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Artificial intelligence (AI) is commonly depicted as transformative. Yet, after 
more than a decade of hype, its measurable impact remains modest outside a 
few high-profile scientific and commercial successes. The 2024 Nobel Prizes 
in Chemistry and Physics recognized AI's potential, but broader assessments 
indicate the impact to date is often more promotional than technical. We argue 
that while current AI may influence physics, physics has significantly more 
to offer this generation of AI. Current architectures—large language models, 
reasoning models, and agentic AI–can depend on trillions of meaningless 
parameters, suffer from distributional bias, lack uncertainty quantification, 
provide no mechanistic insights, and fail to capture even elementary scientific 
laws. We review critiques of these limits, highlight opportunities in quantum AI 
and analogue computing, and lay down a roadmap for the adoption of ‘Big AI': 
a synthesis of theory-based rigour with the flexibility of machine learning.

KEYWORDS

artificial intelligence, generative AI, machine learning, physics-based machine learning, 
spurious correlations, big AI, physics based modelling, AI roadmap 

Introduction

Artificial intelligence has been hailed as the defining innovation of the 21st century. The 
current wave of AI hyperbole is traced back to 2012, when Geoffrey Hinton's group used 
deep convolutional neural networks to win the ImageNet competition - an annual computer 
vision competition - by a large margin [1]. AI has achieved genuine breakthroughs in protein 
structure prediction, game playing, and image recognition. Current expectations encompass 
every endeavour: games, drug discovery, energy management, climate modelling, defence, 
and even the conduct of science itself [2]. Venture capitalists, policymakers, and researchers 
alike have spoken of a revolution akin to that spurred by earlier disruptive technologies, 
from the wheel and railways to electrification and the internet.

Yet there is a yawning gap between aspiration and realization. The MIT Sloan Center for 
Information Systems Research found that while enterprise AI adoption is widespread, many 
organisations remain in early maturity stages [3]. Most companies use AI for marketing and 
customer engagement, rather than for solving core research or engineering challenges.

At the same time, AI was given the ultimate scientific recognition in 2024. The 
Physics Nobel Prize, shared by Hinton, cited foundational discoveries and inventions 
that enable machine learning with artificial neural networks [4], while the chemistry 
Nobel prize acknowledged AI's role in protein structure prediction and computational 
protein design [5], suggesting that AI can make a valuable contribution to scientific progress.
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That remains to be fully established. The key question is the 
following: are AI predictions as trustworthy as they are plausible? 
There is still a gap between expectation and reality, as shown by AI-
driven drug discovery startups, which once promised to compress 
timelines by years. While some stages of drug discovery benefit 
from machine learning, many do not. AI has helped to shave 
several months–up to a year in some cases - from the discovery 
process, which is promising but falls far short of the hyperbole. 
Although AI models are used for target identification, molecule 
screening, and retrospective analysis, no AI-discovered molecule 
has yet received full regulatory approval. There are many claims that, 
though tantalising, are not yet substantiated in the clinic, such as the 
discovery of a potential cancer therapy pathway [6]. The demise of 
BenevolentAI is another example of this cognitive dissonance: once 
valued at over $7 billion, it collapsed in 2023 amid unmet claims [7]. 
The saga exposed over-optimism in presuming ML alone could 
overcome biological, regulatory, and experimental complexity.

Even when it comes to AlphaFold, the Nobel prize winning AI 
tool, its protein structure predictions accelerate efforts to design 
drugs but are no substitute for experiments [8]. Moreover, a new 
generation of ‘co-folding' AI models, AlphaFold3, Boltz-1, Chai-1 
and RoseTTAFold All-Atom, though impressive, sometimes defy 
the laws of physics and chemistry. A recent paper warned against 
uncritical faith in AI and argued for models grounded not just in 
data but in the principles that govern the natural world [9]. Similarly, 
when Google DeepMind trumpeted its discovery of 2.2 million new 
crystalline materials using AI, it seemed to promise a revolution in 
materials science; instead, critics found some of its digital crystals 
fantastical or unworkable: machine learning still needs the help of 
human chemists [10].

While critiques of AI limitations exist across disciplines - 
from philosophy to computer science - this perspective offers 
a novel synthesis. We connect computational physics constraints 
(floating-point limitations, chaos sensitivity) with epistemological 
concerns (spurious correlations, lack of world models) and practical 
failures (drug discovery, materials science). Our central thesis 
that physics provides the constraints, interpretability, and rigour 
that AI fundamentally lacks extends to proposing ‘Big AI' - a 
synthesis of physics-informed modelling and machine learning - as 
an organising framework. We go beyond earlier calls for “physics-
informed neural networks” to advocate a broader agenda that 
includes quantum and analogue computation.

We first review the current state of AI in science, acknowledging 
both genuine achievements and overstated claims. We then 
systematically examine fundamental limitations of current AI 
architectures. Finally, we propose physics informed, or ‘Big AI' 
and outline concrete pathways toward more reliable, interpretable 
artificial intelligence. We acknowledge that AI has achieved notable 
successes in specific domains but argue that broader impact requires 
deeper integration with physical principles.

Illusions of intelligence

The current wave of hyperbole surrounds generative AI. 
Large Language Models, LLMs (machine learning model trained 
on massive text datasets to generate and understand human-
like language, along with coding and some mathematics), Large 

Reasoning Models, LRMs (optimized not just for language but for 
structured reasoning, logic, and problem-solving) and Agentic AI 
(which can plan, take actions, and pursue goals autonomously). 
They are often assumed to represent transformative breakthroughs 
such that (leaving aside the point that there is no widely accepted 
definition of what we mean by natural intelligence [11]) they are even 
promoted as on a trajectory toward artificial general intelligence, 
AGI, a hypothetical AI with human-level or greater ability to learn, 
reason, and perform any cognitive task.

However, all these generational AI systems remain rooted in 
Google's transformer paradigm, a neural network architecture that 
processes data by paying selective “attention” to various parts 
of the input at once. This approach has limitations, which we 
will explore [12].

Rather than only ask what the current generation of AI 
can do for physics, this article argues that it would be more 
fruitful to consider what physics can do to improve AI. While 
some have claimed [13] that big data could lead to the “end of 
theory,” with pattern detection replacing hypothesis-driven science, 
a more common view is that big data analysis needs a robust 
theoretical framework to interpret patterns, test hypotheses, and 
derive meaningful, actionable knowledge. Insights from physics 
provide grounding, constraints, and interpretability to improve the 
current generation of AI [14].

Fundamental limitations of current AI 
architectures

Current AI systems suffer from interconnected deficiencies 
that stem from their training methodology and mathematical 
foundations. These limitations fall into three broad categories. 

Distributional failures

AI systems are usually trained and validated on a closed universe 
of data. But apply them to another universe of data and, though 
their predictions may be plausible, one cannot be sure that they 
are correct. There have been high profile instances of AI image 
recognition failing to work accurately for people from minority 
ethnic groups, for example, because training sets are dominated 
by lighter-skinned faces [15]. In healthcare systems, significant 
racial bias has been found for similar reasons [16]. When AI 
encounters data outside its training distribution - so-called out-of-
distribution inputs - its reliability collapses. The problems with ‘out 
of distribution' AI, which is extrapolating rather than interpolating, 
could be addressed if uncertainty qualification were easy with AI. 
But, as we will see, it is not.

Nor are real-world data uniform: they can contain gaps or 
be skewed or subject to sampling errors. Many machine learning 
algorithms assume data or noise is normally distributed (Gaussian, 
or bell-curve shaped) because this simplifies the mathematics, 
makes models analytically tractable, and underpins classical results 
(for example, linear regression assumes Gaussian noise). But real-
world data is rarely Gaussian. Human language, images, financial 
markets, biological data—all tend to be heavy-tailed, multimodal, 
or skewed. If models implicitly or explicitly assume a Gaussian 
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distribution, they can underestimate rare events, fail on marginal 
cases, or misjudge uncertainty. Modern deep learning often avoids 
explicit distributional assumptions, yet it still leans on Gaussian 
scaffolding. (Deep learning uses neural networks with many hidden 
layers (sometimes hundreds), giving them vast numbers of tunable 
parameters to learn complex patterns). In models such as variational 
autoencoders, for instance, latent variables are explicitly assumed 
to follow a Gaussian distribution, allowing smooth interpolation 
in the hidden space. Diffusion models, which now dominate AI 
image generation, rely on Gaussian noise to corrupt and then 
reconstruct data. Even in simple regression losses, the common 
use of mean-squared error implicitly assumes Gaussian noise. A 
Gaussian (normal) distribution has an undeniable role, but it is 
far from universal. Indeed, it fails to describe most phenomena 
where complexity holds sway. The real world is nonlinear and sharp 
discontinuities can occur.

ML algorithms also assume smooth (differentiable) 
relationships between the quantities they handle as a matter of 
convenience, because this allows the use of linear algebra, standard 
software libraries, and substantial speed-up by GPU accelerators. 
But the very non-linear systems that they are designed to predict 
are often riddled with discontinuities. These “jumps” challenge 
the mathematical assumptions the algorithms rely on, leading to 
unstable or misleading outputs. As a result, even models that look 
impressive on benchmark problems may stumble badly when faced 
with real-world systems that do not behave smoothly.

Humans play a surprisingly important role in how AIs are 
set up and used, notably in establishing the categories used for 
classification. That choice is frequently made without any attempt to 
understand the structural characteristics that underlie the system of 
interest, with the result that the ‘AI system' produced strongly reflects 
the limitations or biases (be they implicit or explicit, as was the case 
with classifications used by ImageNet) of its developers. 

Lack of physical understanding

A foundation model is a generative AI system trained on large 
datasets that can then be adapted and fine-tuned for specific tasks. 
Fundamentally, however, they do not ‘understand' the world as 
humans do. Astronomers like Johannes Kepler noticed patterns in 
the night sky that could be used to pinpoint the future locations of 
planets, and Isaac Newton would later generalise these insights to 
develop Newtonian mechanics. But AI foundation models cannot 
yet make the transition from good predictions to meaningful 
world models [17]. One recent study found, for example, that 
foundation models trained on the orbital trajectories of celestial 
bodies consistently fail to apply Newtonian mechanics when 
adapted to new physics tasks [18]. Though carefully constructed 
to see if, based on data alone, a foundation model could build 
a “world model,” it failed to do so. The foundation model had 
no conception of Newton's law of gravity, even though it could 
have discovered this law by taking the second derivative of the 
trajectory data. Instead of generalising laws, the model learned 
“task-specific heuristics,” or shortcuts, producing in the authors' 
words “nonsense.” Akin to Ptolemy's celestial epicycles - circles upon 
circles that once mapped the heavens with dazzling but misleading 
precision - LLMs appear ‘intelligent' through sheer accumulation 

of parameters rather than understanding [19, 20]. Big data LLM-
based AI is not enough: theory remains indispensable if explanations 
are required [14].

As a corollary, it is no surprise that, unlike physics-based 
models, current forms of AI do not provide insights and mechanistic 
understanding-only predictions based on statistical inference. They 
rely on big data and complex algorithms to identify patterns, but 
their workings are opaque, even to the system developers. This 
makes them ‘black boxes' that are hard to trust in high-stakes 
applications like medicine. An LLM may “hallucinate” its way 
through a series of fluent, sometimes convincing, but factually 
incorrect steps [21].

One way forward is the development of forms of AI that are 
inherently interpretable, meaning the complexity or design of the 
system is limited so that developers obtain more insights into how 
it works. Other approaches test how an AI ‘black box' works, for 
example, by rerunning an initial model with some inputs changed 
to work out which ones are most salient.

Since the advent of Large Reasoning Models, LRMs, such 
as OpenAI's o1 and DeepSeek-R1, and the introduction of 
reinforcement learning, LRMs are attempting to provide correct 
explanations. However, they too do not currently provide 
trustworthy results because of the absence of defined metrics 
to assess the reliability of such explanations when applied to 
situations which are less quantitatively assessable than coding and 
mathematics.

One comparative study of six large language models-DeepSeek, 
ChatGPT, and Claude, including their reasoning-optimized 
variants-shows that models tuned for reasoning consistently 
outperform non-reasoning counterparts in scientific computing 
and machine learning tasks. However, even these advanced models 
are prone to ambiguous or incorrect outputs, underscoring the 
need for improvements in LLMs for scientific problem solving [22]. 
Another study, The Illusion of Thinking, concluded that LRMs only 
outperform LLMs in medium complexity tasks and both collapse 
in accuracy when tackling problems beyond certain complexities, 
ultimately raising questions about the true reasoning capabilities 
of LRMs [23]. Although these findings were contested by a paper 
entitled The Illusion of The Illusion of Thinking, which argued 
there were shortcomings in experimental design [24], another study 
(entitled: The Illusion of The Illusion of The Illusion of Thinking) 
with a better test design concluded ‘genuine challenges remain' in 
the capabilities of LRMs [25]. 

Digital pathologies, spurious correlations 
and degenerative AI

Typically, digital computers handle four billion rational numbers 
that range from plus to minus infinity, known as the ‘single-precision 
IEEE floating-point numbers (the 32-bit or FP32 numbers). Yet 
a significant part of the richness of the real world is only 
captured by irrational numbers which cannot be represented on 
any digital computer. In one study, which compared the known 
mathematical reality of the generalised Bernoulli map to what FP32 
computers predict, the results are wrong in many circumstances and 
catastrophically so in some instances. As a result of the discreteness 
of floating-point numbers, significant errors can arise in digital 
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computers and the full extent of these errors is not understood 
[26]. This suggests that renewed focus on analogue computers will 
be necessary in the long term, and not just because of the soaring 
power demands of high-performance digital computers [27]. It is 
hardly surprising that, if we are to achieve AGI, we will need to pay 
closer attention to how the human brain actually works, not least its 
analogue nature.

Meanwhile, the current generation of machine learning 
algorithms typically require hundreds of thousands to trillions or 
more parameters, which are the connection weights between pairs 
of “neurons” in a neural network. At the same time, companies 
such as NVIDIA are using hardware and software that prioritise 
half-precision and lower precisions to cut memory usage and boost 
computational speed, handling single and double precision using 
software emulators. As a result, a reduction in computational 
performance of high-fidelity simulations is inevitable. However, 
even if an AI operates in single precision, it depends on more fitting 
parameters than there are available numbers for its computations.

With more parameters than representable values used in AI, 
many collapse to the same numerical value due to rounding. This 
leads to redundancy, where different parameters behave identically, 
reducing the model's ability to learn nuanced patterns. One 
mitigation strategy is to use stochastic rounding: instead of always 
rounding a number up or down to the nearest whole number (or 
decimal place), that decision is made randomly, based on how close 
the number is to each option [28].

Nor do these vast numbers of parameters have intrinsic meaning 
in the real world. They simply fit inputs to outputs to provide a 
good match to real-world behaviour. The astronomical number of 
parameters explains why ML can successfully fit so many arbitrary 
relationships, like a glorified ‘look up' table. But this also accounts for 
their unreliability, when making predictions based on unseen data.

A central theoretical hurdle facing the use of big data by AI was 
identified by Cristian S. Calude and Giuseppe Longo in “The Deluge 
of Spurious Correlations in Big Data” [29]. As datasets grow, spurious 
(random) correlations vastly outnumber meaningful ones. LLMs 
cannot distinguish these, so adding more data reduces the signal-
to-noise ratio and contributes to error pileup. Such correlations 
arise even in randomly generated data: the size of a dataset alone 
ensures that the deluge emerges. Spurious correlations outnumber 
meaningful ones in very large, high-dimensional data sets. The 
only way to sort the wheat from the chaff is through the scientific 
method. This is far from trivial and, particularly in domains where 
adequate theoretical understanding is lacking, one cannot make this 
distinction readily.

Yet the companies which have developed the dominant large 
language models still assert that bigger is better. Partly as a 
consequence of Calude and Longo's findings, it is plain that making 
LLMs larger by training them on more data and including vastly 
more parameters does not guarantee significant improvement [21]. 
Indeed, the current efforts being undertaken to try to improve LLM 
performance are purely empirical.

The existing algorithms (based on the transformer architecture) 
exhibit poor scaling properties. These prevent LLMs from achieving 
the reliability and accuracy required for scientific applications 
through brute-force scaling. When using principles from statistical 
physics, one finds that the incremental improvements to LLM 
algorithms come at the cost of astronomical compute and energy 

requirements (tens of gigawatt-hours of electricity now and 
hundreds soon, underlining why Microsoft struck a deal to restart 
the Three Mile Island nuclear plant [30]). The nonlinear activation 
functions within LLMs transform Gaussian inputs into non-
Gaussian outputs with fat tails. In this situation, uncertainty in 
predictions decays much more slowly than would otherwise be 
expected, further compounding the difficulty of achieving high 
accuracy. This problem is exacerbated by Calude and Longo's deluge 
of spurious correlations which increase very rapidly as the size of 
the data set increases. The outcome can then sometimes be a loop of 
self-amplifying error - what is sometimes called “degenerative AI” - 
where predictions degrade with increasing amounts of training data, 
especially if that data is augmented by data generated previously by 
AI systems.

A wall confronts large language models [21] and it becomes 
steeper, and more quickly, when models are trained on low-
quality or synthetic data, creating a feedback loop of compounding 
inaccuracies. To deal with this profound problem, one must 
understand the behaviour of LLMs based on the theory of non-linear 
dynamical systems. That is, we need real world physics to explain 
how they work so we can develop better algorithms than current 
transformers.

What physics could and should do for 
AI

Physics provides precisely what today's AI lacks: constraints, 
interpretability, and uncertainty quantification. Combining AI with 
physics-informed methods often leads to improved performance: 
Physics-Informed Neural Networks (PINNs) outperform pure data-
driven approaches in fluid dynamics [31], extracting quantitative 
information for which direct measurements may not be possible 
[32]. In weather forecasting, claims made for AI outperforming 
conventional methods are contentious. AI does not do as well as 
physics-based models, particularly when chaos is relevant at short 
time scales: they cannot simulate the ‘butterfly effect' [33]. Nor can 
AI forecast weather events beyond the scope of existing training data 
(such as events that are so rare they are so called gray swans), which 
might exclude unprecedented heat waves, floods or hurricanes 
[34]. What it is mainly useful for being able to make predictions 
using “inference” much faster. NowcastNet, blends physics-based 
forecasting, based on fluid flow equations, with deep learning 
augmented by empirical data to provide ‘nowcasting' of precipitation 
with reported higher success than traditional numerical models 
[35, 36].

Chaos is also an issue when it comes to molecular dynamics, 
MD, which has been relatively unappreciated by the MD 
community: nonlinearity undermines the ability to train an AI 
system on one off sets of data. AI predictions made fail even 
when interpolating (as opposed to extrapolating) because any real 
molecular system (say the space of all molecular structures), is vastly 
more complicated than the AI can have any knowledge of. Even here, 
introducing physics-based methods to ensure predictions of AI are 
scientifically reasonable can create a virtuous circle [37].

AI systems are only as robust as the assumptions on which they 
rest and the data they ingest. Poorly curated, biased, or synthetic 
datasets can introduce systemic errors, especially when used 
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recursively in model training. Rigorous data curation, provenance 
tracking, and annotation standards are essential to prevent feedback 
loops amplifying misinformation.

AI requires rigorous verification, validation, and uncertainty 
quantification (VVUQ), the triad that underpins trustworthy 
modelling in applied mathematics, statistics, and engineering. While 
VVUQ is well-established for traditional engineering simulations, 
it is a subject of active research, for example, to deal with large 
uncertain parameter spaces (for possibly hundreds to trillions of 
parameters). In AI and machine learning, this field is still in its 
infancy, hampered by models whose workings are opaque, sprawling 
in dimension, and detached from physical reality [27].

For a physics-based model, in contrast, VVUQ reveals precisely 
how to improve predictions. Unlike physics-based models, however, 
machine learning algorithms lack a direct mapping between model 
parameters and physical quantities, making interpretability and 
refinement difficult. Even if we can pinpoint connection weights 
which are responsible for most of the uncertainty in a machine 
learning algorithm, there is no way of knowing how or what to adjust 
to reduce the uncertainty. The principal way claimed to improve 
predictions from AI systems rests on a simple idea: “give me more 
data”, but we have already explained why that approach is neither 
necessary nor sufficient.

AI researchers sometimes resort to ad hoc techniques such 
as a so-called Monte Carlo dropout procedure, which estimates 
predictive uncertainty by systematically omitting an increasing 
fraction of the neurons within each hidden layer during inference, 
and Bayesian neural networks, which treat weights as probability 
distributions rather than fixed numbers. However, these methods 
lack precision, do not comply with the tenets of systematic UQ, and 
typically underestimate the true uncertainty in these AI systems. In 
recent work underway with Wouter Edeling, one of us (PVC) has 
found that a deep active subspace approach taken from state-of-the-
art UQ methodology, building on related preliminary work, may 
provide a means of dramatically reducing the number of parameters 
required to capture the key behaviour of AI systems [38].

The prize of this effort is clear. If and only if AI-based predictions 
pass muster, in terms of VVUQ, they will become “actionable” – 
you can use them to make decisions in critical circumstances, for 
instance when caring for patients, because you can be confident that 
their predictions are indeed reliable (within a specified uncertainty 
bound). With reliable uncertainty bounds, AI outputs can also be 
safely “actionable” in science.

Aside from analogue computation, another way to tame chaos 
is to blend quantum-inspired machine learning with classical 
dynamical systems theory [39]. Traditional machine learning 
models, when applied to chaotic systems, often require vast 
computational resources and still fall short of capturing long-term 
dynamics. These systems are sensitive to initial conditions, and small 
errors can quickly snowball.

The solution lies not in brute force but in elegance, in the 
form of understanding. Here we are referring to a Quantum Circuit 
Born Machine (QCBM), a probabilistic model inspired by the Born 
rule in quantum mechanics [39, 40]. QCBMs learn patterns in 
data using principles from quantum physics. Because they work 
in the mathematical space that quantum systems naturally occupy, 
Hilbert space, they can capture relationships in data that classical 
machine-learning models might miss. And they can do this with 

far fewer adjustable settings. The patterns they learn - quantum 
priors” - can then be fed into ordinary AI models to help them 
make better predictions. For example, QCBMs can be used to learn 
the high-dimensional energy landscapes that govern molecular 
dynamics, helping to predict stable molecular conformations or rare 
transition states more efficiently than classical sampling methods. 
One application has been to small molecule design of KRAS 
inhibitors [41].

Quantum computing remains in its infancy, though there are 
encouraging hints of quantum advantage in this domain. In the 
meantime, quantum-inspired machine learning (QIML) - including 
models like QCBMs - offers a useful middle ground: it makes 
limited use of a quantum device to produce a quantum prior which 
enhances predictions made on ordinary computers. By embedding 
physical insight into machine learning architectures, smarter - not 
simply bigger - models may be the key to unlocking complex
phenomena.

However, there are limits. Scaling these methods to the 
enormous chemical libraries used in drug discovery is still difficult. 
And until analogue AI becomes mainstream, today's digital AI 
systems remain poor at dealing with truly chaotic, highly complex 
systems. Their predictions tend to fall apart the further they look 
into the future, they struggle to measure uncertainty well, and 
they sometimes mistake short-term patterns for real underlying 
behaviour. These shortcomings mean that current AI is better seen 
as a tool for probing chaos locally, rather than conquering it outright.

This work is part of a broader movement to integrate physics 
and AI, a trend that promises to reshape scientific computing [42]. 
With applications being investigated in a wide range of domains, 
from climate systems to biological processes, the fusion of quantum 
ideas with machine learning may offer a new path forward-one 
that is not only computationally efficient but also grounded in the 
laws of nature.

Physics provides a rigorous theoretical framework for 
understanding learning algorithms, through the application of 
non-linear dynamical systems, theory and statistical mechanics. 
Physics offers the constraints needed to sift meaningful patterns 
from spurious ones. Embedding symmetries, conservation laws, 
invariances and understanding into model design can help prevent 
AI from over-relying on misleading patterns. For applications 
requiring high reliability, notably in medicine, AI needs to 
integrate scientific principles and domain-specific knowledge, 
whether physical, chemical, or biological. Physics-informed 
models are not a panacea, however. They require well-understood 
governing equations and may struggle in domains such as 
economics and social systems where such laws are unknown or
poorly defined.

The ultimate aim should be physics-informed learning-what 
we call “Big AI” [43]-which blends theory with machine learning. 
To achieve Big AI ideally means embedding conservation laws, 
symmetries, and invariances directly into model architectures; 
combining interpretable physics equations with flexible ML 
components: certifying uncertainty with VVUQ inherited from 
physics-based modelling; providing mechanistic interpretability, 
such that each parameter maps to physical quantities or processes; 
and theory-guided learning, where domain knowledge constrains 
parameter spaces and prevent spurious correlations. Ultimately, 
analogue computation, conventional and quantum, should be the 
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TABLE 1  Pure AI learns from data; Big AI learns from nature.

Feature Pure AI Physics-informed AI

Interpretability Low High

Uncertainty qualification Weak Strong

Scalability High Moderate

Mechanistic insight None Embedded

Data dependence High Lower

substrate as it should often be the source of the “ground truth” 
against which AI predictions should be made. The goal is not to 
replace either physics or ML, but to create a new paradigm wherein 
the whole is greater than the sum of these two parts.

This provides interpretability and mechanistic insight (physical 
constraints, laws, conservation); better uncertainty quantification 
(because physics-based models allow error bounds, sensitivity to 
input variation, and so on); improved generalization, especially 
outside data‐rich settings, since the physics component embeds 
known invariances or behaviour (see Table 1).

A roadmap for big AI

To realise the benefits of physics informed AI, we propose a 
research agenda across three timescales:

Near-term (1–3 years): Develop new AI and open physics-
informed algorithms with improved scaling performance and more 
reliable error metrics; Standardize VVUQ protocols for ML in 
scientific computing; Establish community-defined benchmarks 
comparing physics-informed with pure ML predictions across 
multiple domains; Understand in more quantitative terms the 
impact of the deluge of spurious correlations to determine efficient 
means of dealing with it.

Medium-term (3–7 years): Scale quantum-inspired machine-
learning algorithms to industrially relevant problems; Develop 
hybrid analogue computing architectures or practical use; 
Integrate causal inference with physics constraints for improved 
generalization and reliable reasoning.

Long-term (7–15 years): Achieve fault-tolerant quantum 
computing for scientific ML; Develop high accuracy, high precision 
analogue systems for general purpose computing; Establish an 
AGI theory grounded in physical law, not in the more speculative 
promise-championed by AI maximalists-that an algorithm might 
one day infer or even invent the universe's rules from pure data.

Why physics must shape the future of 
AI

The next revolution in AI will not be driven by scale alone, 
but by its consistency with and understanding of the laws 
of nature. AI has contributed to genuine scientific advances, 
but its current incarnation often provides glib answers that 

raise troubling questions about mechanistic insight, scalability 
and reliability. As a result, claims of the broader promise of 
current AI as a step towards AGI remain unconvincing. The 
subjective elements of modern AI, its reliance on vast numbers 
of meaningless parameters, black-box models, and very limited 
uncertainty quantification have led to many failures, especially 
in extrapolation beyond training data but also not infrequently 
when interpolating. The laws of nature and rigorous theory 
are essential correctives. Embedding physical laws, using hybrid 
models, constraining parameters, improving uncertainty estimation, 
and exploring quantum and analogue computational paradigms 
are pathways to a more mature, dependable, and scientifically
credible AI.

To move beyond pattern recognition and toward genuine 
understanding, AI must be grounded in scientific laws, theory, 
and curated data. This demands a new kind of collaboration - 
between theoreticians, computer scientists, and domain experts - 
to co-design models that are not just powerful, but principled, 
interpretable, and physically constrained. Physics-informed AI–Big 
AI - also offers a path to more auditable and trustworthy 
systems, especially as AI increasingly influences decisions in 
science, the workplace and medicine. To safeguard these advances, 
we must also build robust governance frameworks that ensure 
transparency, accountability, and safety. The future of AI will be 
defined not only by advances in algorithms, but by its integration 
with the fundamental laws of nature and the discipline of the
scientific method.
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