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This study addresses the dual structural characteristics of China’s financial
market—namely, “retail-investor dominance (80% of trading volume) versus
foreign capital’s technological monopoly (0.3% of institutions controlling 43.6%
of order flow).” By constructing a multi-layer complex network agent-based
model (ABM) that integrates regulatory, core institutional, market-maker, and
retail investor layers, it systematically simulates risk transmission mechanisms
and regulatory strategies in high-frequency trading (HFT) environments. The
findings reveal that HFT exacerbates market unfairness through technological
latency advantages. When communication latency differentials exceed 50
milliseconds, retail order interception rates increase nonlinearly to 82%.
Moreover, as the strategy homogenization coefficient p surpasses the critical
threshold of 0.65, the market undergoes a percolation phase transition, with
systemic risk probability jumping from 0.2 to over 0.7, which may trigger liquidity
crises such as “flash crashes.” Traditional regulatory approaches, hindered by
response delays averaging 2.1 h, struggle to cope with the real-time nature
of HFT and the challenges posed by algorithmic black boxes. Based on the
simulation results, policy recommendations centered on “anti-technological-
monopoly,” “real-time algorithmic resonance monitoring,” and “regulatory
intelligence” are proposed to develop a modernized and computationally
executable regulatory framework tailored to China’s market structure, thereby
enhancing both market stability and fairness.

complex networks, financial markets, high-frequency trading, percolation theory,
topological structure

1 Introduction

Currently, China’s financial market is undergoing a critical period characterized by
scale expansion, structural transformation, and technology-driven evolution. As the world’s
second-largest economy, China’s capital market has developed into a pivotal hub connecting
domestic and international capital, assets, and risks. In recent years, alongside market
liberalization and the deep integration of financial technology, the scale of the A-share
market has continued to expand, trading instruments have diversified, and investor
structure has exhibited increasing heterogeneity. However, compared to mature markets,
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Chinas financial market retains distinct local characteristics,
prominently manifested as a complex landscape of “retail-investor
dominance, policy sensitivity, and technological stratification”
Statistics indicate that retail investors contribute approximately 80%
of market trading volume, forming a crucial foundation for market
liquidity, yet their trading behavior is prone to emotional influences
and susceptible to “herding effects” [1]. Simultaneously, although
foreign institutions account for an extremely low proportion
in number (around 0.3%), they leverage significant advantages
in algorithms, computational power, and network latency to
control over 40% of order flow, creating a dual structure where
“technological monopoly” coexists with “retail dominance” [2, 3], a
structural contradiction that poses severe challenges to the liquidity,
stability, and fairness of China’s financial market [4].

Against this backdrop, high-frequency trading, as a cutting-
edge domain of financial technology development, is profoundly
reshaping market microstructure and risk transmission pathways.
Leveraging sophisticated algorithmic models, low-latency trading
systems, and massive data processing capabilities, high-frequency
trading enables the generation, execution, and cancellation of large
volumes of orders at millisecond or even microsecond intervals.
Globally, while high-frequency trading has historically played
a positive role in enhancing market liquidity and facilitating
price discovery, its potential risks cannot be overlooked, such
as “flash crashes” induced by strategy homogenization, concerns
over fairness arising from technological stratification, and
regulatory blind spots due to algorithmic black boxes [1]. In
China, alongside financial market liberalization and technological
advancement, high-frequency trading, though relatively late to
emerge, has developed rapidly and has become a critical tool
for certain institutions—particularly foreign ones—to capture
excess returns and influence order flow dynamics. Empirical
evidence suggests that while high-frequency trading improves
transactional efficiency, it also significantly alters the logic of
risk generation and the velocity of risk propagation, rendering
traditional financial risk control models—based on historical data
and static distributions—inadequate for capturing its dynamic
characteristics [2].

However, the existing regulatory system faces multiple
challenges when addressing the novel risks introduced by high-
frequency trading. First, technological asymmetry leads to
regulatory lag. High-frequency trading relies on rapid algorithmic
iteration and hardware advantages, allowing strategy adjustments
within hours, whereas traditional regulation depends on manual
review and rule-based frameworks, with an average response
time exceeding 2 h, resulting in a significant “speed disadvantage”
Second, data silos and cross-border regulatory arbitrage undermine
regulatory effectiveness. Some high-frequency institutions exploit
barriers to cross-border data flows and regulatory differences to
evade scrutiny; it is estimated that over 27% of high-frequency
trading involves regulatory arbitrage [5, 6]. Furthermore, strategy
homogenization and algorithmic resonance have emerged as
new catalysts for systemic risk. When a large number of market
participants employ similar algorithms, localized disturbances
can rapidly amplify into global liquidity crises through highly
interconnected network nodes, as exemplified by past “flash
crash” phenomena in the A-share market. These issues highlight
the inadequacy of traditional regulatory tools in anticipating,
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identifying, and intervening in high-frequency trading risks,
underscoring the urgent need for more sophisticated, dynamic,
and computationally enabled risk simulation and regulatory
approaches.

Therefore, to systematically analyze the unique risks of
high-frequency trading in China’s financial market and design
corresponding regulatory tools, this study employs an agent-
based modeling approach grounded in multi-layer complex
networks to conduct dynamic simulations of high-frequency
trading risks. The research aims to construct a multi-layer
network model integrating “policy intervention-institutional
behavior-retail investor sentiment;” utilizing topological structure
modeling to reveal the structural basis of risk transmission,
applying percolation phase transition theory to warn of critical
thresholds for systemic risk, and exploring computable and
executable regulatory policy compilation pathways. The main
contributions of this study are: (1) First incorporating policy
intervention nodes into multi-layer complex network models,
overcoming the limitation of traditional financial contagion
that neglect policy (2) Quantifying
the critical threshold of systemic risk through percolation

models intervention;
phase transition theory, providing 3.2h of early warning for
regulation; (3) Designing computable regulatory tool compilation
paths,
tax rates based on technological latency disparities, thereby

transforming fair trading provisions into dynamic
facilitating the construction of a modern regulatory framework
compatible with the high-frequency trading era and enhancing
market efficiency while safeguarding financial stability and
trading equity [7].

2 Data and research methodology

2.1 Framework and initialization of an
agent-based complex network model

2.1.1 Model applicability

China’s financial market exhibits a dual structure characterized
by “retail investor dominance (80% of trading volume) - foreign
capital technological monopoly (0.3% of institutions controlling
43.6% of order flow)”. Traditional models (e.g., VaR, GARCH)
struggle to capture such asymmetric features due to their
assumptions of homogeneous agents and static distributions
[8, 9]. Agent-based modeling (ABM) accurately replicates three
localized risks through a hierarchical agent design (embedding an
emotion contagion module in the retail investor layer, implanting
parameters for technological latency disparities and strategy
homogenization coefficients in the foreign capital layer, and setting
policy transmission time delays in the regulatory layer) [6, 10]:
herding effects triggered by retail investor sentiment (e.g., a 47%
sharp decline in order book thickness during the 2024 futures flash
crash), order capture rates exceeding 82% due to technological
stratification (consistent with Pagnotta’s S-shaped curve) [11, 12],
and cross-border regulatory arbitrage (27% of high-frequency
trading evading scrutiny) [13]. Compared to traditional methods
(e.g., the failure of historical simulation in testing individual stocks
on the Shenzhen Stock Exchange, GARCH models' inability to
capture microstructural dynamics) [14], “The ABM incorporates

frontiersin.org


https://doi.org/10.3389/fphy.2025.1733200
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Jian et al.

a millisecond-level order book protocol (with a 100 ms step size)
to dynamically simulate processes such as strategy disguise (e.g.,
ID changes every 2.1 h) and liquidity collapse [15]. This allows
the model to reproduce the risk transmission chain: when the
strategy homogenization coefficient exceeds 0.65, the percolation
probability P surges, leading to a market crash of approximately
9% within 5min [11]. This capability addresses a significant
limitation of international models, which exhibit prediction errors
of up to 32% [14]”

2.1.2 Necessity

Beyond its accuracy in replicating market phenomena, the
application of this ABM complex network model is necessitated
by pressing regulatory challenges and enable policy sandbox
simulations. The governance of high-frequency risks in China
requires simultaneously tackling algorithmic black boxes, data
sovereignty barriers (Article 31 of the Data Security Law), and
lagging policy tools (regulatory delays leading to a 58% increase
in loss rates). The value of the complex network ABM model is
demonstrated in three aspects: First, it quantifies risk thresholds
using a percolation phase transition algorithm:

k; . Isentiment
Ai=1-(1-p) T
where the risk probability P surges from 0.2 to 0.8 when the
strategy homogenization coefficient exceeds 0.65, providing a 3.2-h
earlier warning of flash crashes compared to traditional volatility
models [11]. Second, it supports the compilation of regulatory
rules into machine-executable formats, such as translating fair
trading provisions into dynamic tax rates based on technological
latency disparities (a 0.2% tax increase for every 50 ms delay) to
tax technological hegemony [11], and encoding circuit breaker
rules as exponential functions of aggregation coefficients to curb
monopolies (triggering scrutiny when the aggregation coefficient
exceeds 0.3) [11]. Third, it resolves data silos while ensuring
compliance with both GDPR and the Data Security Law [16, 17].
These functionalities make the ABM model a powerful tool
for simulating the feedback loop between the regulatory and
market layers, whereas traditional simulations fail to evaluate the
effectiveness of regulatory interventions due to their neglect of
policy intervention nodes.

2.2 Construction of model network
topology structure

Given the characteristic of “strong policy intervention” in
China’s financial market, constructing a four-layer network
topology centered around “regulatory nodes,” as illustrated in
Figure 1, is essential for effectively simulating and modeling
the dual-structure contradiction of “retail-investor dominance
(80% of trading volume) versus foreign capital technological
monopoly” The theoretical foundation primarily integrates three
types of literature: first, drawing on the core-periphery topology
characteristics of scale-free networks [18], it accurately maps order
flow monopoly phenomena through differentiated modeling of
a few highly connected nodes (foreign institutions) and a vast
number of low-connectivity nodes (retail investors); second,
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FIGURE 1
High-frequency trading market network topology diagram.

incorporating the vertical governance logic of hierarchical networks,
it positions the regulatory layer as the top-level control node,
overcoming the limitation of traditional financial contagion
models that neglect policy intervention [19]; third, combining
the fault-tolerant mechanism of ring topology with the spatial
constraint rules of geometric random graphs [2], it addresses
the compound challenges of cross-border data barriers (Article
31 of the Data Security Law) and physical latency disparities
(AL = 50 ms).

This study constructs a four-layer complex network model
including 'regulatory layer, core institutional layer, market-maker
layer, and retail investor layer, where the regulatory layer is
connected to the core institutional layer through policy transmission
links, the core institutional layer is interconnected through strategy
homogenization links and extends to the market-maker layer
through order flow control links, and the market-maker layer is
connected to the retail investor layer through latency advantage
links, forming a complete closed-loop system.

2.2.1 Dynamic monitoring mechanism of
regulatory nodes

Based on the dynamic Granger causality analysis framework,
regulatory nodes are equipped with real-time monitoring
capabilities to detect changes in causal relationships among market
nodes. The regulatory node employs an overlapping window method
to segment market trading data, quantifying causal influence
intensity between nodes through vector autoregressive models. The
monitoring mechanism includes: preprocessing market trading
data for stationarity to remove non-stationary biases; computing
lagged cross-covariance sequences to establish VAR models;
estimating coeflicient matrices through Yule-Walker equations; and
calculating conditional Granger causality values to identify key risk
transmission paths.

2.2.2 Dynamic design of policy trigger
mechanism

Drawing from the causality-driven node selection algorithm,
regulatory nodes select optimal intervention timing based on
dynamic causality graphs. Specific implementations include:
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calculating the out-degree of each market node to identify 'driving
hub' nodes with maximum causal influence; automatically triggering
regulatory intervention when key nodes' causal out-degree
exceeds preset thresholds; and adopting a segmented learning-
execution strategy to periodically update the causality network,
ensuring policy trigger mechanisms adapt to market structure
changes.

2.2.3 Closed-loop design of feedback process

Adopting a local information-based pinning control strategy,
the regulatory feedback mechanism is designed as follows: each
regulatory node manages only a subset of market nodes within its
causal influence domain; extracting feedback information based on
local causal relationships and control influence regions; employing
sign control functions to dynamically adjust control direction based
on error states; and ensuring control coverage spans the entire
market network, i.e., Q, UQ,U..UQ,, = Q.

2.2.4 Network topology and regulatory closed
loop

At the topological center, “Regulatory Node A” (orange dot)
connects directly to “Core Node B (foreign capital/licensed
institutions)” (yellow dot) via “policy transmission” links. Core
Nodes B interconnect through internal cycles of “strategy
homogenization” links and extend downward to “Sub-core Node
C (market makers)” (blue dot) via “order flow control” links. Market
makers further connect to the outermost “Peripheral Nodes (retail
investors)” (green dot) through “latency advantage” links, while
retail investors relay information back to Regulatory Node A via
“risk feedback” links, forming a complete closed-loop system. The
regulatory control input can be designed as:

w, () =5,() Y € O, h(et), b))

where s,(f) is the control function related to error states, and €,
represents the influence domain of the pth regulatory node [20, 21].

Therefore, this diagram serves as an intuitive representation of
the theoretical innovation of the model. Placing the “regulatory
node” at the topological center constitutes a visual practice of Qian
Xuesen's methodology of “open complex giant systems’, emphasizing
that policy intervention is a key endogenous variable shaping
market structure in the Chinese context. This design reflects the
characteristic of “strong policy intervention” in China’s financial
market. The closed loop formed by “policy transmission” and “risk
feedback” depicted in the figure accurately simulates the operational
logic of regulatory cycles with Chinese characteristics—policies are
transmitted top-down, while market risks are fed back bottom-
up. The “strategy homogenization” links among core nodes lay
the groundwork for subsequent simulations of systemic risk. This
topological structure forms the foundational framework for all
subsequent dynamic evolution.

2.3 Model parameter design

The model parameters in this study were designed across three
dimensions—fundamental network construction, driven behavioral
evolution, and policy intervention—to better align with the state
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TABLE 1 Structural parameters.

Parameter | Symbol Value Source/ Rationale for
EEN setting
Total nodes N 100,000 People’s Balances
bank of computational
China efficiency with
Website market
[22] representativeness
(1 node = 150
million market
capitalization) [23]
Core node P 0.3% China Reflects the
ratio Securities technological
Depository | dominance of
and foreign/institutional
clearing capital
statistical
yearbook
[24]
Periphery P. 80% China Maps the
node ratio statistical retail-investor
yearbook dominated market
2024 2024 structure
[25]
Clustering C, 0.3 Circuit >0.3 triggers
coefficient breakers circuit breakers
threshold and the
magnet
effect:
Empirical
evidence
from
China’s
stock
market.
The
quarterly
journal of
finance
[26]
Policy T, 2.1h China Quantifies
implementation securities regulatory
lag regulatory | response lag
commission
annual
report
[27]

of Chinas financial market, with a corresponding parameter
comparison table provided from Tables 1-3.

2.4 Model initialization

2.4.1 Market structure initialization

As illustrated in Figure 2, the node distribution state after
network initialization is presented. The figure should reveal a dense
concentration of nodes representing “retail investors,” forming the
foundational layer of the network; a smaller number of “core nodes”
with numerous connections are scattered throughout, serving as
network hubs, while “market maker” nodes occupy an intermediate
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TABLE 2 Dynamic parameters.

Parameter Symbol

Maximum latency differential AL,,..

Order cancellation circuit breaker threshold Q,uax
Strategy homogeneity coefficient P
Percolation probability threshold P,

TABLE 3 Policy parameters.

Parameter Computational Legal mapping

logic

Sovereign T,=0.2x é—é‘ (AL > Art. 10, consumer

compensation tax rate 50ms) rights protection law
Art. 22, anti-monopoly
law
Federated learning Ay= Article 21 of the data
- Desensitized Field C .
data availability —m"S;fZ;FiZ n ount > 0.85 security law
Article 4 of the general
data protection
regulation (GDPR)
Dynamic circuit if(C)0.3) &(p)0.65):Q,,,. =/ CSRC’s “guidelines for
breaker trigger 300 handling abnormal
conditions trading”

position between the two. The annotated example nodes (ID:
235, Degree: 9) and (ID: 3326, Degree: 9) are two typical retail
investor nodes.

Therefore, this figure serves as a successful validation of the
model’s “localization adaptation”” The visualization results are highly
consistent with the parameters set in Table 1 (80% retail investors,
0.3% core nodes), demonstrating that the model initialization
effectively generates a digital mirror of a “retail investor-dominated
market” aligned with China’s reality (as documented in the CSRC’s
White Paper on Investor Structure). Nodes 235 and 3326, each
with a degree of 9, indicate that an average retail investor typically
connects with 9 other nodes, whereas a core node may possess
hundreds or thousands of connections. This visually corroborates
the scale-free nature of the network, wherein a minority of nodes
hold extensive linkages, providing a structural basis for rapid risk
transmission through these hub nodes. The corresponding formula
is expressed as below.

P(k) ~ k™

where k denotes the degree (number of connections) of a node or the
scale of an event; P(k) represents the probability of an event having
ascale k; and y is the power-law exponent, a constant greater than 0.

2.4.2 Strategic behavior initialization

At the moment of completing market structure initialization, we
simultaneously introduce the Strategic Homogeneity Coefficient p, a
core metric quantifying the degree of behavioral convergence among
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FIGURE 2
Market structure initialization: Node type distribution.

participants in financial markets. This coefficient fundamentally
captures the similarity of trading strategies at the group level
and the lack of diversity. Rooted in strategic convergence analysis
from game theory and discrete choice theory, it reflects the
gradual contraction of the strategy space toward local consensus
when market participants act on limited information or similar
decision-making frameworks (e.g., quantitative models) [28]. The
coefficient is measured by calculating the variance or entropy
of the strategy distribution: if participants widely adopt similar
algorithms (such as trend-following or mean-reversion strategies),
the coefficient approaches 1, indicating high homogeneity; if
strategies exhibit a diverse distribution, the coefficient nears 0.
In dynamic environments, strategic homogeneity is driven by
the speed of information dissemination, technological constraints
(e.g., algorithmic black boxes), and institutional factors (e.g.,
cross-border data barriers), collectively trapping participants in a
“minority game” dilemma—where the marginal benefit of deviating
from mainstream strategies diminishes sharply, further reinforcing
convergence [29].

2.5 Risk transmission simulation

2.5.1 Percolation theory

Percolation theory serves as a fundamental framework
for studying critical phase transitions in disordered systems,
initially proposed by Broadbent and Hammersley in 1957.
Its core concept focuses on abrupt changes in long-range
connectivity within random geometric structures. By simulating
fluid flow behavior in porous media [18], this theory reveals
that when system components (such as pore occupancy or bond
connection probability) reach a critical threshold (the percolation
threshold p_), the system undergoes a sharp phase transition
from “local connectivity” to “global percolation” (or conversely,
blockage). This transition fundamentally involves the emergence
or disappearance of a percolating cluster in disordered media,
manifesting as stepwise changes in conductivity, permeability, or
risk contagivity [30].
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In financial risk modeling, the core value of percolation theory
lies in its critical threshold scaling laws and cluster dynamics. When
the critical threshold p_ is mapped to the tipping point of systemic
risk (e.g., when the strategy homogenization coefficient exceeds a
certain value within its range), breaching this threshold allows minor
local disturbances (such as a single institution’s default) to trigger a
global liquidity collapse through connected clusters, replicating the
phase transition logic of

poreblockage — fluid flowinterruption

The cluster formation mechanism, in turn, corresponds to
the path of risk contagion: highly connected nodes in the core
institutional layer (e.g., foreign market makers) act as hubs for risk
transmission, with their betweenness centrality positively correlated
with order capture rates. When strategy homogenization drives the
connection probability p between nodes toward p , sentiment factors
in the retail investor layer accelerate risk diffusion within clusters,
ultimately inducing a percolation phase transition.

2.5.2 Systemic risk contagion

As shown in Figure 3-1, before risk propagation, the network
nodes exhibit uniform coloration (e.g., all in blue) with a stable
connection structure; after risk propagation, as depicted in
Figure 3-2, it is clearly observable that starting from a few
“core nodes” with altered colors (e.g., turned red), the color
change rapidly diffuses through connecting edges to “market
maker” nodes (turning yellow), eventually affecting a large
number of “retail investor” nodes (turning red), forming a chain
reaction. Thus, Figure 3 serves as a vivid demonstration of the
application of percolation theory in financial risk transmission
and within this model. It intuitively reveals that the propagation
of systemic risk is not uniform but rather proceeds along network
connection paths, particularly through high-degree core hub nodes
in a leap-like manner. This process also aligns with the logic
described by the percolation theory formula, as presented below.

N=1-(-p)

Where A, represents the probability of a certain event occurring
(typically the probability of “occurring at least once”); p denotes the
probability of the event occurring in a single attempt (which remains
constant), thus 1 — p is the probability of the event not occurring in a
single attempt; and k; signifies the number of independent attempts.
It follows that nodes with higher connectivity k; exhibit a greater
probability A; of transmitting and receiving risk [31, 32].

Therefore, the introduction of percolation theory enables this
study to transform the abstract concept of “risk transmission” into
a visualizable “digital pandemic” [33], powerfully demonstrating
why sell-offs by individual institutions can trigger panic across the
entire market.

3 Result and analysis

3.1 Analysis of high-frequency latency and
retail order interception rate

By simulating the systemic disadvantages faced by retail
investors under technological stratification, the model intuitively
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illustrates the issues of market power solidification and
technological monopoly resulting from technical advantages.
As shown in Figure 4, the model employs an S-shaped growth
function (Sigmoid function) to describe the relationship between
interception probability and latency. This approach more accurately
reflects the behavioral patterns of high-frequency trading algorithms
in real markets compared to a simple linear model: even a slight
latency advantage leads to a sharp increase in their ability to intercept

orders. The formula is expressed as follows:

1

1+ e k70)

P capture(T) =

Among them, P,

capture

order being successfully intercepted by high-frequency algorithms

(1) represents the probability of an

through “front-running”; 7 denotes the communication latency
from the transmission of a trading instruction to its arrival at
the exchange (unit: milliseconds, ms); 7, is the latency value that
determines the center point of the S-curve, around which the
interception probability undergoes a nonlinear surge; k controls the
steepness of the S-curve—the larger the value of k, the steeper the
curve, and the faster the transition from low to high probability.
When the latency T exceeds the critical value t, = 50 ms, the

retail order interception rate P

capture(7) €xhibits a nonlinear surge,

exceeding 82%. This phenomenon validates the systemic trading
inequity resulting from technological disadvantages, while also
corroborating the high betweenness centrality (Cy(v) > 0.6) of core
nodes. It reveals that the structural characteristic of “technological
oligopolization” in China’s financial market is further amplified
in a high-frequency trading environment. Moreover, as latency
increases, the solidification of market power driven by technological
monopoly becomes more pronounced.

3.2 Strategic homogeneity and analysis of
systemic financial risks

As high-frequency trading penetrates China’s financial markets
with its algorithmic advantages, flash crashes have become a Sword
of Damocles looming over investors. The set of strategy choices
among all market participants acts as the trigger for such events.
To simulate flash crashes caused by algorithmic resonance, we map
the degree of strategic homogeneity p to the connection probability
within a network. When the strategic homogeneity p exceeds the
critical threshold p_c, localized failures rapidly propagate across the
system through similar algorithmic strategies, leading to liquidity
evaporation and price collapse (i.e., percolation phase transition).
The corresponding formulation is presented below:

0, PP,
P (p) = 1

—_— P>
1+ e e-r) p=pe

Among these, P (p) represents the probability of systemic risk
occurrence, p. denotes the critical point, p indicates the similarity or
convergence degree of all trading strategies in the market—a higher
p value implies that more institutions employ similar algorithmic
strategies—and « controls the rate at which the risk probability
increases beyond the critical point [34].
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1 Before Risk Propagation

FIGURE 3
Visualization of sell-off propagation process.

2 After Risk Propagation
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FIGURE 4
Relationship between latency and retail order interception rate.

Following the simulation of the Chinese financial market
environment using order book trading data accessed from the Hua
Tai Securities INSIGHT Financial Data Service Documentation
Center, as illustrated in Figure 5, it can be observed that when the
strategic homogeneity coefficient p exceeds the critical threshold
of 0.65, the probability of systemic risk surges abruptly from a
stable state. The system percolation probability P rapidly surpasses
0.7, indicating the market’s entry into a high-risk state. As
P (p) approaches 1, localized risks propagate throughout the
entire system, ultimately leading to a flash crash in the market.
Consequently, the penetration of high-frequency trading further
amplifies systemic risks within China’s financial markets, which stem
from homogeneous trading triggered by algorithmic resonance.
Failure to promptly identify the degree of strategic homogeneity
in the market will impede regulators' ability to avert market flash
crashes triggered upon reaching the critical threshold [35].
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FIGURE 5
Degree of strategy homogeneity and percolation probability.

3.3 Analysis of regulatory latency and
technology optimization benefits

High-frequency trading possesses significant technological
speed advantages trading
methods, presenting a major challenge to regulators in China’s

and compared to traditional
financial markets [36]. During the initial phase of simulated risk
emergence, shortening regulatory response time yields the greatest
marginal benefit; however, once response time has been optimized
to a relatively low level, further improvements exhibit diminishing
returns. To quantitatively evaluate the intervention effectiveness
of regulatory technology, this study constructs a logarithmic
relationship model between regulatory response time and market

loss rate, expressed as follows:

I

L(T):L0-<1+y-ln T,
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where L(T) represents the loss ratio suffered by retail investors
under a regulatory response time T; T denotes the regulatory
response time; L, indicates the inherent loss rate experienced by
retail investors under the benchmark response time T,; T, is the
benchmark response time; y is the loss elasticity coeflicient, where
a higher value of y implies that shortening the response time has a
more significant marginal effect on reducing losses.

Based on historical cases in China’s financial markets, the
regulatory delay has been approximately 2.1h. To verify the
impact of high-frequency trading on traditional regulatory decision-
making, an Al-based approval mechanism with faster response
capabilities than manual processes was constructed, and the
influence of regulatory response speed on retail investors was
recorded. As shown in the comparative results between manual
and Al-based approval in Figure 6, the application of regulatory
technology demonstrates significant effectiveness in market risk
intervention. After transitioning from manual to Al-based approval,
the regulatory response time was reduced from 2.1h to 0.5h,
accompanied by a corresponding 58% decrease in the loss rate
of retail investors. This improvement not only highlights the
importance of enhancing regulatory response speed in addressing
high-frequency trading within Chinas financial markets but also
demonstrates that shortening the policy transmission chain can
effectively curb the diffusion effect of algorithmic resonance, thereby
enhancing the timeliness and precision of market supervision.

4 Research conclusions and policy
recommendations

4.1 Research conclusions

Based on the unique dual structure of Chinas financial
market—characterized by “retail investor dominance (80% of
trading volume) and foreign capital’s technological monopoly
(0.3% of institutions controlling 43.6% of order flow)”—this paper
constructs a four-layer complex network Agent-Based Model
(ABM) incorporating policy intervention nodes, comprising the
“regulatory layer, core layer, market maker layer, and retail investor
layer” Through topological structure modeling, percolation phase
transition early warning, and computable regulatory tool design,
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the risk transmission mechanism in a high-frequency trading
environment was systematically simulated. The results indicate that:

1. High-frequency trading exacerbates market fairness
imbalance through technological monopoly, forming a
institutions,
(e.g.,

exclusive microwave towers), have built an insurmountable

“technology oligopoly” landscape.
latency advantages

Foreign
leveraging microsecond-level

“technological moat” When the communication latency gap
exceeds the critical threshold of 50 ms, the probability of retail
investors’ orders being intercepted by high-frequency trading
algorithms via “latency arbitrage” nonlinearly surges to over
82%. This not only implies a systematic disadvantage for retail
investors at the order execution level but more fundamentally
reveals a sharp concentration of market power in the hands of a
few technological oligopolies, eroding the fairness foundation
of China’s
The “algorithmic resonance” triggered by high-frequency

“retail-driven market”.

trading acts as a detonator for new systemic risks. This study
quantifies the fatal risk associated with the homogenization of
high-frequency trading strategies (coeflicient p). When a large
number of institutions adopt similar algorithmic strategies
(p > 0.65 critical threshold), the market network undergoes
a “percolation phase transition,” where the probability of
systemic risk abruptly jumps from below 0.2 to over 0.7.
In other words, the convergent behavior of high-frequency
trading transforms the market into a highly fragile “resonance
body,” where local disturbances can rapidly propagate into
global liquidity collapse through highly connected core nodes.
The rapid speed of high-frequency trading
technology poses a dimensional challenge to traditional
high-frequency trading exploits

iteration

regulatory paradigms.
algorithmic black boxes (changing IDs every 2.1 h) and cross-
border regulatory arbitrage, rendering conventional regulatory
tools nearly ineffective. If the average regulatory response
delay reaches 2.1 h, the risk identification rate drops to 38%,
and the cross-border order parsing failure rate rises to 89%.
This exposes the inherent vulnerability of the old regulatory
system—characterized by “manual, ex-post, rule-based”
approaches—in the face of high-frequency trading’s “machine-
driven, real-time, algorithm-code” dynamics, leading to a
“governance paradigm fracture”

4.2 Policy recommendations

Based on the above research conclusions, and to construct a
modern regulatory system that aligns with the unique characteristics
of Chinas financial market and can keep pace with the rapid
technological evolution of high-frequency trading, the following
policy recommendations are proposed:

1. Implement “technological anti-monopoly” measures to curb
excessive concentration of market power: establish a “technical
latency differential” red line by explicitly adding an upper limit
on latency disparity in the “Algorithmic Trading Management
Rules,” strictly restricting behaviors that systematically
intercept orders through abnormal latency advantages;
introduce a “digital tax base” by drawing on the spirit of the
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“Anti-Monopoly Law” to study and launch a “high-frequency
trading tax” or “sovereign compensation fund” to adjust excess
profits obtained through technological hegemony, which
would be used for market fairness infrastructure or investor
compensation funds [36].

To effectively address the technological monopoly brought
by HFT, a phased, progressive implementation pathway is
recommended:

i. Phase I (Months 1-6): Establish a Latency Disparity
Monitoring System. Collaborate with exchanges and data
service providers to develop a tool that can quantify in
real-time the order execution latency (7) disparities among
different market participants. This system aims to identify
and consistently flag market participants who enjoy a
significant “latency advantage,” providing a data foundation
for subsequent interventions.

Phase II (Months 7-12): Pilot a Digital Tax Base. Within
the scope of technological monopolists identified by the
monitoring system, pilot a “digital tax” based on excess
profits or trading volume share. The tax revenue can be
channeled into a “Market Stability Fund” to compensate
retail investors who suffer losses due to technological
disadvantages.

Phase III (Months 13-18): Full Rollout of a Sovereign
Compensation Fund. Building on the success of the pilot,

iii.

institutionalize and normalize the compensation mechanism.
Establish a regulator-led “Sovereign Compensation Fund” that
determines compensation ratios through more sophisticated
algorithms (e.g., a composite function based on latency
disparity AL and trading contribution), fundamentally
offsetting market inequity caused by technological
monopoly.
iv. Construct a real-time monitoring and blocking mechanism
targeting “algorithmic resonance™ not only incorporate
the strategy homogeneity coeflicient into core risk control
indicators, establishing an exchange mechanism for real-
time calculation and monitoring of the market-wide strategy
homogeneity coefficient (p), with clear warning intervals
(p > 0.6) and intervention thresholds (p, = 0.65), but also
simultaneously deploy dynamic circuit-breaker algorithms
that automatically trigger differentiated measures upon
reaching thresholds, specifically restricting high-frequency
order flow to structurally dismantle the conditions for

algorithmic resonance.

For the early-warning mechanism based on the strategy
homogeneity coefficient (p), the following tiered response system
can be constructed:

i. Warning Threshold (p > 0.6): When the model-calculated
market-wide strategy homogeneity coefficient exceeds 0.6 for
5 consecutive minutes, the system automatically issues a
“watch” level alert to the regulatory backend. At this stage,
regulatory personnel should enhance visual inspection of
abnormal trading activities but refrain from taking immediate
action.

Intervention Threshold (p > 0.65): When the coefficient
further climbs above 0.65, the system automatically triggers
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an “intervention” level alert. At this point, pre-set automated
regulatory tools can be activated, such as imposing minor
random delays (i.e., “speed bumps”) on a portion of high-
frequency orders or temporarily increasing transaction costs
for specific types of algorithmic trading. This aims to increase
market strategy diversity and break the self-reinforcing
cycle of risk.

iii. Comprehensively promote the “digital and intelligent”

transformation of the regulatory system, developing
“regulation as code” capabilities, scaling up the application
of Al, enhancing the monitoring and analysis capabilities of
market data, and establishing “regulatory sandboxes” for rapid
testing of new regulatory tools, with the goal of reducing the
average response time to high-frequency trading anomalies

from “hours” to “minutes” [37].

To support the above complex regulatory strategies, the
intelligent transformation of the regulatory agency itself is
crucial:

i. Pathway Planning: Evolve from “Manual Review” to “Al-
Assisted Decision-Making” and finally to “Automated
Regulation.” Initially, use AI models for preliminary screening
and risk tagging of massive trading data to assist human
decision-making. In the medium term, establish an AI
decision-support system that provides regulators with
simulations of the expected outcomes of various intervention
strategies [38]. In the long term, achieve full-process
automation from monitoring to intervention in areas where
risk thresholds are clear and intervention logic is well-defined.

. Technical Support: Referencing the simulation results
of this study, Al-driven regulation can shorten risk
identification and response time by over 70%, significantly
reducing market losses during extreme market conditions.
Therefore, priority should be given to investing resources
in building a RegTech platform based on machine
learning.

5 Conclusion

High-frequency trading has fundamentally altered the risk
landscape of China’s financial markets. Addressing this challenge
can no longer rely on incremental institutional adjustments but
necessitates a profound regulatory revolution. The core imperative
lies in acknowledging that the market has evolved into a high-
dimensional complex system driven by code and algorithms.
Regulators must correspondingly employ algorithms and code
as strategic tools, embracing a paradigm shift of “governing
technology with technology” to effectively mitigate the risks posed
by high-frequency trading and ensure the stable and sustainable
development of China’s financial markets amid rapid technological
transformation.
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