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Editorial on the Research Topic
Innovative approaches to pedestrian dynamics: experiments and
mathematical models

This Research Topic, Innovative Approaches to Pedestrian Dynamics: Experiments
and Mathematical Models, brings together contributions that exemplify the current state
of research in the study of human and animal mobility, with a focus on bridging
theoretical advances, computational techniques, and practical applications. The Research
Topic underscores the growing interdisciplinarity of pedestrian dynamics, a field that lies
at the crossroads of applied mathematics, physics, engineering, computer science, and
behavioral studies. Several contributions expand the repertoire of mathematical models for
collective dynamics and deepen our understanding of how temporal and environmental
factors modulate collective behavior. For reference, a brief review of previous studies of
pedestrian dynamics, in which experimental study is excluded, is summarized in Table 1.

Recent advances in modeling pedestrian and crowd dynamics emphasize the
importance of multi-scale and data-driven approaches. Within the present issue, Horiai
et al. have demonstrated that large-scale evacuation scenarios, such as tsunami responses,
can be efficiently managed using macroscopic traffic-flow optimization based on zonal
macroscopic fundamental diagrams, which help distribute pedestrians across multiple safe
routes and alleviate congestion. Complementary to these macroscopic formulations, hybrid
models coupling microscopic and mesoscopic descriptions capture how local behavioral
factors, such as fear contagion, influence collective motion and evacuation efficiency in
heterogeneous environments, c. f., Perepelitsa and Quaini. Statistical and computational
approaches by Stock et al. combining mean-field theory and Monte Carlo simulations have
further elucidated the dynamics of multiple interacting species of agents, revealing emergent
transitions between Gaussian-like spatial distributions under varying crowd densities.

With the growing availability of real-world data, vision-based pedestrian
tracking and social-force inference methods have emerged as valuable tools
for connecting theoretical models to observable behaviors, enabling quantitative
assessments of interaction forces and trajectory prediction in complex environments,
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TABLE 1 Review of studies of pedestrian dynamics.

Category

Historical Background/Foundational Theory

Summary

Henderson introduced a fluid dynamics analogy using
Navier-Stokes-like equations. The Fundamental
Diagram (density vs. velocity) became a standard
calibration tool

10.3389/fphy.2025.1723607

Key references

Henderson [1]; Vanumu et al. [2]

Microscopic Model I:Social Force Model

The most fundamental model proposed by Helbing
and Molnér. Several refinements exist

Helbing and Molnar [3]; Farina et al. [4]; Johansson
etal. [5], Johansson et al. [6], Yu et al. [7]

Microscopic Model II:Heuristic Models

Reject outdated “panic mode” assumptions. Models
treat pedestrians as rational agents who avoid
collisions or follow peers/leaders

Festa and Wolfram [8]; Lii et al. [9], Zhang et al. [10];
Sieben et al. [11], Moussaid et al. [12], Degond et al.
[13], Degond et al. [14], Bailo et al. [15]

Microscopic Model ITI:Cellular Automata (CA)

Discretizes space and time using local transition rules.
Computationally efficient for large-scale simulations.
Improvements include sub-meshes, multi-cell agents,
and triangular grids

Feliciani and Nishinari [16], Bazior et al. [17]; Ji et al.
[18]

Mesoscopic Model I:Kinetic Theory

Helbing’s Boltzmann type equation. Monte Carlo
method is used for calculation. Bridges microscopic
and macroscopic scales

Helbing [19], Bakhdil et al. [20]; Kim and Quaini [21];
Cristiani et al. [22]

Mesoscopic Model II:Electric-Circuit Analogy

Zhong’s model maps pedestrian flow to electrical
networks. Roads act as resistors, and people are
moving charges. Reduction of mesh complexity

Zhong et al. [23]

Macroscopic Model I:Continuum Dynamics

Hughes’ model combines conservation laws with
Eikonal equations. Introduces bounded rationality into
fluid-based models

Hughes [24]

Macroscopic Model Il:Mean-FieldGame Theory

Combines Hamilton-Jacobi-Bellman and
Fokker-Planck equations. Enables modeling of
forward-looking decision making under congestion

Lasry and Lions [25], Yano and Kuroda [26]

Physical Analogy:Active Soft Matter

Pedestrians are treated as active soft matter.
Phenomena such as jamming, arching, and force-chain
transmission appear. Both Faster-Is-Slower and
Faster-Is-Faster effects observed in accordance with
velocity of pedestrian

Zuriguel et al. [27]; Garcimartin et al. [28]; Al Reda
et al. [29], Nicolas et al. [30], Sticco et al. [31]

Applications

Used in urban planning, architecture, and disaster risk
management. Agent-based simulations assist
evacuation route design

Batty [32], Limmel et al. [33]

Recent Developments:Integration with AI

Al-based models predict pedestrian trajectories.
Techniques include GCN + LSTM forecasting, social
attention, reinforcement learning for collision
avoidance, and PINNs for equation solving

Zong et al. [34], Mai et al. [35]; Everett et al. [36]; Guo
etal. [37]

as shown by Zhu. At a broader scale, hydrodynamic models of
collective behavior incorporating time delays and obstacle potentials
have provided new insights through the work by Zheng etal.
into alignment, obstacle avoidance, and the onset of flocking or
dispersal phenomena. Similarly, nonlocal advection systems for
competing biological species that include delayed resource recovery
offer a biologically grounded framework for studying population
coexistence and spatial segregation under realistic constraints, see
Zeng etal.. Finally, cross-species analyses by Ishikawa etal. of
movement trajectories reveal universal statistical regularities in
animal and human mobility, characterized by scaling relationships
between enclosed area and trajectory length. These findings suggest
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a transition from two-dimensional to one-dimensional movement
patterns depending on environmental and social constraints,
highlighting a unifying geometric principle across taxa.

Collectively, the articles in this issue advance the field
of pedestrian dynamics along three interconnected axes: the
refinement of theoretical and mathematical foundations, the
integration of data-driven and hybrid modeling techniques, and
the application of these methods to real-world challenges of safety,
efficiency, and resilience. The issue reaffirms the dual identity
of pedestrian dynamics as both a fertile ground for exploring
fundamental questions of collective behavior and a domain
of urgent societal importance.
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