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In modern society, the diversification of communication channels and the 
multiplicity of involved actors necessitate evolving opinion propagation models 
from traditional single-outbreak frameworks to complex models capable of 
capturing multiple outbreaks. Traditional epidemic models, while widely used, 
fail to account for the non-linear evolution of transmission rates across 
different channels, overlook multiple transitions in individuals’ immunity states, 
and neglect the influence of public attitudes on propagation dynamics. 
This paper proposes a systemic analysis of an enhanced public opinion 
propagation model and its corresponding adjoint model. Building upon the 
Susceptible–Exposed–Infectious–Recovered framework, the model captures 
four states in opinion propagation: susceptible, exposed, infected, and 
recovered. Two key mechanisms are introduced: transmission rates influenced 
by public attitudes, reflecting how attitudes modulate propagation intensity; 
and time-dependent immunity decay, characterizing the impact of sustained 
multi-channel propagation. The adjoint model quantifies opportunity costs of 
opinion control, providing foundations for optimal control strategies. We apply 
this model to a hypothetical incident simplified from a food safety public opinion 
event from June 2025. Through theoretical analysis and numerical simulations, 
we demonstrate that public attitudes significantly amplify opinion propagation, 
affecting both outbreak timing and scale. As the coupling strength between 
public sentiment and message diffusion, immunity decay, and other parameters 
vary, the proposed model maintains multi-stage diffusion characteristics to 
validate parameter settings while exhibiting adjustable peak values and timings. 
Compared to traditional models, information diffusion peaks increase by 32%, 
and peak arrival times are delayed by 17.7%. Simulation results indicate that 
the public attitude amplification factor serves as a critical control node—its 
enhancement substantially advances peak arrival time and amplifies peak 
intensity. The proposed model advances understanding of how public attitudes 
promote opinion propagation in complex social systems, and it can be extended 
into an interpretable neural network architecture to circumvent the black-
box nature of data-driven approaches, enhancing generalization capabilities in 
complex network environments.
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1 Introduction

Social media has fundamentally transformed public opinion 
dynamics, enabling rapid information spread and emotional 
polarization. These platforms produce complex propagation 
patterns with significant societal impacts. The 2025 food-
contamination incident exemplifies this transformation, evolving 
from localized concern to nationwide discourse through distinct 
emotional phases: initial shock, skepticism, sustained anxiety, and 
eventual recovery [1]. This case highlights the dynamic coupling 
between public attitudes and opinion propagation, underscoring the 
need for models that integrate sentiment feedback with propagation 
mechanisms.

Current research follows two complementary approaches. Data-
driven methods learn empirical regularities from large-scale data, 
covering sentiment analysis and misinformation detection [2,3, 
39,40], network diffusion [4,5], agent-based simulations [6,7], 
and other prediction methods [8,9]. Recent work includes GNN-
based predictive integration [10]; models for misinformation, 
attribution, and missing-data bias [11–13]. Besides, researchers 
also developed social-physics frameworks for clarifying taxonomies 
[14] and neuromorphic Hopfield implementations for secure 
applications [15]. While powerful, these methods often trade 
off interpretability and direct decision support. Mechanistic 
approaches adapt epidemic-style frameworks to yield interpretable 
dynamics and intervention design. Foundational models [16,17] 
have been tailored to opinion propagation [18], with numerous 
SEIR/SIR variants. They include SI1I2R and SEI2R1R2 with media 
intervention and multilayer SEIR [19–21, 41], and multilingual SEIR 
[22]. They are also extended to co-evolving multiplex dynamics 
[23] and formulated as optimization problems [24,25], among 
others [26,27]. Further refinements include time delays [28], 
communication-factor coupling [29], and dynamic networks [30]. 
Control formulations span resource allocation [31], evolutionary 
games [32], and reinforcement learning [33]. Related management 
and sustainability studies propose the POMM opinion management 
model [34]; identify channels and factors shaping public p Ref. [35]; 
and examine corporate resilience with transmission mechanisms 
via green economies [36].

However, few models fully integrate the link between 
information and sentiment or account for sentiment-driven 
amplification. Current work does not provide a single view that 
connects changing network structure, behavior, and opinion change 
to decisions. In particular, traditional methods struggle to capture 
together time variation, network complexity, and node influence 
[10]. In addition, network-game models focus on behavior change, 
while opinion-dynamics models focus on belief change; their 
interaction is rarely modeled [34]. Finally, we also need clearer 
links from public beliefs, preferences, and behaviors to policy [36]. 
To address these limitations, we propose a systemic analysis of an 
enhanced SEIR model for public opinion propagation [18] with an 
associated cost evaluation model. The model tracks four opinion 
states and incorporates two key innovations: attitude-dependent 
transmission rates that reflect how public sentiment influences 
propagation intensity, and time-decaying immunity to capture re-
exposure effects in multi-path propagation environments. The cost 
evaluation model computes the marginal costs of opinion evolution, 
enabling optimal intervention timing and in-tensity decisions. This 

integrated approach allows for time-varying transmission rates 
responsive to collective emotional states, explicit immunity waning 
with possible re-entry, and cost-efficient intervention strategies.

We calibrate and evaluate the model through a scenario-
based reconstruction (data anonymization) of the 2025 food-
contamination incident, showcasing both its explanatory accuracy 
and practical utility for decision-making. This study offers three 
primary contributions: 1. We introduce an enhanced opinion 
propagation model that accounts for intertwined opinion-attitude 
dynamics and recurring outbreak cycles. 2. We incorporate attitude-
dependent transmission rates and time-decaying immunity into the 
SEIR framework. 3. We establish an optimal control framework 
grounded in cost evaluation to guide intervention timing and 
resource allocation strategies. 

2 Theoretical framework and closed 
forms

The traditional Susceptible–Exposed–Infectious–Recovered 
(SEIR) framework, adapted from infectious disease modeling, is 
widely applied to simulate online public opinion diffusion. It groups 
users into four dynamic states and describes their evolution with 
ordinary differential equations. Instead of fine-grained network 
dispersion using spatial partial differential equations, it represents 
macro transmission intensity just employing a bilinear coupling 
between the susceptible (S) and active spreaders. Increases in the 
infectious (I) are buffered by the latent compartment: exposure first 
accumulates in the exposed (E) and is released in a constant speed 
of activation rate, capturing delayed activation and sensitivity to 
content. Simultaneously, message salience of the individual decays 
in another speed of recovery rate through a linear attenuation 
process applied to I, representing natural loss of collective attention. 
Remaining individuals are continually classified as still unexposed 
or exposed but unwilling to relay further. Thus: S comprises users 
not yet reached but liable to convert; E comprises users who have 
received the message but not acted; I comprises users actively 
forwarding, reposting, or endorsing; R comprises users no longer 
interested or unwilling to forward again. 

2.1 Theoretical framework based on 
differential equation systems

The enhanced SEIR model conceptualizes the dissemination 
as a more complex system involving coupled opinion-attitude 
dynamics. This model extends the traditional framework by 
incorporating attitude-dependent transmission rates to reflect 
how public sentiment influences information diffusion, and time-
decaying immunity to capture re-exposure effects in multipath 
propagation environments. Besides, the enhanced SEIR model 
extends the traditional framework by adding an immunity 
attenuation mechanism, modeling public opinion dissemination 
as a cyclic process. The transitions among these states form a 
cyclic process (S→E→I→R→S), governed by the following rates: the 
transmission rate β(t, x) dynamically controlling the transition 
from the susceptible to the exposed, the activation rate α for the 
transition from the exposed to the infectious, the recovery rate
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TABLE 1  Parameter list of the baseline transmission term.

Symbol Meaning Interpretation

βbaseline Baseline transmission Fundamental intensity of public 
opinion

δdecay Decayrate Naturaldecayrateofpublicattention

Ai Amplitude Impactstrengthofsuddenevents

μi Peaktime Timeofsuddeneventoccurrence

σ2
i Variance Duration of public opinion shock

γ for the transition from the infectious to the recovered, and the 
immunity-decay rate δimmune for the transition from the recovered 
back to the susceptible. These rates respond to the emotion-driven 
infection process, the shift from observers to the active participants, 
the natural loss of interest in dissemination, and waning immunity 
and re-susceptibility, respectively. They are integrated into the 
differential Equation 1, capturing time-varying dynamics.

{{{{{{{{{{{
{{{{{{{{{{{
{

dS
dt
= −β(t,x)SI

N
+ δimmuneR− u1(t)S

dE
dt
= β(t,x)SI

N
− αE

dI
dt
= αE − γI − u2(t)I

dR
dt
= γI − δimmuneR+ u1(t)S + u2(t)I

(1)

with initial values as Equation 2:

S(0) = S0,E(0) = E0, I(0) = I0,R(0) = R0 (2)

and its boundary condition Equation 3

S(t) +E(t) + I(t) +R(t) = N , forall t ≥ 0 (3)

The immunity decay part is a simple linear term on the recovered 
group. The parameter δimmune controls how fast recovered users lose 
resistance; a larger value means a shorter protected period. Unlike 
the basic model, β(t, x) in Equation 4 is a dynamic amplification of 
a baseline transmission term.

β(t,x) = β0(t) · (1− kβx) (4)

β0(t) = βbaseline exp(−δdecayt) +
n

∑
i=1

Ai exp(−
(t − μi)

2

2σ2
i
) (5)

As in Equation 1, an emotion gain kβ multiplies the baseline. 
Stronger negative public emotion increases the gain and speeds 
diffusion. As in Equation 5, the baseline transmission term is an 
exponential decay plus weighted Gaussian peaks. The exponential 
decay models short-lived efficiency of message exchange. Each 
Gaussian peak (Ai, μi, σ2

i ) represents an external shock: strength, 
timing, and duration. All these explanations of the parameters in 
dynamic amplification are listed in Table 1.

Public emotion is not constant. During the 2025 food safety 
incident, emotion changed in several stages as new information 

was released. This shows that information flow shapes collective 
emotion. Traditional models miss this amplification because they do 
not couple emotion and diffusion. We improve the enhanced SEIR 
model by adding an emotion evolution equation to create two-way 
feedback. Equation 6 is a first-order linear decay on a normalized 
emotion index.

dx
dt
= −(ηI

I
N
+ ηE

E
N
)x +(ηI

I
N

xI + ηE
E
N

xE)+ u3(t) (6)

with its initial value in Equation 7

x(0) = x0 (7)

It also includes the influence of spreaders and exposed users. 
When these two groups grow, negative emotion spreads more easily, 
decays more slowly, and polarization risk increases. The equation is 
the sum of two bilinear terms with fusion weights. These weights 
set the relative impact; spreaders usually have a higher weight 
than exposed users. Normalized emotion means the difference 
between public emotion and the average opinion of each group after 
alignment. Total population size is added; a larger population tends 
to stabilize emotion.

To study interventions on diffusion and emotion, we add 
external control inputs. Besides the control term in the baseline 
transmission (2.3), we include linear control terms in the equations 
for the susceptible, the spreader, and the emotion. Control on 
the susceptible means early guidance to reduce future activation. 
Control on spreaders means clarification and refutation to reduce 
active forwarding. Control on emotion means calming measures to 
lower collective tension.

The enhanced SEIR opinion propagation model is a high-
dimensional coupled dynamical system. It requires a complete set of 
initial conditions as input and produces time trajectories of the state 
variables as output. Because of its nonlinear feedback structure, we 
rely on iterative numerical solvers. Beyond generating trajectories, 
we must analyze the simulated evolution to extract interpretable 
diffusion patterns. The large number of parameters further 
necessitates systematic sensitivity and importance assessment to 
guide targeted intervention design. Its parameters of the above 
model can be categorized into four types: system features (basic 
environment, e.g., total population N and time t), transmission 
features (dynamic diffusion, e.g., baseline βbaseline, emotional 
coupling kβ, activation α, recovery γ, and immunity decay δimmune), 
opinion features (attitude tendencies, e.g., average opinion x(t), 
influence coefficients ηI and ηE, group opinions xI and xE), and 
control parameters (interventions, e.g., positive control u1, negative 
handling u2, and guidance u3). For detailed symbols, refer to
Table 2.

2.2 Closed forms based on integral 
equations and other comprehensive 
evaluations

To gain deeper insights into the mathematical properties of the 
model, the system can be represented in closed forms based on 
integral equations and in the second-order differential equations. 
The closed forms of the exposed population E and the infectious 
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TABLE 2  Critical parameters of the enhanced SEIR-Model.

Parameter Value Meaning

kβ 0.9 Emotions amplify dissemination

α 0.5 50% of the exposed become infectious within 1 day

γ 0.1 Individuals lose interest in dissemination after 10 days

δ 0.05 5% of the recovered return to susceptible state per day

N 1000 Base number of active internet users

β0 0.3 Neutral dissemination capacity

ηI 0.8 Sustained influence of the infected

ηE 0.3 Sustained influence of the exposed

xI −0.5 Represents stance among the infected

xE −0.3 Represents stance among the exposed

Baseline 0.3 Fundamental intensity

Decay rate 0.05 Natural decay of public attention

Sudden event 1

Amplitude 1.2 First Gaussian peak’s amplitude

Mean 15.0 Timing

Variance 4.0 Duration

Sudden event 2

Amplitude 1.5 Second Gaussian peak’s amplitude

Mean 30.0 Timing

Variance 5.0 Duration

population I exhibit time accumulation effects and rapid decay 
behavior. Their integral representations are given as Equations 8, 9:

E(t) = E0e−αt +
t

∫
0

β SI
N

e−α(t−τ)dτ (8)

I(t) = I0e−γt +
t

∫
0

αEe−γ(t−τ)dτ (9)

The above equation indicates that I(t) is a weighted 
accumulation of historical values of E(τ), where the weighting factor 
decays exponentially over time. This reflects a local smoothing 
process applied to historical information. Besides closed forms, 
second-order differential equation of (I) could also insight 
multi-peak and oscillatory behavior in Equation 10:

d2I
dt2 + (α + γ)dI

dt
+ α(γ −

βS
N
)I = 0 (10)

and Equation 11

Δ = (α − γ)2 +
4αβS

N
(11)

This equation has two real eigenvalues, leading to oscillatory 
behavior in (I) when underdamped (i.e., when Δ < (α+ γ)2, 
potentially resulting in multi-peak effects).

To guide control strategies, the results of the equations 
should be evaluated involving comprehensive formulae. Quantify 
population distribution and emotional states using two variables: 
the instantaneous cost function and the Hamiltonian function 
(opportunity cost, via Pontryagin’s maximum principle). The 
instantaneous cost function is as Equation 12 

J = AII +AEE +Axx2 + 1
2

3

∑
i=1

Biui(t)2 (12)

where AII  is the social cost of infectious individuals; AEE is the risk 
cost of exposed individuals; Axx2 is the polarization cost (quadratic 
penalty for opinion deviation from neutrality); 1

2
Biui

2 is the control 
cost (quadratic for increasing marginal costs). The Hamiltonian 
function is as Equation 13

H = J + λSṠ + λEĖ + λI ̇I + λRṘ+ λxẋ (13)

In Equation 13, variables (λS,λE,λI,λx) denoting shadow prices 
represent marginal costs of state changes, which satisfy the 
adjoint as Equation 14:
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FIGURE 1
Result comparisons of different amplification factors: (a–d) are for 0.0, 0.3, 0.6, and 0.9, respectively.

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

λ̇S = β I
N
(λS − λE) + u1(λS − λR)

λ̇E = −AE + α(λE − λI) + ηE
x − xE

N
λx

λ̇I = −AI + β S
N
(λS − λE) + (γ + u2)(λI − λR) + ηI

x − xI

N
λx

λ̇R = δ(λS − λR)

λ̇x = −2Axx + kββ0
SI
N
(λE − λS) +

λx

N
(ηII + ηEE)

(14)

λI is the marginal cost of an additional infectious individual 
(typically negative, with largest absolute value). λx is the marginal 
cost of opinion deviation from public attitudes. Economically, large 
(|λI|) signals high benefit from control (u2), guiding optimal timing 
and intensity. 

3 Simulation and validation

In this section, we reconstruct the “2025 Food-Contamination 
Public Opinion Incident” to analyze its escalation stages. On 1 July 
2025, the Market Supervision Bureau and Public Security Bureau 
of Tianshui City, investigated the Beishi Peixin Kindergarten for 
illegal use of food additives that caused abnormal blood lead levels 
in some children [37]. Following the incident, local authorities 

established a joint working group to conduct investigations, 
initiated criminal proceedings against the kindergarten’s director, 
and pledged to hold accountable the departments responsible for 
regulatory failures. 

3.1 A quantitative review of the event

We analyzed the evolution of this public opinion event using 
the volume curve, which quantifies online attention across time. 
According to data from an online monitoring platform, 30,964 
related posts were recorded, including 21,091 short videos and 9,563 
news articles [1]. The event unfolded in four stages: incubation 
and outbreak, emergency response, cross-provincial escalation, and 
social response. Before July 1, abnormal blood lead diagnoses 
triggered parental concern, but the discussion volume remained 
below 100. From July 1 to 3, official investigations and initial 
briefings were launched, yet the reliance on informal verbal 
notifications and inadequate emergency management intensified 
public distrust, with volume still under 100. Between July 4 and 
6, cross-provincial medical examinations revealed results up to 
twenty times higher than local tests, and media disclosures led 
to rapid amplification. Two peaks appeared at 21:00 on July 5 
and 6, reaching approximately 200 and 550, dominated by short 
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FIGURE 2
Amplification factor analysis revealing the relationship between emotional amplification and transmission dynamics. (a) Relationship between k and 
infection peak. (b) Relationship between k and transmission speed. (c) Relationship between k and peak time. (d) Relationship between k and 
opinion dynamics.

TABLE 3  Features of the infection curves against immunity decay rates.

Immunity decay rate Infection peak (person) Outbreak duration (Day)

0 465.40 32.11

0.02 491.46 32.44

0.05 524.21 32.44

0.08 550.41 32.78

0.1 565.08 32.78

0.15 593.87 32.78

0.2 615.26 33.11

videos. After July 7, celebrity reposts and parents’ collective demands 
pushed the event to its climax. The peak occurred at 13:00 on July 
7 with around 2,700 short videos, 700 blog posts, and 150 news 
articles, followed by a steep decline to about 500 by 21:00. Across 
all stages, short videos consistently served as the primary driver of 

public opinion diffusion, while news reports played a comparatively
minor role.

We further assessed public sentiment using a lexicon-based 
approach that identifies emotional polarity by weighting sentiment, 
negation, and degree words [38]. Combined with dissemination 
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FIGURE 3
Parameter analysis of XI and XE. (a) Effect of infected group opinion on k-transmission. (b) Effect of exposed group opinion on k-transmission. (c)
Interaction effect matrix of XI and XE. (d) Distribution of k correlation coefficient. (e) Ranking of parameter combinations.

TABLE 4  Features of the infection curves against amplification factors.

Amplification factor Infection peak (person) Peak time (Day)

0 470.53 33.13

0.3 475.50 32.72

0.6 476.68 32.33

0.9 475.64 31.96

data, the results show that negative emotions were not only 
dominant but also intense and highly directional. Short video 
platforms accounted for 51.7% of total dissemination and acted 
as the primary trigger of emotional resonance. Topic-specific 
interaction, such as the #TianshuiBloodLeadIncident hashtag 
reaching 1.2 million engagements, indicates the scale of negative 
expression. “kindergarten” (278,000 times), “blood lead” (241,000 

times), and “additives” (185,000 times) reflect core public concerns. 
In contrast, terms such as “irreversible damage” and “intelligence 
decline” reveal deep-seated health anxieties. The widespread 
sharing of “lead-eliminating recipes” and “blood test hospital 
recommendation lists” further demonstrates the spread of collective 
anxiety among parent communities. Rule-engine sentiment 
scoring shows that negative emotions account for 50.7% of all 
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FIGURE 4
Cost analysis: (a) shadow price and (b) Hamilton function.

classified content, far exceeding positive sentiment at 3.4%. Neutral 
discussions at 45.9% mainly concern medical procedures and 
accountability issues. Overall, public sentiment exhibits a highly 
concentrated negative pattern, indicating a high-risk emotional 
environment [1]. 

3.2 Parameter modeling of a hypothetical 
simplified incident

The parameter modeling is based on a hypothetical, simplified 
incident model (a common practice for initial theoretical 
exploration). 

3.2.1 Simplification and focus of the model
The primary objective of this simplification is to theoretically 

inform the timing and selection of control strategies for public 
opinion management. Consequently, our focus is placed on the peak 
position and morphological characteristics of the public opinion 
spread curve, which are then mapped to the model parameters. To 
simplify the system dynamics, the coupling dynamics within the 
emotional equation, which describes the dynamic change in public 
attitude, are treated under an idealized assumption.

The coupling coefficient signifies the influence of a unit number 
of spreaders (I) or latent individuals (S) on public sentiment. A 
coefficient of 0 implies no impact on public sentiment, indicating 

low public sensitivity to the incident. A high coefficient suggests 
a strong influence and high public sensitivity, making sentiment 
easily swayed. For this initial modeling, the coupling coefficients are 
assumed to lie between 0 and 1. Specifically, the influence of public 
opinion spreaders (I) on sentiment is hypothesized to be stronger, set 
at 0.8. In contrast, the influence of latent individuals (S) is assumed 
to be weaker, set at 0.3. These initial assumption-based values will 
be refined and validated using more precise parameter fitting or 
statistical methods as richer data become available. 

3.2.2 Systematic parameter estimation
The evolution of public opinion regarding the food 

contamination incident follows a typical multi-stage pattern: 
“outbreak–intervention–decline–resurgence–resolution”. Outbreak 
Stage: Following the initial media exposure, public opinion rapidly 
peaked, and negative attitudes reached their maximum intensity. 
Official Intervention Stage (Critical Stage): The government’s launch 
of an investigation team corresponds to the full activation of 
the control variables, u2 and u3, within the model. This leads 
to a sharp decline in the infectious compartment, I(t), and a 
rise in the recovered compartment, R(t), as the dominant group. 
Stabilization Stage: The event enters a relatively stable state. Public 
opinion intensity drops significantly as public attention shifts 
elsewhere. Immunity Loss and Resurgence Stage (Crucial Stage): 
A controversial video reignited small-scale discussions. This event 
verifies the validity of the immunity decay mechanism δR→ S
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FIGURE 5
Simulation results: (a) dynamic results of four variables, (b) infection responses and their features - (c) the infectious peaks and (d) outbreak durations - 
against immunity delays.

in the model, where some previously “recovered” users become 
susceptible (S) or infectious (I) again. Final Resolution Stage: The 
second wave quickly dissipated, and the system returned to long-
term stability.

The entire process validates the bidirectional coupling 
mechanism between attitudes and opinions: negative attitudes 
accelerate information dissemination, and the scale of dissemination 
further amplifies them.

Next, we will present approaches to evaluate the traditional 
parameters according to the timeline extracted from the above 
simplification. The routine is built on exponential decay or growth 
models. Specifying target time points and changes, it computes 
the dynamical parameters in a principled manner. The estimation 
assumes equation decoupling, simplifying the system into multiple 
first-order equations and employing logarithmic functions for 
estimation. Specifically, βhigh -- high infection scenario, employ 
I(t) = I(0) exp(βhight); βlow -- low infection scenario, bases on the 
target of doubling the number of infected individuals within 10 
days; kβ -- multiplication effect parameter, calculates the attitude 
amplification effect via the formula kβ = − 1+ βhigh/βlow. Exposure 
conversion rate α is according to an exponential decay model 
E(t) = E(0)exp (−αt). Recovery Rate γ and immunized decline 
rate are based on the targets of a 50% reduction in infected 
cases and recovered individuals, respectively. Principles for various 
parameters are presented above, while detailed estimated values 
are provided in Table 2. However, all these parameters should be 

validated and adjusted based on the simulation results to achieve a 
satisfactory match between the simulation and the design. 

3.3 Simulation, comparisons, and other 
validations

We implement a coupled simulation primarily in Python. 
Python was chosen for its extensive ecosystem of scientific 
computing libraries and its readability, making it ideal for modeling 
complex dynamic systems. The core simulation logic analyzes 
waveforms and leverages a function that uses the RK45 method 
to numerically solve the system of Ordinary Differential Equations 
(ODEs) that govern the time evolution of the five state variables. The 
programming paradigm centers around the Waveform Simulator, 
which uses NumPy for numerical arrays, Pandas for structured data 
handling and analysis, and Matplotlib for automatic visualization 
of the resulting time-series waveforms and sensitivity analysis 
reports. The realization also follows a modular design, relying on 
configuration files to manage simulation parameters and control 
inputs, enabling systematic scenario testing and detailed parameter 
sensitivity studies (e.g., the immunity decay rate). 

3.3.1 Model and parameter validation
We first validate the simulation model and its parameter settings. 

Some parameters come from a simplified reconstruction; others are 
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idealized assumptions. Therefore, the simulated curves keep several 
real-world features, especially the multi-stage pattern. Results show 
that with the current estimated parameters, the coupled model 
reproduces the expected multi-stage evolution.

The simulation reproduces five stages of opinion diffusion: 
fermentation, outbreak, stabilization, resurgence, and decline. Three 
key stages are summarized. (1) Initial Outbreak Phase: I(t) rises 
steadily from a low base; average opinion x(t) drifts from −0.1 to 
−0.3. The first external stimulus triggers an outbreak; infections 
approach 35%. Exposed (latent) individuals peak first, followed 
by infectious individuals. The susceptible fall and form a short 
plateau. (2) Public Sentiment Rebound Phase: After the plateau, 
a second peak appears, driven by a new stimulus and the re-
entry dynamics; waning immunity amplifies this peak and splits 
the overall waveform. (3) Full Decline Phase: With no new stimuli, 
transmission weakens. Exposed declines fastest, then infectious, 
then recovers. The susceptibility gradually rises as immunity decays. 
Average sentiment settles near −0.5.

These multi-feature patterns support the plausibility of the 
estimated parameters and the correctness of the implementation, 
forming the basis for later performance discussion and 
sensitivity analysis. 

3.3.2 Model comparison and parameter 
sensitivity

We compare the proposed model with two reduced versions: (a) 
the model without emotion coupling/amplification; (b) the model 
without immunity decay. 

3.3.2.1 Emotion amplification analysis
The emotion amplification factor kβ represents the gain of public 

emotion on transmission. When kβ =  0, the model reduces to 
a no-emotion baseline. As kβ rises, emotion increases diffusion 
strength and alters peak height and timing. We examine the 
emotion amplification factor kβ across four regimes: kβ = 0.0 (pure 
rationality; transmission = β0), kβ = 0.3 (moderate influence), kβ =
0.6 (strong influence), and kβ = 0.9 (dominant emotion; rational 
factors suppressed). Simulations confirm that higher kβ accelerates 
the spread and raises the peak size while advancing peak timing. 
Qualitative results (Figure 1) show an unchanged basic shape but 
shifted maxima. Quantitative results (Figure 2) show that peak size 
increases with kβ; peak arrival time decreases with kβ. Table 3 shows 
features of the infectious curves against the amplification factors. 
For example, the peak infectious count rises from ∼470 to ∼477, and 
the peak time shortens from 33.1 to 31.96 days as kβ increases. The 
Pearson correlation between kβ and peak size is positive (r = 0.78); 
with peak timing, it is negative (r = − 1.00). Formula:

r =
∑n

i=1
(xi − x)(yi − y)

√∑n
i=1
(xi − x)2√∑n

i=1
(yi − y)2

(15)

Here, r is the correlation coefficient; x is kβ; y is the chosen 
indicator. These highlight the phenomenon of “the more anger, the 
wider the spread.”

In the analysis of positive coupling parameters, the modulatory 
effects of opinion parameters were also investigated. Figure 3 
presents the results of the parameter sweep. The study reveals that the 
initial average attitudes of the infectious group (XI) and the exposed 

group (XE) have a strong regulatory effect on the influence of kβ. 
The most outbreak-prone combination occurs when  XI = − 0.8
and XE = − 0.6, where the peak number of infectious individuals 
reaches 497 under kβ = 0.9. In contrast, the most stable configuration 
is observed when  XI = − 0.2, where the system shows the lowest 
sensitivity to changes in kβ. This indicates that a hostile attitude 
environment intensifies the amplification effect and that pre-existing 
negativity creates a fertile ground for amplification. Simulation 
results further show that both XI and XE influence dissemination, 
but their effects are conditioned on kβ. When kβ is small, their 
impact is negligible—suggesting that the positive coupling effect, 
governed by kβ, serves as a “switch”. If this switch is off, dissemination 
evolves independently of emotion, and emotion merely acts as 
a passive observer of opinion dynamics. As kβ increases, the 
emotional promotion of dissemination becomes significant. When 
kβ is sufficiently large, emotion acts as a multiplier in the spread of 
public opinion.

These results show “more anger, wider spread” and highlight that 
emotion control must combine source isolation (reducing I and E
influence) with channel moderation during high emotion surges. 

3.3.2.2 Immunity decay analysis
The immunity decay constant δimmune measures the average time 

before recovered users become susceptible again. When δimmune =
0, there is no return; larger δimmune shortens the return interval. A 
sensitivity test (δimmune from 0.00 to 0.20) shows clearer double-peak 
behavior as δ increases. Table 4 shows the results of the parameter 
scanning, including the values of immunity decay rates and their 
feature responses of the infectious. The first peak reflects the original 
susceptible set; the second is amplified by users who lost immunity. 
Peak infections grow from 465 to 615 (≈32% increase), and outbreak 
duration extends from 41.8 to 49.2 days (≈17.7% increase). This 
indicates immunity loss strengthens both scale and persistence. 
The higher peak and shifted timing indicate that the proposed 
model captures resurgence more accurately than one without decay, 
suggesting that extending the adequate “protection time” (public 
guidance) lowers later amplification.

Effective public opinion management focuses on establishing 
long-term governance mechanisms, with attention to trade-offs 
between cost and intervention.

To this end, we analyzed management cost and opportunity 
cost. Figure 4 presents the evolution of two key auxiliary indicators. 
Shown in Figure 4a, the shadow price approaches zero over time, 
indicating that opportunity cost diminishes in the later stages of 
dissemination. This implies that early-stage intervention is most 
cost-effective. As shown in Figure 4b, the Hamiltonian function 
under the no-control scenario exhibits a decay trend over time, 
consistent with the common-sense expectation that intervention 
should occur early. The shadow price also reveals that the main 
cost driver is the infectious population, suggesting that targeting 
I(t) through interventions (e.g., lowering the infection rate) is most 
effective. Furthermore, late-stage control of the average opinion x(t)
is ineffective, as the opportunity cost is minimal—consistent with 
Figure 5, which shows that x(t) stabilizes in the later phase. Figure 4b 
also highlights the existence of high-cost and low-cost temporal 
zones for intervention. During the high-cost period, dominated by 
external stimuli, control yields little return because those stimuli are 
uncontrollable.
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4 Conclusion

This study introduces an enhanced SEIR model that combines 
public attitude dynamics with opinion propagation. The model 
incorporates two key features: attitude-dependent transmission 
rates and exponential decay of immunity. Our analysis reveals 
that public attitudes significantly influence when and how rapidly 
opinions spread. The immunity decay mechanism helps explain 
why opinions can re-emerge over time. The model also provides 
insights for optimizing intervention timing and intensity. As the 
coupling strength, immunity decay, and other parameters vary, 
the proposed model maintains multi-stage diffusion characteristics 
while exhibiting adjustable peak values and timings. Compared to 
traditional models, information diffusion peaks increase by 32%, 
and peak arrival times are delayed by 17.7%. This framework 
improves our understanding of how attitudes amplify opinion 
propagation, supporting better monitoring and management 
strategies. However, the model makes simplifying assumptions 
about population mixing and attitude-opinion relationships that 
may not capture the complexities of the real world. Future work 
could integrate these theoretical mechanisms into deep learning 
models, creating hybrid approaches that maintain interpretability 
while improving performance in complex network environments.
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