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Artificial intelligence (Al) is commonly depicted as transformative. Yet, after
more than a decade of hype, its measurable impact remains modest outside a
few high-profile scientific and commercial successes. The 2024 Nobel Prizes
in Chemistry and Physics recognized Al's potential, but broader assessments
indicate the impact to date is often more promotional than technical. We argue
that while current Al may influence physics, physics has significantly more
to offer this generation of Al. Current architectures—large language models,
reasoning models, and agentic Al-can depend on trillions of meaningless
parameters, suffer from distributional bias, lack uncertainty quantification,
provide no mechanistic insights, and fail to capture even elementary scientific
laws. We review critiques of these limits, highlight opportunities in quantum Al
and analogue computing, and lay down a roadmap for the adoption of ‘Big Al':
a synthesis of theory-based rigour with the flexibility of machine learning.

KEYWORDS

artificial intelligence, generative Al, machine learning, physics-based machine learning,
spurious correlations, big Al, physics based modelling, Al roadmap

Introduction

Artificial intelligence has been hailed as the defining innovation of the 21st century. The
current wave of Al hyperbole is traced back to 2012, when Geoffrey Hinton's group used
deep convolutional neural networks to win the ImageNet competition - an annual computer
vision competition - by a large margin [1]. Al has achieved genuine breakthroughs in protein
structure prediction, game playing, and image recognition. Current expectations encompass
every endeavour: games, drug discovery, energy management, climate modelling, defence,
and even the conduct of science itself [2]. Venture capitalists, policymakers, and researchers
alike have spoken of a revolution akin to that spurred by earlier disruptive technologies,
from the wheel and railways to electrification and the internet.

Yet there is a yawning gap between aspiration and realization. The MIT Sloan Center for
Information Systems Research found that while enterprise Al adoption is widespread, many
organisations remain in early maturity stages [3]. Most companies use Al for marketing and
customer engagement, rather than for solving core research or engineering challenges.

At the same time, Al was given the ultimate scientific recognition in 2024. The
Physics Nobel Prize, shared by Hinton, cited foundational discoveries and inventions
that enable machine learning with artificial neural networks [4], while the chemistry
Nobel prize acknowledged AI's role in protein structure prediction and computational
protein design [5], suggesting that AT can make a valuable contribution to scientific progress.
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That remains to be fully established. The key question is the
following: are Al predictions as trustworthy as they are plausible?
There is still a gap between expectation and reality, as shown by AI-
driven drug discovery startups, which once promised to compress
timelines by years. While some stages of drug discovery benefit
from machine learning, many do not. AI has helped to shave
several months-up to a year in some cases - from the discovery
process, which is promising but falls far short of the hyperbole.
Although AI models are used for target identification, molecule
screening, and retrospective analysis, no Al-discovered molecule
has yet received full regulatory approval. There are many claims that,
though tantalising, are not yet substantiated in the clinic, such as the
discovery of a potential cancer therapy pathway [6]. The demise of
BenevolentAl is another example of this cognitive dissonance: once
valued at over $7 billion, it collapsed in 2023 amid unmet claims [7].
The saga exposed over-optimism in presuming ML alone could
overcome biological, regulatory, and experimental complexity.

Even when it comes to AlphaFold, the Nobel prize winning AI
tool, its protein structure predictions accelerate efforts to design
drugs but are no substitute for experiments [8]. Moreover, a new
generation of ‘co-folding' AI models, AlphaFold3, Boltz-1, Chai-1
and RoseTTAFold All-Atom, though impressive, sometimes defy
the laws of physics and chemistry. A recent paper warned against
uncritical faith in AT and argued for models grounded not just in
data but in the principles that govern the natural world [9]. Similarly,
when Google DeepMind trumpeted its discovery of 2.2 million new
crystalline materials using Al it seemed to promise a revolution in
materials science; instead, critics found some of its digital crystals
fantastical or unworkable: machine learning still needs the help of
human chemists [10].

While critiques of AI limitations exist across disciplines -
from philosophy to computer science - this perspective offers
a novel synthesis. We connect computational physics constraints
(floating-point limitations, chaos sensitivity) with epistemological
concerns (spurious correlations, lack of world models) and practical
failures (drug discovery, materials science). Our central thesis
that physics provides the constraints, interpretability, and rigour
that AI fundamentally lacks extends to proposing ‘Big AI' - a
synthesis of physics-informed modelling and machine learning - as
an organising framework. We go beyond earlier calls for “physics-
informed neural networks” to advocate a broader agenda that
includes quantum and analogue computation.

We first review the current state of Al in science, acknowledging
both genuine achievements and overstated claims. We then
systematically examine fundamental limitations of current AI
architectures. Finally, we propose physics informed, or ‘Big AT
and outline concrete pathways toward more reliable, interpretable
artificial intelligence. We acknowledge that AI has achieved notable
successes in specific domains but argue that broader impact requires
deeper integration with physical principles.

[llusions of intelligence

The current wave of hyperbole surrounds generative AL
Large Language Models, LLMs (machine learning model trained
on massive text datasets to generate and understand human-
like language, along with coding and some mathematics), Large
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Reasoning Models, LRMs (optimized not just for language but for
structured reasoning, logic, and problem-solving) and Agentic Al
(which can plan, take actions, and pursue goals autonomously).
They are often assumed to represent transformative breakthroughs
such that (leaving aside the point that there is no widely accepted
definition of what we mean by natural intelligence [11]) they are even
promoted as on a trajectory toward artificial general intelligence,
AGI, a hypothetical AT with human-level or greater ability to learn,
reason, and perform any cognitive task.

However, all these generational AI systems remain rooted in
Google's transformer paradigm, a neural network architecture that
processes data by paying selective “attention” to various parts
of the input at once. This approach has limitations, which we
will explore [12].

Rather than only ask what the current generation of Al
can do for physics, this article argues that it would be more
fruitful to consider what physics can do to improve AL While
some have claimed [13] that big data could lead to the “end of
theory;” with pattern detection replacing hypothesis-driven science,
a more common view is that big data analysis needs a robust
theoretical framework to interpret patterns, test hypotheses, and
derive meaningful, actionable knowledge. Insights from physics
provide grounding, constraints, and interpretability to improve the
current generation of AI [14].

Fundamental limitations of current Al
architectures

Current Al systems suffer from interconnected deficiencies
that stem from their training methodology and mathematical
foundations. These limitations fall into three broad categories.

Distributional failures

Al systems are usually trained and validated on a closed universe
of data. But apply them to another universe of data and, though
their predictions may be plausible, one cannot be sure that they
are correct. There have been high profile instances of AI image
recognition failing to work accurately for people from minority
ethnic groups, for example, because training sets are dominated
by lighter-skinned faces [15]. In healthcare systems, significant
racial bias has been found for similar reasons [16]. When AI
encounters data outside its training distribution - so-called out-of-
distribution inputs - its reliability collapses. The problems with ‘out
of distribution' AI, which is extrapolating rather than interpolating,
could be addressed if uncertainty qualification were easy with AL
But, as we will see, it is not.

Nor are real-world data uniform: they can contain gaps or
be skewed or subject to sampling errors. Many machine learning
algorithms assume data or noise is normally distributed (Gaussian,
or bell-curve shaped) because this simplifies the mathematics,
makes models analytically tractable, and underpins classical results
(for example, linear regression assumes Gaussian noise). But real-
world data is rarely Gaussian. Human language, images, financial
markets, biological data—all tend to be heavy-tailed, multimodal,
or skewed. If models implicitly or explicitly assume a Gaussian
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distribution, they can underestimate rare events, fail on marginal
cases, or misjudge uncertainty. Modern deep learning often avoids
explicit distributional assumptions, yet it still leans on Gaussian
scaffolding. (Deep learning uses neural networks with many hidden
layers (sometimes hundreds), giving them vast numbers of tunable
parameters to learn complex patterns). In models such as variational
autoencoders, for instance, latent variables are explicitly assumed
to follow a Gaussian distribution, allowing smooth interpolation
in the hidden space. Diffusion models, which now dominate Al
image generation, rely on Gaussian noise to corrupt and then
reconstruct data. Even in simple regression losses, the common
use of mean-squared error implicitly assumes Gaussian noise. A
Gaussian (normal) distribution has an undeniable role, but it is
far from universal. Indeed, it fails to describe most phenomena
where complexity holds sway. The real world is nonlinear and sharp
discontinuities can occur.

ML (differentiable)
relationships between the quantities they handle as a matter of

algorithms also assume smooth
convenience, because this allows the use of linear algebra, standard
software libraries, and substantial speed-up by GPU accelerators.
But the very non-linear systems that they are designed to predict
are often riddled with discontinuities. These “jumps” challenge
the mathematical assumptions the algorithms rely on, leading to
unstable or misleading outputs. As a result, even models that look
impressive on benchmark problems may stumble badly when faced
with real-world systems that do not behave smoothly.

Humans play a surprisingly important role in how Als are
set up and used, notably in establishing the categories used for
classification. That choice is frequently made without any attempt to
understand the structural characteristics that underlie the system of
interest, with the result that the ‘Al system' produced strongly reflects
the limitations or biases (be they implicit or explicit, as was the case

with classifications used by ImageNet) of its developers.

Lack of physical understanding

A foundation model is a generative Al system trained on large
datasets that can then be adapted and fine-tuned for specific tasks.
Fundamentally, however, they do not ‘understand' the world as
humans do. Astronomers like Johannes Kepler noticed patterns in
the night sky that could be used to pinpoint the future locations of
planets, and Isaac Newton would later generalise these insights to
develop Newtonian mechanics. But Al foundation models cannot
yet make the transition from good predictions to meaningful
world models [17]. One recent study found, for example, that
foundation models trained on the orbital trajectories of celestial
bodies consistently fail to apply Newtonian mechanics when
adapted to new physics tasks [18]. Though carefully constructed
to see if, based on data alone, a foundation model could build
a “world model,” it failed to do so. The foundation model had
no conception of Newton's law of gravity, even though it could
have discovered this law by taking the second derivative of the
trajectory data. Instead of generalising laws, the model learned
“task-specific heuristics,” or shortcuts, producing in the authors'
words “nonsense.” Akin to Ptolemy's celestial epicycles - circles upon
circles that once mapped the heavens with dazzling but misleading
precision - LLMs appear ‘intelligent’ through sheer accumulation
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of parameters rather than understanding [19, 20]. Big data LLM-
based Al is not enough: theory remains indispensable if explanations
are required [14].

As a corollary, it is no surprise that, unlike physics-based
models, current forms of AI do not provide insights and mechanistic
understanding-only predictions based on statistical inference. They
rely on big data and complex algorithms to identify patterns, but
their workings are opaque, even to the system developers. This
makes them ‘black boxes' that are hard to trust in high-stakes
applications like medicine. An LLM may “hallucinate” its way
through a series of fluent, sometimes convincing, but factually
incorrect steps [21].

One way forward is the development of forms of AI that are
inherently interpretable, meaning the complexity or design of the
system is limited so that developers obtain more insights into how
it works. Other approaches test how an AI ‘black box' works, for
example, by rerunning an initial model with some inputs changed
to work out which ones are most salient.

Since the advent of Large Reasoning Models, LRMs, such
as OpenAl's ol and DeepSeek-R1, and the introduction of
reinforcement learning, LRMs are attempting to provide correct
explanations. However, they too do not currently provide
trustworthy results because of the absence of defined metrics
to assess the reliability of such explanations when applied to
situations which are less quantitatively assessable than coding and
mathematics.

One comparative study of six large language models-DeepSeek,
ChatGPT, and Claude, including their reasoning-optimized
variants-shows that models tuned for reasoning consistently
outperform non-reasoning counterparts in scientific computing
and machine learning tasks. However, even these advanced models
are prone to ambiguous or incorrect outputs, underscoring the
need for improvements in LLM:s for scientific problem solving [22].
Another study, The Illusion of Thinking, concluded that LRMs only
outperform LLMs in medium complexity tasks and both collapse
in accuracy when tackling problems beyond certain complexities,
ultimately raising questions about the true reasoning capabilities
of LRMs [23]. Although these findings were contested by a paper
entitled The Illusion of The Illusion of Thinking, which argued
there were shortcomings in experimental design [24], another study
(entitled: The Illusion of The Illusion of The Illusion of Thinking)
with a better test design concluded ‘genuine challenges remain’ in
the capabilities of LRMs [25].

Digital pathologies, spurious correlations
and degenerative Al

Typically, digital computers handle four billion rational numbers
that range from plus to minus infinity, known as the ‘single-precision
IEEE floating-point numbers (the 32-bit or FP32 numbers). Yet
a significant part of the richness of the real world is only
captured by irrational numbers which cannot be represented on
any digital computer. In one study, which compared the known
mathematical reality of the generalised Bernoulli map to what FP32
computers predict, the results are wrong in many circumstances and
catastrophically so in some instances. As a result of the discreteness
of floating-point numbers, significant errors can arise in digital
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computers and the full extent of these errors is not understood
[26]. This suggests that renewed focus on analogue computers will
be necessary in the long term, and not just because of the soaring
power demands of high-performance digital computers [27]. It is
hardly surprising that, if we are to achieve AGI, we will need to pay
closer attention to how the human brain actually works, not least its
analogue nature.

Meanwhile, the current generation of machine learning
algorithms typically require hundreds of thousands to trillions or
more parameters, which are the connection weights between pairs
of “neurons” in a neural network. At the same time, companies
such as NVIDIA are using hardware and software that prioritise
half-precision and lower precisions to cut memory usage and boost
computational speed, handling single and double precision using
software emulators. As a result, a reduction in computational
performance of high-fidelity simulations is inevitable. However,
even if an Al operates in single precision, it depends on more fitting
parameters than there are available numbers for its computations.

With more parameters than representable values used in Al,
many collapse to the same numerical value due to rounding. This
leads to redundancy, where different parameters behave identically,
reducing the model's ability to learn nuanced patterns. One
mitigation strategy is to use stochastic rounding: instead of always
rounding a number up or down to the nearest whole number (or
decimal place), that decision is made randomly, based on how close
the number is to each option [28].

Nor do these vast numbers of parameters have intrinsic meaning
in the real world. They simply fit inputs to outputs to provide a
good match to real-world behaviour. The astronomical number of
parameters explains why ML can successfully fit so many arbitrary
relationships, like a glorified ‘look up' table. But this also accounts for
their unreliability, when making predictions based on unseen data.

A central theoretical hurdle facing the use of big data by AI was
identified by Cristian S. Calude and Giuseppe Longo in “The Deluge
of Spurious Correlations in Big Data” [29]. As datasets grow, spurious
(random) correlations vastly outnumber meaningful ones. LLMs
cannot distinguish these, so adding more data reduces the signal-
to-noise ratio and contributes to error pileup. Such correlations
arise even in randomly generated data: the size of a dataset alone
ensures that the deluge emerges. Spurious correlations outnumber
meaningful ones in very large, high-dimensional data sets. The
only way to sort the wheat from the chaff is through the scientific
method. This is far from trivial and, particularly in domains where
adequate theoretical understanding is lacking, one cannot make this
distinction readily.

Yet the companies which have developed the dominant large
language models still assert that bigger is better. Partly as a
consequence of Calude and Longo's findings, it is plain that making
LLMs larger by training them on more data and including vastly
more parameters does not guarantee significant improvement [21].
Indeed, the current efforts being undertaken to try to improve LLM
performance are purely empirical.

The existing algorithms (based on the transformer architecture)
exhibit poor scaling properties. These prevent LLMs from achieving
the reliability and accuracy required for scientific applications
through brute-force scaling. When using principles from statistical
physics, one finds that the incremental improvements to LLM
algorithms come at the cost of astronomical compute and energy
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requirements (tens of gigawatt-hours of electricity now and
hundreds soon, underlining why Microsoft struck a deal to restart
the Three Mile Island nuclear plant [30]). The nonlinear activation
functions within LLMs transform Gaussian inputs into non-
Gaussian outputs with fat tails. In this situation, uncertainty in
predictions decays much more slowly than would otherwise be
expected, further compounding the difficulty of achieving high
accuracy. This problem is exacerbated by Calude and Longo's deluge
of spurious correlations which increase very rapidly as the size of
the data set increases. The outcome can then sometimes be a loop of
self-amplifying error - what is sometimes called “degenerative AI” -
where predictions degrade with increasing amounts of training data,
especially if that data is augmented by data generated previously by
Al systems.

A wall confronts large language models [21] and it becomes
steeper, and more quickly, when models are trained on low-
quality or synthetic data, creating a feedback loop of compounding
inaccuracies. To deal with this profound problem, one must
understand the behaviour of LLMs based on the theory of non-linear
dynamical systems. That is, we need real world physics to explain
how they work so we can develop better algorithms than current
transformers.

X\{hat physics could and should do for

Physics provides precisely what today's AI lacks: constraints,
interpretability, and uncertainty quantification. Combining AI with
physics-informed methods often leads to improved performance:
Physics-Informed Neural Networks (PINNs) outperform pure data-
driven approaches in fluid dynamics [31], extracting quantitative
information for which direct measurements may not be possible
[32]. In weather forecasting, claims made for AI outperforming
conventional methods are contentious. AI does not do as well as
physics-based models, particularly when chaos is relevant at short
time scales: they cannot simulate the ‘butterfly effect' [33]. Nor can
AT forecast weather events beyond the scope of existing training data
(such as events that are so rare they are so called gray swans), which
might exclude unprecedented heat waves, floods or hurricanes
[34]. What it is mainly useful for being able to make predictions
using “inference” much faster. NowcastNet, blends physics-based
forecasting, based on fluid flow equations, with deep learning
augmented by empirical data to provide ‘nowcasting' of precipitation
with reported higher success than traditional numerical models
[35, 36].

Chaos is also an issue when it comes to molecular dynamics,
MD, which has been relatively unappreciated by the MD
community: nonlinearity undermines the ability to train an Al
system on one off sets of data. AI predictions made fail even
when interpolating (as opposed to extrapolating) because any real
molecular system (say the space of all molecular structures), is vastly
more complicated than the Al can have any knowledge of. Even here,
introducing physics-based methods to ensure predictions of AI are
scientifically reasonable can create a virtuous circle [37].

Al systems are only as robust as the assumptions on which they
rest and the data they ingest. Poorly curated, biased, or synthetic
datasets can introduce systemic errors, especially when used
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recursively in model training. Rigorous data curation, provenance
tracking, and annotation standards are essential to prevent feedback
loops amplifying misinformation.

Al requires rigorous verification, validation, and uncertainty
quantification (VVUQ), the triad that underpins trustworthy
modelling in applied mathematics, statistics, and engineering. While
VVUQ is well-established for traditional engineering simulations,
it is a subject of active research, for example, to deal with large
uncertain parameter spaces (for possibly hundreds to trillions of
parameters). In Al and machine learning, this field is still in its
infancy, hampered by models whose workings are opaque, sprawling
in dimension, and detached from physical reality [27].

For a physics-based model, in contrast, VVUQ reveals precisely
how to improve predictions. Unlike physics-based models, however,
machine learning algorithms lack a direct mapping between model
parameters and physical quantities, making interpretability and
refinement difficult. Even if we can pinpoint connection weights
which are responsible for most of the uncertainty in a machine
learning algorithm, there is no way of knowing how or what to adjust
to reduce the uncertainty. The principal way claimed to improve
predictions from Al systems rests on a simple idea: “give me more
data”, but we have already explained why that approach is neither
necessary nor sufficient.

AT researchers sometimes resort to ad hoc techniques such
as a so-called Monte Carlo dropout procedure, which estimates
predictive uncertainty by systematically omitting an increasing
fraction of the neurons within each hidden layer during inference,
and Bayesian neural networks, which treat weights as probability
distributions rather than fixed numbers. However, these methods
lack precision, do not comply with the tenets of systematic UQ, and
typically underestimate the true uncertainty in these AI systems. In
recent work underway with Wouter Edeling, one of us (PVC) has
found that a deep active subspace approach taken from state-of-the-
art UQ methodology, building on related preliminary work, may
provide a means of dramatically reducing the number of parameters
required to capture the key behaviour of AI systems [38].

The prize of this effort is clear. If and only if AI-based predictions
pass muster, in terms of VVUQ, they will become “actionable” —
you can use them to make decisions in critical circumstances, for
instance when caring for patients, because you can be confident that
their predictions are indeed reliable (within a specified uncertainty
bound). With reliable uncertainty bounds, AI outputs can also be
safely “actionable” in science.

Aside from analogue computation, another way to tame chaos
is to blend quantum-inspired machine learning with classical
dynamical systems theory [39]. Traditional machine learning
models, when applied to chaotic systems, often require vast
computational resources and still fall short of capturing long-term
dynamics. These systems are sensitive to initial conditions, and small
errors can quickly snowball.

The solution lies not in brute force but in elegance, in the
form of understanding. Here we are referring to a Quantum Circuit
Born Machine (QCBM), a probabilistic model inspired by the Born
rule in quantum mechanics [39, 40]. QCBMs learn patterns in
data using principles from quantum physics. Because they work
in the mathematical space that quantum systems naturally occupy,
Hilbert space, they can capture relationships in data that classical
machine-learning models might miss. And they can do this with
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far fewer adjustable settings. The patterns they learn - quantum
priors” - can then be fed into ordinary AI models to help them
make better predictions. For example, QCBM:s can be used to learn
the high-dimensional energy landscapes that govern molecular
dynamics, helping to predict stable molecular conformations or rare
transition states more efficiently than classical sampling methods.
One application has been to small molecule design of KRAS
inhibitors [41].

Quantum computing remains in its infancy, though there are
encouraging hints of quantum advantage in this domain. In the
meantime, quantum-inspired machine learning (QIML) - including
models like QCBMs - offers a useful middle ground: it makes
limited use of a quantum device to produce a quantum prior which
enhances predictions made on ordinary computers. By embedding
physical insight into machine learning architectures, smarter - not
simply bigger - models may be the key to unlocking complex
phenomena.

However, there are limits. Scaling these methods to the
enormous chemical libraries used in drug discovery is still difficult.
And until analogue AI becomes mainstream, today's digital Al
systems remain poor at dealing with truly chaotic, highly complex
systems. Their predictions tend to fall apart the further they look
into the future, they struggle to measure uncertainty well, and
they sometimes mistake short-term patterns for real underlying
behaviour. These shortcomings mean that current Al is better seen
asatool for probing chaos locally, rather than conquering it outright.

This work is part of a broader movement to integrate physics
and Al a trend that promises to reshape scientific computing [42].
With applications being investigated in a wide range of domains,
from climate systems to biological processes, the fusion of quantum
ideas with machine learning may offer a new path forward-one
that is not only computationally efficient but also grounded in the
laws of nature.

Physics provides a rigorous theoretical framework for
understanding learning algorithms, through the application of
non-linear dynamical systems, theory and statistical mechanics.
Physics offers the constraints needed to sift meaningful patterns
from spurious ones. Embedding symmetries, conservation laws,
invariances and understanding into model design can help prevent
Al from over-relying on misleading patterns. For applications
requiring high reliability, notably in medicine, AI needs to
integrate scientific principles and domain-specific knowledge,
whether physical, chemical, or biological. Physics-informed
models are not a panacea, however. They require well-understood
governing equations and may struggle in domains such as
economics and social systems where such laws are unknown or
poorly defined.

The ultimate aim should be physics-informed learning-what
we call “Big AI” [43]-which blends theory with machine learning.
To achieve Big Al ideally means embedding conservation laws,
symmetries, and invariances directly into model architectures;
combining interpretable physics equations with flexible ML
components: certifying uncertainty with VVUQ inherited from
physics-based modelling; providing mechanistic interpretability,
such that each parameter maps to physical quantities or processes;
and theory-guided learning, where domain knowledge constrains
parameter spaces and prevent spurious correlations. Ultimately,
analogue computation, conventional and quantum, should be the
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TABLE 1 Pure Al learns from data; Big Al learns from nature.

Feature Pure Al

Physics-informed Al

Interpretability Low High
Uncertainty qualification Weak Strong
Scalability High Moderate
Mechanistic insight None Embedded
Data dependence High Lower

substrate as it should often be the source of the “ground truth”
against which AI predictions should be made. The goal is not to
replace either physics or ML, but to create a new paradigm wherein
the whole is greater than the sum of these two parts.

This provides interpretability and mechanistic insight (physical
constraints, laws, conservation); better uncertainty quantiﬁcation
(because physics-based models allow error bounds, sensitivity to
input variation, and so on); improved generalization, especially
outside data-rich settings, since the physics component embeds
known invariances or behaviour (see Table 1).

A roadmap for big Al

To realise the benefits of physics informed AI, we propose a
research agenda across three timescales:

Near-term (1-3 years): Develop new AI and open physics-
informed algorithms with improved scaling performance and more
reliable error metrics; Standardize VVUQ protocols for ML in
scientific computing; Establish community-defined benchmarks
comparing physics-informed with pure ML predictions across
multiple domains; Understand in more quantitative terms the
impact of the deluge of spurious correlations to determine efficient
means of dealing with it.

Medium-term (3-7 years): Scale quantum-inspired machine-
learning algorithms to industrially relevant problems; Develop
hybrid analogue computing architectures or practical use;
Integrate causal inference with physics constraints for improved
generalization and reliable reasoning.

(7-15 years):
computing for scientific ML; Develop high accuracy, high precision

Long-term Achieve fault-tolerant quantum
analogue systems for general purpose computing; Establish an
AGI theory grounded in physical law, not in the more speculative
promise-championed by AI maximalists-that an algorithm might
one day infer or even invent the universe's rules from pure data.

X\{hy physics must shape the future of

The next revolution in AI will not be driven by scale alone,
but by its consistency with and understanding of the laws
of nature. AI has contributed to genuine scientific advances,
but its current incarnation often provides glib answers that
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raise troubling questions about mechanistic insight, scalability
and reliability. As a result, claims of the broader promise of
current Al as a step towards AGI remain unconvincing. The
subjective elements of modern Al its reliance on vast numbers
of meaningless parameters, black-box models, and very limited
uncertainty quantification have led to many failures, especially
in extrapolation beyond training data but also not infrequently
when interpolating. The laws of nature and rigorous theory
are essential correctives. Embedding physical laws, using hybrid
models, constraining parameters, improving uncertainty estimation,
and exploring quantum and analogue computational paradigms
are pathways to a more mature, dependable, and scientifically
credible AL

To move beyond pattern recognition and toward genuine
understanding, Al must be grounded in scientific laws, theory,
and curated data. This demands a new kind of collaboration -
between theoreticians, computer scientists, and domain experts -
to co-design models that are not just powerful, but principled,
interpretable, and physically constrained. Physics-informed AI-Big
Al - also offers a path to more auditable and trustworthy
systems, especially as Al increasingly influences decisions in
science, the workplace and medicine. To safeguard these advances,
we must also build robust governance frameworks that ensure
transparency, accountability, and safety. The future of AI will be
defined not only by advances in algorithms, but by its integration
with the fundamental laws of nature and the discipline of the
scientific method.

Author contributions

PC: Funding acquisition, Writing - original draft, Writing —
review and editing. RH: Writing - original draft, Writing — review
and editing.

Funding

The author(s) declared that financial support was received
for this work and/or its publication. The authors acknowledge
funding from (i) UKRI-EPSRC for the UK High-End Computing
Consortium (EP/R029598/1), the Software Environment for
Actionable and VVUQ-evaluated Exascale Applications (SEAVEA)
grant (EP/W007762/1), the UK Consortium on Mesoscale
Engineering Sciences (UKCOMES grant no. EP/L00030X/1), and
the Computational Biomedicine at the Exascale (CompBioMedX)
grant (EP/X019276/1); (ii) the European Commission for EU H2020
CompBioMed2 Center of Excellence (grant no. 823712). RH was a
member of the UKRI-Medical Research Council.

Conflict of interest
The author(s) declared that this work was conducted in the

absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

frontiersin.org


https://doi.org/10.3389/fphy.2025.1731777
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Coveney and Highfield

Generative Al statement

The author(s) declared that generative AI was not used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

References

1. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep
convolutional neural networks. in Advances in Neural Information Processing Systems
25. (NeurIPS). (2012) 60 (6), p. 84-90. doi:10.1145/3065386

2. Zhang Y, Khan SA, Mahmud A, Yang H, Lavin A, Levin M, et al. Exploring the
role of large language models in the scientific method: from hypothesis to discovery.
Npj Artif Intell (2025) 1:14. doi:10.1038/544387-025-00019-5

3. MIT. State of Al in the enterprise. Cambridge, MA: MIT Sloan Management Review
(2024).

4. The Nobel Prize. Nobel prize in Physics 2024 (2026) Available online at: https://
www.nobelprize.org/prizes/physics/2024/summary/ (Accessed January 21, 2026).

5. The Nobel Prize. Nobel prize in Chemistry 2024 (2026) Available online at: https://
www.nobelprize.org/prizes/chemistry/2024/summary/ (Accessed January 21, 2026).

6. Rizvi SA, Levine D, Patel A, Zhang S, Wang E, Jamison Perry C, et al. Scaling large
language models for next-generation single-cell analysis. bioRxiv (2025) 04.14:648850.
doi:10.1101/2025.04.14.648850

7. Financial Times (2024). “BenevolentAT’s collapse: lessons for drug discovery
startups.”

8. Terwilliger TC, Liebschner D, Croll TI, Williams CJ, McCoy AJ, Poon
BK, et al. AlphaFold predictions are valuable hypotheses and accelerate but do
not replace experimental structure determination. Nat Methods (2024) 21:110-6.
doi:10.1038/s41592-023-02087-4

9. Masters MR, Mahmoud AH, Lill MA. Investigating whether deep learning models
for co-folding learn the physics of protein-ligand interactions. Nat Commun (2025)
16:8854. doi:10.1038/s41467-025-63947-5

10. Peplow M. Al is dreaming up millions of new materials. Are they any good?
Nature (2025) 646(8083):22-5. doi:10.1038/d41586-025-03147-9

11. Hampshire A, Highfield RR, Parkin BL, Owen AM. Fractionating
human intelligence. Neuron (2012) 76:1225-37. doi:10.1016/j.neuron.2012.
06.022

12. Coveney P, Highfield R. Artificial intelligence must be made more scientific. J
Chem Inf Model (2024) 64(15):5739-41. doi:10.1021/acs.jcim.4c01091

13. Anderson C. The end of theory: the data deluge makes the scientific method
obsolete. Wired (2008). Available online at: http://www.wired.com/2008/06/pb-theory/
(Accessed January 21, 2026).

14. Coveney PV, Dougherty ER, Highfield RR. Big data need big theory
too. Philosophical Trans R Soc A (2016) 374:20160153. doi:10.1098/rsta.2016.
0153

15. Buolamwini ], Gebru T. Gender shades: intersectional accuracy disparities in
commercial gender classification. In: Proceedings of machine learning research 81:1-15,
2018 conference on fairness, accountability, and transparency (2018).

16. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in
an algorithm used to manage the health of populations. Science (2019) 366:447-53.
doi:10.1126/science.aax2342

17. Vafa K, Chen JY, Rambachan A, Kleinberg J, Mullainathan S. Evaluating the
world model implicit in a generative model. In: Proceedings of the 38th International
Conference on Neural Information Processing Systems. Vancouver, Canada (2024).
Available online at: https://arxiv.org/abs/2406.03689.

18. Vafa K, Chang PG, Rambachan A, Mullainathan S. What has a foundation
model found? Using inductive bias to probe for world models. In: Proceedings of
the 42nd international conference on machine learning. Vancouver, Canada (2025).
doi:10.48550/arXiv.2507.06952

19. Quattrociocchi W, Valerio C, Matjaz P. Epistemological fault lines between
human and artificial intelligence. arXiv preprint arXiv:2512.19466. (2025).
doi:10.48550/arXiv.2512.19466

20. Ash’s Blog. Before AI's Kepler Moment - Are LLMs the Epicycles of Intelligence?
(2025). Available online at: https://ashvardanian.com/posts/llm-epicycles/.

Frontiers in Physics

07

10.3389/fphy.2025.1731777

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their those of the publisher,

the editors and the reviewers. Any product that may be

affiliated organizations, or

evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

21. Coveney P, Succi S. The wall confronting large language models. (2025).
doi:10.48550/arXiv.2507.19703

22. Jiang Q, Gao Z, George EK. DeepSeek vs. ChatGPT vs. claude: a comparative
study for scientific computing and scientific machine learning tasks. Theor Appl Mech
Lett (2025) 15(3):100583. doi:10.1016/j.tam1.2025.100583

23. Shojaee P, Mirzadeh I, Alizadeh K, Horton M, Bengio S, Farajtabar M. The illusion
of thinking: understanding the strengths and limitations of reasoning models via the
lens of problem complexity. Machine Learning Research at Apple (2025). Available
online at: https://machinelearning.apple.com/research/illusion-of-thinking (Accessed
January 21, 2026).

24. Shojaee P, Mirzadeh I, Alizadeh K, Horton M, Bengio S, Farajtabar M.
The illusion of thinking: understanding the strengths and limitations of reasoning
models via the lens of problem complexity. arXiv preprint arXiv:2506.06941 (2025) 2.
doi:10.70777/si.v2i6.15919

25. Available  online at: https://www.scribd.com/document/881816132/
The-Illusion-of-the-Illusion-of-the-Illusion-of-Thinking (Accessed January 21, 2026).

26. Boghosian BM, Coveney PV, Wang H. A new pathology in the simulation of
chaotic dynamical systems on digital computers. Adv Theor Simul. (2019) 2:1900125.
doi:10.1002/adts.201900125

27. Coveney PV, Highfield RR. When we can trust computers (and when we can’t).
Phil Trans R Soc A (2021) 379:20200067. doi:10.1098/rsta.2020.0067

28. Coveney PV. Sharkovskii’s theorem and the limits of digital computers for
the simulation of chaotic dynamical systems. J Comput Sci (2024) 83:102449.
doi:10.1016/j.jocs.2024.102449

29. Calude CS, Longo G. The deluge of spurious correlations in big data. Found Sci.
(2017) 22:595-612. doi:10.1007/s10699-016-9489-4

30. Hollys B. Accelerating the addition of carbon-free energy: An update on
progress. Microsoft (2024) Available online at: https://www.microsoft.com/en-us/
microsoft-cloud/blog/2024/09/20/accelerating-the-addition-of-carbon-free-energy-
an-update-on-progress/ (Accessed January 21, 2026).

31. Cai S, Mao Z, Wang Z, Yin M, Karniadakis GE. Physics-informed neural
networks (PINNs) for fluid mechanics: a review. Acta Mech Sin (2021) 37:1727-38.
doi:10.1007/s10409-021-01148-1

32. Raissi M, Yazdani A, Karniadakis GE. Hidden fluid mechanics: learning
velocity and pressure fields from flow visualizations. Science (2020) 367:1026-30.
doi:10.1126/science.aaw4741

33. Selz T, Craig GC. Can artificial intelligence-based weather prediction
models simulate the butterfly effect? Geophys Res Lett (2023) 50:e2023GL105747.
doi:10.1029/2023GL105747

34. Sun YQ, Hassanzadeh P, Zand M, Chattopadhyay A, Weare ], Abbot DS. Can AI
weather models predict out-of-distribution gray swan tropical cyclones? Proc Natl Acad
Sci USA (2025) 122(21):e2420914122. doi:10.1073/pnas.2420914122

35. Zhang Y, Long M, Chen K, Xing L, Jin R, Jordan MI, et al. Skilful
nowcasting of extreme precipitation with NowcastNet. Nature (2023) 619:526-32.
doi:10.1038/541586-023-06184-4

36. Das P, Posch A, Barber N, Hicks M, Duffy K, Vandal T, et al. Hybrid physics-Al
outperforms numerical weather prediction for extreme precipitation nowcasting. Clim
Atmos Sci (2024) 7:282. doi:10.1038/s41612-024-00834-8

37. Loeftler H, Wan S, Klihn M, Bhati A, Coveney PV. Optimal molecular
design: generative active learning combining REINVENT with precise binding
free energy ranking simulations. ] Chem Theor Comput (2024) 20(18):8308-28.
doi:10.1021/acs.jctc.4c00576

38. Edeling W, Vassaux M, Yang Y, Wan S, Guillas S, Coveney PV. Global ranking
of the sensitivity of interaction potential contributions within classical molecular
dynamics force fields. npj Comput Mater (2024) 10:87. doi:10.1038/s41524-024-01272-z

39. Wang M, Xue X, Gao M, Coveney PV. “Quantum-informed machine learning for
predicting spatiotemporal chaos.” (2025).

frontiersin.org


https://doi.org/10.3389/fphy.2025.1731777
https://doi.org/10.1145/3065386
https://doi.org/10.1038/s44387-025-00019-5
https://www.nobelprize.org/prizes/physics/2024/summary/
https://www.nobelprize.org/prizes/physics/2024/summary/
https://www.nobelprize.org/prizes/chemistry/2024/summary/
https://www.nobelprize.org/prizes/chemistry/2024/summary/
https://doi.org/10.1101/2025.04.14.648850
https://doi.org/10.1038/s41592-023-02087-4
https://doi.org/10.1038/s41467-025-63947-5
https://doi.org/10.1038/d41586-025-03147-9
https://doi.org/10.1016/j.neuron.2012.06.022
https://doi.org/10.1016/j.neuron.2012.06.022
https://doi.org/10.1021/acs.jcim.4c01091
http://www.wired.com/2008/06/pb-theory/
https://doi.org/10.1098/rsta.2016.0153
https://doi.org/10.1098/rsta.2016.0153
https://doi.org/10.1126/science.aax2342
https://arxiv.org/abs/2406.03689
https://doi.org/10.48550/arXiv.2507.06952
https://doi.org/10.48550/arXiv.2512.19466
https://ashvardanian.com/posts/llm-epicycles/
https://doi.org/10.48550/arXiv.2507.19703
https://doi.org/10.1016/j.taml.2025.100583
https://machinelearning.apple.com/research/illusion-of-thinking
https://doi.org/10.70777/si.v2i6.15919
https://www.scribd.com/document/881816132/The-Illusion-of-the-Illusion-of-the-Illusion-of-Thinking
https://www.scribd.com/document/881816132/The-Illusion-of-the-Illusion-of-the-Illusion-of-Thinking
https://doi.org/10.1002/adts.201900125
https://doi.org/10.1098/rsta.2020.0067
https://doi.org/10.1016/j.jocs.2024.102449
https://doi.org/10.1007/s10699-016-9489-4
https://www.microsoft.com/en-us/microsoft-cloud/blog/2024/09/20/accelerating-the-addition-of-carbon-free-energy-an-update-on-progress/
https://www.microsoft.com/en-us/microsoft-cloud/blog/2024/09/20/accelerating-the-addition-of-carbon-free-energy-an-update-on-progress/
https://www.microsoft.com/en-us/microsoft-cloud/blog/2024/09/20/accelerating-the-addition-of-carbon-free-energy-an-update-on-progress/
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1126/science.aaw4741
https://doi.org/10.1029/2023GL105747
https://doi.org/10.1073/pnas.2420914122
https://doi.org/10.1038/s41586-023-06184-4
https://doi.org/10.1038/s41612-024-00834-8
https://doi.org/10.1021/acs.jctc.4c00576
https://doi.org/10.1038/s41524-024-01272-z
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Coveney and Highfield

40. Liu J-G, Wang L. Differentiable learning of quantum circuit
born machines. Phys Rev A (2018) 98:062324. doi:10.1103/physreva.98.
062324

41. Ghazi Vakili M, Gorgulla C, Snider J, Nigam A, Bezrukov D, Varoli D, et al.
Quantum-computing-enhanced algorithm unveils potential KRAS inhibitors. Nat
Biotechnol (2025) 1. doi:10.1038/s41587-024-02526-3

Frontiers in Physics

08

10.3389/fphy.2025.1731777

42. Coveney PV, Highfield R. Big Al: blending big data with big theory to build virtual
humans. In: A Choudhary, G Fox, T Hey, editors. Artificial intelligence for science. World
Scientific (2023). p. 381-98.

43. Coveney P, Highfield R, Stahlberg E, Vazquez M. Digital twins and Big
AL the future of truly individualised healthcare. Npj Digit Med (2025) 8:494.
doi:10.1038/s41746-025-01874-x

frontiersin.org


https://doi.org/10.3389/fphy.2025.1731777
https://doi.org/10.1103/physreva.98.062324
https://doi.org/10.1103/physreva.98.062324
https://doi.org/10.1038/s41587-024-02526-3
https://doi.org/10.1038/s41746-025-01874-x
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

	Introduction
	Illusions of intelligence
	Fundamental limitations of current AI architectures
	Distributional failures
	Lack of physical understanding
	Digital pathologies, spurious correlations and degenerative AI

	What physics could and should do for AI
	A roadmap for big AI
	Why physics must shape the future of AI
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

