
based formulations. In this context, our method could offer a 
refined strategy for setting partial adiabatic annealing schedules, 
potentially leading to performance improvements. Furthermore, 
within quantum machine learning, this framework might be 
adapted to analyze the training dynamics of parameterized quantum 
circuits, possibly providing insights into mitigating barren plateaus 
by ensuring more controlled evolution through the parameter 
landscape.

However, several important limitations must be addressed for 
practical applications. As we consider scaling to high-dimensional 
systems, the interplay between the density of states and the 
minimum gap becomes more complex; our current analysis, which 

may rely on specific spectral properties, would need generalization 
to handle highly degenerate or chaotic energy spectra. Moreover, 
the framework’s robustness against environmental noise and 
decoherence is a critical open question. In real-world, open-system 
conditions, the adiabatic condition must be satisfied within finite 
coherence times. Future work should integrate techniques from 
open quantum systems, such as the adiabatic master equation, to 
quantify the trade-offs between evolution speed, system size, and 
noise resilience, a crucial step for deploying such frameworks on 
current noisy intermediate-scale quantum (NISQ) devices.
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