:' frontiers | Frontiers in Physics

‘ @ Check for updates

OPEN ACCESS

Fei Yu,
Changsha University of Science and
Technology, China

Jingrui Liu,

Chonggqing University, China
A Susi,

Pondicherry University, India

Jun Hu,
hujunwujin@gmail.com

15 October 2025
28 November 2025
30 November 2025
18 December 2025

LiY and Hu J (2025) Sentiment amplification
and optimal control of an enhanced
SEIR-based model for public opinion
dissemination.

Front. Phys. 13:1725899.

doi: 10.3389/fphy.2025.1725899

© 2025 Li and Hu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physics

Original Research
18 December 2025
10.3389/fphy.2025.1725899

Sentiment amplification and
optimal control of an enhanced
SEIR-based model for public
opinion dissemination

YuanQing Li*and Jun Hu?*

!School of Cyber Science and Engineering, Southeast University, Nanjing, China, °School of Electronic
Engineering and Optical Technology, Nanjing University of Science and Technology, Nanjing, China

In modern society, the diversification of communication channels and the
multiplicity of involved actors necessitate evolving opinion propagation models
from traditional single-outbreak frameworks to complex models capable of
capturing multiple outbreaks. Traditional epidemic models, while widely used,
fail to account for the non-linear evolution of transmission rates across
different channels, overlook multiple transitions in individuals’ immunity states,
and neglect the influence of public attitudes on propagation dynamics.
This paper proposes a systemic analysis of an enhanced public opinion
propagation model and its corresponding adjoint model. Building upon the
Susceptible-Exposed—-Infectious—Recovered framework, the model captures
four states in opinion propagation: susceptible, exposed, infected, and
recovered. Two key mechanisms are introduced: transmission rates influenced
by public attitudes, reflecting how attitudes modulate propagation intensity;
and time-dependent immunity decay, characterizing the impact of sustained
multi-channel propagation. The adjoint model quantifies opportunity costs of
opinion control, providing foundations for optimal control strategies. We apply
this model to a hypothetical incident simplified from a food safety public opinion
event from June 2025. Through theoretical analysis and numerical simulations,
we demonstrate that public attitudes significantly amplify opinion propagation,
affecting both outbreak timing and scale. As the coupling strength between
public sentiment and message diffusion, immunity decay, and other parameters
vary, the proposed model maintains multi-stage diffusion characteristics to
validate parameter settings while exhibiting adjustable peak values and timings.
Compared to traditional models, information diffusion peaks increase by 32%,
and peak arrival times are delayed by 17.7%. Simulation results indicate that
the public attitude amplification factor serves as a critical control node—its
enhancement substantially advances peak arrival time and amplifies peak
intensity. The proposed model advances understanding of how public attitudes
promote opinion propagation in complex social systems, and it can be extended
into an interpretable neural network architecture to circumvent the black-
box nature of data-driven approaches, enhancing generalization capabilities in
complex network environments.

emotion coupling, information diffusion, public opinion propagation, SEIR mode,
shadow price
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1 Introduction

Social media has fundamentally transformed public opinion
dynamics, enabling rapid information spread and emotional
polarization. These platforms produce complex propagation
patterns with significant societal impacts. The 2025 food-
contamination incident exemplifies this transformation, evolving
from localized concern to nationwide discourse through distinct
emotional phases: initial shock, skepticism, sustained anxiety, and
eventual recovery [1]. This case highlights the dynamic coupling
between public attitudes and opinion propagation, underscoring the
need for models that integrate sentiment feedback with propagation
mechanisms.

Current research follows two complementary approaches. Data-
driven methods learn empirical regularities from large-scale data,
covering sentiment analysis and misinformation detection [2,3,
39,40], network diffusion [4,5], agent-based simulations [6,7],
and other prediction methods [8,9]. Recent work includes GNN-
based predictive integration [10]; models for misinformation,
attribution, and missing-data bias [11-13]. Besides, researchers
also developed social-physics frameworks for clarifying taxonomies
[14] and neuromorphic Hopfield implementations for secure
applications [15]. While powerful, these methods often trade
off interpretability and direct decision support. Mechanistic
approaches adapt epidemic-style frameworks to yield interpretable
dynamics and intervention design. Foundational models [16,17]
have been tailored to opinion propagation [18], with numerous
SEIR/SIR variants. They include SI1I2R and SEI2RIR2 with media
intervention and multilayer SEIR [19-21, 41], and multilingual SEIR
[22]. They are also extended to co-evolving multiplex dynamics
[23] and formulated as optimization problems [24,25], among
others [26,27]. Further refinements include time delays [28],
communication-factor coupling [29], and dynamic networks [30].
Control formulations span resource allocation [31], evolutionary
games [32], and reinforcement learning [33]. Related management
and sustainability studies propose the POMM opinion management
model [34]; identify channels and factors shaping public p Ref. [35];
and examine corporate resilience with transmission mechanisms
via green economies [36].

However, few models fully integrate the link between
information and sentiment or account for sentiment-driven
amplification. Current work does not provide a single view that
connects changing network structure, behavior, and opinion change
to decisions. In particular, traditional methods struggle to capture
together time variation, network complexity, and node influence
[10]. In addition, network-game models focus on behavior change,
while opinion-dynamics models focus on belief change; their
interaction is rarely modeled [34]. Finally, we also need clearer
links from public beliefs, preferences, and behaviors to policy [36].
To address these limitations, we propose a systemic analysis of an
enhanced SEIR model for public opinion propagation [18] with an
associated cost evaluation model. The model tracks four opinion
states and incorporates two key innovations: attitude-dependent
transmission rates that reflect how public sentiment influences
propagation intensity, and time-decaying immunity to capture re-
exposure effects in multi-path propagation environments. The cost
evaluation model computes the marginal costs of opinion evolution,
enabling optimal intervention timing and in-tensity decisions. This
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integrated approach allows for time-varying transmission rates
responsive to collective emotional states, explicit immunity waning
with possible re-entry, and cost-efficient intervention strategies.

We calibrate and evaluate the model through a scenario-
based reconstruction (data anonymization) of the 2025 food-
contamination incident, showcasing both its explanatory accuracy
and practical utility for decision-making. This study offers three
primary contributions: 1. We introduce an enhanced opinion
propagation model that accounts for intertwined opinion-attitude
dynamics and recurring outbreak cycles. 2. We incorporate attitude-
dependent transmission rates and time-decaying immunity into the
SEIR framework. 3. We establish an optimal control framework
grounded in cost evaluation to guide intervention timing and
resource allocation strategies.

2 Theoretical framework and closed
forms

The
(SEIR) framework, adapted from infectious disease modeling, is

traditional Susceptible-Exposed-Infectious—Recovered

widely applied to simulate online public opinion diffusion. It groups
users into four dynamic states and describes their evolution with
ordinary differential equations. Instead of fine-grained network
dispersion using spatial partial differential equations, it represents
macro transmission intensity just employing a bilinear coupling
between the susceptible (S) and active spreaders. Increases in the
infectious (I) are buffered by the latent compartment: exposure first
accumulates in the exposed (E) and is released in a constant speed
of activation rate, capturing delayed activation and sensitivity to
content. Simultaneously, message salience of the individual decays
in another speed of recovery rate through a linear attenuation
process applied to I, representing natural loss of collective attention.
Remaining individuals are continually classified as still unexposed
or exposed but unwilling to relay further. Thus: S comprises users
not yet reached but liable to convert; E comprises users who have
received the message but not acted; I comprises users actively
forwarding, reposting, or endorsing; R comprises users no longer
interested or unwilling to forward again.

2.1 Theoretical framework based on
differential equation systems

The enhanced SEIR model conceptualizes the dissemination
as a more complex system involving coupled opinion-attitude
dynamics. This model extends the traditional framework by
incorporating attitude-dependent transmission rates to reflect
how public sentiment influences information diffusion, and time-
decaying immunity to capture re-exposure effects in multipath
propagation environments. Besides, the enhanced SEIR model
extends the traditional framework by adding an immunity
attenuation mechanism, modeling public opinion dissemination
as a cyclic process. The transitions among these states form a
cyclic process (SSE->I>R-S), governed by the following rates: the
transmission rate B(t, x) dynamically controlling the transition
from the susceptible to the exposed, the activation rate a for the
transition from the exposed to the infectious, the recovery rate
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TABLE 1 Parameter list of the baseline transmission term.

Symbol Meaning Interpretation
Braseline Baseline transmission Fundamental intensity of public
opinion
Oecay Decayrate Natural decayrate of publicattention
A; Amplitude Impactstrength of sudden events
Iz Peaktime Time of sudden eventoccurrence
o Variance Duration of public opinion shock

y for the transition from the infectious to the recovered, and the

immunity-decay rate §; for the transition from the recovered

mmune
back to the susceptible. These rates respond to the emotion-driven
infection process, the shift from observers to the active participants,
the natural loss of interest in dissemination, and waning immunity
and re-susceptibility, respectively. They are integrated into the

differential Equation 1, capturing time-varying dynamics.

ds SI

E = —ﬁ(t,x) ﬁ + 8immuneR - ul(t)S
dE SI

L& _Bt,x)22 —aE

ar “PERG e

dt
dR _
dt

&E — yI —u,(t)I

yI - 8immuneR + Uy (t)s + uz(t)I

with initial values as Equation 2:

S(0) = Sy, E(0) = Eo,1(0) = I, R(0) = R, )
and its boundary condition Equation 3
S(t)+ E(t) + I(t) + R(t) = N, forallt > 0 (3)

The immunity decay part is a simple linear term on the recovered

group. The parameter §; controls how fast recovered users lose

immune
resistance; a larger value means a shorter protected period. Unlike
the basic model, f(t, x) in Equation 4 is a dynamic amplification of

a baseline transmission term.

B(t,x) = By(t) - (1~ kgx) @
n f—u. 2
ﬁo(t) = ﬁbaseline exp(_(sdecayt) + ZAI exp( _% ) (5)
i=1 i

As in Equation 1, an emotion gain kg multiplies the baseline.
Stronger negative public emotion increases the gain and speeds
diffusion. As in Equation 5, the baseline transmission term is an
exponential decay plus weighted Gaussian peaks. The exponential
decay models short-lived efficiency of message exchange. Each
Gaussian peak (4;, g;, Gf) represents an external shock: strength,
timing, and duration. All these explanations of the parameters in
dynamic amplification are listed in Table 1.

Public emotion is not constant. During the 2025 food safety
incident, emotion changed in several stages as new information
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was released. This shows that information flow shapes collective
emotion. Traditional models miss this amplification because they do
not couple emotion and diffusion. We improve the enhanced SEIR
model by adding an emotion evolution equation to create two-way
feedback. Equation 6 is a first-order linear decay on a normalized
emotion index.

dx
dt

__( r . E
’11N 'IEN

with its initial value in Equation 7

)x+(nl%x,+nE1%xE)+u3(t) (6)

x(0) = x, @)

It also includes the influence of spreaders and exposed users.
When these two groups grow, negative emotion spreads more easily,
decays more slowly, and polarization risk increases. The equation is
the sum of two bilinear terms with fusion weights. These weights
set the relative impact; spreaders usually have a higher weight
than exposed users. Normalized emotion means the difference
between public emotion and the average opinion of each group after
alignment. Total population size is added; a larger population tends
to stabilize emotion.

To study interventions on diffusion and emotion, we add
external control inputs. Besides the control term in the baseline
transmission (2.3), we include linear control terms in the equations
for the susceptible, the spreader, and the emotion. Control on
the susceptible means early guidance to reduce future activation.
Control on spreaders means clarification and refutation to reduce
active forwarding. Control on emotion means calming measures to
lower collective tension.

The enhanced SEIR opinion propagation model is a high-
dimensional coupled dynamical system. It requires a complete set of
initial conditions as input and produces time trajectories of the state
variables as output. Because of its nonlinear feedback structure, we
rely on iterative numerical solvers. Beyond generating trajectories,
we must analyze the simulated evolution to extract interpretable
diffusion patterns. The large number of parameters further
necessitates systematic sensitivity and importance assessment to
guide targeted intervention design. Its parameters of the above
model can be categorized into four types: system features (basic
environment, e.g., total population N and time t), transmission
features (dynamic diffusion, e.g., baseline ﬁbaseline’ emotional
coupling kp, activation a, recovery y, and immunity decay 8;,yune)s
opinion features (attitude tendencies, e.g., average opinion x(t),
influence coeflicients #; and #,, group opinions x; and x), and
control parameters (interventions, e.g., positive control u,, negative
handling u,, and guidance us;). For detailed symbols, refer to
Table 2.

2.2 Closed forms based on integral
equations and other comprehensive
evaluations

To gain deeper insights into the mathematical properties of the
model, the system can be represented in closed forms based on
integral equations and in the second-order differential equations.
The closed forms of the exposed population E and the infectious
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TABLE 2 Critical parameters of the enhanced SEIR-Model.

10.3389/fphy.2025.1725899

Parameter Value Meaning
kg 0.9 Emotions amplify dissemination
[ 0.5 50% of the exposed become infectious within 1 day
y 0.1 Individuals lose interest in dissemination after 10 days
) 0.05 5% of the recovered return to susceptible state per day
N 1000 Base number of active internet users
By 0.3 Neutral dissemination capacity
1y 0.8 Sustained influence of the infected
g 0.3 Sustained influence of the exposed
X; -0.5 Represents stance among the infected
Xg -0.3 Represents stance among the exposed
Baseline 0.3 Fundamental intensity
Decay rate 0.05 Natural decay of public attention
Amplitude 1.2 First Gaussian peak’s amplitude
Sudden event 1 Mean 15.0 Timing
Variance 4.0 Duration
Amplitude 1.5 Second Gaussian peak’s amplitude
Sudden event 2 Mean 30.0 Timing
Variance 5.0 Duration

population I exhibit time accumulation effects and rapid decay
behavior. Their integral representations are given as Equations 8, 9:

t

E() =B+ [ pHe0dr (8)
0
t

I(t)=I,e™ + J aEe " dr )
0

The above equation indicates that I(f) is a weighted
accumulation of historical values of E(7), where the weighting factor
decays exponentially over time. This reflects a local smoothing
process applied to historical information. Besides closed forms,
second-order differential equation of (I) could also insight
multi-peak and oscillatory behavior in Equation 10:

d’1 dI BS
E+(a+y)a+a<y—ﬁ>l=0 (10)
and Equation 11
4afS
A=(a-p)*+ — 11
(@=9"+ — (11)
Frontiers in Physics
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This equation has two real eigenvalues, leading to oscillatory
behavior in (I) when underdamped (ie, when A< (a+Y)?
potentially resulting in multi-peak effects).

To guide control strategies, the results of the equations
should be evaluated involving comprehensive formulae. Quantify
population distribution and emotional states using two variables:
the instantaneous cost function and the Hamiltonian function
(opportunity cost, via Pontryagin's maximum principle). The
instantaneous cost function is as Equation 12

3
J=AT+AE+Ax+ % Y Bu(t) (12)
i=1
where A1 is the social cost of infectious individuals; AgE is the risk
cost of exposed individuals; A x” is the polarization cost (quadratic
penalty for opinion deviation from neutrality); %Biui2 is the control
cost (quadratic for increasing marginal costs). The Hamiltonian

function is as Equation 13
H=J+AS+AgE+ M +AgR+ 1 % (13)

In Equation 13, variables (Ag,A,A;,A,) denoting shadow prices
represent marginal costs of state changes, which satisfy the
adjoint as Equation 14:
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Result comparisons of different amplification factors: (a—d) are for 0.0, 0.3, 0.6, and 0.9, respectively.

SEIR & Opinion Dynamics (k=0.3, run=1)

Nurmteer of
Awarage Ogperan (%]

T (days)

SEIR & Opinion Dynamics (k=0.9, run=1)

g

%
Adarnge Optnien )

Mumber of Indecuals

.. 1
As :ﬁﬁ(/ls =Ap) +u(As—Ag)

. X—X

Ap=—Ag+aQly-A) + 1, —=LA

X

N
VA=A, B3 (=) + (4 )y~ ) 1y

iR = S(AS _AR)

X—Xxp
N

A, (14)

X

. SI A
L Ax = _2Axx+kﬁﬁ0ﬁ(AE _/"S) + ﬁx(nll-'—”EE)

A; is the marginal cost of an additional infectious individual
(typically negative, with largest absolute value). A, is the marginal
cost of opinion deviation from public attitudes. Economically, large
(IA;]) signals high benefit from control (u,), guiding optimal timing
and intensity.

3 Simulation and validation

In this section, we reconstruct the “2025 Food-Contamination
Public Opinion Incident” to analyze its escalation stages. On 1 July
2025, the Market Supervision Bureau and Public Security Bureau
of Tianshui City, investigated the Beishi Peixin Kindergarten for
illegal use of food additives that caused abnormal blood lead levels
in some children [37]. Following the incident, local authorities
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established a joint working group to conduct investigations,
initiated criminal proceedings against the kindergarten’s director,
and pledged to hold accountable the departments responsible for
regulatory failures.

3.1 A quantitative review of the event

We analyzed the evolution of this public opinion event using
the volume curve, which quantifies online attention across time.
According to data from an online monitoring platform, 30,964
related posts were recorded, including 21,091 short videos and 9,563
news articles [1]. The event unfolded in four stages: incubation
and outbreak, emergency response, cross-provincial escalation, and
social response. Before July 1, abnormal blood lead diagnoses
triggered parental concern, but the discussion volume remained
below 100. From July 1 to 3, official investigations and initial
briefings were launched, yet the reliance on informal verbal
notifications and inadequate emergency management intensified
public distrust, with volume still under 100. Between July 4 and
6, cross-provincial medical examinations revealed results up to
twenty times higher than local tests, and media disclosures led
to rapid amplification. Two peaks appeared at 21:00 on July 5
and 6, reaching approximately 200 and 550, dominated by short
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TABLE 3 Features of the infection curves against immunity decay rates.

Immunity decay rate

Outbreak duration (Day)

Infection peak (person)

0 465.40 32.11
0.02 491.46 32.44
0.05 524.21 32.44
0.08 550.41 32.78
0.1 565.08 32.78
0.15 593.87 32.78
0.2 615.26 33.11

videos. After July 7, celebrity reposts and parents’ collective demands
pushed the event to its climax. The peak occurred at 13:00 on July
7 with around 2,700 short videos, 700 blog posts, and 150 news
articles, followed by a steep decline to about 500 by 21:00. Across
all stages, short videos consistently served as the primary driver of
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public opinion diffusion, while news reports played a comparatively
minor role.

We further assessed public sentiment using a lexicon-based
approach that identifies emotional polarity by weighting sentiment,
negation, and degree words [38]. Combined with dissemination
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TABLE 4 Features of the infection curves against amplification factors.

Amplification factor

Infection peak (person)

Peak time (Day)

0 470.53 33.13
0.3 475.50 32.72
0.6 476.68 32.33
0.9 475.64 31.96

data, the results show that negative emotions were not only
dominant but also intense and highly directional. Short video
platforms accounted for 51.7% of total dissemination and acted
as the primary trigger of emotional resonance. Topic-specific
interaction, such as the #TianshuiBloodLeadIncident hashtag
reaching 1.2 million engagements, indicates the scale of negative
expression. “kindergarten” (278,000 times), “blood lead” (241,000
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times), and “additives” (185,000 times) reflect core public concerns.
In contrast, terms such as “irreversible damage” and “intelligence
decline” reveal deep-seated health anxieties. The widespread
sharing of “lead-eliminating recipes” and “blood test hospital
recommendation lists” further demonstrates the spread of collective
anxiety among parent communities. Rule-engine sentiment
scoring shows that negative emotions account for 50.7% of all
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classified content, far exceeding positive sentiment at 3.4%. Neutral
discussions at 45.9% mainly concern medical procedures and
accountability issues. Overall, public sentiment exhibits a highly
concentrated negative pattern, indicating a high-risk emotional
environment [1].

3.2 Parameter modeling of a hypothetical
simplified incident

The parameter modeling is based on a hypothetical, simplified
incident model (a common practice for initial theoretical
exploration).

3.2.1 Simplification and focus of the model

The primary objective of this simplification is to theoretically
inform the timing and selection of control strategies for public
opinion management. Consequently, our focus is placed on the peak
position and morphological characteristics of the public opinion
spread curve, which are then mapped to the model parameters. To
simplify the system dynamics, the coupling dynamics within the
emotional equation, which describes the dynamic change in public
attitude, are treated under an idealized assumption.

The coupling coeflicient signifies the influence of a unit number
of spreaders (I) or latent individuals (S) on public sentiment. A
coefficient of 0 implies no impact on public sentiment, indicating

Frontiers in Physics

low public sensitivity to the incident. A high coefficient suggests
a strong influence and high public sensitivity, making sentiment
easily swayed. For this initial modeling, the coupling coeflicients are
assumed to lie between 0 and 1. Specifically, the influence of public
opinion spreaders (I) on sentiment is hypothesized to be stronger, set
at 0.8. In contrast, the influence of latent individuals (S) is assumed
to be weaker, set at 0.3. These initial assumption-based values will
be refined and validated using more precise parameter fitting or
statistical methods as richer data become available.

3.2.2 Systematic parameter estimation
The
contamination incident follows a typical multi-stage pattern:

evolution of public opinion regarding the food
“outbreak-intervention-decline-resurgence-resolution”. Outbreak
Stage: Following the initial media exposure, public opinion rapidly
peaked, and negative attitudes reached their maximum intensity.
Official Intervention Stage (Critical Stage): The government’s launch
of an investigation team corresponds to the full activation of
the control variables, u, and u;, within the model. This leads
to a sharp decline in the infectious compartment, I(t), and a
rise in the recovered compartment, R(), as the dominant group.
Stabilization Stage: The event enters a relatively stable state. Public
opinion intensity drops significantly as public attention shifts
elsewhere. Immunity Loss and Resurgence Stage (Crucial Stage):
A controversial video reignited small-scale discussions. This event
verifies the validity of the immunity decay mechanism 6R — S
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Simulation results: (a) dynamic results of four variables, (b) infection responses and their features - (c) the infectious peaks and (d) outbreak durations -
against immunity delays.

in the model, where some previously “recovered” users become
susceptible (S) or infectious (I) again. Final Resolution Stage: The
second wave quickly dissipated, and the system returned to long-
term stability.

The entire process validates the bidirectional coupling
mechanism between attitudes and opinions: negative attitudes
accelerate information dissemination, and the scale of dissemination
further amplifies them.

Next, we will present approaches to evaluate the traditional
parameters according to the timeline extracted from the above
simplification. The routine is built on exponential decay or growth
models. Specifying target time points and changes, it computes
the dynamical parameters in a principled manner. The estimation
assumes equation decoupling, simplifying the system into multiple
first-order equations and employing logarithmic functions for
estimation. Specifically, S,y -- high infection scenario, employ
I(t) = I(0) exp (ﬁhight); Biow -~ low infection scenario, bases on the
target of doubling the number of infected individuals within 10
days; kg -- multiplication effect parameter, calculates the attitude
amplification effect via the formula kg = =1+ B,/ By,,,- Exposure
conversion rate « is according to an exponential decay model
E(t) = E(0)exp (—at). Recovery Rate y and immunized decline
rate are based on the targets of a 50% reduction in infected
cases and recovered individuals, respectively. Principles for various
parameters are presented above, while detailed estimated values
are provided in Table 2. However, all these parameters should be

Frontiers in Physics

09

validated and adjusted based on the simulation results to achieve a
satisfactory match between the simulation and the design.

3.3 Simulation, comparisons, and other
validations

We implement a coupled simulation primarily in Python.
Python was chosen for its extensive ecosystem of scientific
computing libraries and its readability, making it ideal for modeling
complex dynamic systems. The core simulation logic analyzes
waveforms and leverages a function that uses the RK45 method
to numerically solve the system of Ordinary Differential Equations
(ODEs) that govern the time evolution of the five state variables. The
programming paradigm centers around the Waveform Simulator,
which uses NumPy for numerical arrays, Pandas for structured data
handling and analysis, and Matplotlib for automatic visualization
of the resulting time-series waveforms and sensitivity analysis
reports. The realization also follows a modular design, relying on
configuration files to manage simulation parameters and control
inputs, enabling systematic scenario testing and detailed parameter
sensitivity studies (e.g., the immunity decay rate).

3.3.1 Model and parameter validation

We first validate the simulation model and its parameter settings.
Some parameters come from a simplified reconstruction; others are
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idealized assumptions. Therefore, the simulated curves keep several
real-world features, especially the multi-stage pattern. Results show
that with the current estimated parameters, the coupled model
reproduces the expected multi-stage evolution.

The simulation reproduces five stages of opinion diffusion:
fermentation, outbreak, stabilization, resurgence, and decline. Three
key stages are summarized. (1) Initial Outbreak Phase: I(f) rises
steadily from a low base; average opinion x(t) drifts from —0.1 to
—0.3. The first external stimulus triggers an outbreak; infections
approach 35%. Exposed (latent) individuals peak first, followed
by infectious individuals. The susceptible fall and form a short
plateau. (2) Public Sentiment Rebound Phase: After the plateau,
a second peak appears, driven by a new stimulus and the re-
entry dynamics; waning immunity amplifies this peak and splits
the overall waveform. (3) Full Decline Phase: With no new stimuli,
transmission weakens. Exposed declines fastest, then infectious,
then recovers. The susceptibility gradually rises as immunity decays.
Average sentiment settles near —0.5.

These multi-feature patterns support the plausibility of the
estimated parameters and the correctness of the implementation,
for

forming the basis later performance discussion and

sensitivity analysis.

3.3.2 Model comparison and parameter
sensitivity

We compare the proposed model with two reduced versions: (a)
the model without emotion coupling/amplification; (b) the model
without immunity decay.

3.3.2.1 Emotion amplification analysis
The emotion amplification factor kg represents the gain of public

emotion on transmission. When kﬁ = 0, the model reduces to
a no-emotion baseline. As kﬁ rises, emotion increases diffusion
strength and alters peak height and timing. We examine the
emotion amplification factor kg across four regimes: ks = 0.0 (pure
rationality; transmission = f0), kﬁ = 0.3 (moderate influence), kﬁ =
0.6 (strong influence), and kﬁ =0.9 (dominant emotion; rational
factors suppressed). Simulations confirm that higher k; accelerates
the spread and raises the peak size while advancing peak timing.
Qualitative results (Figure 1) show an unchanged basic shape but
shifted maxima. Quantitative results (Figure 2) show that peak size
increases with kﬁ; peak arrival time decreases with kﬁ. Table 3 shows
features of the infectious curves against the amplification factors.
For example, the peak infectious count rises from ~470 to ~477, and
the peak time shortens from 33.1 to 31.96 days as kg increases. The
Pearson correlation between kg and peak size is positive (r = 0.78);
with peak timing, it is negative (r = — 1.00). Formula:

z?:l(x" _E)(yi _;)
VY Y 05

Here, r is the correlation coefficient; x is kﬂ; y is the chosen

r=

(15)

indicator. These highlight the phenomenon of “the more anger, the
wider the spread”

In the analysis of positive coupling parameters, the modulatory
effects of opinion parameters were also investigated. Figure 3
presents the results of the parameter sweep. The study reveals that the
initial average attitudes of the infectious group (X;) and the exposed
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group (Xg) have a strong regulatory effect on the influence of k;.
The most outbreak-prone combination occurs when Xj;= -0.8
and Xg
reaches 497 under kﬁ = 0.9. In contrast, the most stable configuration

0.6, where the peak number of infectious individuals
is observed when X;= —0.2, where the system shows the lowest
sensitivity to changes in k. This indicates that a hostile attitude
environment intensifies the amplification effect and that pre-existing
negativity creates a fertile ground for amplification. Simulation
results further show that both X; and X influence dissemination,
but their effects are conditioned on kﬁ. When kﬁ is small, their
impact is negligible—suggesting that the positive coupling effect,
governed by kﬁ, serves as a “switch” If this switch is off, dissemination
evolves independently of emotion, and emotion merely acts as
a passive observer of opinion dynamics. As ks increases, the
emotional promotion of dissemination becomes significant. When
kg is sufficiently large, emotion acts as a multiplier in the spread of
public opinion.

These results show “more anger, wider spread” and highlight that
emotion control must combine source isolation (reducing I and E
influence) with channel moderation during high emotion surges.

3.3.2.2 Immunity decay analysis

The immunity decay constant J;

immune INEASUTES the average time

before recovered users become susceptible again. When §,,,,,,,,,,.. =

0, there is no return; larger J; shortens the return interval. A

immune

sensitivity test (J;

mmmune

from 0.00 to 0.20) shows clearer double-peak
behavior as § increases. Table 4 shows the results of the parameter
scanning, including the values of immunity decay rates and their
feature responses of the infectious. The first peak reflects the original
susceptible set; the second is amplified by users who lost immunity.
Peak infections grow from 465 to 615 (=32% increase), and outbreak
duration extends from 41.8 to 49.2 days (=17.7% increase). This
indicates immunity loss strengthens both scale and persistence.
The higher peak and shifted timing indicate that the proposed
model captures resurgence more accurately than one without decay,
suggesting that extending the adequate “protection time” (public
guidance) lowers later amplification.

Effective public opinion management focuses on establishing
long-term governance mechanisms, with attention to trade-offs
between cost and intervention.

To this end, we analyzed management cost and opportunity
cost. Figure 4 presents the evolution of two key auxiliary indicators.
Shown in Figure 4a, the shadow price approaches zero over time,
indicating that opportunity cost diminishes in the later stages of
dissemination. This implies that early-stage intervention is most
cost-effective. As shown in Figure 4b, the Hamiltonian function
under the no-control scenario exhibits a decay trend over time,
consistent with the common-sense expectation that intervention
should occur early. The shadow price also reveals that the main
cost driver is the infectious population, suggesting that targeting
I(t) through interventions (e.g., lowering the infection rate) is most
effective. Furthermore, late-stage control of the average opinion x(f)
is ineffective, as the opportunity cost is minimal—consistent with
Figure 5, which shows that x(¢) stabilizes in the later phase. Figure 4b
also highlights the existence of high-cost and low-cost temporal
zones for intervention. During the high-cost period, dominated by
external stimuli, control yields little return because those stimuli are
uncontrollable.
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4 Conclusion

This study introduces an enhanced SEIR model that combines
public attitude dynamics with opinion propagation. The model
incorporates two key features: attitude-dependent transmission
rates and exponential decay of immunity. Our analysis reveals
that public attitudes significantly influence when and how rapidly
opinions spread. The immunity decay mechanism helps explain
why opinions can re-emerge over time. The model also provides
insights for optimizing intervention timing and intensity. As the
coupling strength, immunity decay, and other parameters vary,
the proposed model maintains multi-stage diffusion characteristics
while exhibiting adjustable peak values and timings. Compared to
traditional models, information diffusion peaks increase by 32%,
and peak arrival times are delayed by 17.7%. This framework
improves our understanding of how attitudes amplify opinion
propagation, supporting better monitoring and management
strategies. However, the model makes simplifying assumptions
about population mixing and attitude-opinion relationships that
may not capture the complexities of the real world. Future work
could integrate these theoretical mechanisms into deep learning
models, creating hybrid approaches that maintain interpretability
while improving performance in complex network environments.
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