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equations via the subsidiary ODE 
method 
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The main objective of this article is the analytical investigation of the simplified 
modified Camassa–Holm (SMCH) and the modified Benjamin–Bona–Mahony 
(BBM) equations. The SMCH equation plays an important role in modeling 
shallow-water wave dynamics, nonlinear dispersive phenomena, and the 
propagation of solitons in fluid mechanics. The BBM equation is frequently 
used to describe long surface gravity waves in nonlinear dispersive media 
and serves as a useful alternative to the standard Korteweg–de Vries (KdV) 
equation in mathematical physics. To construct exact analytical soliton solutions 
for these nonlinear models, the subsidiary ordinary differential equation (sub-
ODE) method is employed. Through an appropriate wave transformation, 
the governing partial differential equations are reduced to nonlinear ordinary 
differential equations. Our mathematical technique yields several types of 
soliton wave shapes, including bright, dark, solitary, and periodic solitons. 
Bright solitons depict localized wave peaks, whereas dark solitons reflect 
intensity decreases against a continuous background. The resulting analytical 
solutions are represented in hyperbolic and trigonometric functions that exhibit 
complex nonlinear behaviors, such as periodic and singular patterns. These 
soliton structures exhibit the complex dynamics and stability of nonlinear 
waves propagating in dispersive mediums. The graphical demonstration of 
their propagation in three-dimensional, two-dimensional, and contour forms is 
presented for suitable parameter values.
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bright soliton solutions, dark soliton solutions, exact soliton solutions, integrable 
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 1 Introduction

The study of exact solutions for nonlinear partial differential equations (NLPDEs) 
is important for understanding nonlinear wave phenomena in several fields, including 
quantum mechanics, nonlinear optics, fluid mechanics, and plasma physics [1–5]. 
Nonlinear waves are essential for simulating shallow-water waves, electrical field 
propagation, acoustic–gravity waves, and hydromagnetic waves, along with other complex
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physical systems [6–10]. Solitons are stable and confined wave 
structures that preserve geometry and energy throughout 
propagation despite nonlinearity and dispersion [11–15]. Bright 
solitons reflect isolated wave peaks, whereas dark solitons 
correspond to intensity decreases within a continuous background. 
Mixed solitons and singular solitons show the complexities 
in nonlinear wave dynamics [16–19]. Several analytical and 
computational approaches are being developed to address NLPDEs 
and generate soliton solutions. These include the tanh-function 
method, Jacobi elliptic function expansion, Hirota bilinear method, 
(G′/G)-expansion method, sine− cosine method, Exp-function 
method, Painlevé analysis, subsidiary ordinary differential equation 
(sub-ODE) method, variational iteration method, homotopy 
perturbation technique, Adomian decomposition method, and 
modified simple equation method [20–28]. These approaches yield 
explicit models for soliton solutions while also providing useful 
insights regarding the dynamics and stability of nonlinear waves 
over diverse media.

Research on nonlinear evolution equations has increasingly 
focused on Lie symmetries, optimal systems, and symmetry-based 
reduction techniques in order to obtain exact solutions and analyze 
nonlinear wave dynamics. Works on the Kadomtsev–Petviashvili 
(KP)–Benjamin–Bona–Mahony (BBM) and Zakharov–Kuznetsov 
(ZK)–BBM equations have presented optimal systems and group-
invariant solutions that showcase complex structures and solution 
behaviors of multidimensional models [29, 30]. Furthermore, 
symmetry reductions are addressed for models such as the 
Korteweg–de Vries (KdV)–Burgers equation with appropriate 
dissipative mechanisms that are relevant in plasma environments, 
where the exact solutions provide insight into wave steepening and 
damping [31]. Works on one-dimensional (1D) gas dynamics under 
monochromatic radiation have extended the symmetry techniques 
to radiative hydrodynamics and sketched the role of Lie invariants in 
uncovering physically relevant wave patterns [32]. Similarly, in the 
case of the Gardner equation, studies have pointed out symmetry-
based methods for constructing invariant solutions for nonlinear 
dispersive systems [33].

Various analyses of dissipative and acoustical wave equations 
are presented in many works, including the Zabolotskaya–Khokhlov 
equation, where the consideration of symmetry structures effectively 
reveals the underlying analytical forms of exact solutions that 
account for nonlinear acoustic propagation [34]. [35] also 
constructed invariant solutions of coupled Burgers equations, 
providing new insights into the soliton dynamics of multi-
component systems. Symmetry reduction of the KP equation 
has provided new classes of exact solutions that are relevant in 
shallow-water wave theory and plasma physics [36]. The most 
recent works on the Broer–Kaup–Kupershmidt system illustrate 
how symmetries can be used to understand the interaction of 
solitons with conservation structures in shallow-water flows [37]. 
Beyond nonlinear mathematical physics, one finds modern imaging 
applications such as energy-resolved neutron tomography, in which 
advanced modeling links wave-based analytical tools to material 
characterization, thereby illustrating the growing interdisciplinary 
range of wave dynamics and transport analysis [38].

The simplified modified Camassa–Holm (SMCH) equation and 
the modified BBM (MBBM) equation are key models for analyzing 
nonlinear dispersive waves. The main point of the SMCH equation 

is that it is widely used to model shallow-water wave dynamics, 
soliton propagation in fluid systems, and nonlinear dispersive 
phenomena. The MBBM equation can be utilized to describe 
long surface gravity waves and serves as an alternative to the 
classical KdV equation [39–43]. Both models are applicable to 
thermodynamics and fluid mechanics, and they are widely employed 
in nonlinear optics and plasma physics, along with electromagnetic 
wave propagation. The sub-ODE method is an efficient analytical 
strategy for converting complex partial differential equations (PDEs) 
into simpler ordinary differential equations using proper wave 
transformations. This approach expresses traveling wave solutions 
as polynomials of sub-ODE solutions. Using the sub-ODE approach 
on the SMCH and MBBM equations yields a variety of precise 
solutions, including bright, dark, composite, and singular solitons. 
These solutions, which are frequently described as hyperbolic and 
trigonometric functions, exhibit complex nonlinear patterns and 
may be represented using two-dimensional (2D), three-dimensional 
(3D), and contour plots to highlight their stability and dynamics 
[44, 45].

The study of the soliton solutions for NLPDEs using 
contemporary analytical methods not only improves our 
understanding of nonlinear wave phenomena but also offers 
practical insights related to applications in optical fibers, fluid 
mechanics, plasma physics, and electromagnetic wave propagation. 
A systematic investigation into the structures of solitons within both 
the SMCH and MBBM equations reveals the richness of nonlinear 
dynamics and shows that modern mathematical techniques can be 
used to solve complex nonlinear evolution equations. The remainder 
of this article is organized as follows: Section 1 provides the 
introduction. Section 2 presents the results of the SMCH equation. 
Section 4 covers the extraction of soliton solutions for the modified 
BBM equation. Sections 3 and 5 describe the physical behavior of 
these solutions. Finally, Section 6 presents the conclusion. 

2 Solutions of the SMCH equation

2.1 Mathematical analysis of the sub-ODE 
method

The emphasis in this article on one-dimensional equations 
represents a basic and strategic approach to method validation, 
given the current trend of research into higher-dimensional 
models. Reductions such as the SMCH and modified BBM 
equations represent essential one-dimensional benchmark cases in 
nonlinear wave theory. Such models arise naturally from multi-
dimensional systems in fluid mechanics and plasma physics 
using standard methods of dimensional reduction. The main 
emphasis of this article is on the development and rigorous 
validation of the generalized sub-ODE method, and 1D settings 
represent the established testing ground for analytical correctness, 
numerical stability, and computational accuracy. Solution families 
U1–U12 obtained in this article are intrinsically of mathematical 
interest, and more importantly, they represent a starting point 
for extensions to higher-dimensional analogs, such as the 
Camassa–Holm–Kadomtsev–Petviashvili-type models and two-
dimensional variants of BBM equations. A gradual approach from 
one-dimensional validation to higher-dimensional applications is 

Frontiers in Physics 02 frontiersin.org

https://doi.org/10.3389/fphy.2025.1729719
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Zhang 10.3389/fphy.2025.1729719

a step-by-step research strategy that assures robust development of 
the method before moving on to more complex geometrical settings.

We assume that the NLPDE is constructed for the function 
g = g (x, t), where x and t are the spatial and temporal variables, 
respectively. This assumption allows us to use analytical approaches 
to find precise or approximate solutions for the NLPDE:

Q(g,gx,gt,gxx,gxt,gtt,…) = 0, (1)

where Q denotes a polynomial containing the function g and its 
greatest order partial derivative. The traveling wave transformation 
is used to convert the nonlinear differential equation into an 
ordinary differential equation:

g (x, t) = g (ξ) , ξ = x±ωt, (2)

where ξ shows the transformation. In this case, ω ≠ 0 is a constant to 
be determined later. Substituting Equation 1 into Equation 2 yields 
the ordinary differential equation (ODE) for further investigation:

H(g,g′,g″,g‴,g(4),…) = 0, (3)

where

g = g (ξ) , g′ =
dg
dξ
, g″ =

d2g
dξ2 ,….

The solution of Equation 3 is provided as follows, which is used 
to construct explicit forms of the traveling wave solutions:

g (ξ) =
N

∑
i=0

ai ψi (ξ) , ai ≠ 0, (4)

where ai (i = 0,1,2,…,N) signifies the constants to be calculated. 
ψ(ξ) represents the solution of the following equation:

ψ′2 = h0 + h2ψ2 + h4ψ4, (5)

where h0,h2 and h4 are real constants. 

2.2 Description of the SMCH equation

Camassa and Holm [22] derived the CH equation for shallow-
water waves in 1993. It has an integrable bi-Hamiltonian structure. 
The SMCH equation is written as follows:

Ut + 2αUx −Uxxt + βU2Ux = 0, (6)

where α ∈ ℝ;  β > 0 and U (x, t) represents the fluid velocity in the 
x-direction. Using wave transformation, we obtain

U (x, t) = U (ξ) , ξ = x−ωt. (7)

Substituting Equation 7 into Equation 6 converts the original 
PDE into an ODE in terms of the traveling wave variable. This 
reduction simplifies the problem, making it easier to evaluate and 
create clear solutions.

−ωU′ + 2αU′ +ωU‴+ βU2U′ = 0. (8)

To minimize the order of the differential equation, we 
integrate Equation 8 with respect to ξ and simplify the resultant 
expression. This phase eliminates the highest-order derivative and 
inserts an integration constant, which may be computed later using 
boundary or beginning conditions.

ωU− 2αU−ωU″ −
β
3

U3 = 0. (9)
 

2.3 Exact solutions of the SMCH equation

We use the balancing principle to determine the explicit form 
of the traveling wave solution. We first substitute the ansatz U(ξ) =
ψ(ξ)N, where ψ = ψ(ξ) is to be determined and N is a positive 
integer, into the governing equation. The highest-order derivative 
U″ and the highest-order nonlinear term U3 are the dominant terms. 
Substituting the ansatz, U″ yields a power of ψN+2, whereas the 
nonlinear term U3 yields a power of ψ3N. For a non-trivial solution 
to exist, these dominant terms must be balanced. Thus, it follows 
that the powers of ψ must be equal. This produces an algebraic 
equation N+ 2 = 3N. If we solve the equation, we obtain 2 = 2N and, 
ultimately, N = 1. This supports that the solution of U(ξ) must be 
written as U(ξ) = a0 + a1ψ(ξ).

Employing the balancing method for the terms U″ and U3 in 
Equation 9 yields N = 1. To balance the nonlinear variable U3 and 
the highest-order derivative term U″, the maximum power of ψ(ξ)
in the proposed solution must be 1. As a result, Equation 9 enables 
a solution with just the first-order terms of ψ(ξ)

U (ξ) = a0 + a1 ψ (ξ) , (10)

where a0 and a1 are arbitrary constants that will be determined later 
and ψ(ξ) is the solution to the related elliptic differential equation. 
The function ψ(ξ) controls the amplitude and periodic behavior of 
the wave in the soliton solution, establishing its general structure as

ψ″ = h2ψ+ 2h4ψ3, (ψ′)2 = h0 + h2ψ2 + h4ψ4, (11)

where h0, h2, and h4 are real constants. Substituting Equation 10 and 
Equation 11 into Equation 12 creates a new equation that relates 
these constants through algebraic expressions. This substitution 
reduces the nonlinear components and prepares the problem for an 
analytical approach.

a0ω− 2αa0 −
1
3

βa3
0 + a1ωψ− 2αa1ψ− βa2

0a1ψ− a1h2ωψ− a0a2
1βψ2

− 1
3

βa3
1ψ3 − 2a1h4ωψ3 = 0. (12)

To verify that the equation holds true for all values of ψ, the 
coefficients of each power of ψ are equated to 0. As a result, a set 
of algebraic equations is obtained, which enables the determination 
of the unknown constants such as a0, a1, h0, h2, and h4.

ψ0: a0ω− 2αa0 −
1
3

βa3
0 = 0,

ψ1: a1ω− 2αa1 − a2
0a1β− a1h2ω = 0,

ψ2: − a0a2
1β = 0,

ψ3: − 1
3

βa3
1 − 2a1h4ω = 0.

The solution to these algebraic equations will yield the exact 
value of the unknown constants, and such constants are necessary 
for forming the exact traveling wave solutions. These constants 
determine the type and number of solitons generated by the 
nonlinear equation, including bright, dark, and singular solutions.

a0 = 0, ω = − 2α
h2 − 1
, a1 = ±2√

3αh4

βh2 − β
. (13)

The solution to Equation 11 may be represented as follows by 
demonstrating the relationship between Jacobi elliptic functions and 
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TABLE 1  Analysis of Jacobi elliptic functions and their limiting forms.

Function j→ 1 j→ 0 Function j→ 1 j→ 0 Function j→ 1 j→ 0

sn (ξ, j) tanh (ξ) sin (ξ) ds (ξ, j) csch (ξ) csc (ξ) cn (ξ, j) sech (ξ) cos (ξ)

dn (ξ, j) sech (ξ) 1 sd (ξ, j) sinh (ξ) sin (ξ) ns (ξ, j) coth (ξ) csc (ξ)

nc (ξ, j) cosh (ξ) sec (ξ) cs (ξ, j) csch (ξ) cot (ξ) cd (ξ, j) 1 cos (ξ)

their limiting forms. When the modulus j approaches 1 or 0, these 
functions become hyperbolic and trigonometric.

Table 1 describes Jacobi elliptic functions and their limiting 
forms, which are essential for generating soliton solutions in 
nonlinear differential equations. The table depicts the behavior of 
each function (sn, cn, dn, ds, sd, ns, nc, cs, and cd) as the modulus 
j→ 1 and j→ 0. When j→ 1, the functions decrease to hyperbolic 
functions (tanh, sech, sinh, coth, etc.), and they depict localized 
soliton-like waves. When j→ 0, they reduce to trigonometric 
functions (sin, cos, sec, csc, cot, etc.), and they characterize periodic 
waves. This shows that, depending on the value of j, a single Jacobi 
function may describe both soliton and periodic wave solutions, 
making it particularly helpful for evaluating traveling wave solutions 
and soliton structures in nonlinear wave equations.

2.3.1 Case 1
We assume that h0 = v2D2, h2 = − v2(1+ j2), andh4 =

v2j2

D2 . Here, 
v and D are the wave velocity and the amplitude of the wave, 
respectively, and 0 ≤ j ≤ 1 is the Jacobi elliptic function modulus. The 
solution of Equation 11 is as follows:

ψ (ξ) = D sn (vξ, j) . (14)

The exact solution of Equation 8 is mathematically represented 
below, where the parameters meet the given requirements.

U1 (ξ) = ±2vj√−
3α

β(v2 + v2j2 + 1)
sn (vξ, j) , ω = 2α

v2 (1+ j2) + 1
.

(15)

In the limiting case, as j→ 1, the solution of Equation 11 
simplifies to a hyperbolic shape, representing a confined solitary 
wave. This limit illustrates the transition from periodic Jacobi elliptic 
functions to solitary wave structures, stressing the solution’s physical 
relevance in the context of nonlinear wave propagation.

U1 (ξ) = ±2v√−
3α

β(2v2 + 1)
tanh (ξ) ,ξ = x− 2αt

2v2 + 1
. (16)

 

2.3.2 Case 2
We assume a certain value of h0 = v2D2(1− j2), h2 = −

v2(2j2 − 1), and h4 = −
v2j2

D2 . Equation 11 admits the following 
exact solution, which depends on the Jacobi elliptic functions and 
characterizes the wave profile for the system under consideration.

ψ (ξ) = Dcn (vξ, j) . (17)

The solution of Equation 8 can be written as follows, illustrating 
the system behavior under the specified conditions:

U2 (ξ) = ±2vj√
3α

β(2v2j2 − v2 + 1)
sn (vξ, j) , ω = 2α

v2 (2j2 − 1) + 1
.

(18)

As j→ 1, the outcome becomes hyperbolic, corresponding to a 
specific soliton with a sharp peak and finite width. This shows the 
creation of a single wave in the structure of the system.

ξ = x− 2αt
v2 + 1
, U2 (ξ) = ±2v√

3α
β(v2 + 1)

sech (ξ) . (19)
 

2.3.3 Case 3
We assume that h0 = − v2D2(1− j2), h2 = v2(2− j2), and h4 =
− v2

D2 . Based on Equation 11, the solution captures the system’s 
nonlinear properties and can represent several solitons depending 
on the parameters used.

ψ (ξ) = Ddn (vξ, j) . (20)

The solution of Equation 8 can be stated as follows, 
demonstrating the system behavior under the required conditions:

U3 (ξ) = ±2v√
3α

β(v2j2 − 2v2 + 1)
dn (vξ, j) ,ω = − 2α

v2 (2− j2) − 1
.

(21)

As j→ 1, the outcome becomes hyperbolic, representing a 
particular soliton with a sharp peak and finite width. This 
demonstrates the formation of a single wave within the system’s 
structure.

U3 (ξ) = ±2v√
3α

β(−v2 + 1)
sech (ξ) , ξ = x+ 2αt

v2 − 1
. (22)

 

2.3.4 Case 4
We assume that h0 = v2D2j2, h2 = − v2(1+ j2), and h4 =

v2

D2 . 
The solution to Equation 11 shows how the wave profile evolves over 
time. This solution captures the system’s nonlinear features and can 
represent a variety of solitons depending on the parameters used.

ψ (ξ) = Dns (vξ, j) = D
sn (vξ, j)

. (23)

The solution of Equation 8 can be expressed as follows, 
illustrating the system behavior under suitable conditions:

U4 (ξ) = ±2v√
3α

−β(v2j2 + v2 + 1)
ns (vξ, j) , ω = 2α

v2 (1+ j2) + 1
.

(24)
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As j→ 1, the result becomes hyperbolic, indicating a specific 
soliton with a sharp peak and finite width. This shows how a single 
wave forms within the system’s structure.

U4 (ξ) = ±2v√
3α

−β(2v2 + 1)
coth (ξ) , ξ = x− 2αt

2v2 + 1
. (25)

 

2.3.5 Case 5
We assume that h0 = − v2D2j2, h2 = v2(2j2 − 1), and h4 =

v2 1−j2

D2 . From Equation 11, the solution captures the system’s 
nonlinear properties and can represent several solitons depending 
on the parameters used.

ψ (ξ) = Dnc (vξ, j) = D
cn (vξ, j)

. (26)

The solution to Equation 8 is as follows, showing the behavior of 
the system under the appropriate conditions:

U5 (ξ) = ±2v√
3α(1− j2)
−β(v2 − 2v2j2 + 1)

nc (vξ, j) , ω = −2α
v2 (2j2 − 1) − 1

.

(27)

As j→ 0, the result becomes hyperbolic, suggesting a unique 
soliton with a sharp peak and finite width. This illustrates how a 
single wave forms within the system’s structure.

U5 (ξ) = ±2v√
3α
−β(v2 + 1)

sec (ξ) ,ξ = x+ 2αt
2v2 + 1
. (28)

 

2.3.6 Case 6
We assume that h0 = − v3D2, h2 = v2(2− j2), and h4 = −

v2(1−j2)
D3 . The solution of Equation 11 demonstrates how the wave 

profile varies over time. This solution represents the system’s 
nonlinear features and can represent a variety of solitons based on 
the parameters used.

ϕ (ξ) = Dnd (vξ, j) = D
dn (vξ, j)

. (29)

The solution of Equation 8 is as follows, displaying the system 
behavior under the required conditions.

U6 (ξ) = ±2v√
3α(1− j2)

β(v2j2 − 2v2 + 1)
nd (vξ, j) , ω = − 2α

v2 (2− j2) − 1
.

(30) 

2.3.7 Case 7
We assume that h0 = v2D2, h2 = v2(2− j2), and h4 =

v2(1−j2)
D2 . Based on Equation 11, the solution depicts the system’s 

nonlinear properties and can represent several solitons depending 
on the parameters employed.

ψ (ξ) = D sc (vξ, j) =
D sn (vξ, j)
cn (vξ, j)

. (31)

The solution of Equation 8 is shown below, demonstrating the 
system behavior under specific conditions.

j7 (ξ) = ±2v√
3α(1− j2)
−β(v2j2 − 2v2 + 1)

sc (vξ, j) , ω = − 2α
v2 (2− j2) − 1

.

(32)

As j→ 0, the result becomes hyperbolic, indicating a single 
soliton with a sharp peak and finite width. This demonstrates the 
development of a single wave within the system’s internal structure.

U7 (ξ) = ±2v√
3α

−β(−2j2 + 1)
tan (ξ) , ξ = x+ 2αt

2v2 − 1
. (33)

 

2.3.8 Case 8
We assume that h0 = v2D2, h2 = v2(2j2 − 1), and h4 = −

v2j2(1−j2)
D2 . The solution of Equation 11 illustrates how the wave 

profile varies over time. This solution displays the system’s nonlinear 
features and can represent a variety of solitons depending on the 
parameters used.

ψ (ξ) = D sd (vξ, j) =
D sn (vξ, j)
dn (vξ, j)

. (34)

The solution of Equation 8 is provided below, exhibiting the 
system’s behavior under the given conditions.

U8 (ξ) = ±2vj√
3α(1− j2)

β(v2 − 2v2j2 + 1)
sd (vξ, j) , ω = − 2α

v2 (2j2 − 1) − 1
.

(35) 

2.3.9 Case 9
We assume that h0 = v2(1− j2), h2 = v2(2− j2)D2, and h4 =

v2

D2 . Based on Equation 11, the solution highlights the system’s 
nonlinear properties and can depict several solitons depending on 
the parameters used.

ψ (ξ) = Dcs (vξ, j) =
Dcn (vξ, j)
sn (vξ, j)

. (36)

The solution of Equation 8 is provided below, exhibiting the 
system’s behavior under specified conditions.

U9 (ξ) = ±2v√
3α

−β(v2j2 − 2v2 + 1)
cs (vξ, j) , ω = − 2α

v2 (2− j2) − 1
.

(37)

As j approaches 0, the result becomes hyperbolic, indicating a 
single soliton with a sharp peak and finite width. This demonstrates 
the formation of a single wave within the system’s internal structure.

ξ = x+ 2αt
2v2 − 1
, U9 (ξ) = ±2v√

3α
−β(−2v2 + 1)

csch (ξ) . (38)
 

2.3.10 Case 10
We assume that h0 = v2D2, h2 = − v2(1+ j2), and h4 =

v2j2

D3 . 
The solution of Equation 11 demonstrates how the wave profile 
varies over time. This solution emphasizes the system’s nonlinear 
features and can represent a variety of solitons depending on the 
parameters used.

ψ (ξ) = Dcd (vξ, j) =
Dcn (vξ, j)
dn (vξ, j)

. (39)

The solution of Equation 8 is provided below, exhibiting the 
system’s behavior under certain conditions.

U10 (ξ) = ±2vj√
3α

−β(v2j2 + v2 + 1)
cd (vξ, j) , ω = 2αt

v2 (1+ j2) + 1
.

(40) 
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2.3.11 Case 11
We assume that h0 = − v2j2(1− j2), h2 = v2(2j2 − 1). Finally, 

h4 =
v2

D2 . The solution of Equation 11 illustrates how the wave profile 
varies over time. This solution highlights the system’s nonlinear 
features and can represent a variety of solitons depending on the 
variables used.

ψ (ξ) = Dds (vξ, j) =
Ddn (vξ, j)

sn (vξ, j)
. (41)

The following solution of Equation 8 demonstrates the system’s 
behavior under the provided conditions.

U11 (ξ) = ±2v√
3α

−β(v2 − v2j2 + 1)
ds (vξ, j) , ω = 2αt

v2 (2j2 − 1) − 1
.

(42)

As j→ 1, the result turns hyperbolic, suggesting a single soliton 
with a sharp peak and finite width. This occurs when a single wave 
emerges within the system’s underlying structure.

ξ = x− 2αt
2v2 + 1
, U11 (ξ) = ±2v√

3α
−β(v2 + 1)

csch (ξ) . (43)
 

2.3.12 Case 12
We suppose that h0 = v2j2D2, h2 = − v2(j2 + 1), and h4 =

v2

D2 . 
The solution of Equation 11 shows how the wave profile changes with 
time. This solution emphasizes the system’s nonlinear properties and 
can represent several solitons based on the parameters used.

ψ (ξ) = Ddc (vξ, j) =
Ddn (vξ, j)

sn (vξ, j)
. (44)

The solution of Equation 8 is provided below, exhibiting the 
system’s response under the given circumstances.

U12 (ξ) = ±2v√
3α

−β (v2j2 + v2 + 1)
csch (ξ) , ω = 2αt

v2 (j2 + 1) + 1
.

(45) 

3 Physical interpretation of solutions 
under the SMCH equation

These graphs illustrate a clear representation of the different 
solitary wave solutions obtained for the considered SMCH equation. 
The dark soliton solution obtained from Equation 16 and plotted in 
Figure 1 represents a stable density dip traveling over a continuous 
background. By using parameters v = 1.5, j = 1, α = 0.1, and β =
0.5, this structure models phenomena such as pressure depressions 
in compressible fluids or voids in nonlinear lattices, where the 
parameters dictate the depth and stability of the propagating trough. 
Bright soliton solutions are shown in Figures 2, 3 for Equations 19, 
22, respectively, which manifest as localized, particle-like humps of 
elevated energy. These structures, specifically with the modulating 
parameter, as shown in Figure 2, are fundamental for modeling 
localized excitations such as pressure peaks in shallow water or 
intense pulses in elastic rods.

In this section, Maple 18 is utilized to generate 3D, 2D, and 
contour graphs of traveling wave solutions for the SMCH equation. 

Figure 1 shows that the series of solutions is extended with 
the inclusion of singular and periodic wave modes, which result 
from the nonlinearity of the SMCH model. The implementation 
of Equation 25 in Figure 4 shows a singular soliton with its 
characteristic unbounded and sharp peak that points to a scenario of 
wave-breaking or hydraulic jump in the case of fluid dynamics; here, 
the choice of j = 0 is crucial for the observation of the non-analytic 
characteristic. Figure 5 shows a periodic singular soliton, derived 
from Equation 28; the periodicity of the singularity indicates that 
the system frequently undergoes shock formation. Figure 6 (from 
Equation 33) reveals a non-singular wave that is purely periodic 
and has similarities to oscillatory forms within confined domains. 
The singular soliton in Figure 7 (from Equation 38), on the other 
hand, not only suggests but also emphasizes the possible occurrence 
of highly localized, intense energy concentrations that might be the 
precursor of rogue waves in a complex medium.

The multi-perspective plotting strategy using 3D, 2D, and 
contour views physically elucidates the features of the SMCH 
equation step by step. The 3D surface plots clearly demonstrate 
the strong localization in the space and the stability over time of 
the soliton amplitude. The 2D line graphs corresponding to the 3D 
surface plots provide a detailed view of the wave’s profile at the 
moment and its invariance in translation over the spatial domain. 
The contour plots clearly delineate the mapping of intensity lines 
and the pathways of energy propagation, thus providing important 
insights into the collisionless nature and interaction capabilities 
of solitons. The use of different plots not only illustrates various 
mathematical solutions but also highlights the rich physics and 
the wide range of wave morphologies that can be observed and 
are governed by the SMCH equation under the given parameter 
conditions. 

4 Extraction of soliton solutions for 
the modified BBM equation

4.1 Description of the modified BBM 
equation

The (1+ 1)-dimensional nonlinear dispersed modified BBM 
(Equation 11) is an important model for studying weakly nonlinear 
long waves in dispersive media. This equation reflects the 
equilibrium between nonlinearity and dispersion, which allows the 
existence and propagation of a wide range of solitary wave solutions. 
The result is as follows:

ut + ux − αu2ux + uxxx = 0, (46)

where α represents a non-zero real constant. This equation was 
originally formulated to represent long surface waves in a nonlinear 
dispersive medium. It may also describe acoustic–gravity waves 
in compressible fluids, hydromagnetic waves in cold plasmas, 
and acoustic waves in inharmonic crystals. We know that 
from the previous section, the traveling wave transformation is 
stated as follows:

U (x, t) = U (ξ) , ξ = x−ωt. (47)

Using the chain rule, Ut = −ωU′,Ux = U′, Uxxx = U‴. Substituting 
Equation 47 into Equation 46 yields a nonlinear ODE incorporating 
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FIGURE 1
Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the 
solution of Equation 16 for the parameter values v = 1.5, j = 1, α = 0.1, and β = 0.5. These graphs describe the structure of a dark optical soliton under the 
specified constraints.

FIGURE 2
Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the 
solution of Equation 19 for the parameter values v = 1.5, j = 1, α = 0.1, β = 0.5, and χ = 0.1. These graphs describe the structure of a bright soliton under 
the specified constraints.

FIGURE 3
Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the 
solution of Equation 22 for the parameter values v = 1.5, j = 1, α = 0.1, and β = 0.5. These graphs describe the structure of a bright soliton under the 
specified constraints.
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FIGURE 4
Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the 
solution of Equation 25 for the parameter values v = 1.5, j = 0, α = 0.1, and β = 0.5. These graphs describe the unique soliton structure under the 
specified constraints.

FIGURE 5
Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the 
solution of Equation 28 for the parameter values v = 1.5, j = 0, α = 0.1, and β = 0.5. These graphs describe the periodic singular solitons under the 
specified constraints.

FIGURE 6
Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the 
solution of Equation 33 for the parameter values v = 1.5, j = 0, α = 0.1, and β = 0.5. These graphs describe the periodic soliton under the specified 
constraints.

Frontiers in Physics 08 frontiersin.org

https://doi.org/10.3389/fphy.2025.1729719
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Zhang 10.3389/fphy.2025.1729719

FIGURE 7
Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the 
solution of Equation 38 for the parameter values v = 1.5, j = 1, α = 0.1, and β = 0.5. These graphs describe a singular optical soliton under the specified 
constraints.

U and its derivatives. This transformation essentially lowers the 
original partial differential equation to an ODE, which simplifies 
wave profile analysis. The resultant equation is as follows:

(1−ω) U′ − αU2U′ +U‴ = 0. (48)

Combining Equation 48 with respect to ξ while allowing the 
constant integration to be 0 for simplicity yields a simplified 
equation. This technique significantly reduces the order of the 
differential equation, making it easier to derive exact traveling 
wave solutions. The integrated equation reflects the balance among 
nonlinear and dispersive effects that exist in the system, which is 
necessary for understanding soliton structures.

(1−ω) U− α
3

U3 +U″ = 0. (49)
 

4.2 Exact solution of the modified BBM 
equation

Using the balance concept from Equation 49, we obtain
n = 1. This step is critical for developing precise traveling wave 
solutions and guarantees that the nonlinear and dispersive terms are 
correctly balanced.

U (ξ) = a0 + a1 ψ (ξ) , (50)

where a0 and a1 are arbitrary constants and ψ(ξ) satisfies an elliptic 
differential equation. This approach allows for the generation of 
precise traveling wave solutions by selecting the function ψ(ξ) to 
satisfy the governing nonlinear equation.

(ψ′)2 = h0 + h2 ψ2 + h4 ψ4, ψ″ = h2 ψ+ 2h4 ψ3, (51)

where h0, h2, and h4 are real constants. Substituting 
Equation 50 and Equation 51 into Equation 49 yields an equation in 
terms of ψ(ξ) and its powers. This technique allows us to determine 
the unknown coefficient h0,h2,h4 consistently by comparing the 
coefficients of similar powers of ψ(ξ), eventually leading to exact 
solutions of the nonlinear equation

a0 − a0ω− 1
3

αa3
0 + a1ψ− a1ωψ− a2

0a1ψ+ a1h2ψ

− αa0a2
1ψ2 − 1

3
αa3

1ψ3 + 2a1h4ψ3 = 0. (52)

A set of equations involving algebra can be obtained by 
equating every coefficient of power of ψ to 0. These equations 
provide information on the unknown constants within the solution. 
Solving them yields the precise analytical structure of the traveling 
wave solution.

ψ0: a0 − a0ω− 1
3 αa3

0 = 0,

ψ1: a1 − a1ω− a2
0a1 + a1h2 = 0,

ψ2: −αa0a2
1 = 0,

ψ3: 2a1h4 −
1
3 αa3

1 = 0.

Solving the above algebraic equations yields the values of 
unknown constants, thereby allowing us to construct the explicit 
form of the traveling wave solution.

a0 = 0, ω = 1+ h2, a1 = ±√
6h4

α
. (53)

The exact solution of Equation 51 is provided in the following 
section, illustrating the traveling wave form that satisfies the 
nonlinear equation. 

4.2.1 Case 1
We assume that h0 = v2C2, h2 = − v2(1+m2), and h4 =

v2m2

C2 . Here, v and C are nonzero real constants, while 0 ≤m ≤ 1 is 
the Jacobi elliptic functions’ modulus. The result of Equation 51 
is as follows:

ψ (ξ) = C sn (vξ,m) . (54)

The specific solution of Equation 48 may be written as follows, 
which offers insight into the behavior of the structure under 
consideration.

ω = 1− v2 (1+m2) , (55)

U1 (ξ) = ±vm√ 6
α

sn (vξ,m) . (56)
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As m→ 1, the outcome reveals the system’s limiting behavior 
and highlights the properties of the associated solitary wave.

ξ = x− (1− 2v2) t, U1 (ξ) = ±v√
6
α

tanh (ξ) . (57)
 

4.2.2 Case 2
We assume that h0 = v2C2(1−m2), h2 = − v2(2m2 − 1), and 

h4 = −
v2m2

C2 , where C is a nonzero real constant and 0 ≤m ≤ 1
is the Jacobi elliptic functions modulus. Equation 51 yields the 
following result:

ψ (ξ) = Ccn (vξ,m) . (58)

The solution of Equation 48 can be expressed as follows, illustrating 
its structure:

U2 (ξ) = ±vm√− 6
α

cn (vξ,m) , ω = 1+ v2 (2m2 − 1) . (59)

As m→ 1, the solution is obtained, exposing the limiting 
behavior of the system and highlighting the features of the associated 
solitary wave.

U2 (ξ) = ±v√−
6
α

sech (ξ) , ξ = x− (1− v2) t. (60)
 

4.2.3 Case 3
We assume that h0 = − v2C2(1−m2), h2 = v2(2−m2), and 

h4 = −
v2

C2 . Equation 51 yields the following results:

ψ (ξ) = Cdn (vξ,m) . (61)

The solution of Equation 48 can be written as follows, providing 
insight into the behavior of the structure under consideration:

U3 (ξ) = ±v√
−6
α

dn (vξ,m) , ω = 1+ v2 (2−m2) . (62)

As m→ 1, the solution is obtained, revealing the system’s 
limiting characteristic and emphasizing the accompanying 
solitary wave.

U3 (ξ) = ±v√
−6
α

sech (ξ) , ξ = x− (1+ v2) t. (63)
 

4.2.4 Case 4
We assume that h0 = v2C2m2, h2 = − v2(1+m2), and h4 =

v2

C2 . Equation 51 yields the following results:

ψ (ξ) = Cns (vξ,m) = C
sn (vξ,m)

. (64)

The solution of Equation 48 can be expressed as follows:

ω = 1− v2 (2−m2) , U4 (ξ) = ±v√
6
α

ns (vξ,m) . (65)

As m→ 1, the solution is determined, showing the system’s 
limiting feature and highlighting the accompanying single wave.

ξ = x− (1− v2) t, U4 (ξ) = ±v√
6
α

coth (ξ) . (66)
 

4.2.5 Case 5
We assume that h0 = − v2C2m2, h2 = v2(2m2 − 1), and h4 =

v2(1−m2)
C2 . Equation 51 yields the following outcomes:

ψ (ξ) = Cnc (vξ,m) = C
dn (vξ,m)

. (67)

The solution of Equation 48 can be written as follows:

ω = 1+ v2 (2m2 − 1) , U5 (ξ) = ±v√
6(1−m2)

α
nc (vξ,m) . (68)

As m→ 1, the solution is obtained, revealing the system’s 
limiting characteristic and emphasizing the accompanying 
single wave.

ξ = x− (1− v2) t, U5 (ξ) = ±v√
6
α

sec (ξ) . (69)
 

4.2.6 Case 6
We assume that h0 = − v2C2m2, h2 = v2(2−m2), and

h4 = −
v2(1−m2)

C2 . Equation 51 provides the following result:

ψ (ξ) = Cnd (vξ,m) = C
dn (vξ,m)

. (70)

The solution of Equation 48 can be expressed as follows:

ω = 1+ v2 (2−m2) , U6 (ξ) = ±v√
−6(1−m2)

α
nd (vξ,m) . (71)

 

4.2.7 Case 7
We assume that h0 = v2C2, h2 = v2(2−m2), and h4 =

v2(1−m2)
C2 . Equation 51 yields the following result:

ψ (ξ) = Csc (vξ,m) =
Csn (vξ,m)
cn (vξ,m)

. (72)

The solution of Equation 48 can be written as follows:

ω = 1+ v2 (2−m2) , U7 (ξ) = ±v√
6(1−m2)

α
sc (vξ,m) . (73)

As m→ 0, the solution is obtained, revealing the system’s 
limiting characteristic and emphasizing the accompanying 
single wave.

ξ = x− (1+ 2v2) t, U7 (ξ) = ±v√
6
α

tan (ξ) . (74)

4.2.8 Case 8
We consider that h0 = v2C2, h2 = v2(2m2 − 1), and

h4 = −
v2m2(1−m2)

C2 . Equation 51 yields the following outcomes:

ψ (ξ) = Csd (vξ,m) =
Csn (vξ,m)
dn (vξ,m)

. (75)

The solution of Equation 48 can be written as follows:

ω = 1+ v2 (2m2 − 1) ,U8 (ξ) = ±vm√
6(1−m2)

α
sd (vξ,m) . (76)
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FIGURE 8
Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the 
solution of Equation 57 for the parameter values v = 1.3,α = 0.2. These graphs describe the dark optical soliton under the specified constraints.

FIGURE 9
Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the 
solution of Equation 60 for the parameter values α = 0.8;v = 0.02. These graphs describe the bright optical soliton under the specified constraints.

FIGURE 10
Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the 
solution of Equation 63 for the parameter values α = 0.8;v = 0.02. These graphs describe the bright optical soliton under the specified constraints.

4.2.9 Case 9
We consider the equations h0 = v2(1−m2)C2, h2 = v2(2−m2), 

and h4 =
v2

C2 . Equation 51 yields the following results:

ψ (ξ) = Ccs (vξ,m) =
Ccn (vξ,m)
sn (vξ,m)

. (77)

The solution of Equation 48 can be written as follows:

U9 (ξ) = ±v√
6
α

cs (vξ,m) , ω = 1+ v2 (2−m2) . (78)

As m→ 1, the solution is obtained, showing the system’s limiting 
feature and highlighting the resulting solitary wave.
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FIGURE 11
Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the 
solution of Equation 66 for the parameter values α = 0.01;v = 0.5. These graphs describe the singular optical soliton under the specified constraints.

FIGURE 12
Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the 
solution of Equation 79 for the parameter values α = 0.001;v = 0.3. These graphs describe the periodic singular soliton under the specified constraints.

ξ = x− (1+ 2v2) t, U9 (ξ) = ±v√
6
α

cosh (ξ) . (79)
 

4.2.10 Case 10
We assume that h0 = v2C2, h2 = − v2(1+m2), and h4 =

v2

C2 . Equation 51 yields the following outcomes:

ψ (ξ) = Ccd (vξ,m) =
Ccn (vξ,m)
dn (vξ,m)

. (80)

The solution of Equation 48 can be written as follows:

ω = 1− v2 (m2 + 1) ,U10 (ξ) = ±vm√ 6
α

cd (vξ,m) . (81)
 

4.2.11 Case 11
We consider the following equations h0 = − v2m2(1−m2)C2, h2 =

v2(2m2 − 1), and h4 =
v2

C2 . Equation 51 yields the following 
expression:

ψ (ξ) = Cds (vξ,m) =
Cdn (vξ,m)

sn (vξ,m)
. (82)

The result of Equation 48 can be written as follows, providing 
insight into the system’s behavior under the provided analysis:

ω = 1+ v2 (2m2 − 1) , U11 (ξ) = ±v√
6
α

ds (vξ,m) . (83)

As m→ 0, the solution is obtained, showing the system’s limiting 
feature and emphasizing the associated solitary wave.

ξ = x− (1− v2) t, U11 (ξ) = ±v√
6
α

cosh (ξ) . (84)
 

4.2.12 Case 12
We assume that h0 = v2m2C2, h2 = − v2(m2 + 1), and

h4 =
v2

C2 . Equation 51 yields the following results:

ψ (ξ) = Cdc (vξ,m) =
Cdn (vξ,m)

sn (vξ,m)
. (85)

The solution of Equation 48 can be written as follows:

U12 (ξ) = ±v√
6
α

dc (vξ,m) , ω = 1− v2 (m2 + 1) . (86)

Table 2 offers a comparative analysis between classical analytical 
techniques and the more contemporary SMCH and BBM solution 
families. This comparison highlights the relative advantages and 
methodological developments within the field. 
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TABLE 2  Comparison of classical methods with SMCH and BBM solution families.

References Typical solution in the 
literature

Computed general 
solution form

New/improved feature

[46] Hyperbolic (tanh and sech) and 
trigonometric solutions (SMCH)

SMCH: U1, U2, and U3 (tanh/sech
variants), U4 (coth), and U9/U11 (csch)

More generalized amplitude and 
velocity parameters; can reduce to 
classical MSE solutions; allows wider 
parametric control

[47] Hyperbolic (kink/tanh) and 
trigonometric (tan) (SMCH)

SMCH: U1 and U12 (hyperbolic, 
trigonometric, and elliptic)

Unified hyperbolic, trig, and elliptic 
forms with explicit parameter 
constraints; reduction to known results 
possible

[48] Solitary waves, periodic waves, and 
some singular solutions (SMCH)

SMCH: U1 and U12 including elliptic, 
singular, and periodic

Complete catalog; allows direct 
comparison and limiting cases; more 
physical scenarios

[49] Bright, dark solitons (SMCH) SMCH: Jacobi elliptic (nd, sd, cd, and 
ds) and hyperbolic/rational

Adds elliptic families; demonstrates 
limiting behavior m→ 0 (trig) and 
m→ 1 (hyperbolic); unifies periodic 
and solitary solutions

[50] Kink, singular, and trigonometric 
solitons (fractional SMCH)

SMCH: Integer-order, U1, U12
hyperbolic/trig/elliptic with parameter 
relations

Richer forms than fractional models; 
amplitude and velocity relations 
explicitly provided

[51] Solitary waves (sech, tanh, abd rational) 
for BBM

BBM: U1, U12 (sech, tanh, coth, sec, and 
csch; Jacobi elliptic: nd, sd, cd, and ds)

Unified expressions reducing to 
standard BBM solutions; explicit 
parametric dependence; both 
hyperbolic and elliptic solutions in one 
framework

[52] Bright/dark solitons, Jacobi elliptic, and 
periodic and rational (BBM)

BBM: U6, U12 (Jacobi elliptic: nd, sd, cd, 
and ds)

Parameter-dependent dispersion 
relations; limiting checks for m→ 0 and 
m→ 1; allows reduction to classical 
solitary or periodic waves

[53] Hyperbolic, trigonometric, and rational 
solutions (BBM)

BBM: U1, U5 (tanh, sech, coth, sec, and 
csch)

More explicit velocity and amplitude 
parameters; singular forms included; 
generalization beyond usual G′/G
outputs

5 Physical interpretation of solutions 
under the BBM equation

In this section, the sub-ODE method is used to derive an array 
of analytical solutions with varying degrees of accuracy for the BBM 
equation, which is a fundamental model for long-wave propagation 
in nonlinear dispersive media. The solutions thus obtained are 
interpreted through the creation of 3D, 2D, and contour plots in 
Maple 18, which serve to display their dynamic features. A dark 
soliton solution obtained from Equation 57 is depicted in Figure 8, 
where the values of the parameters v = 1.3 and α = 0.2 are provided. 
This wave can be observed as a stable reduction in intensity over 
the continuous background, which physically corresponds to the 
context of either a density void or a wave of depression that can 
be represented in terms of shallow-water waves or plasma physics. 
The velocity parameter v and the nonlinear coefficient α determine 
the soliton’s speed and the depth of the trough in the intensity 
profile, respectively. On the other hand, Figures 9, 10 show the bright 
soliton solutions from Equations 60, 63, respectively. The solutions 

are represented as particles or oscillating humps of energy, with α =
0.8 and v = 0.02, and α = 0.8 and v = 0.2, respectively. The difference 
in the velocity parameter between the figures is v, and this provides 
an opportunity for comparing how the speed of propagation affects 
the amplitude and width of the bright, stable pulses. These pulses are 
ubiquitous in optical fiber communications and hydrodynamics.

Furthermore, the investigation into the BBM equation reveals 
that solutions with richer topological features may also be supported. 
Figure 11 illustrates a singular soliton solution from Equation 66, 
with parameters α = 0.01 and v = 0.5. This solution comprises 
a sharp, unbounded peak that is indicative of a wave-breaking 
scenario or, in other words, the formation of a shock-like structure 
within a dissipativeless medium. The strong nonlinearity of the 
solution due to the much smaller value of α compared with 
the dispersion expresses itself as this steep, singular profile. 
Complementary to the above, Figure 12 illustrates a periodic 
singular soliton solution from Equation 79 for α = 0.001 and v =
0.3. The intriguing wave structure involves a periodic recurrence 
of singularities, suggesting a regime of coherent, repeating blow-up 
events, which could model phenomena in driven nonlinear lattices 
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TABLE 3  Summary of soliton solutions and stability analysis.

Figure Equation Soliton type Parameter Stability Visual summary

Figure 1 Equation 16 Dark optical v = 1.5, j = 1 α = 0.1, and β = 0.5 Stable Stable intensity dip, observable in optical fibers

Figure 2 Equation 19 Bright v = 1.5, j = 1 α = 0.1, and β = 0.5 χ = 0.1 Stable Localized intensity peak, robust against disturbances

Figure 3 Equation 22 Bright optical v = 1.5, j = 1 α = 0.1, and β = 0.5 Stable Bright pulse, viable for energy transport

Figure 4 Equation 25 Unique structure v = 1.5, j = 0 α = 0.1, and β = 0.5 Conditional Distinct wave structure, sensitive to parameter j

Figure 5 Equation 28 Periodic singular v = 1.5, j = 0 α = 0.1, and β = 0.5 Unstable Repeating singularities, blow-up behavior

Figure 6 Equation 33 Periodic v = 1.5, j = 0 α = 0.1, and β = 0.5 Stable Regular repeating pattern, stable oscillations

Figure 7 Equation 38 Singular optical v = 1.5, j = 1 α = 0.1, and β = 0.5 Unstable Sharp unbounded peak, inherent instability

Figure 8 Equation 57 Dark optical v = 1.3 and α = 0.2 Stable Stable dark pulse, confirmed eigenvalues

Figure 8 Equation 60 Bright optical α = 0.8 and v = 0.02 Stable Bright pulse, robust stability

Figure 9 Equation 63 Bright optical α = 0.8, v = 0.2 Stable Bright soliton, stable at higher velocity

Figure 10 Equation 66 Singular optical α = 0.01 and v = 0.5 Unstable Singular structure, exponential growth

Figure 11 Equation 79 Periodic singular α = 0.001 and v = 0.3 Unstable Periodic singularities, divergent response

or certain unstable wave regimes. Regarding the development of 
each solution, the parameters were carefully chosen in order to 
ensure numerical stability and definitely isolate each type of soliton.

The comprehensive graphical representation, systematically 
presenting the 3D, 2D, and contour plots for each solution, offers 
a multifaceted analysis of the wave dynamics inherent to the 
BBM equation. Each 3D surface plot allows for a vivid depiction 
of the temporal evolution and robust spatial localization of each 
soliton, thereby demonstrating their stability during propagation. 
Corresponding 2D line graphs provide an exact cross-section view 
of the instantaneous amplitude profile of the wave, allowing one 
to compare waveforms such as dark depression and bright peak 
clearly. Finally, the contour plots map the propagation pathways and 
regions of energy concentration, providing insight into the wave’s 
interaction potential and dispersive properties. The BBM equation’s 
ability to model complex wave phenomena in dispersive media is 
substantiated by the diverse range of wave morphologies, which are 
not merely dark and bright but also singular and periodic, which 
the equation supports. The importance of the BBM equation is thus 
reaffirmed through the use of these visualizations, which not only 
illustrate mathematical functions but also confirm the existence of 
wave morphologies that are very varied in nature.

This work systematically classifies its contributions to clearly 
delineate their novelty against established literature. Our results 
include solutions matching classical solitons, such as the standard 
bright (sech-type) and dark (tanh-type) solitary waves, which 
serve to validate our methods through the recovery of known 
results. Importantly, we generalized several known families by 
deriving solutions with extended parametric pre-factors, such as 
a velocity-dependent scaling in the periodic tan-type solution, 
allowing enhanced control over the soliton dynamics. The core 
novelty, however, is in the new solutions reported herein, which 

are inclusive of the sec-type singular solution U5 and the suite of 
previously unreported Jacobi elliptic solutions U6,U8,U10,U11,U12
with fully specified dispersion relations. Critical demonstration 
of their validity and generality is also derived from their correct 
reduction to known classical limits; in other words, as the modulus 
m→ 1, the elliptic solutions here correctly reduce to hyperbolic 
sech/tanh solitons, and as m→ 0, they simplify into trigonometric 
periodic waves. Hence, this work extends the known landscape of 
analytical solutions, offering both a broader unifying framework and 
specific, novel waveforms for future application. Table 3 summarizes 
the obtained soliton solutions and provides a dedicated assessment 
of their stability. So, this table present a consolidated view of both 
the derived solution sand their dynamical robustness. 

6 Conclusion

In this study, the sub-ODE method is effectively used to 
derive and analyze several forms of soliton solutions for the 
nonlinear SMCH and BBM equations. New traveling wave solutions 
involving hyperbolic, exponential, and trigonometric functions 
have been obtained for these nonlinear models. This approach 
is well-structured and effective for producing analytical solutions 
to nonlinear partial differential equations. Specific 3D, 2D, and 
contour graphs are used to illustrate the physical behaviors of the 
SMCH and BBM equations using Maple 18. The exact solutions 
obtained include dark, bright, single, and periodic solitons. Both 
the SMCH and BBM equations are important in the study of 
nonlinear wave propagation as they provide insight into the 
behavior of solitons in a variety of physical systems. By studying 
these equations and their solutions, researchers can gain a deeper 
understanding of fundamental nonlinear phenomena and develop
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innovative technologies that use soliton properties. These solutions 
are extremely useful, with extensive applications in engineering, 
optical fibers, applied mathematics, and nuclear physics.

The present work has successfully advanced the field of nonlinear 
wave dynamics by systematically deducing a wide spectrum of new 
analytical soliton solutions for two key model equations. The key 
novelty of the results presented lies not only in the application 
of the sub-ODE method to derive such solutions but also in the 
comprehensive characterization of their stability—a crucial step that 
is often overlooked in similar analytical studies. We have moved 
beyond simple solution generation and provided a comprehensive 
physical classification, confirming the existence of stable bright 
and dark solitons, which are essential in optical communication 
systems, while also identifying and simultaneously for determining 
unstable and singular structures that define the operation limits 
of such systems. The clear link drawn between specific ranges of 
the parameters and soliton stability is a significant contribution, 
providing a practical roadmap through which experimentalists can 
achieve these waveforms in laboratory conditions. The discovery of 
unique, conditionally stable soliton structures will further expand the 
known catalog of waveforms and suggest new directions for theoretical 
investigation. This work incorporates detailed visual analytics with 
rigorous stability criteria, hence bridging an important gap between 
abstract mathematical solutions and tangible physical applicability, 
strongly positioning our findings as a meaningful and predictive 
contribution to the ongoing research within the context of integrable 
systems and applied mathematical physics. 
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