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This paper presents a framework for quantum partial adiabatic evolution
and applies it to re-examine the well-known quantum search problem. We
particularly focus on a detailed analysis of the algorithm’s success probability,
which serves as a clear criterion for differentiating valid implementations from
invalid ones. Specifically, when the time complexity aligns with the optimal
quantum computation, the algorithm achieves a substantially high success
probability. Conversely, so-called “improved” versions that exceed the quadratic
speedup characteristic of quantum computing exhibit a negligibly low success
probability with the increase of target elements. These findings underscore the
criticalimportance of selecting the appropriate evolution interval and the correct
method for calculating the success probability in studies of quantum partial
adiabatic evolution.

quantum computation, quantum partial adiabatic evolution, quantum search, success
probability, time complexity

1 Introduction

The framework of quantum adiabatic evolution Farhi etal. [1, 2] provides a
Hamiltonian-based model of quantum computation that is computationally equivalent
to the standard gate-based model [3, 4]. Its utility is demonstrated by the range of
novel algorithms it has inspired [5-8], offering a critical approach in a field where
designing efficient algorithms is notably difficult. The core premise, rooted in the quantum
adiabatic theorem [9], is to prepare the system in the ground state of an initial Hamiltonian
and then adiabatically evolve it into a problem-encoding final Hamiltonian. A sufficiently
slow evolution ensures the system remains in the ground state with high probability,
allowing the solution to be obtained by measurement.

In early studies [2, 10], it was observed that a direct adiabatic implementation of
Grover’s search problem yielded no quantum advantage over classical computation, in
contrast to the quadratic speedup of the original Grover algorithm [11]. This limitation
was addressed by the introduction of quantum local adiabatic evolution in [10, 12],
which successfully recovered the quadratic speedup. Furthermore, it was proven that this
performance represents the fundamental limit for quantum local adiabatic computation Das
et al. [10]. Moreover, quantum local adiabatic evolution has found other applications, such
as in the well-known Deutsch-Jozsa problem [13].

In Tulsi [14], Tulsi studied a class of quantum adiabatic evolutions where either the initial
or final Hamiltonian is a one-dimensional projector onto its ground state. It was shown
that the minimum energy gap governing the evolution time is proportional to the overlap
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between the ground states of the initial and final Hamiltonians.
Moreover, such evolutions can exhibit a rapid crossover near the
point of minimum gap, where the ground state changes abruptly.
This insight led to the proposal of a faster partial adiabatic evolution,
confined to a narrow interval around the minimum gap point.

The problem of searching an unstructured database for a
marked item is a fundamental task in computer science. Classically,
this requires O(N) queries to the database. In a seminal work,
Grover demonstrated that quantum mechanics provides a quadratic
speedup, solving the problem with only O(VN) queries [11].
This quantum advantage arises from the coherent amplification of
the amplitude associated with the target state. Subsequently, this
algorithm was adapted into the framework of quantum adiabatic
computation [2]. A key development was the local adiabatic search
algorithm by Roland and Cerf [10], which achieved the optimal
time complexity of T=O(yN/M) for finding M target items.
The critical insight of this approach is the strategic relaxation of
the standard global adiabatic condition. The traditional adiabatic
theorem mandates a slow evolution rate across the entire duration
s€[0,1] to prevent transitions to any excited state. However, for
the quantum search problem, the dynamics are effectively confined
to a two-dimensional subspace where the minimum energy gap
Aphin» Which dictates the necessary evolution time, occurs at a single
point s = s The partial adiabatic approach recognizes that it is
sufficient to enforce the adiabatic condition only near this avoided
crossing s = 5", where the gap is small and transitions are most likely.
Away from this critical region, the system can be evolved much
more rapidly. This focused application of the adiabatic condition
leads to Tulsi’s proposal of quantum partial adiabatic evolution
[14]. The works of Zhang etal. [15, 16] further explored this
framework to study quantum search problem. It was established a
time complexity of T= O(VN/M) for finding M target items in a
database of size N [15], which achieves an O(VM) improvement
over local adiabatic search. It retains a square-root speedup over
classical search even for a single target Zhang et al. [16]. In Sun
etal. [17], we introduced a quantum micro-local adiabatic search,
a refinement in which the local adiabatic evolution is confined to a
narrow interval, in contrast to a global evolution spanning the entire
parameter range. However, it exhibited the same asymptotic scaling
as earlier partial adiabatic schemes [15, 16], namely, with a time
complexity of O(VN/M), suggesting their optimality. Furthermore,
in Sun etal. [18], we demonstrated that both quantum global
and local adiabatic computation can be recovered from the partial
adiabatic evolution by appropriately adjusting the evolution interval.

Nevertheless, the claimed O(VN/M) complexity raises concerns,
as it appears to contradict the established optimality of quadratic
quantum speedup [10, 19]. Kay first identified this discrepancy
and pointed out an oversight in Tulsi’s original proof [20]. He
showed that while the argument in Tulsi [14] could be corrected
to validate the scheme, the same recovery is not generally
possible for subsequent studies [15-17, 18, 21], leaving their
conclusions in doubt.

Motivated by Tulsi’s work and aiming to simplify the problem
setting, this paper introduces a framework for quantum partial
adiabatic evolution and investigates its application to quantum
search. A central focus of our analysis is the rigorous evaluation
of the algorithmic success probability. The main conclusions
are as follows. Firstly, a valid partial search algorithm, whose
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time complexity is consistent with the fundamental limits of
quantum computation, can achieve a high success probability,
provided the constant defining the evolution interval is chosen
sufficiently large. Conversely, in certain “improved” partial adiabatic
search schemes [15, 16], as the number of the targets increases,
the success probability is found to be remarkably small. This
dichotomy establishes a clear demarcation between valid and invalid
quantum partial adiabatic computations and underscores the critical
importance of both the selection of the evolution interval and the
accurate computation of success probability.

The organization of this paper is as follows. In Section 2,
the proposed framework for quantum partial adiabatic evolution
is detailed. Section 3 is devoted to the analysis of the quantum
search problem within this framework, including comprehensive
derivations of the success probability for both the valid algorithm
and its invalid counterparts. The paper concludes with a summary
and discussion in Section 4.

2 The framework of quantum partial
adiabatic evolution

We define the system Hamiltonian as
H(s):(l—s)Hi—st, (1)

parametrized by se[0,1]. The initial and final Hamiltonians
are given by

H,; = I | al, Hy = [B) B, @

The parameter s(t) evolves with time from s(0) = 0 to s(T) = 1.

The problem setting of Equation 1 with Equation 2 in this
work is closely aligned with that of [14]. However, following the
crucial insight from Kay [20], our method for calculating the
success probability of the quantum partial adiabatic evolution is
fundamentally distinct. Crucially, for any finite constant defining the
evolution interval, the difference between the two resulting success
probabilities is strictly greater than zero. This critical point will be
elucidated soon in this section.

It is known that a standard quantum adiabatic algorithm for
the above problem requires a time complexity of T = O(a?) [2, 10],
while a quantum local adiabatic search achieves T'= O(a™"), where
a = [{«|p)] [10]. The goal of quantum partial adiabatic evolution is
to achieve the same quadratic speedup over classical computation as
the local adiabatic approach, but without requiring a finely-tuned,
time-dependent evolution rate ds/dt. The main procedure of this
method can be summarized as follows.

1. Initialize the system in the known ground state |a).

2. Evolve the system adiabatically by sweeping the parameter s
froms =1 -§tos" =1 +4.

3. Measure the final state in the computational basis and verify if
the outcome is a solution.

These steps are repeated until a marked state is found. The
parameter ¢ is tunable; in our study of quantum partial adiabatic
evolution, we set & = ca for a positive constant c.

Before presenting the time complexity analysis, we begin
by calculating the success probability of a single round of the
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quantum partial adiabatic evolution. For this, as suggested
in Kay [20], We should first verify that the overlap between
the initial state and the eigenstate at s  is sufficiently large.
Following [20], the verification condition is given by the
inequality

[(Ey (s7) )] > 1/V2, ®3)

where E(s) denotes the ground state of H(s). Having established this,
our next objectives are to determine the two lowest eigenvalues and
the ground state of H(s).

The initial state of the system is prepared within |&), |3}, and the
action of the Hamiltonian H(s) throughout the adiabatic evolution
only induces transitions between |a) and [B), without coupling to
states outside this subspace. This is because states orthogonal to
this subspace belong to different symmetry sectors or have vastly
different energies. Thus, the Hamiltonian effectively acts as the
identity on the orthogonal subspace, and the relevant dynamics are
entirely captured by the two-dimensional model. So we restrict to
the subspace spanned by |a) and the part of |3) orthogonal to
|ay. Define an orthonormal basis |a) and |f') with |B) = ala) +
blf'y,b= V1 -a?. In this basis, the matrix representation of H(s)

is given by
Hs) —sa?
s)= .
—sab

The eigenvalues E of Equation 4 satisfy the characteristic
equation det(H(s) — EI) = 0:

—sab
(4)

1-2s+sa’

—sa’—E —sab
det 5 . (5)
—sab 1-2s+sa”—E
Computing the determinant in Equation 5
(=sa* = E) (1 - 25+ sa® - E) — (—sab) (—sab) = 0. (6)
Thus, the characteristic Equation 6 becomes
E>+(2s-1)E-sa*(1-s)=0. (7)

Solving the quadratic Equation 7, we can get the eigenvalues of

H(s), i.e.,
By 9= 222 A= I-as-9(-a).  ®)
We next seek the ground state
|E, (s)) = cos Ola) +sin 6]|B'). 9)
Substituting Equation 9 into the eigenvalue equation

H(s)IEy(s)> = Ey|Ey(s)) for Ey = Ey(s),

—sa® cos 0
—sab sin 0

Equation 10 gives two equations

—sab

cos 0
E0< _ > (10)
sin 0

—sa® cos 0 — sab sin 0 = E; cos 6, —sab cos 0 + (1 —2s+ saz) sin

0= E, sin 0.

1-2s+sa’

(1n
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From these two equations in Equation 11, it can be verified that

_ Ey+sd’
tan 6= — , (12)
sab
Equation 12 together with the equality sin26 = 12+::206 leads to
that
P
c0s(26) = 12 sin(20) = B2, (13)

By the equations in Equation 13, the following equality is
easy to obtain

_ 2
I(Ey (5) )] = cos 6= W: W} .

and the equality (Equation 3) is verified directly,

1 (§+c(l—a2)>>l/\/§.

V1 +4c2(1-a?)

Denote P as the success probability of one round of quantum

KEo(s7) | )] = \jé ¥

(15)

partial adiabatic evolution. It has been corrected and can be
calculated from Equation 15 as follows

[a+2c(1-a*)]?

P=(2KE ()P -1)* = —————. (16)
@Iy ) 1+4c(1-a?)
Then it can be found out that
2
~ e . (17)
1+4c

for a < 1 by some direct calculations.

Our next step is to show an analysis of the time complexity
of the quantum partial adiabatic evolution. For this, we
adopt the following formula which is also used in the prior
works like Sun etal. [22] and Mei etal. [23] for the one
round time cost estimation, defined as the duration needed
to evolve the system from the initial state at s~ to the final

state at s¥,
M-
(R (18)
Amin
in which
Amin = min (El (5) _EO (5)) . (19)

s€[s,s%]
By Equation 8, it can be inferred that A ;. = a from Equation
=1

min
19. Meanwhile, by noting that s~ :%—ca,f +ca, we are
led to that T’ >2ca”!. Combined with Equation 17, the total
time complexity can therefore be estimated and is shown as
follows
T _ 1+4c¢
P 2c

which obviously provides an quadratic speedup over the native

vV

xa'=0(a), (20)

quantum adiabatic evolution.

We remark that the original success probability defined in Tulsi
[14] for the one round of quantum partial adiabatic evolution
was given by

P = By (s) la) P x [<Ey (sM) IBY %, 21
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while in our context here it can be calculated as
follows
1 c :
P'=|(E0(S_)|06)|4:(—+—> , (22)
2 \1t4e2
From Equations 21, 22, we have used that
I<Eq () lay > = [<Ey (sM) IBY . (23)

Equation 23 is a symmetry property and easy to verify. As a
result, it is easy to check that P’ > P for any ¢ > 0 by some simple
algebraic manipulations, indicating that the per-round success
probability defined in Tulsi [14] is overestimated.

3 The quantum partial adiabatic
search problem

In this section, we study the quantum search problem using
the quantum partial adiabatic evolution framework proposed in
the previous section. Suppose we are interested in finding M target
elements from a total of N items in an unstructured database.
We consider separately the correct and incorrect versions of the
quantum partial adiabatic evolution for this problem.

Firstly, for the case exhibiting the optimal quadratic speedup,
we do not need to repeat the quantum partial adiabatic evolution
procedure, as it directly aligns with our prior discussion.
We need only specify that the evolution interval is [s7,s"]
with s* = % +cyM/N. The time complexity, verified using
the states |o) = =N [} and |B) = o= Yeqyqmlids is T=
O(+/N/M) by Equation 20 with a = [{a|)| = \/g The single-round
success probability remains P = :iz for M < N.

In several previous works [16, 18, 21, 23], it can be checked that

the choices of the evolution intervals are consistent with ours here,
and therefore may be considered valid in isolation. Also it leads to
a per-round time complexity of T' = O(VN) or T’ = O(+/N/M) for
M > 1, figures that appear consistent even under slightly different
problem settings. However, the key flaw identified by Kay Kay [20]
concerns the method of calculating the success probability. This
error ultimately compromises the overall time complexity analysis
in these references, as we will explain.

Next, we turn to the incorrect variant of the quantum
partial adiabatic search algorithm, which purports to surpass the
established optimality limit of quantum computation. Early works
such as those in [15, 17] fall into this category. Our objective is to
pinpoint the fundamental flaw in their approach. In these works,
%ic/ VN for a search
with M > 1 targets out of N total items. Consequently, the time

the evolution interval was specified as s*

complexity T’ for a single round of the computation can be directly
calculated using Equation 18. Then it follows that T' > O( VN/M).
Having established this, we proceed to calculate the single-round
success probability. By substituting the parameters s~ % -¢/VN,
a= \/]\W, and b = \/m\] into Equation 14 and simplifying, we
obtain the following expression:

c 1

+—_> —
VM+4a2 V2

[{Ey (s )| = , (24)

|~
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in which we have used that M « N. The success probability from
Equation 16 is thus obtained as follows from Equation 24

~ 4c%
M+4c

(25)

This would imply that for fixed constant ¢ >0, the success
probability approaches zero as M increases. This is both incorrect
and counterintuitive, as we would naturally expect that having
more attempts for a larger M should monotonically increase the
chance of success. Moreover, when the constant ¢ > 0 is chosen
sufficiently large but fixed such that P approaches 1, the overall time
complexity becomes

T=T/P2O(VN/M), (26)
Equation 26 for the quantum adiabatic evolution directly contradicts
the proven optimality of O(y/N/M) for quantum computation.

Based on this analysis, we conclude that the choice of the evolution
c 1

Wit

Kay pointed out that the results in the works like [15, 17] were

interval [% - \/LN] is invalid.

not correct and argued in detail especially why the quantum partial
adiabatic search could not achieve an algorithmic performance of
O(VN/M) Kay [20]. The root cause of the problem is an insufficient
estimate of the algorithm’s single-run success probability. This
insufficiency, in turn, arises because the overlap between the initial
state and the system’s ground state was incorrectly bounded by a
constant smaller than 1/ \2. However, as shown here, even for the
uncorrected quantum partial adiabatic search, this overlap remains
greater than 1/V2. So we have to take a further step to calculate
the success probability to see what the actual issue is. Furthermore,
Kay proposed that by setting 6 = c\/% , the issue identified in the
earlier work of Tulsi [14] could be addressed. This parameter choice,
which aligns with the interval selection we presented in the previous
section, provides additional support for its validity.

Finally, it can be observed that the success probabilities of
quantum partial adiabatic evolutions under the two aforementioned
circumstances differ. This difference, to some extent, reflects the
validity of the quantum partial adiabatic search. Specifically, for the
correct version of the quantum adiabatic search, if the constant
c is set sufficiently large, the success probability remains close
to 1. In contrast, for the incorrect quantum partial adiabatic
search algorithm, the success probability decreases monotonically
as M increases. Although it can be made arbitrarily close to
1 by adjusting the parameter c, its monotonic decrease with
M contradicts our intuition and indicates that the algorithm is
flawed.

4 Numerical simulations

In this section, we perform numerical simulations to supplement
our analytical results and enhance their credibility. We have
conducted two groups of simulations for this purpose, namely, for
the valid and the invalid quantum partial adiabatic search.

For the valid quantum partial adiabatic search algorithm,
the simulation results are shown as follows. This result examine
a complex mathematical function through six complementary
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FIGURE 1

Simulation results for valid quantum partial adiabatic search.

visualizations, providing deep insights into the behavior of the
analytic expression of the success probability

[\/¥+2c(1 - %)]2

1+4c¢2(1-2

V)

(27)

and its relationship with the asymptotic approximation (Equation 25).

The top-left panel of Figure 1 depicts P in Equation 27 as a
function of M for a fixed, large value of N = 10,000. Multiple curves
are shown for different values of ¢(0.5,1,2,3), each consisting of a
solid line (exact solution) and a dashed line (approximation). It can
be clearly observed that for any fixed ¢, P increases smoothly and
monotonically with M. In the top-middle panel, we see that for fixed
M, P rises rapidly with ¢ eventually saturating near 1. Larger values
of M cause the system to saturate at a lower value of c. As shown,
the analytic expression and approximated result match so closely
for each curve that they are nearly indistinguishable, except when
M is large. To examine how P depends on N and to identify the
regime in which the large N approximation is valid, we show in
the top-right panel a plot of P against N(on a logarithmic scale) for
different (M, c) pairs. The results indicate that P is highly sensitive
to N only when N is small. As N increases, the value of P for each
curve plateaus and approaches a constant. Furthermore, the success
probability decreases with increasing N, reflecting the growing
difficulty of identifying the marked elements in the quantum partial
adiabatic search algorithm. This challenge is mitigated when the
target elements are relatively large and the constant c is not too small,
as also illustrated in Plot 3.

In the bottom-left and bottom-middle panels of Figure 1, we
show two-dimensional visualizations of P as a function of M and
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¢, and of M and N, respectively. Plot 4 synthesizes the relationships
from Plots 1 and 2 into a unified representation. The color gradient
clearly indicates that high values of P occur in regions where both ¢
and M are large. The function increases smoothly with either M or
c. Plot 5 presents a 2D heatmap of P as a function of M and N(on
a log,, scale) for fixed ¢ = 1. As shown, when M is comparable to
N(bottom-left region), P is highly sensitive to both parameters, as
indicated by the rapid variation in color. In contrast, when M « N
(top-right region), P depends primarily on M, as evidenced by the
vertical banding of colors. In this regime, the value of N becomes
less irrelevant, which explains why the approximation performs
well here. To quantify the accuracy of the approximate formula
relative to the exact calculation across the studied parameter space,
we include Plot 6. As shown, the relative error is consistently very
low, demonstrating a high level of accuracy over almost the entire
range. This provides quantitative evidence of the high quality of
the approximation for N =10,000. A slight increase in error is
observed for the largest values of M (toward the right edge), which
occurs because as M approaches 100, the ratio M/N increases,
making the condition M <« N less strictly satisfied. Nevertheless, the
approximation remains excellent across the entire range.

Figure 2 presents the simulation results for the invalid quantum
partial adiabatic search algorithm, illustrating the behavior of the

-o-n0-2))
1—(1—%)(1 )

and its relationship with the asymptotic approximation given in

analytic success probability
2
VN

_4d
N

(28)

Equation 25.
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P vs M (N=10,000 fixed)
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FIGURE 2
Simulation results for invalid quantum partial adiabatic search.

The top-left panel of Figure 2 shows the success probability P in
Equation 28 as a function of M for N = 10,000, with curves plotted
for different values of ¢(0.5,1,2,3). Each curve is presented in two
forms: the exact solution (solid line) and the approximate solution
(dashed line). As seen in Plot 1, for any fixed ¢, the value of P
monotonically decreases with M, which contrasts with the behavior
observed in Figure 1. The approximation becomes increasingly
inaccurate as M grows, consistent with the assumption M <« N used
to derive the simplified expression for P. In the top-middle panel,
we observe that for fixed M, P increases rapidly with ¢, but only
for small M does it saturate near 1. This reveals a counterintuitive
feature of the quantum partial adiabatic search algorithm: a larger
number of target elements does not necessarily facilitate the search
process. Furthermore, in sharp contrast to the behavior in Figure 1,
we observe that the top-middle panel of Figure 2 shows that the exact
and approximate results for each curve are in close agreement only
for M = 1, with a clear discrepancy for all other cases. The top-right
panel (Plot 3) examines the dependence of P on N (on a logarithmic
scale) for different (M,c) pairs. It confirms that P is sensitive to
N only when N is small. As N increases, each curve flattens and
approaches a constant value. The decrease in success probability with
larger N is intuitive, reflecting the increased difficulty of locating
marked elements in a larger search space. However, this difficulty is
not mitigated by having more target elements, as larger M still results
in lower P, as seen in the plot.

In the bottom-left and bottom-middle panels of Figure 2, we
present two-dimensional visualizations of P as a function of M and ¢,
and of M and N, respectively. Plot 4 integrates the trends from Plots
1 and 2 into a single comprehensive view. The color gradient clearly
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indicates that high values of P are concentrated in regions with high
¢ and low M. The function P decreases gradually as M increases or
as ¢ decreases. Plot 5 shows a 2D heatmap of P as a function of M
and N(on a log,, scale) for fixed ¢ = 1. When M is comparable to N
(bottom-left region), P remains highly sensitive to both parameters,
as indicated by the sharp color variations. In the top-right region,
where M is large and N is fixed at a high value, P becomes extremely
small, which is consistent with the expression given in Equation 25.
Finally, Plot 6 quantifies the accuracy of the approximate formula
across the studied parameter space. The relative error remains low
only when M is small and c is large. As M increases or ¢ decreases, the
approximation deteriorates. The rise in error for large M is expected:
as M approaches 100, the ratio M/N increases, making the condition
M < Nless strictly satisfied. Nevertheless, the overall behavior of the
approximation remains consistent and interpretable.

In summary, Figures 1, 2 clearly differentiate the valid and
invalid quantum partial adiabatic search algorithms by their distinct
dynamic behaviors.

5 Conclusions and discussions

In this paper, we propose a framework for quantum partial
adiabatic evolution and apply it to the quantum search problem.
Our main findings are summarized as follows. As can be seen,
our setting here is simple enough to analyze compared with
that of Tulsi [14]. For a valid quantum partial adiabatic search, which
means that its time complexity matches the established optimality
of quantum computation, the evolution interval must be chosen as
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[% - ca, % + ca]. Here, ¢ > 0 is a constant and a is the overlap between
the initial and final states. Furthermore, we show that the success
probability of a single round of adiabatic evolution can be made
arbitrarily close to 1 by selecting a sufficiently large value of c.

On the other hand, the so-called “improved” quantum partial
adiabatic search, which claims to achieve a performance beyond the
standard quadratic speedup, such as O(VN/M), is in fact incorrect.
This judgment holds even when the evolution interval is specified as
[% —¢/VN, % +¢/VN] and the overlap between the initial state and
the ground state at s~ still satisfies the constraint, i.e., being greater
than 1/v2 outlined in Kay [20]. Furthermore, it is observed that the
success probability can become arbitrarily small as the number of
target elements increases, a result that clearly contradicts intuitive
expectations. The result on the invalidity of the quantum partial
adiabatic evolution here, is corroborated by prior research. The
findings of Sun et al. [24] and the optimality proof in Mei et al. [23]
collectively imply that any attempt to exceed the fundamental
quadratic speedup of quantum over classical computation cannot
succeed in the circumstance of quantum partial adiabatic search.

Our findings provide a clear framework for re-evaluating the
literature on quantum partial adiabatic computations. We identify
two distinct types of flaws in prior works. The first type, exemplified
by studies such as Zhang et al. [16]; Sun et al. [18, 21], Sun and Lu
[25], stems from an incorrect method for calculating the success
probability. While their choice of evolution interval is itself valid,
their analytical approach to estimating the probability of success
within that interval is flawed, and our results offer a direct corrective.
The second, more fundamental type of flaw, as also noted by Kay [20]
and evident in works like Zhangand Lu [15]; Sun et al. [17], concerns
the choice of the evolution interval itself. Our results unequivocally
demonstrate that their selected intervals are incorrect, as they
do not satisfy the theoretical prerequisites for achieving a high
success probability. Additionally, our analysis is further confirmed
by numerical simulations, which show a clear distinction between
the valid and invalid quantum partial adiabatic search algorithms.

Our work complements recent efforts to establish criteria for
valid partial adiabatic search, including those in related studies
Sun etal. [22], Sun and Zheng [26]. We hope our results will
contribute to a deeper understanding of the quantum partial
adiabatic evolution paradigm, which, despite its potential, remains
less explored compared to other quantum adiabatic computing
approaches.

The implications of our framework extend beyond the
specific model studied here. A promising future direction is its
application to more general quantum optimization problems, such
as combinatorial optimization tasks encoded in Hamiltonian-
based formulations. In this context, our method could offer a
refined strategy for setting partial adiabatic annealing schedules,
potentially leading to performance improvements. Furthermore,
within quantum machine learning, this framework might be
adapted to analyze the training dynamics of parameterized quantum
circuits, possibly providing insights into mitigating barren plateaus
by ensuring more controlled evolution through the parameter
landscape.

However, several important limitations must be addressed for
practical applications. As we consider scaling to high-dimensional
systems, the interplay between the density of states and the
minimum gap becomes more complex; our current analysis, which
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may rely on specific spectral properties, would need generalization
to handle highly degenerate or chaotic energy spectra. Moreover,
the frameworKs robustness against environmental noise and
decoherence is a critical open question. In real-world, open-system
conditions, the adiabatic condition must be satisfied within finite
coherence times. Future work should integrate techniques from
open quantum systems, such as the adiabatic master equation, to
quantify the trade-offs between evolution speed, system size, and
noise resilience, a crucial step for deploying such frameworks on
current noisy intermediate-scale quantum (NISQ) devices.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

JS: Writing - review and editing, Writing — original draft. HZ:
Writing - review and editing. SL: Writing - review and editing,
Validation.

Funding

The author(s) declared that financial support was received for
this work and/or its publication. The first author’s work in this paper
is supported by the General Program of Educational Commission
of Anhui Province of China under Grant No. KJ2021A0023, and
the Research Start-up Funds of Anhui University under Grant No.
M080255003.

Acknowledgements

We are grateful to the reviewers for their helpful comments
and suggestions, which have helped us improve the quality of the
manuscript.

Conflict of interest

The author(s) declared that this work was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declared that generative AI was not used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

frontiersin.org


https://doi.org/10.3389/fphy.2025.1733926
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Sun et al.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

References

1. Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A, Preda D. A quantum
adiabatic evolution algorithm applied to random instances of an NP-Complete problem.
Science (2001) 292:472-5. doi:10.1126/science.1057726

2. Farhi E, Goldstone J, Gutmann S, Sipser M (2000). Quantum computation by
adiabatic evolution doi:10.48550/arXiv.quant-ph/0001106

3. Aharonov D, van Dam W, Kempe J, Landau Z, Lloyd S, Regev O. Adiabatic
quantum computation is equivalent to standard quantum computation. SIAM J Comput
(2007) 37:166-94. doi:10.1137/S0097539705447323

4. Mizel A, Lidar DA, Mitchell M. Simple proof of equivalence between adiabatic
quantum computation and the circuit model. Phys Rev Lett (2007) 99:070502.
doi:10.1103/PhysRevLett.99.070502

5. Aharonov D, Ta-Shma A. Adiabatic quantum state generation and statistical zero
knowledge. In: LL Larmore, MX Goemans, editors. Proceedings of the thirty-fifth annual
ACM symposium on theory of computing. New York, NY: Association for Computing
Machinery (2003). p. 20-9.

6. Somma RD, Nagaj D, Kieferovd M. Quantum speedup by quantum annealing. Phys
Rev Lett (2012) 109:050501. doi:10.1103/PhysRevLett.109.050501

7. Garnerone S, Zanardi P, Lidar DA. Adiabatic quantum algorithm for search engine
ranking. Phys Rev Lett (2012) 108:230506. doi:10.1103/PhysRevLett.108.230506

8. Gilyén A, Hastings MB, Vazirani U. (Sub)exponential advantage of adiabatic
quantum computation with no sign problem. In: S Khuller, VV Williams, editors.
Proceedings of the 53rd annual ACM SIGACT symposium on theory of computing. New
York, NY: Association for Computing Machinery (2021). p. 1357-69.

9. Messiah A. Quantum mechanics. New York: Dover Publications (2014).

10. Roland], CerfNJ. Quantum search by local adiabatic evolution. Phys Rev A (2002)
65:042308. doi:10.1103/PhysRevA.65.042308

11. Grover LK. Quantum mechanics helps in searching for a needle in a haystack.
Phys Rev Lett (1997) 79:325-8. doi:10.1103/PhysRevLett.79.325

12. van Dam W, Mosca M, Vazirani U. How powerful is adiabatic quantum
computation? In: M Naor, editor. Proceedings 42nd IEEE symposium on foundations of
computer science. IEEE Computer Society (2001). p. 279-87.

Frontiers in Physics

08

10.3389/fphy.2025.1733926

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

13. Das S, Kobes R, Kunstatter G. Adiabatic quantum computation and deutsch’s
algorithm. Phys Rev A (2002) 65:062310. doi:10.1103/PhysRevA.65.062310

14. Tulsi A. Adiabatic quantum computation with a one-dimensional
projector hamiltonian. Phys Rev A (2009) 80:052328. doi:10.1103/PhysRevA.80.
052328

15. Zhang YY, Lu SE. Quantum search by partial adiabatic evolution. Phys Rev A
(2010) 82:034304. doi:10.1103/PhysRevA.82.034304

16. Zhang YY, Hu HP, Lu SE. A quantum search algorithm based on partial adiabatic
evolution. Chin Phys B (2011) 20:040309. doi:10.1088/1674-1056/20/4/040309

17. Sun J, Lu SE Liu E Yang LP. Partial evolution based local adiabatic quantum
search. Chin Phys B (2012) 21:010306. doi:10.1088/1674-1056/21/1/010306

18. Sun], Lu SE, Liu F. Partial adiabatic quantum search algorithm and its extensions.
Quan Inf Process (2013) 12:2689-99. d0i:10.1007/s11128-013-0557-1

19. Zalka C. Grover’s quantum searching algorithm is optimal. Phys Rev A (1999)
60:2746-51. doi:10.1103/PhysRevA.60.2746

20. Kay A. Comment on “adiabatic quantum computation with a one-dimensional
projector hamiltonian”. Phys Rev A (2013) 88:046301. doi:10.1103/PhysRevA.88.046301

21. SunJ, Lu SE, Zhang Y. Different approaches for implementing quantum search by
adiabatic evolution. AASRI Proced (2012) 1:58-62. doi:10.1016/j.aasri.2012.06.011

22. Sun J, Cai DB, Lu SE Qian L, Zhang RQ. On validity of quantum partial
adiabatic search. EPJ] Quan Technology (2024) 11:1-12. doi:10.1140/epjqt/s40507-024-
00258-6

23. Mei Y, Sun J, Lu SE, Gao C. Optimality of partial adiabatic search and its circuit
model. Quan Inf Process (2014) 13:1751-63. doi:10.1007/s11128-014-0770-6

24. Sun J, Lu SE, Liu E Generalized quantum partial adiabatic evolution. Quan Inf
Process (2014) 13:909-16. d0i:10.1007/s11128-013-0700-z

25. Sun J, Lu SE On the adiabatic evolution of one-dimensional projector
hamiltonians. Int ] Quan Inf (2012) 10:1250046. doi:10.1142/S0219749912500463

26. Sun J, Zheng H. A note on “on validity of quantum partial adiabatic search”. EPJ
Quan Technology (2025) 12:1-5. doi:10.1140/epjqt/s40507-025-00396-5

frontiersin.org


https://doi.org/10.3389/fphy.2025.1733926
https://doi.org/10.1126/science.1057726
https://doi.org/10.48550/arXiv.quant-ph/0001106
https://doi.org/10.1137/S0097539705447323
https://doi.org/10.1103/PhysRevLett.99.070502
https://doi.org/10.1103/PhysRevLett.109.050501
https://doi.org/10.1103/PhysRevLett.108.230506
https://doi.org/10.1103/PhysRevA.65.042308
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1103/PhysRevA.65.062310
https://doi.org/10.1103/PhysRevA.80.052328
https://doi.org/10.1103/PhysRevA.80.052328
https://doi.org/10.1103/PhysRevA.82.034304
https://doi.org/10.1088/1674-1056/20/4/040309
https://doi.org/10.1088/1674-1056/21/1/010306
https://doi.org/10.1007/s11128-013-0557-1
https://doi.org/10.1103/PhysRevA.60.2746
https://doi.org/10.1103/PhysRevA.88.046301
https://doi.org/10.1016/j.aasri.2012.06.011
https://doi.org/10.1140/epjqt/s40507-024-00258-6
https://doi.org/10.1140/epjqt/s40507-024-00258-6
https://doi.org/10.1007/s11128-014-0770-6
https://doi.org/10.1007/s11128-013-0700-z
https://doi.org/10.1142/S0219749912500463
https://doi.org/10.1140/epjqt/s40507-025-00396-5
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

	1 Introduction
	2 The framework of quantum partial adiabatic evolution
	3 The quantum partial adiabatic search problem
	4 Numerical simulations
	5 Conclusions and discussions
	Data availability statement
	Author contributions
	Funding
	Acknowledgements
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

