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Introduction: Recently, federated learning has been successfully applied in fields 
related to cyber-physical-social systems (CPSSs), owing to its ability to harness 
decentralized clients for training a global model while ensuring data privacy. 
The existing methods encounter two main obstacles, namely, the statistical 
distribution heterogeneity [non-independent and identically distributed (non-
IID)] among clients and the scarcity of labeled data.
Methods:  In this article, we propose a federated semi-supervised learning 
(FSSL) model under the label-at-server scenario, denoted as FedAlign, which 
is tailored for distributed cyber-physical-social systems. FedAlign adopts a dual 
knowledge distillation framework to train the global model. On the client side, 
FedAlign integrates contrastive learning, knowledge distillation, and pseudo-
labeling technology to train local models. The goal is to ensure that global 
knowledge is not overlooked while enabling clients to learn local knowledge. 
Meanwhile, on the server side, FedAlign utilizes maximum mean discrepancy 
to generate a global feature space. Based on the generated feature space, 
FedAlign employs a knowledge distillation mechanism and supervised learning to 
aggregate local knowledge and update the global model. 
Results: Two classic datasets, CIFAR-10 and Fashion-MNIST, are used to evaluate 
the performance of FedAlign. The experimental results demonstrate that 
FedAlign outperforms traditional federated semi-supervised learning models.
Discussion: The integration of feature alignment and knowledge enables 
balancing local knowledge learning and aggregation of global model. As a 
consequence, FedAlign enhances the adaptability and generalization ability of 
the global model in CPSSs.

KEYWORDS

cyber-physical-social systems, feature space alignment, federated semi-supervised 
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 1 Introduction

In recent years, cyber-physical-social systems (CPSSs) have received more attention in 
the academic community [1–4]. Due to the characteristics of CPSSs, the common CPSS
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is built on a distributed network [5, 6]. Existing deep learning 
models for CPSSs face two challenges, namely, data silos and the 
scarcity of labeled data [7]. A complete CPSS involves multiple 
systems or institutions that operate independently. According to 
some local laws, CPSSs can never gather raw data unconditionally 
into a central server. This has formed various data silos [8]. A large 
amount of data is stored in distributed CPSS terminals. Most of 
the data are unlabeled [9]. Thus, traditional deep learning based 
on centralized training cannot be directly applied to the distributed 
CPSS environment [10].

Federated semi-supervised learning (FSSL) combines semi-
supervised learning (SSL) with federated learning (FL) to enable 
multiple independent clients to collaborate and effectively train a 
global model under the constraint of scarce labeled data without 
sharing raw data in the distributed CPSS environment [11]. Thus, 
FSSL has emerged as an efficient tool for a CPSS to train a global 
model in the distributed network environment [12–15]. According 
to the location of labeled data, FSSL scenarios can be categorized into 
the label-at-server and label-at-client. In the label-at-server scenario, 
the data on the client side consist solely of unlabeled data, while the 
server holds labeled data. By contrast, in the label-at-client scenario, 
the data on the client side include both labeled and unlabeled data 
[16, 17]. From the perspective of model training, the label-at-server 
scenario poses greater challenges. Moreover, the label-at-server 
scenario is more prevalent than the label-at-client scenario [18]. 
Thus, this article focuses on label-at-server-based FSSL.

The framework of FSSL under the labeled-at-server scenario is 
shown in Figure 1. For the label-at-server scenario, clients train local 
models using self-supervised learning on their unlabeled data, while 
the server utilizes local models uploaded by the clients to generate 
a global model and uses its labeled data on the server to optimize 
the global model. Existing FSSL under the labeled-at-server scenario 
faces major challenges as follows: [19–22].

• The statistical distribution heterogeneity (non-IID) across 
clients: Within the framework of FSSL, data inherently 
exhibit the non-IID characteristic among a large number of 
participating clients. This arises because each client, such as 
mobile phones and Internet of Things (IoT) sensors, generates 
and stores data based on its unique local environment and 
user-specific usage patterns. Consequently, the local data on 
a given client are not a representative sample of the global 
distribution but rather a biased reflection of its individual 
experiences. Furthermore, the non-IID characteristic can lead 
to issues such as difficulties in global model convergence, 
global model bias, and client drift, thereby reducing the 
training efficiency of the FL model.

• Difference for optimization goal: For the label-at-server 
scenario, the server’s optimization goal is to make the global 
model align with its small amount of labeled data—that is, 
the objective corresponds to supervised learning. The client’s 
optimization goal is to make the local model align with the 
distribution of local unlabeled data—that is, the objective 
corresponds to unsupervised learning. These two goals may be 
completely misaligned.

In this article, a novel FSSL model based on the label-at-server 
scenario for a distributed CPSS, denoted as FedAlign, is proposed 

to address the aforementioned obstacles. FedAlign leverages the 
teacher–student framework on both the client side and server side. 
The teacher model serves as a repository of global knowledge, and 
the student model is responsible for learning local knowledge. For 
the first obstacle, FedAlign applies maximum mean discrepancy 
(MMD) to achieve feature space alignment between the client 
and server sides to optimize the global model. Furthermore, 
FedAlign applies a knowledge distillation mechanism to infuse 
global knowledge into the client-side local training. For the second 
obstacle, FedAlign integrates contrastive learning, a knowledge 
distillation mechanism, and pseudo-label-based supervised learning 
to improve the effectiveness of local training on the client side. 
Contrastive learning is used to improve the model’s representational 
capacity for unlabeled data, while the knowledge distillation 
mechanism is applied to infuse global knowledge into local training. 
The main contributions of this article are outlined below.

• We apply MMD to align the feature spaces of all clients to 
alleviate the influence of statistical distribution heterogeneity 
across clients. Subsequently, the aligned feature spaces are used 
to enhance the efficiency of aggregating local models.

• We adopt a dual knowledge distillation mechanism to 
improve the effectiveness of global training. On the server 
side, the knowledge distillation mechanism is applied to 
distill knowledge from the aggregated global model to the 
student model. On the client side, the knowledge distillation 
mechanism is applied to infuse global knowledge into 
local training.

• We employ two public datasets to evaluate the performance 
of FedAlign. The evaluation results demonstrate that FedAlign 
offers a distinct advantage in terms of efficiency compared with 
traditional FSSL models.

The remaining sections of this article are organized as follows: 
Section 2 reviews relevant literature. Section 3 elaborates on the 
details of FedAlign. Section 4 presents the experimental verification 
and analysis of FedAlign. Section 5 presents the conclusion drawn 
from the findings. 

2 Related work

A CPSS is an entity that integrates computing, networking, 
and physical processes to implement integration and dynamic 
interaction between cyberspace and the physical world [23]. In [24], 
Javier et al. proposed a complete real-world CPSS implementation 
cycle including processing and interpretation. In [25], Fei et al. 
utilized machine learning to address physical layer authentication 
for a CPSS. In [26], Charles et al. proposed an integrated toolchain 
to achieve architectural modeling of a CPSS with learning-enabled 
components. Although there is an abundance of research outcomes 
in CPSSs, they still face challenges such as data silos and a lack of 
labeled data [27].

In recent years, FSSL has received more attention. In [10], 
FedIRM integrates consistency regularization in SSL with FL. 
FedIRM applies an inter-client relationship matching scheme based 
on an improved consistency regularization mechanism to enhance 
the relationship between labeled clients and unlabeled clients. 
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FIGURE 1
Framework of FSSL based on label-at-server.

In [28], Bdair proposed an FSSL model, denoted as FedPerl. 
FedPerl introduces a peer anonymous learning mechanism to FSSL. 
Compared with the mean and standard deviation of parameters 
from different layers of neural networks, FedPerl constructs a 
similarity matrix. Based on the similarity matrix, FedPerl can 
generate high-quality pseudo-labels. In [19], RSCFed applies a 
distance-reweighted model to generate the global model. Based 
on the global model, RSCFed aggregates sub-consensus models to 
update the global model. In [16], Liu et al. introduce representation 
alignment to FL. By aligning local features with class proxies 
of the labeled data on the server side, the model effectively 
mitigates the bias caused by non-IID. In [29], FedRVR constructs 
a relation-guided multi-functional regularization framework. Based 
on the constructed framework, FedRVR utilizes model-guided 
regularization and data-guided regularization to encourage local 
models to maintain predictive invariance. In [30], Wang et al. 
propose an FSSL model for alleviating the influence of unreliable 
data. During the training process, the model utilizes a trustworthy 
global teacher model to guide local student models to deeply explore 
the features of unreliable data. 

3 Proposed methods

3.1 Problem definition

In this article, we focus on federated semi-supervised learning 
under the label-at-server scenario for a CPSS, assuming a label-at-
server scenario with one server and N clients N = {1,2,…,N}. On 
the server side, the labeled data are denoted as Dl = {(xi,yi)}

L
i=1. For 

client j ∈N , the unlabeled data are denoted as Dj
u = {(ui)}

U
i=1. In 

the label-at-server scenario, clients apply self-supervised learning 
to train local models while the server aggregates local models into 
the global model and utilizes the labeled data to optimize the 
global model. The final target is to minimize the loss function 
defined in Equation 1:

L (ω) = lserver +∑ lclient, (1)

where lserver is the loss function on the server side. lclient is the loss 
function of local training on the client side. 

3.2 Framework of FedAlign

We propose a novel FSSL model, denoted as FedAlign, 
under the label-at-server scenario. The framework of FedAlign 
is shown in Figure 2. FedAlign employs a dual knowledge distillation 
mechanism, thus adopting a teacher–student framework on both 
the client and server sides. The teacher model is used as a carrier 
of global knowledge. The student model is utilized to learn local 
knowledge. On the client side, the teacher model is updated using 
the global model sent from the server side. The client utilizes 
local unlabeled data to train the local student model. Subsequently, 
the knowledge distillation mechanism is applied to transfer global 
knowledge from the teacher model to the student model. Finally, 
the trained student model is uploaded to the server side. On the 
server side, all the local models received from clients are aggregated 
to update the global model. The MMD is applied to align feature 
spaces between the aggregated global model from the current 
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FIGURE 2
Framework of FedAlign.

communication and that from the previous communication. The 
aligned feature space is used to optimize the teacher model on the 
server side. Subsequently, the knowledge distillation mechanism is 
applied to transfer global knowledge from the teacher model to 
the student model. The local labeled data are used to optimize the 
student model. Finally, the optimized student model is sent to clients. 
The objectives of this mechanism are shown as follows.

• A knowledge distillation mechanism on the client sides can 
reduce the influence of local data bias on model training to 
prevent the model from over-adapting to local data.

• A knowledge distillation mechanism on the server side 
guides the aggregated global model to incorporate local 
knowledge from client sides while preserving globally 
generalizable features.

FedAlign is composed of the Local Learning module on the 
client side and the Collaborative Learning module on the server side. 
The detailed overview is illustrated in Figure 2. 

3.3 Local learning module

The local learning module employs contrastive learning and a 
knowledge distillation mechanism to learn local knowledge on the 
client side. Additionally, pseudo-labels for unlabeled data are used 
to improve the efficiency of local training. The overview of local 
training is shown in Algorithm 1.

1:Input: Client-side dataset Du, batch size B.
2:Output: trained student model
3:for clients parallel training do
4: receives the global model from server side.
5: the global model is applied to update the 

teacher model.
6: the client employs Equation 4 to produce 
high-quality pseudo-labels for unlabeled data.
7: the client utilizes unlabeled data with 

high-quality pseudo-labels to train the 

student model.
8: the client applies contrastive learning to 

train the student model.
9: the client applies the knowledge 

distillation mechanism to transfer global 

knowledge from teacher model to student model.
10: client send trained student model to 

server side.
11:end for

Algorithm 1. Local training.

3.3.1 Generation of pseudo-labels
In the label-at-server scenario, the data on the client side 

are exclusively unlabeled data. Thus, during the training process, 
the client side lacks supervised signals. To compensate for the 
lack of supervised signals, FedAlign generates pseudo-labels for 
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unlabeled data on the client side. FSSL is based on the assumption 
that samples with similar features exhibit consistent predictions. 
Therefore, FedAlign adopts a pseudo-label generation mechanism 
based on consistency verification to generate high-quality pseudo-
labels for unlabeled data.

The details of pseudo-label generation are shown as follows. 
First, FedAlign performs data augmentation on unlabeled data 
to generate multiple augmented samples. Subsequently, FedAlign 
utilizes the teacher model to predict these augmented samples. 
The client uses these prediction results to assess the consistency 
of unlabeled data. Finally, this consistency is utilized to generate 
the pseudo-labels with high quality. The definition of obtaining 
consistency is defined from Equations 2‐4. On the client side, 
the teacher model is constructed based on the global model 
received from the server side. Thus, the generation of pseudo-
labels is based on global knowledge and is more robust to data
variations.

ŷ (x) = f (x;θtea) , (2)

ŷi
v (x) = argmax

c∈{1,2,…,C}
f (augi (x) ;θtea) , (3)

consist (x) =
K

∑
i=1

1{ŷi
v (x) = ŷ (x)} > r, (4)

where f(x;θtea) denotes the prediction of the teacher model for 
the unlabeled data x and θtea denotes the parameter of the 
teacher model on the client side. {1,2,…,C} is the set of category. 
augi(⋅) is the ith augmentation. 1(⋅) is the indicator function. r
denotes a hyperparameter. If the consistency of the unlabeled data
x (consist(x)) is greater than r, the pseudo-label of the unlabeled 
data x is of high quality. Finally, the client applies pseudo-
labels to optimize the student model. The loss function is 
defined as Equation 5:

Lsup =H( f (x;θstu) , ŷ) = −
m

∑
j=1

ŷi ⋅ log( f(x;θstu)
i) , (5)

 where x is unlabeled data with high-quality pseudo-label. ŷ is the 
one-hot encoding of the pseudo-label for x. ŷi is the ith element in ŷ. 

3.3.2 Local feature learning
In the local feature learning module, FedAlign integrates 

contrastive learning with a knowledge distillation mechanism 
to mine self-supervised information from unlabeled data. Based 
on the mined information, FedAlign can effectively extract 
discriminative representations of general features. So, FedAlign 
not only alleviates the issue of insufficient supervised signals on 
the client side but also enhances the robustness of clients to
non-IID data.

For FedAlign, contrastive learning is applied to learn stable and 
discriminative features from unlabeled data. The target is to reduce 
feature shifts caused by non-IID data. Contrastive learning is a 
branch of self-supervised learning. It can guide the model to learn 
inherent structures and discriminative features from unlabeled data 
based on contrastive relationships between similar and dissimilar 
samples. For FedAlign, clients apply contrastive learning to extract 
inherent features from unlabeled data and maintain the robustness 

for non-essential variations. The loss function of contrastive learning 
applied in FedAlign is defined as Equation 6:

Lcontrast = − log
exp(sim( f (auga (x) ;θstu) , f (augb (x) ;θstu))/τ)

∑
́x∈B, ́x≠x exp(sim( f (auga (x) ;θstu) , f ( ́x;θstu))/τ)

,

(6)

where θstu is the parameter of student model in client. xa and xb are 
two augmentations for unlabeled data x. sim(⋅) is similarity function.

For FedAlign, there are three targets of knowledge distillation. 
First, the knowledge distillation mechanisms utilized to transfer 
global knowledge from the teacher model to the student model 
on the client side. Second, for knowledge distillation, clients apply 
the output of the teacher model as a soft supervised signal to 
prevent overfitting to local data on the client side. Third, the 
knowledge distillation mechanism can align the output of the 
student model with that of the teacher model to mitigate notable 
differences between the data distribution on the client side and the 
global data distribution. Thus, these targets of knowledge distillation 
compensate for the limitations of non-IID data on the client side and 
prevent overfitting of student models to local data. The loss function 
of knowledge distillation is shown as Equation 7:

Ldistill =
1
2
⋅ {LKL ( f (auga (x) ;θstu) , f (auga (x) ;θtea))

+LKL ( f (augb (x) ;θstu) , f (augb (x) ;θtea))} , (7)

where LKL is Kullback–Leibler divergence. θstu is a parameter of the 
student model. θtea is a parameter of the teacher model. auga(x) and 
augb(x) are two augmentations for unlabeled data x. The total loss 
function in local learning module is defined as Equation 8.

Lclient = λ1 ⋅Lsup + λ2 ⋅Lconstrast + λ3 ⋅Ldistill. (8)
 

3.4 Collaborative learning module

The collaborative learning module is able to learn global 
information by fusing local model aggregation, space alignment, and 
the knowledge distillation mechanism. In the tth communication 
round, for weight aggregation, FedAlign introduces the prediction 
accuracy of local models received from the client sides on the labeled 
data as the weight for aggregation to update the teacher model on the 
server side. For space alignment, FedAlign applies MMD to measure 
the difference between the student models trained in the (t–1)th 
communication round and the updated teacher model on the server 
side to fine-tune the teacher model. Subsequently, the knowledge 
distillation mechanism and supervised learning are applied to train 
the student model on the server side. Finally, the student model is 
sent to the client sides. The overview of the collaborative learning 
module in the tth communication round is shown in Algorithm 2.

3.4.1 Aggregation of local models
The aggregation methods in traditional FL are based on 

the amount of data on clients while ignoring the distribution 
discrepancy between the learned information and the global 
information. Thus, FedAlign utilizes the prediction accuracy of the 
local models received from the client sides on the labeled data to 
evaluate the learning quality of the local models.
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1: Input: Server-side dataset Dl, batch size B, 
the student model trained in the t−1th 

communication round.
2: Output: the parameter of the trained 

student model.
3: receives the local model from the 

client sides.
4: assesses the prediction accuracy of the local 

models using labeled data.
5: employs Equation 12 to aggregate local models 
to generate the global model. Then, the generated 

model is applied to update the teacher model.
6: applies MMD for aligning feature space between 

the updated teacher model and student model 

trained in the t−1th communication round to 

fine-tune the teacher model.
7: employs the knowledge distillation mechanism 

to convey global knowledge from the teacher model 

to the student model.
8: applies supervised learning based on cross 

entropy to optimize the student model.
9: store and send the trained student model to 

selected clients.

Algorithm 2. Collaborative learning in the t-th communication round.

• Local model with high accuracy: The local models received 
from the client sides with high accuracy indicate that the 
knowledge learned by the clients is more consistent with the 
global data distribution. Although non-IID data exist in the 
data across clients, these local models still produce reliable 
predictions. Thus, it is more valuable to utilize such high-
accuracy local models for updating the global model.

• Local model with low accuracy: Local models with low 
accuracy indicate that data on the client have an extremely 
skewed local distribution or suffers from overfitting. This is 
due to a significant deviation between the learned information 
and the global data distribution. If excessive weight is assigned 
to such local models, it will cause the global model to deviate 
from the global data distribution.

In conclusion, the aggregation of local models is defined from 
Equations 9‐12. Subsequently, the parameters of the aggregated 
model are utilized to update the teacher model on the server side.

́ac =
ac −min (a)

max (a) −min (a)
, (9)

́sc =
sc −min (s)

max (s) −min (s)
, (10)

ωc =
λ1 ⋅ ́ac + λ2 ⋅ ́sc

∑
i∈Sλ1 ⋅ ́ai + λ2 ⋅ ́si

, (11)

θagg = ∑
c∈S

ωc ⋅ θc, (12)

where ac is the prediction accuracy of client c on the labeled data. sc is 
the amount of data in client c. min (a) and max (a) are the minimum 
value and maximum value of the prediction accuracy across all 
clients in one communication round. min (s) and max (s) are the 
minimum value and maximum value of the amount of data across 
all clients in one communication round. S  is a set of clients selected 
for communication. θc is the parameter of local model received from 
client c. 

3.4.2 Space alignment
FedAlign applies MMD to align the feature spaces between the 

student model obtained in the previous communication round and 
the teacher model on the server side. Although FedAlign updates 
the teacher model by aggregating the received local models on the 
server side, as shown in Section 3.4.1, the teacher model cannot 
guarantee the consistency of the semantic understanding of data. 
MMD can measure the feature distribution discrepancy between 
the updated teacher model and the student model trained in the 
previous communication round. The student model carries the 
global knowledge learned in the previous communication round. 
Based on the discrepancy, the server aligns the feature distribution 
of the updated teacher model with that of the global model learned 
in the previous communication round. The advantages of this 
alignment mechanism are as follows.

• Alleviating the distribution shift caused by non-IID. In a 
federated learning environment, non-IID data across clients 
lead to fluctuations in the feature distribution of the global 
model across rounds. MMD directly measures the distribution 
discrepancy between the feature spaces of the updated 
teacher model and the student model trained in the previous 
communication round. By minimizing this discrepancy, the 
teacher model inherits the feature distribution characteristics 
of the previous global model in order to avoid knowledge 
fragmentation caused by data heterogeneity and enhance the 
robustness of the model to heterogeneously distributed data.

• Enhancing the aggregation of global knowledge. The 
traditional generation of local models has already integrated 
common knowledge from multiple clients. For FedAlign, 
MMD alignment essentially enables the new teacher model 
to inherit this common knowledge. Compared with training 
solely on the local data on the server side, MMD allows the 
teacher model to absorb more comprehensive information 
across clients in order to mitigate local data bias and enhance 
the completeness and effectiveness of knowledge transfer.

In FSSL, based on the label-at-server scenario, features extracted 
by local models are high-dimensional and non-linear. Thus, it 
is difficult to describe these high-dimensional and non-linear 
distributions using simple probabilistic models. FedAlign employs 
MMD to map the features extracted by the two models to the 
reproducing kernel Hilbert space (RKHS) via multi-bandwidth 
Gaussian kernels. Using these mapped features, MMD utilizes the 
distance between the means of the feature distributions extracted by 
the updated teacher model and the global model from the previous 
communication round to measure the discrepancy between these 
two feature distributions. Based on the discrepancy, FedAlign can 
effectively quantify and align the feature distributions of these 
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models in order to alleviate distribution shift in non-IID scenarios 
of FSSL while adapting to the constraints of limited labeled data. The 
loss function of MMD in FedAlign is defined as Equations 13, 14:

k( f1, f2) =
M

∑
i=1

exp(−
‖ f1 − f2‖

2

2σ2
i
), (13)

LMMD =
1
n2 ⋅ ∑

i=1,j
k( fi

T, f
j
T) +

1
n2 ⋅ ∑

i,j=1
k( fi

S, f
j
S) −

2
n2 ∑

i=1,j=1
k( fi

T, f
j
S) , (14)

 where { f1
T, f

2
T,…, f

n
T} is a feature extracted by the updated teacher 

model based on labeled data. { f1
S, f

2
S,…, f

n
S} is a feature extracted 

by the student model trained in the previous communication round 
based on labeled data. M is the number of kernels. 

3.4.3 Global knowledge transmission
FedAlign employs the knowledge distillation mechanism to 

effectively transmit global knowledge from the teacher model to 
the student model. For FedAlign, after completing the feature space 
alignment on the server side, knowledge distillation is applied to 
enable the student model to further learn the teacher’s refined 
knowledge about complex samples based on a consistent feature 
distribution with the teacher model. Additionally, the knowledge 
distillation mechanism can correct any hidden residual biases in the 
student model to enhance the generalization ability and robustness 
of the global model.

For FedAlign, the server applies the predicted results from 
the fine-tuned teacher model on the labeled data to classify the 
labeled data into two distinct categories, namely, high-quality 
data and low-quality data. High-quality data are data for which 
the predicted results are correct. Low-quality data are those for 
which the predicted results are incorrect. The loss function of 
the knowledge distillation mechanism in FedAlign is defined
as Equation 15:

Ldistill,server = λs1 ⋅LKL ( f (x;θtea) , f (x;θstu)) + λs2 ⋅LKL ( f ( ́x;θtea) , f ( ́x;θstu)) ,
(15)

 where x is data belonging to high-quality data. ́x is data belonging 
to low-quality data. LKL is Kullback–Leibler divergence. On the 
server side, FedAlign also applies supervised learning based on 
cross entropy to optimize the student model. The loss function of 
supervised learning is defined as Equation 16:

Lsup−server =H( f (x;θstu) ,y) = −
m

∑
i=1

yi ⋅ log( f(x;θstu)
i) , (16)

where x is labeled data. y is one-hot encode of label of x. θstu is 
the parameter of the student model. The total loss function for the 
student model is defined in Equation 17:

Lstu−server = λdis ⋅Ldistill,server + λsup ⋅Lsup−server, (17)

where λdis and λsup are hyperparameters. 

4 Experimental evaluation

4.1 Experimental setup

In this section, we utilize two public datasets, CIFAR-10 and 
Fashion-MNIST, to evaluate the efficiency of FedAlign.

• CIFAR-10 [31]: CIFAR-10 is a well-known public dataset 
dedicated to image classification tasks. This dataset is utilized 
as a benchmark to evaluate the performance of models in 
terms of feature extraction and generalization for small-scale 
color images. CIFAR-10 comprises 60,000 RGB color images, 
divided into 10 categories, with a resolution of 32× 32 pixels, 
where the pixel values span from 0 to 255. Regarding its data 
split, the training dataset in CIFAR-10 contains 50,000 images, 
while the test dataset has 10,000 images.

• Fashion-MNIST [32]: Fashion-MNIST is a well-established 
public image dataset, and it is utilized to replace the MNIST 
dataset for alleviating the issue of inflated model performance. 
This dataset contains 70,000 grayscale images belonging to 10 
categories, with a resolution of 28× 28 pixels. The training 
dataset in Fashion-MNIST includes 60,000 images, while the 
test dataset in Fashion-MNIST includes 10,000 images.

In order to effectively train FedAlign, we adopt stochastic 
gradient descent (SGD) with an initial learning rate of 0.0001 for 
model optimization. The total number of communication rounds 
is 300, and the number of clients is 100. In each communication 
round, the server selects 10 clients to participate in global model 
training. Regarding training epochs, the warm-up phase on the 
server side is set to 10 epochs, while each client side performs 10 
training epochs. MobileNetV2 is adopted as the backbone model. 
The amount of labeled data N is set to 500 and 1,000. We apply the 
Dirichlet distribution (α = 1.0) to simulate the non-IID distribution 
across clients. 

4.2 Baseline method

We select four models as baselines. The details of those baselines 
are as follows.

• SL-Server: This model only uses labeled data on the server side 
to train the global model.

• SEL-FedAvg: On the client side, this model uses contrastive 
learning to train the local model. On the server side, it utilizes 
FedAvg to aggregate local model updates. Subsequently, 
the server uses labeled data to optimize the aggregated 
global model.

• FedMatch [33]: FedMatch uses consistency regularization to 
train the local model on the client side. On the server side, 
it leverages improvements to the aggregation mechanism of 
FedAvg to generate the global model.

• FedCon [34]: FedCon applies a contrastive network and a 
novel two-output model to train the local model on the 
client side.

4.3 Overall result

To evaluate the training efficiency of FedAlign, we trained 
it under non-IID and IID scenarios. The training results are 
shown in Figure 3. As illustrated in Figure 3, the test accuracy 
continually improves as the number of communication rounds 
increases. When the number of communication rounds exceeds 150, 
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FIGURE 3
Variations of test accuracy with increasing numbers of communication rounds (N = 500). (a) Test accuracy of CIFAR-10. (b) Test accuracy of 
fashion-MNIST.

FIGURE 4
Variations of test accuracy with different amounts of labeled data (α = 1.0). (a) Compare of different amount of labeled sample for CIFAR-10. (b)
Compare of different of labeled sample for Fashion-MNIST.

TABLE 1  Highest accuracy results compared for CIFAR-10.

Model Highest accuracy (%)

500 1,000

IID Non-IID IID Non-IID

SL-Server 50.15 49.36 56.82 54.43

SEL-FedAvg 52.43 50.62 57.52 55.95

FedMatch 53.62 52.76 68.22 67.14

FedCon 58.43 54.84 60.24 63.14

FedAlign (ours) 63.13 61.75 67.43 65.52

the improvement speed begins to plateau. When the number of 
communication rounds reaches 300, the test accuracy under the 
non-IID and IID scenarios is 63.13% and 61.75%, respectively.

In order to evaluate the influence of the amount of labeled 
data on the server side on training efficiency, we trained FedAlign 
under non-IID scenarios with different volumes of server-side 
labeled data. The experimental results are shown in Figure 4. As 
illustrated in Figure 4, although the test accuracy of FedAlign 

TABLE 2  Highest accuracy results compared for Fashion-MNIST.

Model Highest accuracy (%)

500 1,000

IID Non-IID IID Non-IID

SL-Server 61.24 40.41 66.34 52.13

SEL-FedAvg 68.28 62.94 68.25 65.36

FedMatch 81.92 81.59 85.49 83.24

FedCon 79.43 80.24 83.24 81.92

FedAlign (ours) 84.12 82.25 87.61 86.12

continually improves as communication rounds increase, the model 
trained with 1,000 labeled samples achieves higher test accuracy 
than that trained with 500 labeled samples. This indicates that 
increasing the amount of labeled data on the server side can 
mitigate the adverse impact of non-IID data distribution on training 
performance.

The results of FedAlign compared with all the baselines are 
shown in Tables 1, 2. These results demonstrate that FedAlign 
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FIGURE 5
Ablation results for feature space alignment (N = 500,α = 1.0). (a) Ablation for MMD in CIFAR-10. (b) Ablation for MMD in Fashion-MNIST.

FIGURE 6
Ablation results for aggregation of the global model (N = 500,α = 1.0). (a) Ablation for aggregation in CIFAR-10. (b) Ablation for aggregation in 
Fashion-MNIST.

TABLE 3  Ablation results.

Labeled data Setting Highest accuracy (%)

CIFAR-10 Fashion-MNIST

FedAlign -om -oa FedAlign -om -oa

500
IID 63.13 58.72 56.58 84.12 79.63 76.92

Non-IID 61.75 56.16 55.76 82.25 77.22 75.84

1,000
IID 67.43 62.37 59.37 87.61 84.32 81.19

Non-IID 65.52 60.92 57.17 86.12 80.38 79.22

achieves higher test accuracy than all baselines. SL-Server only 
utilizes labeled data on the server side to train the global model. 
Thus, SL-Server cannot leverage local knowledge from the client 
side, and consequently, its test accuracy is lower than that of all 
other models. SEL-FedAvg adopts FedAvg’s aggregation mechanism 
to construct the global model. Although SEL-FedAvg employs 
semi-supervised learning to leverage local knowledge from the 
client side, its aggregation of local model updates received from 
clients overlooks the impact of non-IID data distribution. Thus,
SEL-FedAvg tends to converge to a local optimum. FedMatch 

applies consistency regularization to learn local knowledge from the 
client side and leverages pseudo-labels to optimize the local model. 
However, in the early stages of training, the low-quality global 
model produces a large number of low-quality pseudo-labels, which 
hinder the model’s training efficiency. Although FedMatch leverages 
the training frequency of clients to aggregate the global model, 
the non-IID issue is not effectively mitigated. FedCon integrates 
a contrastive learning network into local training but overlooks 
feature space alignment of data across clients. Thus, FedCon cannot 
mitigate the adverse impact of non-IID on global model training. 
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For FedAlign, MMD is employed on the server side to align 
the feature spaces of data across clients. Additionally, the server 
utilizes the prediction accuracy of received local models to assess 
the data distribution of each client. Based on these evaluation 
results, the server constructs the global model. Thus, FedAlign can 
effectively leverage local knowledge from the client side. As a result, 
FedAlign outperforms all baselines in terms of training efficiency 
and test accuracy. 

4.4 Analysis and ablation study

In this section, we analyze the influence of local model 
aggregation and feature space alignment on FedAlign. Thus, we 
compare FedAlign with its variant without MMD (-om) to analyze 
the impact of feature space alignment on FedAlign. Additionally, 
we compare FedAlign with its variant without accuracy-based 
aggregation (-oa) to evaluate the effect of prediction accuracy-driven 
aggregation.

Regarding the influence of MMD, the comparison results are 
shown in Figure 5. As illustrated in Figure 5, the test accuracy 
of FedAlign is higher than that of its variant without MMD. This 
indicates that lacking feature space alignment causes the global 
model training to get trapped in a local optimum. This is because 
FedAlign can effectively quantify and align the feature distributions 
of all clients to alleviate distribution shift in non-IID scenarios of 
FSSL while adapting to the constraint of limited labeled data.

Regarding the influence of prediction accuracy-driven 
aggregation, the comparison results are shown in Figure 6. As 
illustrated in Figure 6, the test accuracy of FedAlign is higher than 
that of its variant without accuracy-based aggregation (-oa). This 
indicates that aggregation without prediction accuracy weighting 
results in a low-quality global model. Subsequently, the low-quality 
global model generates low-quality pseudo-labels on the client side. 
The ablation study results are summarized in Table 3. 

5 Conclusion

In this article, we present a novel FSSL model based on 
the label-at-server framework for a distributed CPSS, denoted as 
FedAlign. For FedAlign, MMD is employed on the server side 
to align the feature spaces of client-side data; meanwhile, the 
prediction accuracy of local models on the server’s labeled data 
is leveraged to weight the aggregation of the global model, and a 
knowledge distillation mechanism is utilized to distill and transfer 
global knowledge from the teacher model to the student model. 
On the client side, FedAlign integrates knowledge distillation with 
contrastive learning to train local models. Thus, FedAlign can 
effectively train the global model without sharing raw data. As 
a result, FedAlign can effectively address the CPSS dilemmas of 
data silos and label scarcity. Ultimately, we evaluate FedAlign’s 
performance using two public datasets, and the experimental results 
demonstrate that FedAlign outperforms other baseline models in 
terms of both performance and efficiency.
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