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This study addresses the dual structural characteristics of China’s financial 
market—namely, “retail-investor dominance (80% of trading volume) versus 
foreign capital’s technological monopoly (0.3% of institutions controlling 43.6% 
of order flow).” By constructing a multi-layer complex network agent-based 
model (ABM) that integrates regulatory, core institutional, market-maker, and 
retail investor layers, it systematically simulates risk transmission mechanisms 
and regulatory strategies in high-frequency trading (HFT) environments. The 
findings reveal that HFT exacerbates market unfairness through technological 
latency advantages. When communication latency differentials exceed 50 
milliseconds, retail order interception rates increase nonlinearly to 82%. 
Moreover, as the strategy homogenization coefficient ρ surpasses the critical 
threshold of 0.65, the market undergoes a percolation phase transition, with 
systemic risk probability jumping from 0.2 to over 0.7, which may trigger liquidity 
crises such as “flash crashes.” Traditional regulatory approaches, hindered by 
response delays averaging 2.1 h, struggle to cope with the real-time nature 
of HFT and the challenges posed by algorithmic black boxes. Based on the 
simulation results, policy recommendations centered on “anti-technological-
monopoly,” “real-time algorithmic resonance monitoring,” and “regulatory 
intelligence” are proposed to develop a modernized and computationally 
executable regulatory framework tailored to China’s market structure, thereby 
enhancing both market stability and fairness.
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 1 Introduction

Currently, China’s financial market is undergoing a critical period characterized by 
scale expansion, structural transformation, and technology-driven evolution. As the world’s 
second-largest economy, China’s capital market has developed into a pivotal hub connecting 
domestic and international capital, assets, and risks. In recent years, alongside market 
liberalization and the deep integration of financial technology, the scale of the A-share 
market has continued to expand, trading instruments have diversified, and investor 
structure has exhibited increasing heterogeneity. However, compared to mature markets,

Frontiers in Physics 01 frontiersin.org

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2025.1733200
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2025.1733200&domain=pdf&date_stamp=2026-02-04
mailto:18503885520@163.com
mailto:18503885520@163.com
https://doi.org/10.3389/fphy.2025.1733200
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphy.2025.1733200/full
https://www.frontiersin.org/articles/10.3389/fphy.2025.1733200/full
https://www.frontiersin.org/articles/10.3389/fphy.2025.1733200/full
https://www.frontiersin.org/articles/10.3389/fphy.2025.1733200/full
https://www.frontiersin.org/articles/10.3389/fphy.2025.1733200/full
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Jian et al. 10.3389/fphy.2025.1733200

China’s financial market retains distinct local characteristics, 
prominently manifested as a complex landscape of “retail-investor 
dominance, policy sensitivity, and technological stratification.” 
Statistics indicate that retail investors contribute approximately 80% 
of market trading volume, forming a crucial foundation for market 
liquidity, yet their trading behavior is prone to emotional influences 
and susceptible to “herding effects” [1]. Simultaneously, although 
foreign institutions account for an extremely low proportion 
in number (around 0.3%), they leverage significant advantages 
in algorithms, computational power, and network latency to 
control over 40% of order flow, creating a dual structure where 
“technological monopoly” coexists with “retail dominance” [2, 3], a 
structural contradiction that poses severe challenges to the liquidity, 
stability, and fairness of China’s financial market [4].

Against this backdrop, high-frequency trading, as a cutting-
edge domain of financial technology development, is profoundly 
reshaping market microstructure and risk transmission pathways. 
Leveraging sophisticated algorithmic models, low-latency trading 
systems, and massive data processing capabilities, high-frequency 
trading enables the generation, execution, and cancellation of large 
volumes of orders at millisecond or even microsecond intervals. 
Globally, while high-frequency trading has historically played 
a positive role in enhancing market liquidity and facilitating 
price discovery, its potential risks cannot be overlooked, such 
as “flash crashes” induced by strategy homogenization, concerns 
over fairness arising from technological stratification, and 
regulatory blind spots due to algorithmic black boxes [1]. In 
China, alongside financial market liberalization and technological 
advancement, high-frequency trading, though relatively late to 
emerge, has developed rapidly and has become a critical tool 
for certain institutions—particularly foreign ones—to capture 
excess returns and influence order flow dynamics. Empirical 
evidence suggests that while high-frequency trading improves 
transactional efficiency, it also significantly alters the logic of 
risk generation and the velocity of risk propagation, rendering 
traditional financial risk control models—based on historical data 
and static distributions—inadequate for capturing its dynamic 
characteristics [2].

However, the existing regulatory system faces multiple 
challenges when addressing the novel risks introduced by high-
frequency trading. First, technological asymmetry leads to 
regulatory lag. High-frequency trading relies on rapid algorithmic 
iteration and hardware advantages, allowing strategy adjustments 
within hours, whereas traditional regulation depends on manual 
review and rule-based frameworks, with an average response 
time exceeding 2 h, resulting in a significant “speed disadvantage.” 
Second, data silos and cross-border regulatory arbitrage undermine 
regulatory effectiveness. Some high-frequency institutions exploit 
barriers to cross-border data flows and regulatory differences to 
evade scrutiny; it is estimated that over 27% of high-frequency 
trading involves regulatory arbitrage [5, 6]. Furthermore, strategy 
homogenization and algorithmic resonance have emerged as 
new catalysts for systemic risk. When a large number of market 
participants employ similar algorithms, localized disturbances 
can rapidly amplify into global liquidity crises through highly 
interconnected network nodes, as exemplified by past “flash 
crash” phenomena in the A-share market. These issues highlight 
the inadequacy of traditional regulatory tools in anticipating, 

identifying, and intervening in high-frequency trading risks, 
underscoring the urgent need for more sophisticated, dynamic, 
and computationally enabled risk simulation and regulatory 
approaches.

Therefore, to systematically analyze the unique risks of 
high-frequency trading in China’s financial market and design 
corresponding regulatory tools, this study employs an agent-
based modeling approach grounded in multi-layer complex 
networks to conduct dynamic simulations of high-frequency 
trading risks. The research aims to construct a multi-layer 
network model integrating “policy intervention–institutional 
behavior–retail investor sentiment,” utilizing topological structure 
modeling to reveal the structural basis of risk transmission, 
applying percolation phase transition theory to warn of critical 
thresholds for systemic risk, and exploring computable and 
executable regulatory policy compilation pathways. The main 
contributions of this study are: (1) First incorporating policy 
intervention nodes into multi-layer complex network models, 
overcoming the limitation of traditional financial contagion 
models that neglect policy intervention; (2) Quantifying 
the critical threshold of systemic risk through percolation 
phase transition theory, providing 3.2 h of early warning for 
regulation; (3) Designing computable regulatory tool compilation 
paths, transforming fair trading provisions into dynamic 
tax rates based on technological latency disparities, thereby 
facilitating the construction of a modern regulatory framework 
compatible with the high-frequency trading era and enhancing 
market efficiency while safeguarding financial stability and 
trading equity [7]. 

2 Data and research methodology

2.1 Framework and initialization of an 
agent-based complex network model

2.1.1 Model applicability
China’s financial market exhibits a dual structure characterized 

by “retail investor dominance (80% of trading volume) - foreign 
capital technological monopoly (0.3% of institutions controlling 
43.6% of order flow)”. Traditional models (e.g., VaR, GARCH) 
struggle to capture such asymmetric features due to their 
assumptions of homogeneous agents and static distributions 
[8, 9]. Agent-based modeling (ABM) accurately replicates three 
localized risks through a hierarchical agent design (embedding an 
emotion contagion module in the retail investor layer, implanting 
parameters for technological latency disparities and strategy 
homogenization coefficients in the foreign capital layer, and setting 
policy transmission time delays in the regulatory layer) [6, 10]: 
herding effects triggered by retail investor sentiment (e.g., a 47% 
sharp decline in order book thickness during the 2024 futures flash 
crash), order capture rates exceeding 82% due to technological 
stratification (consistent with Pagnotta’s S-shaped curve) [11, 12], 
and cross-border regulatory arbitrage (27% of high-frequency 
trading evading scrutiny) [13]. Compared to traditional methods 
(e.g., the failure of historical simulation in testing individual stocks 
on the Shenzhen Stock Exchange, GARCH models' inability to 
capture microstructural dynamics) [14], “The ABM incorporates 
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a millisecond-level order book protocol (with a 100 ms step size) 
to dynamically simulate processes such as strategy disguise (e.g., 
ID changes every 2.1 h) and liquidity collapse [15]. This allows 
the model to reproduce the risk transmission chain: when the 
strategy homogenization coefficient exceeds 0.65, the percolation 
probability P surges, leading to a market crash of approximately 
9% within 5 min [11]. This capability addresses a significant 
limitation of international models, which exhibit prediction errors 
of up to 32% [14].” 

2.1.2 Necessity
Beyond its accuracy in replicating market phenomena, the 

application of this ABM complex network model is necessitated 
by pressing regulatory challenges and enable policy sandbox 
simulations. The governance of high-frequency risks in China 
requires simultaneously tackling algorithmic black boxes, data 
sovereignty barriers (Article 31 of the Data Security Law), and 
lagging policy tools (regulatory delays leading to a 58% increase 
in loss rates). The value of the complex network ABM model is 
demonstrated in three aspects: First, it quantifies risk thresholds 
using a percolation phase transition algorithm: 

λi = 1− (1− p)ki ·
Isentiment

Ibase
,

where the risk probability P surges from 0.2 to 0.8 when the 
strategy homogenization coefficient exceeds 0.65, providing a 3.2-h
earlier warning of flash crashes compared to traditional volatility 
models [11]. Second, it supports the compilation of regulatory 
rules into machine-executable formats, such as translating fair 
trading provisions into dynamic tax rates based on technological 
latency disparities (a 0.2% tax increase for every 50 ms delay) to 
tax technological hegemony [11], and encoding circuit breaker 
rules as exponential functions of aggregation coefficients to curb 
monopolies (triggering scrutiny when the aggregation coefficient 
exceeds 0.3) [11]. Third, it resolves data silos while ensuring 
compliance with both GDPR and the Data Security Law [16, 17]. 
These functionalities make the ABM model a powerful tool 
for simulating the feedback loop between the regulatory and 
market layers, whereas traditional simulations fail to evaluate the 
effectiveness of regulatory interventions due to their neglect of 
policy intervention nodes. 

2.2 Construction of model network 
topology structure

Given the characteristic of “strong policy intervention” in 
China’s financial market, constructing a four-layer network 
topology centered around “regulatory nodes,” as illustrated in 
Figure 1, is essential for effectively simulating and modeling 
the dual-structure contradiction of “retail-investor dominance 
(80% of trading volume) versus foreign capital technological 
monopoly.” The theoretical foundation primarily integrates three 
types of literature: first, drawing on the core-periphery topology 
characteristics of scale-free networks [18], it accurately maps order 
flow monopoly phenomena through differentiated modeling of 
a few highly connected nodes (foreign institutions) and a vast 
number of low-connectivity nodes (retail investors); second, 

FIGURE 1
High-frequency trading market network topology diagram.

incorporating the vertical governance logic of hierarchical networks, 
it positions the regulatory layer as the top-level control node, 
overcoming the limitation of traditional financial contagion 
models that neglect policy intervention [19]; third, combining 
the fault-tolerant mechanism of ring topology with the spatial 
constraint rules of geometric random graphs [2], it addresses 
the compound challenges of cross-border data barriers (Article 
31 of the Data Security Law) and physical latency disparities 
(ΔL = 50 ms).

This study constructs a four-layer complex network model 
including 'regulatory layer, core institutional layer, market-maker 
layer, and retail investor layer', where the regulatory layer is 
connected to the core institutional layer through policy transmission 
links, the core institutional layer is interconnected through strategy 
homogenization links and extends to the market-maker layer 
through order flow control links, and the market-maker layer is 
connected to the retail investor layer through latency advantage 
links, forming a complete closed-loop system. 

2.2.1 Dynamic monitoring mechanism of 
regulatory nodes

Based on the dynamic Granger causality analysis framework, 
regulatory nodes are equipped with real-time monitoring 
capabilities to detect changes in causal relationships among market 
nodes. The regulatory node employs an overlapping window method 
to segment market trading data, quantifying causal influence 
intensity between nodes through vector autoregressive models. The 
monitoring mechanism includes: preprocessing market trading 
data for stationarity to remove non-stationary biases; computing 
lagged cross-covariance sequences to establish VAR models; 
estimating coefficient matrices through Yule-Walker equations; and 
calculating conditional Granger causality values to identify key risk 
transmission paths. 

2.2.2 Dynamic design of policy trigger 
mechanism

Drawing from the causality-driven node selection algorithm, 
regulatory nodes select optimal intervention timing based on 
dynamic causality graphs. Specific implementations include: 
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calculating the out-degree of each market node to identify 'driving 
hub' nodes with maximum causal influence; automatically triggering 
regulatory intervention when key nodes' causal out-degree 
exceeds preset thresholds; and adopting a segmented learning-
execution strategy to periodically update the causality network, 
ensuring policy trigger mechanisms adapt to market structure
changes. 

2.2.3 Closed-loop design of feedback process
Adopting a local information-based pinning control strategy, 

the regulatory feedback mechanism is designed as follows: each 
regulatory node manages only a subset of market nodes within its 
causal influence domain; extracting feedback information based on 
local causal relationships and control influence regions; employing 
sign control functions to dynamically adjust control direction based 
on error states; and ensuring control coverage spans the entire 
market network, i.e., Ω1 ∪Ω2 ∪ ... ∪Ωm =Ω. 

2.2.4 Network topology and regulatory closed 
loop

At the topological center, “Regulatory Node A” (orange dot) 
connects directly to “Core Node B (foreign capital/licensed 
institutions)” (yellow dot) via “policy transmission” links. Core 
Nodes B interconnect through internal cycles of “strategy 
homogenization” links and extend downward to “Sub-core Node 
C (market makers)” (blue dot) via “order flow control” links. Market 
makers further connect to the outermost “Peripheral Nodes (retail 
investors)” (green dot) through “latency advantage” links, while 
retail investors relay information back to Regulatory Node A via 
“risk feedback” links, forming a complete closed-loop system. The 
regulatory control input can be designed as: 

up(t) = sp(t)∑
ᵣ
∈Ωp h(eᵣ(t),ėᵣ(t))

where sp(t) is the control function related to error states, and Ωp
represents the influence domain of the pth regulatory node [20, 21].

Therefore, this diagram serves as an intuitive representation of 
the theoretical innovation of the model. Placing the “regulatory 
node” at the topological center constitutes a visual practice of Qian 
Xuesen’s methodology of “open complex giant systems”, emphasizing 
that policy intervention is a key endogenous variable shaping 
market structure in the Chinese context. This design reflects the 
characteristic of “strong policy intervention” in China’s financial 
market. The closed loop formed by “policy transmission” and “risk 
feedback” depicted in the figure accurately simulates the operational 
logic of regulatory cycles with Chinese characteristics—policies are 
transmitted top-down, while market risks are fed back bottom-
up. The “strategy homogenization” links among core nodes lay 
the groundwork for subsequent simulations of systemic risk. This 
topological structure forms the foundational framework for all 
subsequent dynamic evolution. 

2.3 Model parameter design

The model parameters in this study were designed across three 
dimensions—fundamental network construction, driven behavioral 
evolution, and policy intervention—to better align with the state 

TABLE 1  Structural parameters.

Parameter Symbol Value Source/
Basis

Rationale for 
setting

Total nodes N 100,000 People’s 
bank of 
China 
Website 
[22]

Balances 
computational 
efficiency with 
market 
representativeness 
(1 node ≈ 150 
million market 
capitalization) [23]

Core node 
ratio

ρc 0.3% China 
Securities 
Depository 
and 
clearing 
statistical 
yearbook 
[24]

Reflects the 
technological 
dominance of 
foreign/institutional 
capital

Periphery 
node ratio

ρe 80% China 
statistical 
yearbook 
2024 2024 
[25]

Maps the 
retail-investor 
dominated market 
structure

Clustering 
coefficient 
threshold

Ct 0.3 Circuit 
breakers 
and the 
magnet 
effect: 
Empirical 
evidence 
from 
China’s 
stock 
market. 
The 
quarterly 
journal of 
finance 
[26]

>0.3 triggers 
circuit breakers

Policy 
implementation 
lag

τp 2.1 h China 
securities 
regulatory 
commission 
annual 
report 
[27]

Quantifies 
regulatory 
response lag

of China’s financial market, with a corresponding parameter 
comparison table provided from Tables 1–3.

2.4 Model initialization

2.4.1 Market structure initialization
As illustrated in Figure 2, the node distribution state after 

network initialization is presented. The figure should reveal a dense 
concentration of nodes representing “retail investors,” forming the 
foundational layer of the network; a smaller number of “core nodes” 
with numerous connections are scattered throughout, serving as 
network hubs, while “market maker” nodes occupy an intermediate 
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TABLE 2  Dynamic parameters.

Parameter Symbol

Maximum latency differential ΔLmax

Order cancellation circuit breaker threshold Qmax

Strategy homogeneity coefficient ρ

Percolation probability threshold Pt

TABLE 3  Policy parameters.

Parameter Computational 
logic

Legal mapping

Sovereign 
compensation tax rate

Ta = 0.2× ΔL
50

(ΔL >
50ms)

Art. 10, consumer 
rights protection law
Art. 22, anti-monopoly 
law

Federated learning 
data availability

Ad =
DesensitizedFieldCount

TotalFields
≥ 0.85

Article 21 of the data 
security law
Article 4 of the general 
data protection 
regulation (GDPR)

Dynamic circuit 
breaker trigger 
conditions

i f (C⟩0.3)&(ρ⟩0.65):Qmax =
300

CSRC’s “guidelines for 
handling abnormal 
trading”

position between the two. The annotated example nodes (ID: 
235, Degree: 9) and (ID: 3326, Degree: 9) are two typical retail 
investor nodes.

Therefore, this figure serves as a successful validation of the 
model’s “localization adaptation.” The visualization results are highly 
consistent with the parameters set in Table 1 (80% retail investors, 
0.3% core nodes), demonstrating that the model initialization 
effectively generates a digital mirror of a “retail investor-dominated 
market” aligned with China’s reality (as documented in the CSRC’s 
White Paper on Investor Structure). Nodes 235 and 3326, each 
with a degree of 9, indicate that an average retail investor typically 
connects with 9 other nodes, whereas a core node may possess 
hundreds or thousands of connections. This visually corroborates 
the scale-free nature of the network, wherein a minority of nodes 
hold extensive linkages, providing a structural basis for rapid risk 
transmission through these hub nodes. The corresponding formula 
is expressed as below. 

P(k) ∼ k−γ

where k denotes the degree (number of connections) of a node or the 
scale of an event; P(k) represents the probability of an event having 
a scale k; and γ is the power-law exponent, a constant greater than 0.

2.4.2 Strategic behavior initialization
At the moment of completing market structure initialization, we 

simultaneously introduce the Strategic Homogeneity Coefficient ρ, a 
core metric quantifying the degree of behavioral convergence among 

FIGURE 2
Market structure initialization: Node type distribution.

participants in financial markets. This coefficient fundamentally 
captures the similarity of trading strategies at the group level 
and the lack of diversity. Rooted in strategic convergence analysis 
from game theory and discrete choice theory, it reflects the 
gradual contraction of the strategy space toward local consensus 
when market participants act on limited information or similar 
decision-making frameworks (e.g., quantitative models) [28]. The 
coefficient is measured by calculating the variance or entropy 
of the strategy distribution: if participants widely adopt similar 
algorithms (such as trend-following or mean-reversion strategies), 
the coefficient approaches 1, indicating high homogeneity; if 
strategies exhibit a diverse distribution, the coefficient nears 0. 
In dynamic environments, strategic homogeneity is driven by 
the speed of information dissemination, technological constraints 
(e.g., algorithmic black boxes), and institutional factors (e.g., 
cross-border data barriers), collectively trapping participants in a 
“minority game” dilemma—where the marginal benefit of deviating 
from mainstream strategies diminishes sharply, further reinforcing 
convergence [29]. 

2.5 Risk transmission simulation

2.5.1 Percolation theory
Percolation theory serves as a fundamental framework 

for studying critical phase transitions in disordered systems, 
initially proposed by Broadbent and Hammersley in 1957. 
Its core concept focuses on abrupt changes in long-range 
connectivity within random geometric structures. By simulating 
fluid flow behavior in porous media [18], this theory reveals 
that when system components (such as pore occupancy or bond 
connection probability) reach a critical threshold (the percolation 
threshold pc), the system undergoes a sharp phase transition 
from “local connectivity” to “global percolation” (or conversely, 
blockage). This transition fundamentally involves the emergence 
or disappearance of a percolating cluster in disordered media, 
manifesting as stepwise changes in conductivity, permeability, or 
risk contagivity [30].
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In financial risk modeling, the core value of percolation theory 
lies in its critical threshold scaling laws and cluster dynamics. When 
the critical threshold pc is mapped to the tipping point of systemic 
risk (e.g., when the strategy homogenization coefficient exceeds a 
certain value within its range), breaching this threshold allows minor 
local disturbances (such as a single institution’s default) to trigger a 
global liquidity collapse through connected clusters, replicating the 
phase transition logic of 

poreblockage → fluid flowinterruption

The cluster formation mechanism, in turn, corresponds to 
the path of risk contagion: highly connected nodes in the core 
institutional layer (e.g., foreign market makers) act as hubs for risk 
transmission, with their betweenness centrality positively correlated 
with order capture rates. When strategy homogenization drives the 
connection probability p between nodes toward pc, sentiment factors 
in the retail investor layer accelerate risk diffusion within clusters, 
ultimately inducing a percolation phase transition. 

2.5.2 Systemic risk contagion
As shown in Figure 3‐1, before risk propagation, the network 

nodes exhibit uniform coloration (e.g., all in blue) with a stable 
connection structure; after risk propagation, as depicted in 
Figure 3‐2, it is clearly observable that starting from a few 
“core nodes” with altered colors (e.g., turned red), the color 
change rapidly diffuses through connecting edges to “market 
maker” nodes (turning yellow), eventually affecting a large 
number of “retail investor” nodes (turning red), forming a chain 
reaction. Thus, Figure 3 serves as a vivid demonstration of the 
application of percolation theory in financial risk transmission 
and within this model. It intuitively reveals that the propagation 
of systemic risk is not uniform but rather proceeds along network 
connection paths, particularly through high-degree core hub nodes 
in a leap-like manner. This process also aligns with the logic 
described by the percolation theory formula, as presented below. 

λi = 1− (1− p)ki

Where λi represents the probability of a certain event occurring 
(typically the probability of “occurring at least once”); p denotes the 
probability of the event occurring in a single attempt (which remains 
constant), thus 1− p is the probability of the event not occurring in a 
single attempt; and ki signifies the number of independent attempts. 
It follows that nodes with higher connectivity ki exhibit a greater 
probability λi of transmitting and receiving risk [31, 32].

Therefore, the introduction of percolation theory enables this 
study to transform the abstract concept of “risk transmission” into 
a visualizable “digital pandemic” [33], powerfully demonstrating 
why sell-offs by individual institutions can trigger panic across the 
entire market. 

3 Result and analysis

3.1 Analysis of high-frequency latency and 
retail order interception rate

By simulating the systemic disadvantages faced by retail 
investors under technological stratification, the model intuitively 

illustrates the issues of market power solidification and 
technological monopoly resulting from technical advantages. 
As shown in Figure 4, the model employs an S-shaped growth 
function (Sigmoid function) to describe the relationship between 
interception probability and latency. This approach more accurately 
reflects the behavioral patterns of high-frequency trading algorithms 
in real markets compared to a simple linear model: even a slight 
latency advantage leads to a sharp increase in their ability to intercept 
orders. The formula is expressed as follows: 

Pcapture(τ) =
1

1+ e−k(τ−τ0)

Among them, Pcapture(τ) represents the probability of an 
order being successfully intercepted by high-frequency algorithms 
through “front-running”; τ denotes the communication latency 
from the transmission of a trading instruction to its arrival at 
the exchange (unit: milliseconds, ms); τ0 is the latency value that 
determines the center point of the S-curve, around which the 
interception probability undergoes a nonlinear surge; k controls the 
steepness of the S-curve—the larger the value of k, the steeper the 
curve, and the faster the transition from low to high probability.

When the latency τ exceeds the critical value τ0 = 50 ms, the 
retail order interception rate Pcapture(τ) exhibits a nonlinear surge, 
exceeding 82%. This phenomenon validates the systemic trading 
inequity resulting from technological disadvantages, while also 
corroborating the high betweenness centrality (CB(v) > 0.6) of core 
nodes. It reveals that the structural characteristic of “technological 
oligopolization” in China’s financial market is further amplified 
in a high-frequency trading environment. Moreover, as latency 
increases, the solidification of market power driven by technological 
monopoly becomes more pronounced. 

3.2 Strategic homogeneity and analysis of 
systemic financial risks

As high-frequency trading penetrates China’s financial markets 
with its algorithmic advantages, flash crashes have become a Sword 
of Damocles looming over investors. The set of strategy choices 
among all market participants acts as the trigger for such events. 
To simulate flash crashes caused by algorithmic resonance, we map 
the degree of strategic homogeneity ρ to the connection probability 
within a network. When the strategic homogeneity ρ exceeds the 
critical threshold ρ_c, localized failures rapidly propagate across the 
system through similar algorithmic strategies, leading to liquidity 
evaporation and price collapse (i.e., percolation phase transition). 
The corresponding formulation is presented below: 

P∞(ρ) =
{{
{{
{

0, ρ ≤ ρc
1

1+ e−α(ρ−ρc)
, ρ > ρc

Among these, P∞(ρ) represents the probability of systemic risk 
occurrence, ρc denotes the critical point, ρ indicates the similarity or 
convergence degree of all trading strategies in the market—a higher 
ρ value implies that more institutions employ similar algorithmic 
strategies—and α controls the rate at which the risk probability 
increases beyond the critical point [34].
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FIGURE 3
Visualization of sell-off propagation process.

FIGURE 4
Relationship between latency and retail order interception rate.

Following the simulation of the Chinese financial market 
environment using order book trading data accessed from the Hua 
Tai Securities INSIGHT Financial Data Service Documentation 
Center, as illustrated in Figure 5, it can be observed that when the 
strategic homogeneity coefficient ρ exceeds the critical threshold 
of 0.65, the probability of systemic risk surges abruptly from a 
stable state. The system percolation probability P rapidly surpasses 
0.7, indicating the market’s entry into a high-risk state. As 
P∞(ρ) approaches 1, localized risks propagate throughout the 
entire system, ultimately leading to a flash crash in the market. 
Consequently, the penetration of high-frequency trading further 
amplifies systemic risks within China’s financial markets, which stem 
from homogeneous trading triggered by algorithmic resonance. 
Failure to promptly identify the degree of strategic homogeneity 
in the market will impede regulators' ability to avert market flash 
crashes triggered upon reaching the critical threshold [35].

FIGURE 5
Degree of strategy homogeneity and percolation probability.

3.3 Analysis of regulatory latency and 
technology optimization benefits

High-frequency trading possesses significant technological 
and speed advantages compared to traditional trading 
methods, presenting a major challenge to regulators in China’s 
financial markets [36]. During the initial phase of simulated risk 
emergence, shortening regulatory response time yields the greatest 
marginal benefit; however, once response time has been optimized 
to a relatively low level, further improvements exhibit diminishing 
returns. To quantitatively evaluate the intervention effectiveness 
of regulatory technology, this study constructs a logarithmic 
relationship model between regulatory response time and market 
loss rate, expressed as follows: 

L(T) = L0 · (1+ γ · ln T
T0
)
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FIGURE 6
Manual Approval vs. Al Approval Comparison.

where L(T) represents the loss ratio suffered by retail investors 
under a regulatory response time T; T denotes the regulatory 
response time; L0 indicates the inherent loss rate experienced by 
retail investors under the benchmark response time T0; T0 is the 
benchmark response time; γ is the loss elasticity coefficient, where 
a higher value of γ implies that shortening the response time has a 
more significant marginal effect on reducing losses.

Based on historical cases in China’s financial markets, the 
regulatory delay has been approximately 2.1 h. To verify the 
impact of high-frequency trading on traditional regulatory decision-
making, an AI-based approval mechanism with faster response 
capabilities than manual processes was constructed, and the 
influence of regulatory response speed on retail investors was 
recorded. As shown in the comparative results between manual 
and AI-based approval in Figure 6, the application of regulatory 
technology demonstrates significant effectiveness in market risk 
intervention. After transitioning from manual to AI-based approval, 
the regulatory response time was reduced from 2.1 h to 0.5 h, 
accompanied by a corresponding 58% decrease in the loss rate 
of retail investors. This improvement not only highlights the 
importance of enhancing regulatory response speed in addressing 
high-frequency trading within China’s financial markets but also 
demonstrates that shortening the policy transmission chain can 
effectively curb the diffusion effect of algorithmic resonance, thereby 
enhancing the timeliness and precision of market supervision.

4 Research conclusions and policy 
recommendations

4.1 Research conclusions

Based on the unique dual structure of China’s financial 
market—characterized by “retail investor dominance (80% of 
trading volume) and foreign capital’s technological monopoly 
(0.3% of institutions controlling 43.6% of order flow)”—this paper 
constructs a four-layer complex network Agent-Based Model 
(ABM) incorporating policy intervention nodes, comprising the 
“regulatory layer, core layer, market maker layer, and retail investor 
layer.” Through topological structure modeling, percolation phase 
transition early warning, and computable regulatory tool design, 

the risk transmission mechanism in a high-frequency trading 
environment was systematically simulated. The results indicate that: 

1. High-frequency trading exacerbates market fairness 
imbalance through technological monopoly, forming a 
“technology oligopoly” landscape. Foreign institutions, 
leveraging microsecond-level latency advantages (e.g., 
exclusive microwave towers), have built an insurmountable 
“technological moat.” When the communication latency gap 
exceeds the critical threshold of 50 ms, the probability of retail 
investors’ orders being intercepted by high-frequency trading 
algorithms via “latency arbitrage” nonlinearly surges to over 
82%. This not only implies a systematic disadvantage for retail 
investors at the order execution level but more fundamentally 
reveals a sharp concentration of market power in the hands of a 
few technological oligopolies, eroding the fairness foundation 
of China’s “retail-driven market”.

2. The “algorithmic resonance” triggered by high-frequency 
trading acts as a detonator for new systemic risks. This study 
quantifies the fatal risk associated with the homogenization of 
high-frequency trading strategies (coefficient ρ). When a large 
number of institutions adopt similar algorithmic strategies 
(ρ > 0.65 critical threshold), the market network undergoes 
a “percolation phase transition,” where the probability of 
systemic risk abruptly jumps from below 0.2 to over 0.7. 
In other words, the convergent behavior of high-frequency 
trading transforms the market into a highly fragile “resonance 
body,” where local disturbances can rapidly propagate into 
global liquidity collapse through highly connected core nodes.

3. The rapid iteration speed of high-frequency trading 
technology poses a dimensional challenge to traditional 
regulatory paradigms. high-frequency trading exploits 
algorithmic black boxes (changing IDs every 2.1 h) and cross-
border regulatory arbitrage, rendering conventional regulatory 
tools nearly ineffective. If the average regulatory response 
delay reaches 2.1 h, the risk identification rate drops to 38%, 
and the cross-border order parsing failure rate rises to 89%. 
This exposes the inherent vulnerability of the old regulatory 
system—characterized by “manual, ex-post, rule-based” 
approaches—in the face of high-frequency trading’s “machine-
driven, real-time, algorithm-code” dynamics, leading to a 
“governance paradigm fracture.”

4.2 Policy recommendations

Based on the above research conclusions, and to construct a 
modern regulatory system that aligns with the unique characteristics 
of China’s financial market and can keep pace with the rapid 
technological evolution of high-frequency trading, the following 
policy recommendations are proposed: 

1. Implement “technological anti-monopoly” measures to curb 
excessive concentration of market power: establish a “technical 
latency differential” red line by explicitly adding an upper limit 
on latency disparity in the “Algorithmic Trading Management 
Rules,” strictly restricting behaviors that systematically 
intercept orders through abnormal latency advantages; 
introduce a “digital tax base” by drawing on the spirit of the 
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“Anti-Monopoly Law” to study and launch a “high-frequency 
trading tax” or “sovereign compensation fund” to adjust excess 
profits obtained through technological hegemony, which 
would be used for market fairness infrastructure or investor 
compensation funds [36].

To effectively address the technological monopoly brought 
by HFT, a phased, progressive implementation pathway is 
recommended: 

i. Phase I (Months 1–6): Establish a Latency Disparity 
Monitoring System. Collaborate with exchanges and data 
service providers to develop a tool that can quantify in 
real-time the order execution latency (τ) disparities among 
different market participants. This system aims to identify 
and consistently flag market participants who enjoy a 
significant “latency advantage,” providing a data foundation 
for subsequent interventions.

ii. Phase II (Months 7–12): Pilot a Digital Tax Base. Within 
the scope of technological monopolists identified by the 
monitoring system, pilot a “digital tax” based on excess 
profits or trading volume share. The tax revenue can be 
channeled into a “Market Stability Fund” to compensate 
retail investors who suffer losses due to technological
disadvantages.

iii. Phase III (Months 13–18): Full Rollout of a Sovereign 
Compensation Fund. Building on the success of the pilot, 
institutionalize and normalize the compensation mechanism. 
Establish a regulator-led “Sovereign Compensation Fund” that 
determines compensation ratios through more sophisticated 
algorithms (e.g., a composite function based on latency 
disparity ΔL and trading contribution), fundamentally 
offsetting market inequity caused by technological
monopoly.

iv. Construct a real-time monitoring and blocking mechanism 
targeting “algorithmic resonance”: not only incorporate 
the strategy homogeneity coefficient into core risk control 
indicators, establishing an exchange mechanism for real-
time calculation and monitoring of the market-wide strategy 
homogeneity coefficient (ρ), with clear warning intervals 
(ρ > 0.6) and intervention thresholds (ρc = 0.65), but also 
simultaneously deploy dynamic circuit-breaker algorithms 
that automatically trigger differentiated measures upon 
reaching thresholds, specifically restricting high-frequency 
order flow to structurally dismantle the conditions for 
algorithmic resonance.

For the early-warning mechanism based on the strategy 
homogeneity coefficient (ρ), the following tiered response system 
can be constructed: 

i. Warning Threshold (ρ > 0.6): When the model-calculated 
market-wide strategy homogeneity coefficient exceeds 0.6 for 
5 consecutive minutes, the system automatically issues a 
“watch” level alert to the regulatory backend. At this stage, 
regulatory personnel should enhance visual inspection of 
abnormal trading activities but refrain from taking immediate
action.

ii. Intervention Threshold (ρ > 0.65): When the coefficient 
further climbs above 0.65, the system automatically triggers 

an “intervention” level alert. At this point, pre-set automated 
regulatory tools can be activated, such as imposing minor 
random delays (i.e., “speed bumps”) on a portion of high-
frequency orders or temporarily increasing transaction costs 
for specific types of algorithmic trading. This aims to increase 
market strategy diversity and break the self-reinforcing 
cycle of risk.

iii. Comprehensively promote the “digital and intelligent” 
transformation of the regulatory system, developing 
“regulation as code” capabilities, scaling up the application 
of AI, enhancing the monitoring and analysis capabilities of 
market data, and establishing “regulatory sandboxes” for rapid 
testing of new regulatory tools, with the goal of reducing the 
average response time to high-frequency trading anomalies 
from “hours” to “minutes” [37].

To support the above complex regulatory strategies, the 
intelligent transformation of the regulatory agency itself is
crucial: 

i. Pathway Planning: Evolve from “Manual Review” to “AI-
Assisted Decision-Making” and finally to “Automated 
Regulation.” Initially, use AI models for preliminary screening 
and risk tagging of massive trading data to assist human 
decision-making. In the medium term, establish an AI 
decision-support system that provides regulators with 
simulations of the expected outcomes of various intervention 
strategies [38]. In the long term, achieve full-process 
automation from monitoring to intervention in areas where 
risk thresholds are clear and intervention logic is well-defined.

ii. Technical Support: Referencing the simulation results 
of this study, AI-driven regulation can shorten risk 
identification and response time by over 70%, significantly 
reducing market losses during extreme market conditions. 
Therefore, priority should be given to investing resources 
in building a RegTech platform based on machine
learning.

5 Conclusion

High-frequency trading has fundamentally altered the risk 
landscape of China’s financial markets. Addressing this challenge 
can no longer rely on incremental institutional adjustments but 
necessitates a profound regulatory revolution. The core imperative 
lies in acknowledging that the market has evolved into a high-
dimensional complex system driven by code and algorithms. 
Regulators must correspondingly employ algorithms and code 
as strategic tools, embracing a paradigm shift of “governing 
technology with technology” to effectively mitigate the risks posed 
by high-frequency trading and ensure the stable and sustainable 
development of China’s financial markets amid rapid technological 
transformation.
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