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The main objective of this article is the analytical investigation of the simplified
modified Camassa—Holm (SMCH) and the modified Benjamin—-Bona—Mahony
(BBM) equations. The SMCH equation plays an important role in modeling
shallow-water wave dynamics, nonlinear dispersive phenomena, and the
propagation of solitons in fluid mechanics. The BBM equation is frequently
used to describe long surface gravity waves in nonlinear dispersive media
and serves as a useful alternative to the standard Korteweg—de Vries (KdV)
equation in mathematical physics. To construct exact analytical soliton solutions
for these nonlinear models, the subsidiary ordinary differential equation (sub-
ODE) method is employed. Through an appropriate wave transformation,
the governing partial differential equations are reduced to nonlinear ordinary
differential equations. Our mathematical technique yields several types of
soliton wave shapes, including bright, dark, solitary, and periodic solitons.
Bright solitons depict localized wave peaks, whereas dark solitons reflect
intensity decreases against a continuous background. The resulting analytical
solutions are represented in hyperbolic and trigonometric functions that exhibit
complex nonlinear behaviors, such as periodic and singular patterns. These
soliton structures exhibit the complex dynamics and stability of nonlinear
waves propagating in dispersive mediums. The graphical demonstration of
their propagation in three-dimensional, two-dimensional, and contour forms is
presented for suitable parameter values.

bright soliton solutions, dark soliton solutions, exact soliton solutions, integrable
systems, nonlinear evolution equations, nonlinear partial differential equations, periodic
solutions, sub-ODE method

1 Introduction

The study of exact solutions for nonlinear partial differential equations (NLPDEs)
is important for understanding nonlinear wave phenomena in several fields, including
quantum mechanics, nonlinear optics, fluid mechanics, and plasma physics [1-5].
Nonlinear waves are essential for simulating shallow-water waves, electrical field
propagation, acoustic-gravity waves, and hydromagnetic waves, along with other complex
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physical systems [6-10]. Solitons are stable and confined wave
structures that preserve geometry and energy throughout
propagation despite nonlinearity and dispersion [11-15]. Bright
solitons reflect isolated wave peaks, whereas dark solitons
correspond to intensity decreases within a continuous background.
Mixed solitons and singular solitons show the complexities
in nonlinear wave dynamics [16-19]. Several analytical and
computational approaches are being developed to address NLPDEs
and generate soliton solutions. These include the tanh-function
method, Jacobi elliptic function expansion, Hirota bilinear method,
(G'/G)-expansion method, sine— cosine method, Exp-function
method, Painlevé analysis, subsidiary ordinary differential equation
(sub-ODE) method, variational iteration method, homotopy
perturbation technique, Adomian decomposition method, and
modified simple equation method [20-28]. These approaches yield
explicit models for soliton solutions while also providing useful
insights regarding the dynamics and stability of nonlinear waves
over diverse media.

Research on nonlinear evolution equations has increasingly
focused on Lie symmetries, optimal systems, and symmetry-based
reduction techniques in order to obtain exact solutions and analyze
nonlinear wave dynamics. Works on the Kadomtsev-Petviashvili
(KP)-Benjamin-Bona-Mahony (BBM) and Zakharov-Kuznetsov
(ZK)-BBM equations have presented optimal systems and group-
invariant solutions that showcase complex structures and solution
behaviors of multidimensional models [29, 30]. Furthermore,
symmetry reductions are addressed for models such as the
Korteweg-de Vries (KdV)-Burgers equation with appropriate
dissipative mechanisms that are relevant in plasma environments,
where the exact solutions provide insight into wave steepening and
damping [31]. Works on one-dimensional (1D) gas dynamics under
monochromatic radiation have extended the symmetry techniques
to radiative hydrodynamics and sketched the role of Lie invariants in
uncovering physically relevant wave patterns [32]. Similarly, in the
case of the Gardner equation, studies have pointed out symmetry-
based methods for constructing invariant solutions for nonlinear
dispersive systems [33].

Various analyses of dissipative and acoustical wave equations
are presented in many works, including the Zabolotskaya-Khokhlov
equation, where the consideration of symmetry structures effectively
reveals the underlying analytical forms of exact solutions that
account for nonlinear acoustic propagation [34]. [35] also
constructed invariant solutions of coupled Burgers equations,
providing new insights into the soliton dynamics of multi-
component systems. Symmetry reduction of the KP equation
has provided new classes of exact solutions that are relevant in
shallow-water wave theory and plasma physics [36]. The most
recent works on the Broer-Kaup-Kupershmidt system illustrate
how symmetries can be used to understand the interaction of
solitons with conservation structures in shallow-water flows [37].
Beyond nonlinear mathematical physics, one finds modern imaging
applications such as energy-resolved neutron tomography, in which
advanced modeling links wave-based analytical tools to material
characterization, thereby illustrating the growing interdisciplinary
range of wave dynamics and transport analysis [38].

The simplified modified Camassa-Holm (SMCH) equation and
the modified BBM (MBBM) equation are key models for analyzing
nonlinear dispersive waves. The main point of the SMCH equation
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is that it is widely used to model shallow-water wave dynamics,
soliton propagation in fluid systems, and nonlinear dispersive
phenomena. The MBBM equation can be utilized to describe
long surface gravity waves and serves as an alternative to the
classical KdV equation [39-43]. Both models are applicable to
thermodynamics and fluid mechanics, and they are widely employed
in nonlinear optics and plasma physics, along with electromagnetic
wave propagation. The sub-ODE method is an efficient analytical
strategy for converting complex partial differential equations (PDEs)
into simpler ordinary differential equations using proper wave
transformations. This approach expresses traveling wave solutions
as polynomials of sub-ODE solutions. Using the sub-ODE approach
on the SMCH and MBBM equations yields a variety of precise
solutions, including bright, dark, composite, and singular solitons.
These solutions, which are frequently described as hyperbolic and
trigonometric functions, exhibit complex nonlinear patterns and
may be represented using two-dimensional (2D), three-dimensional
(3D), and contour plots to highlight their stability and dynamics
(44, 45].

The study of the soliton solutions for NLPDEs using
contemporary analytical methods not only improves our
understanding of nonlinear wave phenomena but also offers
practical insights related to applications in optical fibers, fluid
mechanics, plasma physics, and electromagnetic wave propagation.
A systematic investigation into the structures of solitons within both
the SMCH and MBBM equations reveals the richness of nonlinear
dynamics and shows that modern mathematical techniques can be
used to solve complex nonlinear evolution equations. The remainder
of this article is organized as follows: Section 1 provides the
introduction. Section 2 presents the results of the SMCH equation.
Section 4 covers the extraction of soliton solutions for the modified
BBM equation. Sections 3 and 5 describe the physical behavior of

these solutions. Finally, Section 6 presents the conclusion.

2 Solutions of the SMCH equation

2.1 Mathematical analysis of the sub-ODE
method

The emphasis in this article on one-dimensional equations
represents a basic and strategic approach to method validation,
given the current trend of research into higher-dimensional
Reductions such as the SMCH and modified BBM
equations represent essential one-dimensional benchmark cases in

models.

nonlinear wave theory. Such models arise naturally from multi-
dimensional systems in fluid mechanics and plasma physics
using standard methods of dimensional reduction. The main
emphasis of this article is on the development and rigorous
validation of the generalized sub-ODE method, and 1D settings
represent the established testing ground for analytical correctness,
numerical stability, and computational accuracy. Solution families
U,-U,, obtained in this article are intrinsically of mathematical
interest, and more importantly, they represent a starting point
for extensions to higher-dimensional analogs, such as the
Camassa-Holm-Kadomtsev-Petviashvili-type models and two-
dimensional variants of BBM equations. A gradual approach from
one-dimensional validation to higher-dimensional applications is
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a step-by-step research strategy that assures robust development of
the method before moving on to more complex geometrical settings.

We assume that the NLPDE is constructed for the function
g=g(x1), where x and t are the spatial and temporal variables,
respectively. This assumption allows us to use analytical approaches
to find precise or approximate solutions for the NLPDE:

Q8808 & &urGupr+++) = 0 (1)

where Q denotes a polynomial containing the function g and its
greatest order partial derivative. The traveling wave transformation
is used to convert the nonlinear differential equation into an
ordinary differential equation:

2)

where & shows the transformation. In this case, w # 0 is a constant to

gat)=g),  E=xtowt

be determined later. Substituting Equation 1 into Equation 2 yields
the ordinary differential equation (ODE) for further investigation:

H(gg.g".g"¢",...) =0, (3)
where
dg dzg
= ’:_, ”:—,....
§=g@), ¢ z iz

The solution of Equation 3 is provided as follows, which is used
to construct explicit forms of the traveling wave solutions:

N
gO=Yav(®, a0 (4)
i=0

where a; (i=0,1,2,...,N) signifies the constants to be calculated.
(&) represents the solution of the following equation:

Y2 = hy+hyy? + hyyt,

where h, h, and h, are real constants.

(5)

2.2 Description of the SMCH equation

Camassa and Holm [22] derived the CH equation for shallow-
water waves in 1993. It has an integrable bi-Hamiltonian structure.

The SMCH equation is written as follows:
U, +2aU, U, +BU*U, =0, (6)

where a« € R; $>0 and U (x,¢) represents the fluid velocity in the
x-direction. Using wave transformation, we obtain

Ut =U(§), 7)

Substituting Equation 7 into Equation 6 converts the original
PDE into an ODE in terms of the traveling wave variable. This

E=x—wt.

reduction simplifies the problem, making it easier to evaluate and
create clear solutions.

(8)

To minimize the order of the differential equation, we
integrate Equation 8 with respect to & and simplify the resultant

—wU' +2aU' + oU" + BUPU = 0.

expression. This phase eliminates the highest-order derivative and
inserts an integration constant, which may be computed later using
boundary or beginning conditions.

B

wU—ZaU—wU”—§U3 =0. 9)
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2.3 Exact solutions of the SMCH equation

We use the balancing principle to determine the explicit form
of the traveling wave solution. We first substitute the ansatz U({) =
(&N, where v =u(é) is to be determined and N is a positive
integer, into the governing equation. The highest-order derivative
U" and the highest-order nonlinear term U? are the dominant terms.
Substituting the ansatz, U” yields a power of N2, whereas the
nonlinear term U® yields a power of y*V. For a non-trivial solution
to exist, these dominant terms must be balanced. Thus, it follows
that the powers of ¥ must be equal. This produces an algebraic
equation N + 2 = 3N. If we solve the equation, we obtain 2 = 2N and,
ultimately, N = 1. This supports that the solution of U(£) must be
written as U(&) = a;, + a, y(&).

Employing the balancing method for the terms U” and U in
Equation 9 yields N = 1. To balance the nonlinear variable U? and
the highest-order derivative term U”, the maximum power of y(¢)
in the proposed solution must be 1. As a result, Equation 9 enables
a solution with just the first-order terms of y(&)

U@ =ay+a,y(), (10)

where a, and a, are arbitrary constants that will be determined later
and (&) is the solution to the related elliptic differential equation.
The function y(£) controls the amplitude and periodic behavior of
the wave in the soliton solution, establishing its general structure as

V' =hy 2y, (V) =hyrhy? byt (D)

where hy, h,, and h, are real constants. Substituting Equation 10 and
Equation 11 into Equation 12 creates a new equation that relates
these constants through algebraic expressions. This substitution
reduces the nonlinear components and prepares the problem for an
analytical approach.

agw —2aa, — %ﬁaé +a 0wy —2aa,y - Pagay y — ahywy — aga; fy’

- %ﬁaiyf; —2a,hywy? = 0. (12)

To verify that the equation holds true for all values of y, the
coeflicients of each power of y are equated to 0. As a result, a set
of algebraic equations is obtained, which enables the determination
of the unknown constants such as ay, a;, hy, h,, and h,.

0

LA
Y
V2

- %ﬁa? -2ahy0=0.

1
ayw —2aa, — gﬂug =0,
a0 - 2aa, —aga,f - a;hyw =0,

- ao“?ﬂ =0,

The solution to these algebraic equations will yield the exact
value of the unknown constants, and such constants are necessary
for forming the exact traveling wave solutions. These constants
determine the type and number of solitons generated by the
nonlinear equation, including bright, dark, and singular solutions.

- 3ah,
T\ B

The solution to Equation 11 may be represented as follows by

a,=0, (13)

»  ap =

demonstrating the relationship between Jacobi elliptic functions and
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TABLE 1 Analysis of Jacobi elliptic functions and their limiting forms.

10.3389/fphy.2025.1729719

Function j—0 Function j Function
sn (&) tanh (§) sin (§) ds (§,)) csch (§) csc (§) cn (&) sech (§) cos (&)
dn (§,) sech (£) 1 sd (§,7) sinh (&) sin () ns (&,j) coth (§) esc (§)
nc (§,5) cosh (&) sec (&) cs (&) csch (§) cot (&) cd (&) 1 cos (§)

their limiting forms. When the modulus j approaches 1 or 0, these
functions become hyperbolic and trigonometric.

Table 1 describes Jacobi elliptic functions and their limiting
forms, which are essential for generating soliton solutions in
nonlinear differential equations. The table depicts the behavior of
each function (sn, cn, dn, ds, sd, ns, nc, cs, and cd) as the modulus
j— 1landj— 0. When j — 1, the functions decrease to hyperbolic
functions (tanh, sech, sinh, coth, etc.), and they depict localized
soliton-like waves. When j— 0, they reduce to trigonometric
functions (sin, cos, sec, csc, cot, etc.), and they characterize periodic
waves. This shows that, depending on the value of j, a single Jacobi
function may describe both soliton and periodic wave solutions,
making it particularly helpful for evaluating traveling wave solutions
and soliton structures in nonlinear wave equations.

231 Casel B

We assume that h, = v*D%, h, = —v*(1 +*), and h, = :3_]2- Here,
v and D are the wave velocity and the amplitude of the wave,
respectively, and 0 < j < 1is the Jacobi elliptic function modulus. The
solution of Equation 11 is as follows:

y(§) =Dsn(v§,j). (14)

The exact solution of Equation 8 is mathematically represented
below, where the parameters meet the given requirements.

P - [ ; o 2a
U, (&) = £2vj ﬂ(v2+v2j2+1)sn(vf»1), w 2+ +1

(15)

In the limiting case, as j — 1, the solution of Equation 11
simplifies to a hyperbolic shape, representing a confined solitary
wave. This limit illustrates the transition from periodic Jacobi elliptic
functions to solitary wave structures, stressing the solution’s physical
relevance in the context of nonlinear wave propagation.

tanh (§),E=x— ﬂ.

2V +1 (16)

_ o Sa
U@ =22v B2V +1)

2.3.2 Case 2
We assume a certain value of hy=v*D*(1-j%), h,=—
22
V(22 -1), andh,= - :3_12- Equation 11 admits the following
exact solution, which depends on the Jacobi elliptic functions and
characterizes the wave profile for the system under consideration.

y(§) =Den(vE,j). 17)
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The solution of Equation 8 can be written as follows, illustrating
the system behavior under the specified conditions:

3a
B(2v*f —v* +1)

o 2a
V(272 -1)+1
(18)

U, (&) = +2vj sn(v&,j),

As j — 1, the outcome becomes hyperbolic, corresponding to a
specific soliton with a sharp peak and finite width. This shows the
creation of a single wave in the structure of the system.

% U, (6 = 1274 ﬁ sech (§). (19)

fox- 220
V2+

2.3.3 Case 3

Weassume that iy = —v*D*(1 - j2), h,=v*(2—j*), andh,=
- ;—22. Based on Equation 11, the solution captures the system’s
nonlinear properties and can represent several solitons depending
on the parameters used.

y(§) = Ddn (v, j). (20)

The solution of Equation 8 can be stated as follows,

demonstrating the system behavior under the required conditions:

3a
BV -212+1)

2
vV (2-74)-1
@1)

U, (&) = +2v dn(v¢,j),w =

As j— 1, the outcome becomes hyperbolic, representing a
particular soliton with a sharp peak and finite width. This
demonstrates the formation of a single wave within the system’s

structure.
3a 2at
Uy (§) =+2v ﬂ—(—vz .y sech(§), &=x+ o (22)
2.34 Case 4 2
We assume that hy = v*D*%,  h, = —v*(1+%), andh, = .

The solution to Equation 11 shows how the wave profile evolves over
time. This solution captures the system’s nonlinear features and can
represent a variety of solitons depending on the parameters used.

y(§) = Dns (v, )) = (23)

_b

sn(vE,j)’
The solution of Equation 8 can be expressed as follows,

illustrating the system behavior under suitable conditions:

_ 3a . _ 2a
Us(® =2 \J—[S(vzj2+v2+l) ns(vh), @ V(1+72)+1

(29)
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As j— 1, the result becomes hyperbolic, indicating a specific
soliton with a sharp peak and finite width. This shows how a single
wave forms within the system’s structure.

Uy () = 42v | ——2— coth(§), E=x-—2_  (25)
-B(2v*+1) 207 +1
2.3.5 Case 5
We assume that h, = —v*D*?,  h,=v*(2j*~1), and h,=
2
VXL From Equation 11, the solution captures the system’s

DZ
nonlinear properties and can represent several solitons depending
on the parameters used.

y(§) =Dnc(vg,j) = (26)

_b
cen(vj)

The solution to Equation 8 is as follows, showing the behavior of
the system under the appropriate conditions:

3a(1-7)
B -2V} +1)

.
V(2P -1)-1
(27)

Us (&) = £2v nc(v&j), w

As j— 0, the result becomes hyperbolic, suggesting a unique
soliton with a sharp peak and finite width. This illustrates how a
single wave forms within the systen’s structure.

3a 2at
U. =42y |———— sec(§),E=x+ ———. 28
S® ‘/_ﬁ(vm) ©8=x 2" 09
2.3.6 Case 6
We assume that hy= —v’D?, h,=v*(2-j%), and hy= -
V(-7

- The solution of Equation 11 demonstrates how the wave
profile varies over time. This solution represents the system’s
nonlinear features and can represent a variety of solitons based on
the parameters used.

_b
dn(vg,j)’

The solution of Equation 8 is as follows, displaying the system

¢(§) =Dnd (vE,j) = (29)

behavior under the required conditions.

3a(1-5) 2a
Us(H) =+2v||—————nd (W), w=-—""——.
«® B(A72 -2 +1) > V(2-7)-1
(30)
2.3.7 Case 7
We assume that hy=v*D% h,=+*(2-j5), and h,=
V(-7

— - Based on Equation 11, the solution depicts the system’s
nonlinear properties and can represent several solitons depending

on the parameters employed.
Dsn (vE,))
en(vgj)

The solution of Equation 8 is shown below, demonstrating the
system behavior under specific conditions.

y(§) = Dsc(v4,)) = (31)

3a(1-7%)
BV -2v*+1)

2a
V(2-7)-1
(32)

Jj;(§) =+2v sc(vE.j),

w=-

Frontiers in Physics

05

10.3389/fphy.2025.1729719

As j— 0, the result becomes hyperbolic, indicating a single
soliton with a sharp peak and finite width. This demonstrates the
development of a single wave within the system’s internal structure.

3a
-B(-2/" +1)

2at
221

U, (&) =+2v tan(§), &=x+ (33)

2.3.8 Case 8

We assume that h,= Vv D?,
PO

Dz

profile varies over time. This solution displays the system’s nonlinear

hy =v*@2j*-1), and h,= -
The solution of Equation 11 illustrates how the wave

features and can represent a variety of solitons depending on the
parameters used.

Dsn (v€,))
dn(vgj)

The solution of Equation 8 is provided below, exhibiting the
system’s behavior under the given conditions.

y(§) =Dsd(v4,)) = (34)

3a(1-5)
B(* -2V +1)

20
V(PR -1)-1
(35)

Uy (§) = +2vj sd(v&,)),

w=—

2.39 Case 9

We assume that hy=v*(1-j2), hy=v*2-7*)D? and h, =

#. Based on Equation 11, the solution highlights the system’s

nonlinear properties and can depict several solitons depending on
the parameters used.

Den (v€,5)

sn(vE,j) -

The solution of Equation 8 is provided below, exhibiting the
systemy’s behavior under specified conditions.

y(§) =Des(v,)) = (36)

3a
B -2v*+1)

2a
v(2-7)-1
(37)

Uy (&) = £2v cs(vej), w=-

As j approaches 0, the result becomes hyperbolic, indicating a
single soliton with a sharp peak and finite width. This demonstrates
the formation of a single wave within the system’s internal structure.
2at

X+ —,
-1

3a

—B(-2v*+1)

3 Uy () =+2v csch().  (38)

2.3.10 Case 10
2192 201, 2 Vi
We assume that hy=v'D",  h, = —v(1+j°), and hy = 7.
The solution of Equation 11 demonstrates how the wave profile
varies over time. This solution emphasizes the system’s nonlinear
features and can represent a variety of solitons depending on the
parameters used.
Den(vE,j)
dn(v,j) -

The solution of Equation 8 is provided below, exhibiting the

y(§) =Dcd(vE,j) = (39)
system’s behavior under certain conditions.

3«
B+ +1)

2at
V(1+72)+1
(40)

Uy (§) = £2vj cd(v,j), w=
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2.3.11 Case 11

We assume that hy = —v**(1-2), h,=+*(2j—1). Finally,
hy = ;Tzz. The solution of Equation 11 illustrates how the wave profile
varies over time. This solution highlights the system’s nonlinear
features and can represent a variety of solitons depending on the
variables used.

Ddn (v¢,))

¥ =Dds(ve) = T

(41)

The following solution of Equation 8 demonstrates the system’s
behavior under the provided conditions.

3a
B -V} +1)

_ 2at
V(22 -1)-1
(42)

Uy, (§) = +2v ds(v&,j),

w

As j — 1, the result turns hyperbolic, suggesting a single soliton
with a sharp peak and finite width. This occurs when a single wave
emerges within the system’s underlying structure.

: UH(E):iZVW%CSCh(f). (43)
2.3.12 Case 12

We suppose that by = v**D*,  h,= —v*(*+1), and h, = g,
The solution of Equation 11 shows how the wave profile changes with

2at
2% +1

E=x

time. This solution emphasizes the system’s nonlinear properties and
can represent several solitons based on the parameters used.

Ddn (v¢,j)
sn(vE,j)

The solution of Equation 8 is provided below, exhibiting the

y(§) = Ddc(vE,j) = (44)

system’s response under the given circumstances.

3 2at
Up, (&) ==+2v Wivzﬁ—l) csch(§), w= 7 ad

(F+1)+1
(45)

3 Physical interpretation of solutions
under the SMCH equation

These graphs illustrate a clear representation of the different
solitary wave solutions obtained for the considered SMCH equation.
The dark soliton solution obtained from Equation 16 and plotted in
Figure 1 represents a stable density dip traveling over a continuous
background. By using parameters v=1.5, j=1, a=0.1, and =
0.5, this structure models phenomena such as pressure depressions
in compressible fluids or voids in nonlinear lattices, where the
parameters dictate the depth and stability of the propagating trough.
Bright soliton solutions are shown in Figures 2, 3 for Equations 19,
22, respectively, which manifest as localized, particle-like humps of
elevated energy. These structures, specifically with the modulating
parameter, as shown in Figure 2, are fundamental for modeling
localized excitations such as pressure peaks in shallow water or
intense pulses in elastic rods.

In this section, Maple 18 is utilized to generate 3D, 2D, and
contour graphs of traveling wave solutions for the SMCH equation.
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Figure 1 shows that the series of solutions is extended with
the inclusion of singular and periodic wave modes, which result
from the nonlinearity of the SMCH model. The implementation
of Equation 25 in Figure 4 shows a singular soliton with its
characteristic unbounded and sharp peak that points to a scenario of
wave-breaking or hydraulic jump in the case of fluid dynamics; here,
the choice of j = 0 is crucial for the observation of the non-analytic
characteristic. Figure 5 shows a periodic singular soliton, derived
from Equation 28; the periodicity of the singularity indicates that
the system frequently undergoes shock formation. Figure 6 (from
Equation 33) reveals a non-singular wave that is purely periodic
and has similarities to oscillatory forms within confined domains.
The singular soliton in Figure 7 (from Equation 38), on the other
hand, not only suggests but also emphasizes the possible occurrence
of highly localized, intense energy concentrations that might be the
precursor of rogue waves in a complex medium.

The multi-perspective plotting strategy using 3D, 2D, and
contour views physically elucidates the features of the SMCH
equation step by step. The 3D surface plots clearly demonstrate
the strong localization in the space and the stability over time of
the soliton amplitude. The 2D line graphs corresponding to the 3D
surface plots provide a detailed view of the wave’s profile at the
moment and its invariance in translation over the spatial domain.
The contour plots clearly delineate the mapping of intensity lines
and the pathways of energy propagation, thus providing important
insights into the collisionless nature and interaction capabilities
of solitons. The use of different plots not only illustrates various
mathematical solutions but also highlights the rich physics and
the wide range of wave morphologies that can be observed and
are governed by the SMCH equation under the given parameter
conditions.

4 Extraction of soliton solutions for
the modified BBM equation

4.1 Description of the modified BBM
equation

The (1+ 1)-dimensional nonlinear dispersed modified BBM
(Equation 11) is an important model for studying weakly nonlinear
long waves in dispersive media. This equation reflects the
equilibrium between nonlinearity and dispersion, which allows the
existence and propagation of a wide range of solitary wave solutions.
The result is as follows:

U+t — o’ u, + = 0, (46)
where « represents a non-zero real constant. This equation was
originally formulated to represent long surface waves in a nonlinear
dispersive medium. It may also describe acoustic-gravity waves
in compressible fluids, hydromagnetic waves in cold plasmas,
and acoustic waves in inharmonic crystals. We know that
from the previous section, the traveling wave transformation is
stated as follows:

Ux,t) = U®§), E=x-wt. (47)

Using the chain rule, U, = - wU',U, = U', U, = U". Substituting
Equation 47 into Equation 46 yields a nonlinear ODE incorporating

frontiersin.org


https://doi.org/10.3389/fphy.2025.1729719
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Zhang 10.3389/fphy.2025.1729719

‘f\‘
1.2 !LC "
ol ] \ PR
0.8 ' ' “
" P -
i & A}
] ! )
041 l & )
Y -
0.2 ¢ )
’,’ 5 \\
o T T T T & -"” \""'-. -
, -1 -4 -2 0 2 4 — —
x 4 -1 4

FIGURE 1

Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the

solution of Equation 16 for the parameter values v=1.5,j=1, a = 0.1, and = 0.5. These graphs describe the structure of a dark optical soliton under the
specified constraints.
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FIGURE 2

Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the
solution of Equation 19 for the parameter values v=1.5,j=1, a=0.1, = 0.5, and y = 0.1. These graphs describe the structure of a bright soliton under
the specified constraints.
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FIGURE 3

Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the
solution of Equation 22 for the parameter values v=15, /=1, a=0.1, and = 0.5. These graphs describe the structure of a bright soliton under the
specified constraints.
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FIGURE 4
Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the
solution of Equation 25 for the parameter values v=15, =0, a = 0.1, and = 0.5. These graphs describe the unique soliton structure under the
specified constraints.

FIGURE 5

Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the
solution of Equation 28 for the parameter values v =15, =0, a = 0.1, and = 0.5. These graphs describe the periodic singular solitons under the
specified constraints.

FIGURE 6

Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the
solution of Equation 33 for the parameter values v=15, /=0, a = 0.1, and = 0.5. These graphs describe the periodic soliton under the specified
constraints.
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FIGURE 7
Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the

solution of Equation 38 for the parameter values v=15, =1, a=0.1, and = 0.5. These graphs describe a singular optical soliton under the specified
constraints.
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U and its derivatives. This transformation essentially lowers the
original partial differential equation to an ODE, which simplifies
wave profile analysis. The resultant equation is as follows:

(1-w) U —aU?U +U" =0. (48)

Combining Equation 48 with respect to ¢ while allowing the
constant integration to be 0 for simplicity yields a simplified
equation. This technique significantly reduces the order of the
differential equation, making it easier to derive exact traveling
wave solutions. The integrated equation reflects the balance among
nonlinear and dispersive effects that exist in the system, which is
necessary for understanding soliton structures.

(1-w)U-2U3+U" =0. (49)
3

4.2 Exact solution of the modified BBM
equation

Using the balance concept from Equation 49, we obtain
n=1. This step is critical for developing precise traveling wave
solutions and guarantees that the nonlinear and dispersive terms are
correctly balanced.

U)=ay+a,v(é)), (50)

where a, and a, are arbitrary constants and (&) satisfies an elliptic
differential equation. This approach allows for the generation of
precise traveling wave solutions by selecting the function y(£) to
satisfy the governing nonlinear equation.

(W’)2:h0+h2‘/’2+h4‘lf4’ v =hyy+2hy’, (51)

where hy, h,, and h, are real constants. Substituting
Equation 50 and Equation 51 into Equation 49 yields an equation in
terms of y(§) and its powers. This technique allows us to determine
the unknown coefficient hy,h,,h, consistently by comparing the
coefficients of similar powers of y(£), eventually leading to exact

solutions of the nonlinear equation
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RS . _ _ 2 h
Ay~ Gy = Sady + Y = WY = dua Y+ ayhyy
- aaga’y* - %ocafl/ﬁ +2a,hyy? = 0. (52)

A set of equations involving algebra can be obtained by
equating every coefficient of power of y to 0. These equations
provide information on the unknown constants within the solution.
Solving them yields the precise analytical structure of the traveling
wave solution.

1[/0 ay— agw — %(xag =0,
V' a-aw-aja; +ah, =0,
v —cxaoaf =0,

v 2ah, - %aa? =0.

Solving the above algebraic equations yields the values of
unknown constants, thereby allowing us to construct the explicit
form of the traveling wave solution.

6h
ay=0, w=1+h,, a1=¢\/7“. (53)

The exact solution of Equation 51 is provided in the following
section, illustrating the traveling wave form that satisfies the
nonlinear equation.

42.1 Casel

We assume that  hy=v*C%,  hy,= —v*(1+m?), and h, =
vzmz

—-. Here, v and C are nonzero real constants, while 0 <m <1 is
the Jacobi elliptic functions’ modulus. The result of Equation 51
is as follows:

v (&) = Csn(v€,m). (54)

The specific solution of Equation 48 may be written as follows,
which offers insight into the behavior of the structure under
consideration.

w=1-v*(1+m?), (55)

U, (§) = tvm \/gsn(vf,m). (56)
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As m — 1, the outcome reveals the system’s limiting behavior
and highlights the properties of the associated solitary wave.

E=x-(1-22)t, U, :iV\/gtanh(E). (57)

42.2 Case 2
We assume that h, = V2CX(1 - m?), h, = —v*(2m*-1), and
2.2
hy= — ZZ-, where C is a nonzero real constant and 0 <m <1

CZ
is the Jacobi elliptic functions modulus. Equation 51 yields the

following result:

y(&) = Cen(vé,m). (58)

The solution of Equation 48 can be expressed as follows, illustrating
its structure:

Uz(f):ivmﬁcn(v&m), w=1+v(2m*-1). (59)

As m — 1, the solution is obtained, exposing the limiting
behavior of the system and highlighting the features of the associated
solitary wave.

U, () :ivﬁsech(&'), E=x-(1-V)t. (60)

4.2.3 Case 3
We assume that hy= — V2CH(1 - m?), h, = v?(2-m?), and
hy=— g Equation 51 yields the following results:
y(§) = Cdn(v§,m). (61)

The solution of Equation 48 can be written as follows, providing
insight into the behavior of the structure under consideration:

Us(§) = tV\/%dn(v&m), w=1+7?2-m?). (62

As m — 1, the solution is obtained, revealing the system’s

limiting characteristic and emphasizing the accompanying
solitary wave.
U, (§) = vy _—6sech(£), E=x-(1+)t. (63)
o
424 Case 4
We assume that h, =v*C*m?, hy,= —v*(1+m?), and h, =
é. Equation 51 yields the following results:
C
y(§) =Cns(vg,m) = ———. (64)
sn (vé, m)
The solution of Equation 48 can be expressed as follows:
w=1-v*(2-m?), U4(f):i1/\/§ns(v£,m). (65)
o

As m — 1, the solution is determined, showing the system’s
limiting feature and highlighting the accompanying single wave.

E=x-(1-)t U :iV\/gcoth(E). (66)
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4.2.5 Case 5
We assume that by = —v?C?m?,  h, =v*(2m*—1), and h, =

v (1-m?) . . .
— - Equation 51 yields the following outcomes:

C
=C ,Mm) = ————. 67
¥ (§) = Cnc(vE,m) e (67)
The solution of Equation 48 can be written as follows:
6(1—m?
w=1+V02m?-1), Us@)=+v %nc(vf,m). (68)

As m — 1, the solution is obtained, revealing the system’s
limiting characteristic and emphasizing the accompanying
single wave.

E=x-(1-)t, U5(f):iV\/§sec(f). (69)
«
4.2.6 Case 6
We assume that h,= —v*C’m? h,=v*Q2-m?), and
hy=— % Equation 51 provides the following result:
© = Crd (e m) = —— (70)
v T e
The solution of Equation 48 can be expressed as follows:
-6(1-m?
w=1+V(2-m?), Ug(®)==v M nd(v€,m). (71)
o
4.2.7 Case 7
We assume that h;= VC2, hy = v(2-m?), and hy =
%. Equation 51 yields the following result:
Csn(vé,m
YO = Csc(vm) = E0EM), (72)
cn (vé,m)
The solution of Equation 48 can be written as follows:
2 2 6(1 B 2)
w=1+vV(2-m*), U,({)==+v sc(vé,m). (73)

As m — 0, the solution is obtained, revealing the system’s
limiting characteristic and emphasizing the accompanying
single wave.

E=x-(1+27)t, U7(f):i1/\/E tan (£). (74)
«
4.2.8 Case 8
We  consider that h,= V2, h, = v(2m?-1), and
hy= - % Equation 51 yields the following outcomes:
Csn(vé,m)
=Csd(v§,m) = ————. 75
y(§) = Csd (vé,m) T (Em) (75)
The solution of Equation 48 can be written as follows:
6(1-m*
w=1+v(2m?-1),Uq (§) = +vm ﬂ sd(é,m). (76)
o
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FIGURE 8
Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the
solution of Equation 57 for the parameter values v =1.3,a = 0.2. These graphs describe the dark optical soliton under the specified constraints.

FIGURE 9
Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the
solution of Equation 60 for the parameter values a = 0.8;v = 0.02. These graphs describe the bright optical soliton under the specified constraints.
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FIGURE 10
Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the
solution of Equation 63 for the parameter values a = 0.8;v = 0.02. These graphs describe the bright optical soliton under the specified constraints.

4.2.9 Case 9
We consider the equations h, = V(1 -m?)C?, h, = V(2 -m?),
and by = VE Equation 51 yields the following results:

The solution of Equation 48 can be written as follows:

Ug(f)=iV\/§ s(Em), w=1+V2-m?).  (78)
Ccn (vé,m) As m — 1, the solution is obtained, showing the system’s limiting
y(§) =Ces(vm) = ———=

sn(vE,m) 77) " feature and highlighting the resulting solitary wave.
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FIGURE 11

—~F 41—k x|

Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the
solution of Equation 66 for the parameter values a = 0.01;v = 0.5. These graphs describe the singular optical soliton under the specified constraints.

FIGURE 12

Three different graphical representations, namely, 3D surface (left panel), contour plot (middle panel), and 2D profile (right panel), of the
solution of Equation 79 for the parameter values a« = 0.001;v = 0.3. These graphs describe the periodic singular soliton under the specified constraints.

E=x-(1+2%)t, Uy(&) ZiV\/g cosh (£). (79)

4.2.10 Case 10

We assume that hy=1*C%, hy,=—v*(1+m?), and h,=

2
é. Equation 51 yields the following outcomes:

. _ Cenlem)
y(§) = Ced(vs,m) = dn(vEm)

The solution of Equation 48 can be written as follows:

(80)

w=1—v2(m2+1),U10(E)=tvm\j§ cd(v&,m).  (81)

42.11 Case 11

We consider the following equations by = —v?m*(1 - m*)C%,  h, =

v*(2m?-1), and h, = é Equation 51 vyields the following
expression:

V(&) = Cds (vt m) = SRS, (82)
sn(v€,m)

Frontiers in Physics 12

The result of Equation 48 can be written as follows, providing
insight into the system’s behavior under the provided analysis:

w=1+v(2m?-1), Ull(f):iV\/g ds (vE, m). (83)

As m — 0, the solution is obtained, showing the system’s limiting
feature and emphasizing the associated solitary wave.

E=x-(1-4)t, U )= iV\jg cosh (§).

(84)
4.2.12 Case 12
We assume that hy= vm?C?, hy= - v’(m*+1), and
hy= VE Equation 51 yields the following results:
Cdn(vé€,m)
=Cdc(vé,m) = ——————. 85
v () c(vé,m) T Em) (85)

The solution of Equation 48 can be written as follows:

Ulz(f):iv\jg dc(vEm), w=1-v*(m*+1). (86)

Table 2 offers a comparative analysis between classical analytical
techniques and the more contemporary SMCH and BBM solution

families. This comparison highlights the relative advantages and
methodological developments within the field.
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TABLE 2 Comparison of classical methods with SMCH and BBM solution families.

10.3389/fphy.2025.1729719

References Typical solution in the Computed general New/improved feature
literature solution form
[46] Hyperbolic (tanh and sech) and SMCH: U,, U,, and Uj (tanh/sech More generalized amplitude and
trigonometric solutions (SMCH) variants), U, (coth), and Uy/U,, (csch) velocity parameters; can reduce to
classical MSE solutions; allows wider
parametric control
[47] Hyperbolic (kink/tanh) and SMCH: U, and Uy, (hyperbolic, Unified hyperbolic, trig, and elliptic
trigonometric (tan) (SMCH) trigonometric, and elliptic) forms with explicit parameter
constraints; reduction to known results
possible
[48] Solitary waves, periodic waves, and SMCH: U, and Uy, including elliptic, Complete catalog; allows direct
some singular solutions (SMCH) singular, and periodic comparison and limiting cases; more
physical scenarios
[49] Bright, dark solitons (SMCH) SMCH: Jacobi elliptic (nd, sd, cd, and Adds elliptic families; demonstrates
ds) and hyperbolic/rational limiting behavior m — 0 (trig) and
m — 1 (hyperbolic); unifies periodic
and solitary solutions
[50] Kink, singular, and trigonometric SMCH: Integer-order, U;, U,, Richer forms than fractional models;
solitons (fractional SMCH) hyperbolic/trig/elliptic with parameter amplitude and velocity relations
relations explicitly provided
[51] Solitary waves (sech, tanh, abd rational) BBM: U,, Uy, (sech, tanh, coth, sec, and Unified expressions reducing to
for BBM csch; Jacobi elliptic: nd, sd, cd, and ds) standard BBM solutions; explicit
parametric dependence; both
hyperbolic and elliptic solutions in one
framework
[52] Bright/dark solitons, Jacobi elliptic, and BBM: Uy, U, (Jacobi elliptic: nd, sd, cd, Parameter-dependent dispersion
periodic and rational (BBM) and ds) relations; limiting checks for m — 0 and
m — 1; allows reduction to classical
solitary or periodic waves
[53] Hyperbolic, trigonometric, and rational BBM: U, Us (tanh, sech, coth, sec, and More explicit velocity and amplitude
solutions (BBM) csch) parameters; singular forms included;
generalization beyond usual G' /G
outputs

5 Physical interpretation of solutions
under the BBM equation

In this section, the sub-ODE method is used to derive an array
of analytical solutions with varying degrees of accuracy for the BBM
equation, which is a fundamental model for long-wave propagation
in nonlinear dispersive media. The solutions thus obtained are
interpreted through the creation of 3D, 2D, and contour plots in
Maple 18, which serve to display their dynamic features. A dark
soliton solution obtained from Equation 57 is depicted in Figure 8,
where the values of the parameters v = 1.3 and « = 0.2 are provided.
This wave can be observed as a stable reduction in intensity over
the continuous background, which physically corresponds to the
context of either a density void or a wave of depression that can
be represented in terms of shallow-water waves or plasma physics.
The velocity parameter v and the nonlinear coefficient « determine
the soliton’s speed and the depth of the trough in the intensity
profile, respectively. On the other hand, Figures 9, 10 show the bright
soliton solutions from Equations 60, 63, respectively. The solutions
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are represented as particles or oscillating humps of energy, with a =
0.8 and v =0.02, and « = 0.8 and v = 0.2, respectively. The difference
in the velocity parameter between the figures is v, and this provides
an opportunity for comparing how the speed of propagation affects
the amplitude and width of the bright, stable pulses. These pulses are
ubiquitous in optical fiber communications and hydrodynamics.
Furthermore, the investigation into the BBM equation reveals
that solutions with richer topological features may also be supported.
Figure 11 illustrates a singular soliton solution from Equation 66,
with parameters a=0.01 and v=0.5. This solution comprises
a sharp, unbounded peak that is indicative of a wave-breaking
scenario or, in other words, the formation of a shock-like structure
within a dissipativeless medium. The strong nonlinearity of the
solution due to the much smaller value of & compared with
the dispersion expresses itself as this steep, singular profile.
Complementary to the above, Figure 12 illustrates a periodic
singular soliton solution from Equation 79 for «=0.001 and v =
0.3. The intriguing wave structure involves a periodic recurrence
of singularities, suggesting a regime of coherent, repeating blow-up
events, which could model phenomena in driven nonlinear lattices
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TABLE 3 Summary of soliton solutions and stability analysis.

10.3389/fphy.2025.1729719

Equation  Soliton type Parameter Stability = Visual summary
Figure 1 Equation 16 Dark optical v=15j=1a=0.1,and f=0.5 Stable Stable intensity dip, observable in optical fibers
Figure 2 Equation 19 Bright v=15j=1a=0.1,and =05 y=0.1 Stable Localized intensity peak, robust against disturbances
Figure 3 Equation 22 Bright optical v=15j=1a=0.1,and f=0.5 Stable Bright pulse, viable for energy transport
Figure 4 Equation 25 Unique structure v=15j7=0a=0.1,and f=0.5 Conditional Distinct wave structure, sensitive to parameter j
Figure 5 Equation 28 Periodic singular v=15,j=0a=0.1,and f=0.5 Unstable Repeating singularities, blow-up behavior
Figure 6 Equation 33 Periodic v=15j7=0a=0.1,and f=0.5 Stable Regular repeating pattern, stable oscillations
Figure 7 Equation 38 Singular optical v=15j=1a=0.1,and =05 Unstable Sharp unbounded peak, inherent instability
Figure 8 Equation 57 Dark optical v=13and a=0.2 Stable Stable dark pulse, confirmed eigenvalues
Figure 8 Equation 60 Bright optical a=0.8andv=0.02 Stable Bright pulse, robust stability
Figure 9 Equation 63 Bright optical a=08,v=02 Stable Bright soliton, stable at higher velocity
Figure 10 Equation 66 Singular optical a=0.0landv=0.5 Unstable Singular structure, exponential growth
Figure 11 Equation 79 Periodic singular a=0.001and v=0.3 Unstable Periodic singularities, divergent response

or certain unstable wave regimes. Regarding the development of
each solution, the parameters were carefully chosen in order to
ensure numerical stability and definitely isolate each type of soliton.

The comprehensive graphical representation, systematically
presenting the 3D, 2D, and contour plots for each solution, offers
a multifaceted analysis of the wave dynamics inherent to the
BBM equation. Each 3D surface plot allows for a vivid depiction
of the temporal evolution and robust spatial localization of each
soliton, thereby demonstrating their stability during propagation.
Corresponding 2D line graphs provide an exact cross-section view
of the instantaneous amplitude profile of the wave, allowing one
to compare waveforms such as dark depression and bright peak
clearly. Finally, the contour plots map the propagation pathways and
regions of energy concentration, providing insight into the wave's
interaction potential and dispersive properties. The BBM equation’s
ability to model complex wave phenomena in dispersive media is
substantiated by the diverse range of wave morphologies, which are
not merely dark and bright but also singular and periodic, which
the equation supports. The importance of the BBM equation is thus
reaffirmed through the use of these visualizations, which not only
illustrate mathematical functions but also confirm the existence of
wave morphologies that are very varied in nature.

This work systematically classifies its contributions to clearly
delineate their novelty against established literature. Our results
include solutions matching classical solitons, such as the standard
bright (sech-type) and dark (tanh-type) solitary waves, which
serve to validate our methods through the recovery of known
results. Importantly, we generalized several known families by
deriving solutions with extended parametric pre-factors, such as
a velocity-dependent scaling in the periodic tan-type solution,
allowing enhanced control over the soliton dynamics. The core
novelty, however, is in the new solutions reported herein, which
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are inclusive of the sec-type singular solution U and the suite of
previously unreported Jacobi elliptic solutions Uy, Ug, U}, Uy, Uy,
with fully specified dispersion relations. Critical demonstration
of their validity and generality is also derived from their correct
reduction to known classical limits; in other words, as the modulus
m — 1, the elliptic solutions here correctly reduce to hyperbolic
sech/tanh solitons, and as m — 0, they simplify into trigonometric
periodic waves. Hence, this work extends the known landscape of
analytical solutions, offering both a broader unifying framework and
specific, novel waveforms for future application. Table 3 summarizes
the obtained soliton solutions and provides a dedicated assessment
of their stability. So, this table present a consolidated view of both
the derived solution sand their dynamical robustness.

6 Conclusion

In this study, the sub-ODE method is effectively used to
derive and analyze several forms of soliton solutions for the
nonlinear SMCH and BBM equations. New traveling wave solutions
involving hyperbolic, exponential, and trigonometric functions
have been obtained for these nonlinear models. This approach
is well-structured and effective for producing analytical solutions
to nonlinear partial differential equations. Specific 3D, 2D, and
contour graphs are used to illustrate the physical behaviors of the
SMCH and BBM equations using Maple 18. The exact solutions
obtained include dark, bright, single, and periodic solitons. Both
the SMCH and BBM equations are important in the study of
nonlinear wave propagation as they provide insight into the
behavior of solitons in a variety of physical systems. By studying
these equations and their solutions, researchers can gain a deeper
understanding of fundamental nonlinear phenomena and develop
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innovative technologies that use soliton properties. These solutions
are extremely useful, with extensive applications in engineering,
optical fibers, applied mathematics, and nuclear physics.

The present work has successfully advanced the field of nonlinear
wave dynamics by systematically deducing a wide spectrum of new
analytical soliton solutions for two key model equations. The key
novelty of the results presented lies not only in the application
of the sub-ODE method to derive such solutions but also in the
comprehensive characterization of their stability—a crucial step that
is often overlooked in similar analytical studies. We have moved
beyond simple solution generation and provided a comprehensive
physical classification, confirming the existence of stable bright
and dark solitons, which are essential in optical communication
systems, while also identifying and simultaneously for determining
unstable and singular structures that define the operation limits
of such systems. The clear link drawn between specific ranges of
the parameters and soliton stability is a significant contribution,
providing a practical roadmap through which experimentalists can
achieve these waveforms in laboratory conditions. The discovery of
unique, conditionally stable soliton structures will further expand the
known catalog of waveforms and suggest new directions for theoretical
investigation. This work incorporates detailed visual analytics with
rigorous stability criteria, hence bridging an important gap between
abstract mathematical solutions and tangible physical applicability,
strongly positioning our findings as a meaningful and predictive
contribution to the ongoing research within the context of integrable
systems and applied mathematical physics.
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