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Introduction: Recently, federated learning has been successfully applied in fields
related to cyber-physical-social systems (CPSSs), owing to its ability to harness
decentralized clients for training a global model while ensuring data privacy.
The existing methods encounter two main obstacles, namely, the statistical
distribution heterogeneity [non-independent and identically distributed (non-
[ID)] among clients and the scarcity of labeled data.

Methods: In this article, we propose a federated semi-supervised learning
(FSSL) model under the label-at-server scenario, denoted as FedAlign, which
is tailored for distributed cyber-physical-social systems. FedAlign adopts a dual
knowledge distillation framework to train the global model. On the client side,
FedAlign integrates contrastive learning, knowledge distillation, and pseudo-
labeling technology to train local models. The goal is to ensure that global
knowledge is not overlooked while enabling clients to learn local knowledge.
Meanwhile, on the server side, FedAlign utilizes maximum mean discrepancy
to generate a global feature space. Based on the generated feature space,
FedAlign employs a knowledge distillation mechanism and supervised learning to
aggregate local knowledge and update the global model.

Results: Two classic datasets, CIFAR-10 and Fashion-MNIST, are used to evaluate
the performance of FedAlign. The experimental results demonstrate that
FedAlign outperforms traditional federated semi-supervised learning models.
Discussion: The integration of feature alignment and knowledge enables
balancing local knowledge learning and aggregation of global model. As a
consequence, FedAlign enhances the adaptability and generalization ability of
the global model in CPSSs.

KEYWORDS

cyber-physical-social systems, feature space alignment, federated semi-supervised
learning, knowledge distillation, maximum mean discrepancy

1 Introduction

In recent years, cyber-physical-social systems (CPSSs) have received more attention in
the academic community [1-4]. Due to the characteristics of CPSSs, the common CPSS
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is built on a distributed network [5, 6]. Existing deep learning
models for CPSSs face two challenges, namely, data silos and the
scarcity of labeled data [7]. A complete CPSS involves multiple
systems or institutions that operate independently. According to
some local laws, CPSSs can never gather raw data unconditionally
into a central server. This has formed various data silos [8]. A large
amount of data is stored in distributed CPSS terminals. Most of
the data are unlabeled [9]. Thus, traditional deep learning based
on centralized training cannot be directly applied to the distributed
CPSS environment [10].

Federated semi-supervised learning (FSSL) combines semi-
supervised learning (SSL) with federated learning (FL) to enable
multiple independent clients to collaborate and effectively train a
global model under the constraint of scarce labeled data without
sharing raw data in the distributed CPSS environment [11]. Thus,
FSSL has emerged as an efficient tool for a CPSS to train a global
model in the distributed network environment [12-15]. According
to the location of labeled data, FSSL scenarios can be categorized into
the label-at-server and label-at-client. In the label-at-server scenario,
the data on the client side consist solely of unlabeled data, while the
server holds labeled data. By contrast, in the label-at-client scenario,
the data on the client side include both labeled and unlabeled data
[16, 17]. From the perspective of model training, the label-at-server
scenario poses greater challenges. Moreover, the label-at-server
scenario is more prevalent than the label-at-client scenario [18].
Thus, this article focuses on label-at-server-based FSSL.

The framework of FSSL under the labeled-at-server scenario is
shown in Figure 1. For the label-at-server scenario, clients train local
models using self-supervised learning on their unlabeled data, while
the server utilizes local models uploaded by the clients to generate
a global model and uses its labeled data on the server to optimize
the global model. Existing FSSL under the labeled-at-server scenario
faces major challenges as follows: [19-22].

« The statistical distribution heterogeneity (non-IID) across
clients: Within the framework of FSSL, data inherently
exhibit the non-IID characteristic among a large number of
participating clients. This arises because each client, such as
mobile phones and Internet of Things (IoT) sensors, generates
and stores data based on its unique local environment and
user-specific usage patterns. Consequently, the local data on
a given client are not a representative sample of the global
distribution but rather a biased reflection of its individual
experiences. Furthermore, the non-IID characteristic can lead
to issues such as difficulties in global model convergence,
global model bias, and client drift, thereby reducing the
training efficiency of the FL model.

« Difference for optimization goal: For the label-at-server
scenario, the server’s optimization goal is to make the global
model align with its small amount of labeled data—that is,
the objective corresponds to supervised learning. The client’s
optimization goal is to make the local model align with the
distribution of local unlabeled data—that is, the objective
corresponds to unsupervised learning. These two goals may be
completely misaligned.

In this article, a novel FSSL model based on the label-at-server
scenario for a distributed CPSS, denoted as FedAlign, is proposed
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to address the aforementioned obstacles. FedAlign leverages the
teacher-student framework on both the client side and server side.
The teacher model serves as a repository of global knowledge, and
the student model is responsible for learning local knowledge. For
the first obstacle, FedAlign applies maximum mean discrepancy
(MMD) to achieve feature space alignment between the client
and server sides to optimize the global model. Furthermore,
FedAlign applies a knowledge distillation mechanism to infuse
global knowledge into the client-side local training. For the second
obstacle, FedAlign integrates contrastive learning, a knowledge
distillation mechanism, and pseudo-label-based supervised learning
to improve the effectiveness of local training on the client side.
Contrastive learning is used to improve the model’s representational
capacity for unlabeled data, while the knowledge distillation
mechanism is applied to infuse global knowledge into local training.
The main contributions of this article are outlined below.

o We apply MMD to align the feature spaces of all clients to
alleviate the influence of statistical distribution heterogeneity
across clients. Subsequently, the aligned feature spaces are used
to enhance the efficiency of aggregating local models.

o« We adopt a dual knowledge distillation mechanism to
improve the effectiveness of global training. On the server
side, the knowledge distillation mechanism is applied to
distill knowledge from the aggregated global model to the
student model. On the client side, the knowledge distillation
mechanism is applied to infuse global knowledge into
local training.

o We employ two public datasets to evaluate the performance
of FedAlign. The evaluation results demonstrate that FedAlign
offers a distinct advantage in terms of efficiency compared with
traditional FSSL models.

The remaining sections of this article are organized as follows:
Section 2 reviews relevant literature. Section 3 elaborates on the
details of FedAlign. Section 4 presents the experimental verification
and analysis of FedAlign. Section 5 presents the conclusion drawn
from the findings.

2 Related work

A CPSS is an entity that integrates computing, networking,
and physical processes to implement integration and dynamic
interaction between cyberspace and the physical world [23]. In [24],
Javier et al. proposed a complete real-world CPSS implementation
cycle including processing and interpretation. In [25], Fei etal.
utilized machine learning to address physical layer authentication
for a CPSS. In [26], Charles et al. proposed an integrated toolchain
to achieve architectural modeling of a CPSS with learning-enabled
components. Although there is an abundance of research outcomes
in CPSSs, they still face challenges such as data silos and a lack of
labeled data [27].

In recent years, FSSL has received more attention. In [10],
FedIRM integrates consistency regularization in SSL with FL.
FedIRM applies an inter-client relationship matching scheme based
on an improved consistency regularization mechanism to enhance
the relationship between labeled clients and unlabeled clients.
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FIGURE 1

Framework of FSSL based on label-at-server.

In [28], Bdair proposed an FSSL model, denoted as FedPerl.
FedPerl introduces a peer anonymous learning mechanism to FSSL.
Compared with the mean and standard deviation of parameters
from different layers of neural networks, FedPerl constructs a
similarity matrix. Based on the similarity matrix, FedPerl can
generate high-quality pseudo-labels. In [19], RSCFed applies a
distance-reweighted model to generate the global model. Based
on the global model, RSCFed aggregates sub-consensus models to
update the global model. In [16], Liu et al. introduce representation
alignment to FL. By aligning local features with class proxies
of the labeled data on the server side, the model effectively
mitigates the bias caused by non-IID. In [29], FedRVR constructs
arelation-guided multi-functional regularization framework. Based
on the constructed framework, FedRVR utilizes model-guided
regularization and data-guided regularization to encourage local
models to maintain predictive invariance. In [30], Wang etal.
propose an FSSL model for alleviating the influence of unreliable
data. During the training process, the model utilizes a trustworthy
global teacher model to guide local student models to deeply explore
the features of unreliable data.

3 Proposed methods

3.1 Problem definition

In this article, we focus on federated semi-supervised learning
under the label-at-server scenario for a CPSS, assuming a label-at-
server scenario with one server and N clients N/ = {1,2,...,N}. On
the server side, the labeled data are denoted as D; = {(x;, )’i)},-L:y For
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client j € AV, the unlabeled data are denoted as D’u ={(u;) i(il.

the label-at-server scenario, clients apply self-supervised learning

In

to train local models while the server aggregates local models into
the global model and utilizes the labeled data to optimize the
global model. The final target is to minimize the loss function
defined in Equation 1:

L ((U) = lserver + Z lclient’ (1)

where [

cerver 19 the loss function on the server side. I, is the loss

function of local training on the client side.

3.2 Framework of FedAlign

We propose a novel FSSL model, denoted as FedAlign,
under the label-at-server scenario. The framework of FedAlign
is shown in Figure 2. FedAlign employs a dual knowledge distillation
mechanism, thus adopting a teacher-student framework on both
the client and server sides. The teacher model is used as a carrier
of global knowledge. The student model is utilized to learn local
knowledge. On the client side, the teacher model is updated using
the global model sent from the server side. The client utilizes
local unlabeled data to train the local student model. Subsequently,
the knowledge distillation mechanism is applied to transfer global
knowledge from the teacher model to the student model. Finally,
the trained student model is uploaded to the server side. On the
server side, all the local models received from clients are aggregated
to update the global model. The MMD is applied to align feature
spaces between the aggregated global model from the current
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communication and that from the previous communication. The
aligned feature space is used to optimize the teacher model on the
server side. Subsequently, the knowledge distillation mechanism is
applied to transfer global knowledge from the teacher model to
the student model. The local labeled data are used to optimize the
student model. Finally, the optimized student model is sent to clients.
The objectives of this mechanism are shown as follows.

o A knowledge distillation mechanism on the client sides can
reduce the influence of local data bias on model training to
prevent the model from over-adapting to local data.

o A knowledge distillation mechanism on the server side
guides the aggregated global model to incorporate local
knowledge from client sides while preserving globally
generalizable features.

FedAlign is composed of the Local Learning module on the
client side and the Collaborative Learning module on the server side.
The detailed overview is illustrated in Figure 2.

3.3 Local learning module

The local learning module employs contrastive learning and a
knowledge distillation mechanism to learn local knowledge on the
client side. Additionally, pseudo-labels for unlabeled data are used
to improve the efficiency of local training. The overview of local
training is shown in Algorithm 1.

Frontiers in Physics

7:Input: Client-side dataset Du,
2 :0utput: trained student model

batch size B.

3:for clients parallel training do

4: receives the global model from server side.
5: the global model is applied to update the
teacher model.

6: the client employs Equation 4 to produce
high-quality pseudo-labels for unlabeled data.

7: the client utilizes unlabeled data with

high-quality pseudo-labels to train the

student model.

8: the client applies contrastive learning to
train the student model.

9: the client applies the knowledge
distillation mechanism to transfer global
knowledge from teacher model to student model.
10: client send trained student model to
server side.

11:end for

Algorithm 1. Local training.

3.3.1 Generation of pseudo-labels

In the label-at-server scenario, the data on the client side
are exclusively unlabeled data. Thus, during the training process,
the client side lacks supervised signals. To compensate for the
lack of supervised signals, FedAlign generates pseudo-labels for
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unlabeled data on the client side. FSSL is based on the assumption
that samples with similar features exhibit consistent predictions.
Therefore, FedAlign adopts a pseudo-label generation mechanism
based on consistency verification to generate high-quality pseudo-
labels for unlabeled data.

The details of pseudo-label generation are shown as follows.
First, FedAlign performs data augmentation on unlabeled data
to generate multiple augmented samples. Subsequently, FedAlign
utilizes the teacher model to predict these augmented samples.
The client uses these prediction results to assess the consistency
of unlabeled data. Finally, this consistency is utilized to generate
the pseudo-labels with high quality. The definition of obtaining
consistency is defined from Equations 2-4. On the client side,
the teacher model is constructed based on the global model
received from the server side. Thus, the generation of pseudo-
labels is based on global knowledge and is more robust to data

variations.
j/(x) = f(X; Gtea) > (2)
#(x) = argmax f(aug,(x);0,,), (3)
ce{1,2,...,C}
K .
consist (x) = z 1y () =yx)} >, (4)
i=1
where f(x;0,,,) denotes the prediction of the teacher model for

the unlabeled data x and 6
teacher model on the client side. {1,2,...,C} is the set of category.

..o denotes the parameter of the
aug,(-) is the ith augmentation. 1(-) is the indicator function. r
denotes a hyperparameter. If the consistency of the unlabeled data
x (consist(x)) is greater than r, the pseudo-label of the unlabeled
data x is of high quality. Finally, the client applies pseudo-
labels to optimize the student model. The loss function is

defined as Equation 5:
n . .
Esup = H(f(x’ estu) ’5/) == 25/1 : lOg (f(x’ Gstu)l) 4 (5)
j=1

where x is unlabeled data with high-quality pseudo-label. y is the
one-hot encoding of the pseudo-label for x. 7" is the ith element in j.

3.3.2 Local feature learning

In the local feature learning module, FedAlign integrates
contrastive learning with a knowledge distillation mechanism
to mine self-supervised information from unlabeled data. Based
on the mined information, FedAlign can effectively extract
discriminative representations of general features. So, FedAlign
not only alleviates the issue of insufficient supervised signals on
the client side but also enhances the robustness of clients to
non-IID data.

For FedAlign, contrastive learning is applied to learn stable and
discriminative features from unlabeled data. The target is to reduce
feature shifts caused by non-IID data. Contrastive learning is a
branch of self-supervised learning. It can guide the model to learn
inherent structures and discriminative features from unlabeled data
based on contrastive relationships between similar and dissimilar
samples. For FedAlign, clients apply contrastive learning to extract
inherent features from unlabeled data and maintain the robustness
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for non-essential variations. The loss function of contrastive learning
applied in FedAlign is defined as Equation 6:

exp (szm (f(auga (X) 5 Gstu) ’f(augb (X) 5 Gstu)) /T)

Z;&eB,;&#x exp (Sim (f(auga (x) > estu) ’f(’& Gsru)) /T) ,
(6)

L

contrast = _log

where 0y, is the parameter of student model in client. x, and x;, are
two augmentations for unlabeled data x. sim(-) is similarity function.

For FedAlign, there are three targets of knowledge distillation.
First, the knowledge distillation mechanisms utilized to transfer
global knowledge from the teacher model to the student model
on the client side. Second, for knowledge distillation, clients apply
the output of the teacher model as a soft supervised signal to
prevent overfitting to local data on the client side. Third, the
knowledge distillation mechanism can align the output of the
student model with that of the teacher model to mitigate notable
differences between the data distribution on the client side and the
global data distribution. Thus, these targets of knowledge distillation
compensate for the limitations of non-IID data on the client side and
prevent overfitting of student models to local data. The loss function
of knowledge distillation is shown as Equation 7:

L= 5+ {£xa (flang, (9304, (aig, (4):0,)
+£’KL (f(augb (x) > estu) ’f(augb (x) > etea))} ’

where Ly, is Kullback-Leibler divergence. 6,

7)

is a parameter of the

student model. 8,,, is a parameter of the teacher model. aug, (x) and

tea
aug,(x) are two augmentations for unlabeled data x. The total loss
function in local learning module is defined as Equation 8.

client —

L Al : [’sup + AZ : Lconstmst + A3 : Ldistill'

(8)

3.4 Collaborative learning module

The collaborative learning module is able to learn global
information by fusing local model aggregation, space alignment, and
the knowledge distillation mechanism. In the fth communication
round, for weight aggregation, FedAlign introduces the prediction
accuracy of local models received from the client sides on the labeled
data as the weight for aggregation to update the teacher model on the
server side. For space alignment, FedAlign applies MMD to measure
the difference between the student models trained in the (t-1)th
communication round and the updated teacher model on the server
side to fine-tune the teacher model. Subsequently, the knowledge
distillation mechanism and supervised learning are applied to train
the student model on the server side. Finally, the student model is
sent to the client sides. The overview of the collaborative learning
module in the tth communication round is shown in Algorithm 2.

3.4.1 Aggregation of local models

The aggregation methods in traditional FL are based on
the amount of data on clients while ignoring the distribution
discrepancy between the learned information and the global
information. Thus, FedAlign utilizes the prediction accuracy of the
local models received from the client sides on the labeled data to
evaluate the learning quality of the local models.
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1: Input: Server-side dataset D;, batch size B,
the student model trained in the t-1th
communication round.

2:
student model.

3: the local model from the
client sides.

4:
models using

Output: the parameter of the trained
receives
assesses the prediction accuracy of the local
labeled data.

5: employs Equation 12 to aggregate local models
to generate the global model. Then, the generated
model is applied to update the teacher model.

6:
the updated teacher model and student model

applies MMD for aligning feature space between

trained in the t-1th communication round to
fine-tune the teacher model.

7
to convey global knowledge from the teacher model
to the student model.

employs the knowledge distillation mechanism

8: applies supervised learning based on cross
entropy to optimize the student model.
9: store and send the trained student model to

selected clients.

Algorithm 2. Collaborative learning in the t-th communication round.

« Local model with high accuracy: The local models received
from the client sides with high accuracy indicate that the
knowledge learned by the clients is more consistent with the
global data distribution. Although non-IID data exist in the
data across clients, these local models still produce reliable
predictions. Thus, it is more valuable to utilize such high-
accuracy local models for updating the global model.

o Local model with low accuracy: Local models with low
accuracy indicate that data on the client have an extremely
skewed local distribution or suffers from overfitting. This is
due to a significant deviation between the learned information
and the global data distribution. If excessive weight is assigned
to such local models, it will cause the global model to deviate
from the global data distribution.

In conclusion, the aggregation of local models is defined from
Equations 9-12. Subsequently, the parameters of the aggregated
model are utilized to update the teacher model on the server side.

o a.—min (a) ©

¢ max(a) —min(a)’
3 s.—min(s) (10)

¢ max(s)—min(s)’

Asd.+A,-8

wc — 1 c - 2 ¢ -, (11)

eshdit Ay S
Buge= . -0, (12)

ceS
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where a, is the prediction accuracy of client ¢ on the labeled data. s is
the amount of data in client c. min (a) and max (a) are the minimum
value and maximum value of the prediction accuracy across all
clients in one communication round. min (s) and max (s) are the
minimum value and maximum value of the amount of data across
all clients in one communication round. S is a set of clients selected
for communication. 8, is the parameter of local model received from
client c.

3.4.2 Space alignment

FedAlign applies MMD to align the feature spaces between the
student model obtained in the previous communication round and
the teacher model on the server side. Although FedAlign updates
the teacher model by aggregating the received local models on the
server side, as shown in Section 3.4.1, the teacher model cannot
guarantee the consistency of the semantic understanding of data.
MMD can measure the feature distribution discrepancy between
the updated teacher model and the student model trained in the
previous communication round. The student model carries the
global knowledge learned in the previous communication round.
Based on the discrepancy, the server aligns the feature distribution
of the updated teacher model with that of the global model learned
in the previous communication round. The advantages of this
alignment mechanism are as follows.

o Alleviating the distribution shift caused by non-IID. In a
federated learning environment, non-IID data across clients
lead to fluctuations in the feature distribution of the global
model across rounds. MMD directly measures the distribution
discrepancy between the feature spaces of the updated
teacher model and the student model trained in the previous
communication round. By minimizing this discrepancy, the
teacher model inherits the feature distribution characteristics
of the previous global model in order to avoid knowledge
fragmentation caused by data heterogeneity and enhance the
robustness of the model to heterogeneously distributed data.

« Enhancing the aggregation of global knowledge. The
traditional generation of local models has already integrated
common knowledge from multiple clients. For FedAlign,
MMD alignment essentially enables the new teacher model
to inherit this common knowledge. Compared with training
solely on the local data on the server side, MMD allows the
teacher model to absorb more comprehensive information
across clients in order to mitigate local data bias and enhance
the completeness and effectiveness of knowledge transfer.

In FSSL, based on the label-at-server scenario, features extracted
by local models are high-dimensional and non-linear. Thus, it
is difficult to describe these high-dimensional and non-linear
distributions using simple probabilistic models. FedAlign employs
MMD to map the features extracted by the two models to the
reproducing kernel Hilbert space (RKHS) via multi-bandwidth
Gaussian kernels. Using these mapped features, MMD utilizes the
distance between the means of the feature distributions extracted by
the updated teacher model and the global model from the previous
communication round to measure the discrepancy between these
two feature distributions. Based on the discrepancy, FedAlign can
effectively quantify and align the feature distributions of these
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models in order to alleviate distribution shift in non-IID scenarios
of FSSL while adapting to the constraints of limited labeled data. The
loss function of MMD in FedAlign is defined as Equations 13, 14:

M 2
k(fl’fz):ZeXP(_%>> (13)

Y k(S fr) e TR )
1 [ i

ni=1j=1

k(fifs)> (14)

1
Lo = — -
MMD = 5"/
where {7, f7...., f;} is a feature extracted by the updated teacher
model based on labeled data. {fé,fg,
by the student model trained in the previous communication round
based on labeled data. M is the number of kernels.

R f;} is a feature extracted

3.4.3 Global knowledge transmission

FedAlign employs the knowledge distillation mechanism to
effectively transmit global knowledge from the teacher model to
the student model. For FedAlign, after completing the feature space
alignment on the server side, knowledge distillation is applied to
enable the student model to further learn the teacher’s refined
knowledge about complex samples based on a consistent feature
distribution with the teacher model. Additionally, the knowledge
distillation mechanism can correct any hidden residual biases in the
student model to enhance the generalization ability and robustness
of the global model.

For FedAlign, the server applies the predicted results from
the fine-tuned teacher model on the labeled data to classify the
labeled data into two distinct categories, namely, high-quality
data and low-quality data. High-quality data are data for which
the predicted results are correct. Low-quality data are those for
which the predicted results are incorrect. The loss function of
the knowledge distillation mechanism in FedAlign is defined
as Equation 15:

‘Cdistill,server = Asl . ‘C’KL (f(X; eteu) ’f(x; estu)) + /\52 . ‘CKL (f(x’ etea) ’f("e; estu()) ’)
15

where x is data belonging to high-quality data. £ is data belonging

to low-quality data. Ly; is Kullback-Leibler divergence. On the
server side, FedAlign also applies supervised learning based on
cross entropy to optimize the student model. The loss function of
supervised learning is defined as Equation 16:

['sup—server = H(f(x’ estu) >}/) == Zyi ' lOg (f(x’ Gstu)i) > (16)
i=1

where x is labeled data. y is one-hot encode of label of x. 0, is
the parameter of the student model. The total loss function for the
student model is defined in Equation 17:

Estu—szrver = Adis : Ldistill,server + Asup ) L"sup—szrver’ (17)

where 1, and A, are hyperparameters.

4 Experimental evaluation
4.1 Experimental setup

In this section, we utilize two public datasets, CIFAR-10 and
Fashion-MNIST, to evaluate the efficiency of FedAlign.
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o CIFAR-10 [31]: CIFAR-10 is a well-known public dataset
dedicated to image classification tasks. This dataset is utilized
as a benchmark to evaluate the performance of models in
terms of feature extraction and generalization for small-scale
color images. CIFAR-10 comprises 60,000 RGB color images,
divided into 10 categories, with a resolution of 32 x 32 pixels,
where the pixel values span from 0 to 255. Regarding its data
split, the training dataset in CIFAR-10 contains 50,000 images,
while the test dataset has 10,000 images.

Fashion-MNIST [32]: Fashion-MNIST is a well-established
public image dataset, and it is utilized to replace the MNIST

dataset for alleviating the issue of inflated model performance.
This dataset contains 70,000 grayscale images belonging to 10
categories, with a resolution of 28 x28 pixels. The training
dataset in Fashion-MNIST includes 60,000 images, while the
test dataset in Fashion-MNIST includes 10,000 images.

In order to effectively train FedAlign, we adopt stochastic
gradient descent (SGD) with an initial learning rate of 0.0001 for
model optimization. The total number of communication rounds
is 300, and the number of clients is 100. In each communication
round, the server selects 10 clients to participate in global model
training. Regarding training epochs, the warm-up phase on the
server side is set to 10 epochs, while each client side performs 10
training epochs. MobileNetV2 is adopted as the backbone model.
The amount of labeled data N is set to 500 and 1,000. We apply the
Dirichlet distribution (« = 1.0) to simulate the non-IID distribution
across clients.

4.2 Baseline method

We select four models as baselines. The details of those baselines
are as follows.

o SL-Server: This model only uses labeled data on the server side
to train the global model.

o SEL-FedAvg: On the client side, this model uses contrastive
learning to train the local model. On the server side, it utilizes
FedAvg to aggregate local model updates. Subsequently,
the server uses labeled data to optimize the aggregated
global model.

o FedMatch [33]: FedMatch uses consistency regularization to
train the local model on the client side. On the server side,
it leverages improvements to the aggregation mechanism of
FedAvg to generate the global model.

FedCon [34]: FedCon applies a contrastive network and a
novel two-output model to train the local model on the
client side.

4.3 Overall result

To evaluate the training efficiency of FedAlign, we trained
it under non-IID and IID scenarios. The training results are
shown in Figure 3. As illustrated in Figure 3, the test accuracy
continually improves as the number of communication rounds
increases. When the number of communication rounds exceeds 150,
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FIGURE 3
Variations of test accuracy with increasing numbers of communication rounds (N = 500). (a) Test accuracy of CIFAR-10. (b) Test accuracy of
fashion-MNIST.

65

(%)

60

55

50

Test Accuracy

45

00 ——

1000 —=—

40

Test Accuracy (%)

00 ——

1000 —=—

100 150 200
Communication Round

250 300

FIGURE 4
Variations of test accuracy with different amounts of labeled data (a = 1.0).
Compare of different of labeled sample for Fashion-MNIST.

100 150 200
Communication Round

250 300

(a) Compare of different amount of labeled sample for CIFAR-10. (b)

TABLE 1 Highest accuracy results compared for CIFAR-10.

Highest accuracy (%)

TABLE 2 Highest accuracy results compared for Fashion-MNIST.

Highest accuracy (%)

500 1,000 500 1,000
11D Non-IID 11D Non-IID 11D Non-IID 11D Non-IID
SL-Server 50.15 49.36 56.82 54.43 SL-Server 61.24 40.41 66.34 52.13
SEL-FedAvg 52.43 50.62 57.52 55.95 SEL-FedAvg 68.28 62.94 68.25 65.36
FedMatch 53.62 52.76 68.22 67.14 FedMatch 81.92 81.59 85.49 83.24
FedCon 58.43 54.84 60.24 63.14 FedCon 79.43 80.24 83.24 81.92
FedAlign (ours) 63.13 61.75 67.43 65.52 FedAlign (ours) 84.12 82.25 87.61 86.12

the improvement speed begins to plateau. When the number of
communication rounds reaches 300, the test accuracy under the
non-IID and IID scenarios is 63.13% and 61.75%, respectively.

In order to evaluate the influence of the amount of labeled
data on the server side on training efficiency, we trained FedAlign
under non-IID scenarios with different volumes of server-side
labeled data. The experimental results are shown in Figure 4. As
illustrated in Figure 4, although the test accuracy of FedAlign
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continually improves as communication rounds increase, the model
trained with 1,000 labeled samples achieves higher test accuracy
than that trained with 500 labeled samples. This indicates that
increasing the amount of labeled data on the server side can
mitigate the adverse impact of non-IID data distribution on training
performance.

The results of FedAlign compared with all the baselines are
shown in Tables 1, 2. These results demonstrate that FedAlign
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TABLE 3 Ablation results.

Labeled data Setting Highest accuracy (%)
CIFAR-10 Fashion-MNIST
FedAlign FedAlign -om
11D 63.13 58.72 56.58 84.12 79.63 76.92
500
Non-IID 61.75 56.16 55.76 82.25 77.22 75.84
11D 67.43 62.37 59.37 87.61 84.32 81.19
1,000
Non-1ID 65.52 60.92 57.17 86.12 80.38 79.22

achieves higher test accuracy than all baselines. SL-Server only
utilizes labeled data on the server side to train the global model.
Thus, SL-Server cannot leverage local knowledge from the client
side, and consequently, its test accuracy is lower than that of all
other models. SEL-FedAvg adopts FedAvg’s aggregation mechanism
to construct the global model. Although SEL-FedAvg employs
semi-supervised learning to leverage local knowledge from the
client side, its aggregation of local model updates received from
clients overlooks the impact of non-IID data distribution. Thus,
SEL-FedAvg tends to converge to a local optimum. FedMatch
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applies consistency regularization to learn local knowledge from the
client side and leverages pseudo-labels to optimize the local model.
However, in the early stages of training, the low-quality global
model produces a large number of low-quality pseudo-labels, which
hinder the model’s training efficiency. Although FedMatch leverages
the training frequency of clients to aggregate the global model,
the non-IID issue is not effectively mitigated. FedCon integrates
a contrastive learning network into local training but overlooks
feature space alignment of data across clients. Thus, FedCon cannot
mitigate the adverse impact of non-IID on global model training.
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For FedAlign, MMD is employed on the server side to align
the feature spaces of data across clients. Additionally, the server
utilizes the prediction accuracy of received local models to assess
the data distribution of each client. Based on these evaluation
results, the server constructs the global model. Thus, FedAlign can
effectively leverage local knowledge from the client side. As a result,
FedAlign outperforms all baselines in terms of training efficiency
and test accuracy.

4.4 Analysis and ablation study

In this section, we analyze the influence of local model
aggregation and feature space alignment on FedAlign. Thus, we
compare FedAlign with its variant without MMD (-om) to analyze
the impact of feature space alignment on FedAlign. Additionally,
we compare FedAlign with its variant without accuracy-based
aggregation (-oa) to evaluate the effect of prediction accuracy-driven
aggregation.

Regarding the influence of MMD, the comparison results are
shown in Figure 5. As illustrated in Figure 5, the test accuracy
of FedAlign is higher than that of its variant without MMD. This
indicates that lacking feature space alignment causes the global
model training to get trapped in a local optimum. This is because
FedAlign can effectively quantify and align the feature distributions
of all clients to alleviate distribution shift in non-IID scenarios of
FSSL while adapting to the constraint of limited labeled data.

Regarding the influence of prediction accuracy-driven
aggregation, the comparison results are shown in Figure 6. As
illustrated in Figure 6, the test accuracy of FedAlign is higher than
that of its variant without accuracy-based aggregation (-oa). This
indicates that aggregation without prediction accuracy weighting
results in a low-quality global model. Subsequently, the low-quality
global model generates low-quality pseudo-labels on the client side.
The ablation study results are summarized in Table 3.

5 Conclusion

In this article, we present a novel FSSL model based on
the label-at-server framework for a distributed CPSS, denoted as
FedAlign. For FedAlign, MMD is employed on the server side
to align the feature spaces of client-side data; meanwhile, the
prediction accuracy of local models on the server’s labeled data
is leveraged to weight the aggregation of the global model, and a
knowledge distillation mechanism is utilized to distill and transfer
global knowledge from the teacher model to the student model.
On the client side, FedAlign integrates knowledge distillation with
contrastive learning to train local models. Thus, FedAlign can
effectively train the global model without sharing raw data. As
a result, FedAlign can effectively address the CPSS dilemmas of
data silos and label scarcity. Ultimately, we evaluate FedAlign’s
performance using two public datasets, and the experimental results
demonstrate that FedAlign outperforms other baseline models in
terms of both performance and efliciency.
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