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Editorial on the Research Topic
Innovative approaches to pedestrian dynamics: experiments and 
mathematical models

s

This Research Topic, Innovative Approaches to Pedestrian Dynamics: Experiments 
and Mathematical Models, brings together contributions that exemplify the current state 
of research in the study of human and animal mobility, with a focus on bridging 
theoretical advances, computational techniques, and practical applications. The Research 
Topic underscores the growing interdisciplinarity of pedestrian dynamics, a field that lies 
at the crossroads of applied mathematics, physics, engineering, computer science, and 
behavioral studies. Several contributions expand the repertoire of mathematical models for 
collective dynamics and deepen our understanding of how temporal and environmental 
factors modulate collective behavior. For reference, a brief review of previous studies of 
pedestrian dynamics, in which experimental study is excluded, is summarized in Table 1.

Recent advances in modeling pedestrian and crowd dynamics emphasize the 
importance of multi-scale and data-driven approaches. Within the present issue, Horiai 
et al. have demonstrated that large-scale evacuation scenarios, such as tsunami responses, 
can be efficiently managed using macroscopic traffic-flow optimization based on zonal 
macroscopic fundamental diagrams, which help distribute pedestrians across multiple safe 
routes and alleviate congestion. Complementary to these macroscopic formulations, hybrid 
models coupling microscopic and mesoscopic descriptions capture how local behavioral 
factors, such as fear contagion, influence collective motion and evacuation efficiency in 
heterogeneous environments, c. f., Perepelitsa and Quaini. Statistical and computational 
approaches by Stock et al. combining mean-field theory and Monte Carlo simulations have 
further elucidated the dynamics of multiple interacting species of agents, revealing emergent 
transitions between Gaussian-like spatial distributions under varying crowd densities.

With the growing availability of real-world data, vision-based pedestrian 
tracking and social-force inference methods have emerged as valuable tools 
for connecting theoretical models to observable behaviors, enabling quantitative 
assessments of interaction forces and trajectory prediction in complex environments,
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TABLE 1  Review of studies of pedestrian dynamics.

Category Summary Key references

Historical Background/Foundational Theory Henderson introduced a fluid dynamics analogy using 
Navier-Stokes-like equations. The Fundamental 
Diagram (density vs. velocity) became a standard 
calibration tool

Henderson [1]; Vanumu et al. [2]

Microscopic Model I:Social Force Model The most fundamental model proposed by Helbing 
and Molnár. Several refinements exist

Helbing and Molnar [3]; Farina et al. [4]; Johansson 
et al. [5], Johansson et al. [6], Yu et al. [7]

Microscopic Model II:Heuristic Models Reject outdated “panic mode” assumptions. Models 
treat pedestrians as rational agents who avoid 
collisions or follow peers/leaders

Festa and Wolfram [8]; Lü et al. [9], Zhang et al. [10]; 
Sieben et al. [11], Moussaïd et al. [12], Degond et al. 
[13], Degond et al. [14], Bailo et al. [15]

Microscopic Model III:Cellular Automata (CA) Discretizes space and time using local transition rules. 
Computationally efficient for large-scale simulations. 
Improvements include sub-meshes, multi-cell agents, 
and triangular grids

Feliciani and Nishinari [16], Bazior et al. [17]; Ji et al. 
[18]

Mesoscopic Model I:Kinetic Theory Helbing’s Boltzmann type equation. Monte Carlo 
method is used for calculation. Bridges microscopic 
and macroscopic scales

Helbing [19], Bakhdil et al. [20]; Kim and Quaini [21]; 
Cristiani et al. [22]

Mesoscopic Model II:Electric-Circuit Analogy Zhong’s model maps pedestrian flow to electrical 
networks. Roads act as resistors, and people are 
moving charges. Reduction of mesh complexity

Zhong et al. [23]

Macroscopic Model I:Continuum Dynamics Hughes’ model combines conservation laws with 
Eikonal equations. Introduces bounded rationality into 
fluid-based models

Hughes [24]

Macroscopic Model II:Mean-FieldGame Theory Combines Hamilton-Jacobi-Bellman and 
Fokker-Planck equations. Enables modeling of 
forward-looking decision making under congestion

Lasry and Lions [25], Yano and Kuroda [26]

Physical Analogy:Active Soft Matter Pedestrians are treated as active soft matter. 
Phenomena such as jamming, arching, and force-chain 
transmission appear. Both Faster-Is-Slower and 
Faster-Is-Faster effects observed in accordance with 
velocity of pedestrian

Zuriguel et al. [27]; Garcimartín et al. [28]; Al Reda 
et al. [29], Nicolas et al. [30], Sticco et al. [31]

Applications Used in urban planning, architecture, and disaster risk 
management. Agent-based simulations assist 
evacuation route design

Batty [32], Lämmel et al. [33]

Recent Developments:Integration with AI AI-based models predict pedestrian trajectories. 
Techniques include GCN + LSTM forecasting, social 
attention, reinforcement learning for collision 
avoidance, and PINNs for equation solving

Zong et al. [34], Mai et al. [35]; Everett et al. [36]; Guo 
et al. [37]

as shown by Zhu. At a broader scale, hydrodynamic models of 
collective behavior incorporating time delays and obstacle potentials 
have provided new insights through the work by Zheng et al. 
into alignment, obstacle avoidance, and the onset of flocking or 
dispersal phenomena. Similarly, nonlocal advection systems for 
competing biological species that include delayed resource recovery 
offer a biologically grounded framework for studying population 
coexistence and spatial segregation under realistic constraints, see 
Zeng et al.. Finally, cross-species analyses by Ishikawa et al. of 
movement trajectories reveal universal statistical regularities in 
animal and human mobility, characterized by scaling relationships 
between enclosed area and trajectory length. These findings suggest 

a transition from two-dimensional to one-dimensional movement 
patterns depending on environmental and social constraints, 
highlighting a unifying geometric principle across taxa.

Collectively, the articles in this issue advance the field 
of pedestrian dynamics along three interconnected axes: the 
refinement of theoretical and mathematical foundations, the 
integration of data-driven and hybrid modeling techniques, and 
the application of these methods to real-world challenges of safety, 
efficiency, and resilience. The issue reaffirms the dual identity 
of pedestrian dynamics as both a fertile ground for exploring 
fundamental questions of collective behavior and a domain 
of urgent societal importance.
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