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Bearing defect detection is crucial for equipment safety and maintenance costs,
but challenges remain under complex textured backgrounds, reflective stains,
and irreqular defect shapes. This paper presents the LSA-YOLO method for
industrial field applications, which strengthens detail retention through low-
order feature aggregation, improves irregular defect representation through
multi-scale residual modeling, and enhances anti-interference ability via a
progressive spatial attention mechanism, without the need for additional
annotations or complex post-processing. Experimental results on a bearing
surface defect dataset show that LSA-YOLO achieves a good balance between
precision and efficiency, with an F1 score of 88.1% and mAP@O0.5 of 92.6%,
significantly outperforming the baseline model. This method is suitable for
online quality inspection scenarios, and relevant training details and limitations
are discussed in the paper.

bearing defect detection, industrial vision, multi-scale feature processing, attention
mechanism, robust detection

1 Introduction

With the rapid advancement of intelligent manufacturing paradigms, rotating
machinery has become integral to a vast array of industrial production lines. The operational
integrity of this machinery is intrinsically linked to the reliability and safety of the entire
production system. As fundamental components, bearings perform the critical functions of
supporting rotors, transmitting loads, and mitigating friction. Empirical evidence indicates
that bearing failure constitutes a primary cause of mechanical malfunction. Catastrophic
failures precipitated by such defects can incur not only substantial economic losses
but also severe safety incidents resulting in injury or loss of life. Consequently, within
the contemporary Industry 4.0 framework emphasizing high efficiency and low energy
consumption, the capacity for early and precise detection of bearing defects has emerged
as a critical technological imperative. By virtue of its intrinsic advantages—including non-
contact inspection, low implementation cost, and high throughput—computer vision has
emerged as a potent methodology for the inspection of bearing surface defects [1-3].
This technology demonstrates significant potential across numerous applications, including
quality control, predictive maintenance, and automated in-line inspection.

01 frontiersin.org


https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2025.1722962
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2025.1722962&domain=pdf&date_stamp=
2025-12-04
mailto:jinhaibo@lntu.edu.cn
mailto:jinhaibo@lntu.edu.cn
https://doi.org/10.3389/fphy.2025.1722962
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphy.2025.1722962/full
https://www.frontiersin.org/articles/10.3389/fphy.2025.1722962/full
https://www.frontiersin.org/articles/10.3389/fphy.2025.1722962/full
https://www.frontiersin.org/articles/10.3389/fphy.2025.1722962/full
https://www.frontiersin.org/articles/10.3389/fphy.2025.1722962/full
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Jin et al.

Notwithstanding the continual advancements in computer
vision, existing methodologies for bearing defect detection continue
to confront formidable challenges. Conventional algorithms
predicated on handcrafted features, such as manually engineered
descriptors for edges, textures, and shapes, struggle to contend with
the variability inherent in industrial settings, including fluctuations
in illumination, specular reflections, and surface contaminants [4,
5]. While deep learning methodologies have catalyzed significant
progress, they are not without their own distinct limitations.
Although region-based convolutional neural network (R-CNN)
variants [6-8] can effectively identify conspicuous defects like
large-area spalling and fissures, they exhibit markedly reduced
sensitivity to minute anomalies such as pitting and micro-cracks.
Similarly, while algorithms in the YOLO family [9-11] offer the
advantage of real-time, end-to-end detection, their constrained
feature-representation capacity often leads to an increased incidence
of both false positives and false negatives, particularly in scenarios
involving densely clustered, fine-grained defects. More recently,
[12-14]
potential for modeling complex backgrounds by leveraging global

Transformer-based architectures have demonstrated
self-attention mechanisms; however, their substantial parameter
counts and prohibitive computational overhead impede their
practical deployment on edge-computing platforms. Collectively,
these extant methods exhibit suboptimal performance when
confronted with the intertwined challenges of extracting features
from minuscule defects against complex textural backgrounds,
accommodating multi-scale anomalies, and mitigating interference
from metallic reflections and stains. Consequently, they fail to satisfy
the stringent, multifaceted requirements of industrial applications,
where high accuracy, real-time performance, and operational
robustness are simultaneously demanded.

To surmount these challenges, we propose a novel bearing
defect detection model derived from a YOLO-based framework.
Our model is specifically engineered to address the persistent
challenges of discriminating defects from confounding surface
textures, achieving precise localization of geometrically irregular
anomalies, and maintaining robust detection performance within
dynamic industrial environments. By integrating innovative feature-
enhancement modules within an optimized network architecture,
our approach achieves substantial gains in both detection accuracy
and generalization capability across a spectrum of surface anomalies,
thereby offering a more effective and reliable solution for automated
industrial inspection tasks. The principal contributions of this work
are as follows:

1. To address the challenge of extracting features from minute
defects embedded within complex textural backgrounds,
we designed the LRPAN. This architecture establishes an
independent pathway for low-order response aggregation
and integrates a CSFFC module. This design facilitates the
preservation of rich, fine-grained detail from shallow network
strata, thereby substantially enhancing both the extraction and
the discriminative power of features associated with minute
anomalies.

To overcome the challenge of precisely localizing defects
with irregular morphologies, we introduce the MSRB. By
integrating multiple MSEB sub-modules, the MSRB constructs
a hierarchical, cascaded architecture for multi-scale feature
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processing. This design enables the adaptive modeling of
anomalies with complex geometries, such as fissures and
spalling, thereby surmounting the inherent limitations of
conventional rectangular bounding boxes in a delineating such
non-uniform contours.

To mitigate the high incidence of false positives arising
from specular reflections and surface blemishes on metallic
substrates, we devised the SPAA module. The SPAA employs
a progressive spatial attention aggregation mechanism
coupled with an adaptive threshold modulation strategy.
This approach facilitates a robust differentiation between
authentic defect signatures and spurious signals originating
from environmental artifacts, thereby markedly enhancing
the detection system’s robustness and stability within complex
industrial settings.

2 Related work

In recent years, the rapid development of deep learning
technology has brought revolutionary breakthroughs to the
field of defect detection [36, 38, 39]. Detection methods based
on deep neural networks [41, 45] have gradually become the
mainstream technological approach in this field. Differentiated
by their network architectures and detection paradigms, these
contemporary methods can be broadly categorized into two
principal classes: (i) Transformer-based approaches that leverage
self-attention mechanisms, and (ii) single-stage, regression-based
detection algorithms. In this section, we systematically review
the technological trajectory, pivotal innovations, and persistent
challenges associated with each of these two paradigms as applied
to defect detection tasks.

2.1 Transformer-based defect detection
methods

By virtue of their powerful global modeling capabilities and
inherent self-attention mechanisms, Transformer architectures
are demonstrating distinct advantages within the domain of
industrial defect detection. These frameworks facilitate the capture
of long-range dependencies between anomalous regions and
their surrounding context, thereby offering a novel technological
pathway for defect identification within complex industrial settings.
Zhang etal. [15], for instance, pioneered the application of the
Vision Transformer (ViT) to the detection of surface defects on
steel plates. In their approach, an input image is partitioned into a
sequence of fixed-size patches, and the self-attention mechanism
is subsequently employed to establish global correlations among
them. This strategy significantly enhanced the accuracy of defect
identification against intricate textural backgrounds. The model
achieved exemplary performance on the NEU-DET dataset,
substantiating the potential of Transformer architectures for
effectively processing complex industrial surface textures.

The advent of the DEtection TRansformer (DETR) architecture
and its variants has further propelled advancements in this domain.
Fang et al. [16], for instance, developed a modified DETR model
for fabric defect inspection. Their model incorporated multi-scale
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feature fusion and optimized positional encoding, which effectively
addressed the challenge of identifying irregularly shaped defects
on textile surfaces. In a similar vein, Ji etal. [17] adapted the
Deformable DETR for the inspection of printed circuit boards.
The
selectively focus on salient regions of interest, leading to a marked

deformable attention mechanism enabled the model to

improvement in the detection accuracy of minute soldering defects.
Collectively, these studies underscore the distinct advantages
of the Transformers global modeling capabilities for resolving
industrial defects characterized by irregular morphologies and scale
variations. Addressing the imperative for real-time performance,
researchers have also engineered several computationally efficient
Transformer-based solutions. Wu et al. [18] constructed a system
for detecting blade surface defects using RT-DETR. By leveraging
a hybrid encoder design and optimizing query selection, their
system substantially reduced computational overhead without
compromising detection accuracy, facilitating its deployment
for real-time, in-line inspection. Furthermore, Wu etal. [19]
proposed a lightweight defect detection model based on the Swin
Transformer. This model achieved high computational efficiency on
resource-constrained edge devices through the implementation of
hierarchical windowed attention and the fusion of feature pyramids.

Nonetheless, the direct application of Transformer-based
methods to the specific domain of bearing defect detection is
fraught with challenges. For instance, while Ji etal. [20] adapted
the Vision Transformer (ViT) for identifying defects on bearing
raceways, their model—despite performing capably on large-scale
defects—exhibited markedly diminished sensitivity to minute
anomalies such as pitting and superficial scratches. This limitation
was primarily attributed to the ViT’s rigid patch partitioning
strategy, which struggles to accommodate the periodic textural
features characteristic of bearing surfaces and is consequently
prone to misclassifying normal machining marks as genuine
defects. Similarly, a DETR-based system developed by Liu et al. [21]
demonstrated excellent performance in processing irregular cracks;
however, its substantial parameter count and high computational
complexity have hindered its widespread adoption in practical
industrial settings. Furthermore, a broader challenge facing
extant Transformer models is their characteristically slow training
convergence and high sensitivity to small datasets, making it difficult
to fully exploit their powerful modeling capabilities in scenarios
where annotated bearing defect data are inherently scarce [22-24].

Recent studies by Zhang etal. [36] and Xu etal. [37] have
proposed Transformer-based defect detection methods, further
validating the potential of the Transformer architecture in
complex industrial environments. Qiao etal. [40] introduced a
self-supervised sensor feature extraction network—Multi-Head
Attention Self-Supervised (MAS) representation model, applying
a self-supervised contrastive learning method using positive
samples for anomaly detection in multidimensional industrial
sensor data. Wang etal. [42] proposed a physically interpretable
Wavelet-guided Network (WaveGNet) for Machine Intelligence
Fault Prediction (MIFP), expanding the feature learning space
of CNN through deep frequency separation. Wang etal. [47]
utilized a cross-modal fusion module based on a dual multi-head
cross-attention mechanism (Dual-MCM) to achieve collaborative
interaction of cross-modal information, completing bidirectional
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deep collaborative representation of internal and external signal
features in the fusion process of the robot.

2.2 YOLO-based defect detection methods

Algorithms within the You Only Look Once (YOLO) family have
been extensively applied and investigated in the domain of industrial
defect detection, primarily owing to their exceptional real-time
performance and end-to-end detection architecture. These methods
employ a unified regression framework to directly predict object
locations and class probabilities in a single pass, thereby obviating
the need for complex post-processing stages. This characteristic
renders them eminently suitable for industrial applications where
high inspection throughput is a critical requirement.

In defect detection applications within the steel industry, YOLO-
based methods have demonstrated considerable efficacy. Jing et al.
[25] developed a system for detecting surface defects on hot-rolled
steel plates using YOLOv3. Through data augmentation and multi-
scale training strategies, they effectively enhanced the detection
accuracy for typical defects such as oxide scale and cracks. This
system achieved detection latencies on the order of milliseconds in
an operational production line, satisfying the real-time monitoring
demands of high-speed rolling processes. Li etal. [26] applied a
modified YOLOV4 to the surface quality inspection of cold-rolled
steel strips, incorporating an attention mechanism and a focal
loss function to markedly improve the identification of minute
scratches and punctate defects. Furthermore, a steel pipe defect
detection system built on YOLOvV5 by Duman et al. [27] utilized
a lightweight network design, facilitating deployment on mobile
platforms without a significant trade-off in performance and thus
providing a viable solution for in-line quality inspection.

YOLO-based
advancements in electronics manufacturing. Li et al. [28] applied

approaches have also yielded significant
YOLOV3 to the inspection of printed circuit boards, mitigating
the issue of false negatives in environments with high component
density by employing multi-layer feature fusion and an improved
non-maximum suppression algorithm. A solder joint quality
inspection system developed by Zhang etal. [29], based on
YOLOVS, substantially enhanced detection accuracy across various
solder defect sizes by introducing deformable convolutions and a
multi-scale receptive field enhancement module. Research in the
textile industry has similarly leveraged the technical strengths of
YOLO. Liet al. [30] proposed a fabric defect detection method using
an enhanced YOLOV5 framework. By designing an adaptive anchor
box generation strategy and a multi-scale feature enhancement
module, their approach effectively contended with challenges
posed by complex fabric textures and diverse defect types. The
method achieved exemplary performance across multiple textile
defect datasets, providing a robust technological foundation for the
automated quality control of textiles.

However, in the specific application of bearing defect detection,
YOLO-based methods confront a distinct of technical hurdles. A
system for bearing raceway inspection constructed by Xing et al.
[31] based on YOLOv3, while excellent in terms of detection
speed, exhibited limited accuracy in identifying minute pitting
and shallow scratches. This limitation is primarily attributed to
the difficulty of standard convolutional operations in effectively
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extracting the fine-grained textural features of bearing surfaces.
While Ding etal. [32] improved the feature extraction network
of YOLOV8 by incorporating multi-scale dilated convolutions
and a channel attention mechanism to enhance performance on
bearing inner ring defects, its robustness remained insufficient
when confronted with complex illumination conditions and surface
contamination.

Furthermore, Xu etal. [37] proposed a novel lightweight
information-enhanced fusion network (IEFNet) for anomaly
detection in hydroturbine operational sounds. A filter bank
computes the sound tensor, which serves as input to the IEFNet
feature extraction module. Sound features are extracted through
residual block convolutions, and an attention mechanism is used
in the feature enhancement fusion module to combine sound
features with load information. Li et al. [43] proposed the YOLOV8-
GhostConv-SEV2 model based on the lightweight YOLOv8n
framework. This model optimizes feature extraction by introducing
the GhostConv module and enhances noise suppression capabilities
using the SEV2 (Squeeze-and-Excitation Version 2) attention
mechanism. Shen etal. [44] extracted multi-scale defect features
through the MFE module, optimized feature fusion using the LGFA
module, and applied the HDD mechanism to transform detection
into a denoising process, thereby reducing prior dependence.
Experiments showed that their method improved detection
accuracy by 6.1% over specialized methods and adapted well to
complex detection scenarios. Wan et al. [46] proposed the FMD-
MCNN fault diagnosis method. Vibration signals from the auxiliary
gearbox are first collected, then processed by FMD decomposition,
reconstruction, and normalization preprocessing. The signals are
then input to the MCNN for multi-scale feature extraction and
fusion, with fault recognition completed through a softmax classifier.

Extant YOLO-based methodologies [33-35], when applied to
bearing defect detection, are encumbered by several key technical
bottlenecks. First,
struggle to effectively discriminate between the benign, periodic

conventional feature extraction backbones

textures of the bearing surface and genuine anomalous defects, a
limitation that contributes to a high false-positive rate. Second, the
reliance on rectangular bounding boxes is fundamentally inadequate
for precisely delineating the contours of morphologically irregular
defects, such as fissures and spalls. Third, conventional feature fusion
strategies often operate at a limited scale, failing to concurrently
satisfy the distinct detection requirements of both minute pitting
and extensive surface flaws. These persistent challenges collectively
delineate a clear trajectory for research and provide significant scope
for innovation, particularly for technical advancements built upon
the latest generation of the YOLO architecture.

3 Methodology

This paper proposes an improved network architecture for
bearing defect detection, named LSA-YOLO, with its overall
framework illustrated in Figure 1. LSA-YOLO is deeply optimized
based on the YOLOvI1 architecture, integrating the advantages
of multi-scale feature aggregation and attention mechanisms.
Furthermore, it incorporates innovative modules specifically
designed to address the unique challenges in bearing defect
detection, including core technologies for extracting minute defect
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features under surface texture interference, accurately locating
irregularly shaped defects, and suppressing interference from metal
surface reflections and stains.

The input image initially undergoes hierarchical feature
extraction through a backbone network, generating multi-scale
feature maps at different semantic levels. These feature maps contain
rich visual information ranging from fine-grained surface textures to
high-level semantics, providing a solid representational foundation
for subsequent defect detection tasks. The backbone network
utilizes MSRB modules instead of conventional C3k2 modules,
achieving effective extraction and enhancement of multi-scale
features through the integration of MSRB units, which significantly
improves the modeling capability for irregularly shaped defects.

To address the challenge of extracting minute defect features
from bearing surfaces against complex textural backgrounds, LSA-
YOLO introduces the LRPAN module. LRPAN effectively preserves
feature representations containing rich detail information from
shallow network layers by constructing independent low-order
response paths. Additionally, it implements frequency domain
feature enhancement through the CSFFC module, establishing
dedicated channels from intermediate layers of the backbone
network to the feature fusion network. This design ensures the
effective preservation of minute defect features throughout their
propagation process in deep network layers.

In the feature fusion stage, the network employs an improved
FPN structure, which significantly reduces interference from
surface textures and enhances the discriminative expressive
capability of defect features in complex industrial environments
through deep fusion of multi-scale features. To further enhance
robustness against interference from metal surface reflections and
stains, LSA-YOLO integrates the SPAA module at each detection
scale. SPAA effectively distinguishes genuine defect features from
environmental interference signals through a progressive spatial
attention aggregation mechanism, significantly improving detection
stability in complex industrial settings via multi-directional spatial
convolution and adaptive weight modulation. The optimized multi-
scale feature representations are ultimately processed through a
decoupled detection head to accomplish object bounding box
regression and category classification tasks. The detection head
achieves specialized feature processing through independent
classification and regression branches, outputting precise defect
location and category information. Through this meticulously
designed modular architecture, LSA-YOLO significantly enhances
the detection performance of various surface defects on bearings
while maintaining real-time detection capabilities, providing
a reliable technical solution for practical applications such as
industrial quality control and equipment predictive maintenance.

3.1 LRPAN

The conventional YOLOvV11 network, when processing bearing
surface defect detection, tends to confuse normal processing marks
with actual defects due to its standard feature fusion strategy
that primarily relies on high-level semantic information. When
confronted with complex periodic textural backgrounds on bearing
surfaces, the effective information of minute defect features is
gradually lost during propagation through deep network layers. To
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FIGURE 1
The structure diagram of LSA-YOLO model.

address this critical issue, this paper proposes an innovative network
architecture named LRPAN, specifically designed to enhance the
extraction and preservation capabilities of minute defect features on
bearing surfaces. As shown in Figure 2, LRPAN effectively preserves
feature representations containing rich detailed information from
shallow network layers by constructing independent low-order
response paths.

Furthermore, through the incorporation of the CSFFC module,
it achieves frequency domain feature enhancement, significantly
improving the recognition accuracy of minute defects against
complex textural backgrounds. The core concept of the LRPAN
network structure is to incorporate dedicated low-order response
aggregation channels in addition to the conventional top-down
feature fusion pathway, as illustrated in Figure 2. This architecture
initially extracts low-order feature responses from the intermediate
layer feature maps (P4 and P3 layers) of the backbone network,
establishing cross-scale feature associations through upsampling
operations. The LRPAN module aggregates low-level response paths
to retain the detailed information from the shallow layers of the
network. Its output is used for subsequent feature fusion. Specifically,
the feature aggregation process of LRPAN can be formulated as
Equation 1:

Fi = Hospre (Hpy (Concat (U(F};) ). F,, ))) 1)

where, F) , represents the low-order response feature of the i-th layer,
sz is the output of the i-th layer of the backbone network, U(:)
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represents the upsampling operation, while Hpy (-) and Hegppe (+)
denote the transformation functions of the Bottleneck module and
CSFFC module, To enhance the model’s ability to detect spatial
defects, the CSFFC module employs a frequency-domain perception
mechanism. First, spatial domain features are transformed into the
frequency domain using Fast Fourier Transform (FFT), followed by
frequency-domain convolution to capture global periodic patterns.
The process can be mathematically represented as shown in
Equations 2, 3:

Ffreq =FFT (Fin) GWfreq (2)
Fenhunced =IFFT (Ffreq) + Fsputial (3)

where, FFT(-) and IFFT (-) represent the Fast Fourier Transform
and its inverse transform, respectively; W, denotes the learnable
frequency-domain weight parameters; ® indicates element-wise
multiplication; and Fg,,,, represents the output of the parallel
spatial processing branch. F;, is the input feature, and F,,, is the
output feature.

The frequency-domain operations in this module play a crucial
role in enhancing defect feature expression by focusing on periodic
patterns in the data. Frequency-domain convolution, as part of this
transformation, effectively captures global periodic characteristics,
which is particularly beneficial when dealing with periodic textures
and fine defects. This ability significantly improves the model’s
robustness in detecting defects under complex backgrounds.
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YOLO11+LRPAN

Low-order response path aggregation network

FIGURE 2
The structure diagram of LRPAN.

To further enhance the adaptability of feature expression, the
CSFFC module integrates a Channel-Adaptive Residual Block
(CARB) unit, which achieves adaptive feature adjustment through
a dual-path channel reweighting mechanism. The dual-path
multiplication is employed to integrate features from two parallel
processing branches: one focusing on high-frequency components
and the other on low-frequency components. This allows the model
to simultaneously capture fine-grained, high-resolution details along
with global, coarse patterns. The two paths are combined through
learnable weights, which are adaptive to the importance of each
channel’s contribution. The channel attention weight calculation
formula for CARB as shown in Equation 4:

a.=0(W,-ReLU (W, - GAP(F,)))

(4)
-o(W, -ReLU (W, - GAP(F,)))

where, o represents the Sigmoid activation function, GAP (-) denotes
the Global Average Pooling operation, W, W,, W3, W, represents
the learnable parameter matrix for different paths, and «, is the
adaptive weight coeflicient for the c-th channel.

The final feature fusion process is achieved through multi-scale
feature aggregation, deeply integrating the output of the low-order
response path with the traditional FPN path, as shown in Equation 5:

F = Heo(Concat (F) JE) L FY)) 5)
where, F;Zn represents the i-th layer feature of the traditional FPN
path, and Hgsi, () is the feature transformation function of the

Frontiers in Physics

C3k2 module. This three-path fusion strategy ensures the effective
integration of high-level semantic information, mid-level structural
information, and low-level detail information.

As shown in Figure 3, the LRPAN network effectively addresses
the insufficient feature expression problem of traditional YOLOv11
in detecting minor defects on bearing surfaces by constructing an
independent low-order response aggregation path and introducing
the frequency-domain-aware CSFFC module. This structure not
only maintains the real-time advantages of the original network
but also significantly enhances the recognition capability of minor
defects against complex texture backgrounds, providing more
reliable and precise technical support for bearing quality inspection.
The innovative design of LRPAN enables the network to achieve
comprehensive capture and effective utilization of multi-scale defect
features without significantly increasing computational overhead.

3.2 MSRB

The traditional YOLOvV11 network, when processing bearing
defect detection, primarily uses fixed convolution kernel sizes
in its standard C3k2 module for feature extraction. When
faced with irregularly shaped bearing defects such as cracks
and spalling, it lacks adaptive modeling capability for multi-
scale spatial geometric features, resulting in insufficient boundary
localization accuracy and difficulty in accurately describing the
true contour shape of defects. To address this critical issue, this
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FIGURE 3
The structure diagram of CSFFC.

paper proposes an innovative module named MSRB, specifically
designed to enhance the network’s precise localization capability
for irregularly shaped defects. By integrating multiple MSEB
submodules, MSRB constructs a hierarchical cascaded multi-scale
feature processing architecture that can effectively capture geometric
shape information at different spatial scales, significantly improving
the precise localization performance for complex-shaped defect
boundaries.

The core design of the MSRB module lies in achieving
adaptive modeling of irregular defect shapes through a multi-scale
feature decomposition and recombination mechanism, as shown in
Figure 4. The module first performs channel-wise standardization
processing on the input features through 1x 1 convolution, then
utilizes the Split operation to evenly divide the feature map into
multiple sub-feature groups, with each sub-feature group being fed
into different MSEB modules for parallel processing. The MSRB
module provides hierarchical feature processing through the Multi-
Scale Enhancement Block (MSEB), enhancing the model’s ability to
model complex geometric shape defects. The output F,, is the result
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of multi-scale feature fusion. The overall feature transformation
process of MSRB can be expressed as Equation 6:

Fy = Heg (Concat ( {HEQSEB (F(;)“)} )

+F;,
where, F;, and F,,, represent the input and output feature maps,
respectively, F;)lit is the i-th segmented sub-feature group, and Hi\l/iSEB
and Hqpg denote the transformation functions of the i-th MSEB

n

i=1

(6)

module and CBS module, respectively, where 7 is the number of
MSEB modules.

MSEB, as the core submodule of MSRB, adopts a progressive
multi-scale convolution strategy to capture shape features at
different granularities. Through a carefully designed processing
chain of Norm — FC — GELU — Square Conv — Hx W Conv
— Wx1 Conv — PWConv, this module achieves hierarchical
feature extraction from global context to local details. The multi-
scale feature enhancement process of MSEB can be mathematically
represented as Equations 7, 8:

Zy = GELU (Hp. (Norm(F,))) )
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FIGURE 4
The overall structure diagram of the MSRB module.

k)
Z=HY (Zi)+Ri(Z), k=1,23,..,K (8)

where Z; denotes the intermediate feature representation at the
kth layer, H(k)

Conv
kth layer, R, (-) represents the corresponding residual connection

(Zi_,) is the convolutional transformation for the

function, and K is the total number of processing layers.

To further bolster the model’s capacity for representing irregular
morphologies, the Multi-Scale Enhancement Block (MSEB) module
incorporates an adaptive spatial weight modulation mechanism.
This mechanism learns the relative importance of different spatial
locations, which in turn facilitates a shape-sensitive feature
enhancement process. The weight calculation for this mechanism is
formulated as shown in Equation 9:

c
Wspatial(i,j) =0 kZ: Qe Fk(i’j) +ﬁ : HContext(F(i’j))) ©)
=1
where (i,j) denote the spatial coordinates, W) is the spatial
weight at the corresponding position, « and f are learnable
parameters, and Hg, e represents the context information
extraction function. Which plays a crucial role in enhancing the
feature expression by capturing contextual information around a
given spatial location. The function H . (F(i,f)) takes the feature
map F(i,j) at a specific spatial position (i,j) and extracts global
contextual information that helps the model better understand the
surrounding environment of the detected defects. Mathematically,
Heontext €an be defined as Equation 10:

Hopiext(F(i,f)) = ContextualExtraction(F(i, f)) (10)

This function is designed to capture the interdependencies
between local and global features by performing a global context
extraction process, which is then fused with the spatial features.
It enhances the model’s ability to detect defects, particularly
in complex backgrounds where contextual understanding is

necessary to distinguish between actual defects and background
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noise. The output of this function is combined with the spatial
features in Equation 9 to adaptively adjust the channel weights for
better feature expression.

By introducing He x> the model can more effectively leverage
both local and contextual information, improving its robustness in
defect detection tasks, especially when dealing with diverse and
dynamic industrial environments.

The final output of the Multi-Scale Enhancement Block (MSEB)
is generated via a multi-path feature fusion process, which involves
a weighted combination of feature representations from different
scales as shown in Equation 11:

S R

Fyspp = ) Vs Fo+ Y 8,7, (Frs) (11)

s=1 r=1

where F, denotes the feature output at the sth scale, 7,(-) represents
the rth residual transformation function, y, and §, are the
corresponding fusion weight coefficients, and S and R denote
the number of scales and residual paths, respectively. By virtue
of its multi-level cascade of MSEB modules and an integrated
residual connection design, the MSRB module effectively addresses
the geometric modeling deficiencies inherent in conventional
convolutional networks when processing irregularly shaped defects.
This architecture not only adaptively adjusts its receptive field to
match the morphology of various defects but also ensures the
precise capture of complex boundaries through its multi-scale
feature fusion mechanism. Consequently, the innovative design of
the MSRB allows the network to achieve a substantial improvement
in the localization accuracy of diverse, irregularly shaped anomalies
on bearing surfaces while maintaining computational efficiency,
thereby furnishing a more robust technological foundation for
industrial defect detection.

3.3 SPAA (spatial progressive attention
aggregation)

The standard attention mechanism within the conventional
YOLO framework, when applied to bearing defect detection,
primarily relies on global feature statistics to generate attention
weights. This approach exhibits a limited capacity for adaptive
perception of the local spatial environment. Consequently, when
confronted with the complex illumination changes and surface
contaminants characteristic of metallic bearing surfaces, the
network is susceptible to being confounded by regions of high
specular reflection and superficial blemishes, which impairs the
accurate identification of true defect features. To overcome this
critical limitation, we introduce an innovative module termed SPAA,
specifically engineered to enhance the network’s robustness against
such interference. As illustrated in Figure 5, the SPAA module
institutes a progressive spatial attention aggregation mechanism
that facilitates a robust differentiation between authentic defect
signatures and spurious signals arising from environmental artifacts.
This is achieved through multi-directional spatial convolutions and
adaptive weight modulation, which collectively enhance detection
stability substantially in complex industrial settings.

The core design principle of the SPAA module is the effective
suppression of interference signals via a progressive aggregation
of spatial information, as depicted in Figure 5. The process
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FIGURE 5

The structure diagram of SPAA.

commences with a global average pooling operation to extract global
contextual information from the input feature map. Subsequently,
a 1x1 convolution is employed for information compression
and reorganization along the channel dimension. Following this,
the SPAA module utilizes a series of depth-wise convolutional
kernels with anisotropic shapes to capture multi-directional spatial
dependencies. These include a 1x(1+2n) kernel for the vertical
dimension and a (1+2n) x 1 kernel for the horizontal dimension. The
overall attention generation process within the SPAA module can be
formulated as shown in Equation 12:

H)

Convlxl

( Heonvixtisan Hemyra (GAP(EL) ) ))

Aglobal = U( (HConv(1+2n)><1

where A, denotes the generated global spatial attention map, F,

represents the input feature map, GAP(-) indicates the global average
1

pooling operation, H(cgnvm

second 1x 1 convolutional transformations respectively, and o(-)is

and H(ngnlel correspond to the first and

the Sigmoid activation function.

To more effectively process the direction-specific textural
features characteristic of bearing surfaces, the SPAA module
incorporates a direction-sensitive spatial convolution strategy. This
strategy employs distinct, strip-like convolutional kernels for the
vertical and horizontal axes, enabling the model to capture textural
variation patterns along these discrete orientations effectively.
The feature enhancement process along the vertical axis can be
formulated as shown in Equation 13:

Fvertica.l = HConle(1+2n)(Fcompressed) ® Wv (13)

where Figreed denotes the channel-compressed  feature
representation, W, represents the learnable weight parameters for
the vertical direction, and ® indicates the convolution operation.
The subsequent horizontal feature enhancement process is expressed
as shown in Equation 14:

Fhorizontal = HConv(1+2n)x1 (Fvertical) ® Wh (14)
where W), denotes the learnable weight parameters for the horizontal
direction. This bidirectional progressive processing effectively
distinguishes directional characteristics of genuine defects from
randomly distributed interference signals.

The SPAA module further incorporates an adaptive threshold
modulation mechanism to enhance suppression capability against
interference signals. This mechanism dynamically adjusts attention
thresholds by learning statistical characteristics of input features,
computed as shown in Equation 15:

(15)

Todaptive = & mean(F;,) + f-std(F;,) +y

Frontiers in Physics

09

10.3389/fphy.2025.1722962

where T, represents the adaptive threshold, «, 3, and y are

adaptive
learnable pparameters, while mean(-) and std(-) denote the mean and
standard deviation operations, respectively.

The SPAA module uses the Progressive Spatial Attention
Aggregation mechanism to distinguish between real defects and
interference signals. The final output F,,, is the feature adjusted
by attention, through adaptive thresholding to ensure amplification
of genuine defect features while suppressing interference signals
as shown in Equation 16:

Fout = Fin © (Aglobal : M(Aglobal > Tadaptive)) (16)
where @ indicates element-wise multiplication, and IM(:) represents
the masking function that preserves only attention weights
exceeding the adaptive threshold.

In Equation 16, the adaptive threshold mechanism dynamically
defines an adaptive threshold 7,4, pive
the mean and standard deviation of the feature map for each

for each channel by calculating

channel. This threshold is used to distinguish between valid defect
features and interference signals, thereby enhancing the model’s
sensitivity to genuine defects while suppressing irrelevant noise.
Specifically, by utilizing the statistical information of the global
feature map, we can flexibly adjust the model’s response under
different conditions, ensuring more accurate defect identification in
complex environments.

The theoretical foundation of the adaptive threshold mechanism
is based on statistical principles such as mean and standard
deviation. By calculating the mean and standard deviation of
the feature map Ay, , we determine the threshold 7,4, e
which decides which regions of features should be amplified
and which should be suppressed. This mechanism allows the
model to automatically adapt to different types of defects while
effectively handling issues such as lighting changes, reflections, and
background interference.

By leveraging its progressive spatial attention aggregation and
adaptive threshold modulation mechanisms, the SPAA module
effectively addresses the insufficient robustness of conventional
attention mechanisms when confronted with specular reflections
and surface blemishes on metallic components. This architecture not
only accurately identifies and suppresses a variety of environmental
interference signals but also augments its sensitivity to authentic
defect signatures through its direction-sensitive convolutional
design. The innovative design of the SPAA module therefore enables
the network to maintain stable detection performance amidst
the complexities of industrial environments, which substantially
enhances the practicality and reliability of the overall bearing defect
detection system. This provides a crucial technical safeguard for its
practical deployment in industrial settings.

4 Experimental results and analysis
4.1 Dataset and experimental setup
4.1.1 Dataset description
To validate the effectiveness of the proposed LSA-YOLO

model for bearing defect detection, we conducted experiments
using a purpose-built bearing surface defect dataset. The dataset
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comprises three typical types of bearing surface defects—grooves
(aocao), abrasions (cashang), and scratches (huahen)—which cover
the most common bearing quality issues encountered in real
industrial production. All images were collected from actual
industrial environments and exhibit rich sample diversity and high
annotation accuracy.

The dataset contains a total of 6,542 high-quality images, with all
images standardized to a resolution of 640 x 640 pixels to balance
computational efficiency and detection accuracy. Defect sizes range
from tiny micro-cracks to large-area surface spalling, covering the
variety of defect types commonly observed in industrial settings. The
number of samples and the size distributions differ across categories,
further enhancing the dataset’s diversity and representativeness.
For annotation, each image was labeled by a professional team in
real industrial production environments, with precise annotations
of defect location, category, and shape. Annotation accuracy was
verified through a quality-control process and exceeded 95%,
ensuring consistency and high reliability.

The dataset was split into training, validation, and test sets
at an approximate ratio of 7:1:1: the training set contains 5,106
images for parameter learning and feature representation; the
validation set contains 718 images for hyperparameter tuning and
training monitoring; and the test set contains 718 images for final
performance evaluation and comparative analysis. This partitioning
strategy ensures both sufficient training and reliable evaluation
results. Due to the restrictions of the original license, we do not
redistribute the dataset. Researchers can reproduce the experiments
by obtaining the original data and using the accompanying file list,
split index, and preprocessing scripts provided in this manuscript.
For academic purposes, access support can also be requested
through the corresponding author with a reasonable request.

As illustrated in Figure 6, the defect samples within the dataset
exhibit a significant class imbalance, a characteristic that mirrors
the differential occurrence rates of various defect types in real-
world industrial scenarios. The defect classes are defined as follows:
Grooves, which typically manifest as localized depressions on the
bearing surface with relatively regular geometries; Abrasions, which
primarily present as linear or striate patterns of surface damage,
often exhibiting pronounced directionality; and Scratches, which
appear as amorphous surface markings with complex and often ill-
defined boundaries. Furthermore, the dataset incorporates images
captured under varied illumination conditions and against diverse
textural backgrounds, replete with varying degrees of specular
reflection and surface contaminants. These factors introduce
substantial technical challenges for detection algorithms and thereby
more faithfully simulate the complexities of authentic industrial
inspection environments.

To address the class imbalance issue present in the dataset, we
employed a class weighting strategy during training by adjusting
the weights of each class in the loss function. Specifically, categories
with fewer samples (such as abrasions and scratches) were assigned
higher weights in the loss function to reduce the model’s bias
toward the more frequent categories (such as grooves). Additionally,
to further improve the models performance across all classes,
we applied oversampling and undersampling methods to adjust
the distribution of the training data. These strategies effectively
mitigated the negative impact of class imbalance on model training,
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ensuring that the model could learn from the minority class samples
effectively and improve overall detection performance.

4.1.2 Experimental setup

All experiments in this study were conducted on a high-
performance computing platform equipped with an NVIDIA
RTX 4090 GPU (24GB VRAM), Intel Core i9-12900K CPU, and
64GB DDR4 RAM. The experiments used the PyTorch 1.12.0
deep learning framework, together with CUDA 11.6 and cuDNN
8.3.2 acceleration libraries, to ensure efficient model training and
inference. All experiment codes were run in the Windows 11
operating system environment, with Python 3.8 as the programming
language. During model training, all input images were uniformly
resized to a resolution of 640 x 640 pixels to balance computational
efficiency and detection accuracy. The Adam optimizer was used for
training, with an initial learning rate set to 0.001. A cosine annealing
learning rate scheduler was applied, reducing the minimum learning
rate to 1% of the initial value. The batch size was set to 16, and the
total number of training epochs was 300. An early stopping strategy
was introduced to prevent overfitting. In addition, cross-entropy
loss was used for classification, and smooth L1 loss was used for
regression tasks during training.

To enhance the model’s generalization ability, various data
augmentation methods were applied during training, including
random horizontal flipping (probability 0.5), random rotation
(+15°), random scaling (0.8-1.2 times), color jitter (brightness
+20%, contrast +15%), and the Mixup data augmentation strategy
(x=0.2).

4.2 Dataset analysis

As depicted in Figure 7, the distribution of bounding box widths
and heights within the dataset exhibits distinct clustering patterns.
The majority of targets are concentrated within a width range of 0-80
pixels and a height range of 0-120 pixels, underscoring a prevalence
of small-scale objects. The mean bounding box width is 65.0 pixels
and the mean height is 75.6 pixels, indicating that defects on bearing
surfaces typically manifest as small, irregularly shaped regions.
Concurrently, the presence of instances with dimensions exceeding
150 pixels indicates that the dataset also contains a representative
sample of medium- and large-scale defects. This distributional
characteristic imposes stringent requirements on the detection
algorithm. On one hand, the model must possess high sensitivity
to small objects to prevent false negatives (missed detections). On
the other hand, it must demonstrate robust multi-scale adaptability
to ensure the accurate detection of larger defects. Accordingly, our
algorithmic design incorporates low-level response aggregation and
a multi-scale residual architecture, a strategy intended to enhance
overall detection performance across a range of defect scales while
preserving a strong capacity for small-object detection.

4.3 Comparative experiments

To comprehensively evaluate the performance of LSA-YOLO
on the task of bearing surface defect detection, we benchmarked it
against ten representative detection methods using five standard
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FIGURE 6
Sample images from the dataset.
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FIGURE 7
Statistical distribution of bounding box width and height.

evaluation metrics: Fl-score, Precision, Recall, mAP®@0.5, and
mAP@0.5:0.95. The baseline models included two general-purpose
detectors (RT-DETR and Faster R-CNN) and eight lightweight
algorithms from the YOLO series (YOLOv5n, YOLOv6n,
YOLOv7-Tiny, YOLOv8n, YOLOv9n, YOLOv10n, YOLOvlIn,
and YOLOvI2n). The experimental results, detailed in Table 1,
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demonstrate that LSA-YOLO achieved the highest performance
across all evaluated metrics, attaining an Fl-score of 0.881, a
Precision of 0.914, a Recall of 0.850, an mAP@0.5 of 0.926, and
an mAP@0.5:0.95 of 0.537. Relative to the next-best performing
model, YOLOv7-Tiny, LSA-YOLO demonstrated an improvement
of 0.7-3.1 percentage points across these metrics. When compared
to the YOLOvV5n baseline, our model achieved a more substantial
improvement, ranging from 1.9 to 4.4 percentage points. This
underscores its superior, well-rounded performance in both
detection completeness (recall) and localization precision.

Among the general-purpose detectors, RT-DETR exhibited a
relatively balanced precision and recall, with a Precision of 0.881,
Recall 0of 0.844, F1-score of 0.862, and mAP@0.5 and mAP@0.5:0.95
reaching 0.903 and 0.521, respectively. Although its Transformer-
based global feature modeling mechanism ensures strong detection
stability, its bounding box localization accuracy at high IoU
thresholds still falls short of LSA-YOLO, lagging by 1.6 percentage
points on mAP@0.5:0.95. This indicates that LSA-YOLO holds
an advantage in multi-scale detail modeling and complex defect
localization.

In contrast, the overall performance of Faster R-CNN was
significantly poorer, with a Precision of 0.721, Recall of 0.692, F1-
score of 0.706, and mAP@0.5 and mAP®@0.5:0.95 of 0.765 and 0.406,
respectively—a gap of 13-19 percentage points compared to LSA-
YOLO. This result reveals that traditional two-stage detectors are
prone to missed detections and false positives in scenarios involving
minute defects and strong interference. LSA-YOLO, through the
introduction of progressive spatial attention aggregation and multi-
scale residual blocks, effectively suppresses interference from metal
surface reflections and stains, thereby enhancing its ability to localize
irregularly shaped defects.
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TABLE 1 Comparison of detection accuracy of different object detection models.

Algorithm Preci- sion Recall (%) mAP@ 0.5 (%) mAP@ 0.5:0.95 (%)
RT-DETR 0.862 0.881 84.4 90.3 52.1
Faster-RCNN 0.706 0.721 69.2 76.5 40.6
YOLOV5n 0.850 0.870 83.1 89.8 517
YOLOvé6n 0.863 0.868 85.9 915 53.0
YOLOV7-Tiny 0.874 0.902 84.7 91.7 50.6
YOLOV8n 0.840 0.867 81.4 89.0 50.3
YOLOv9n 0.863 0.888 83.9 90.5 52.1
YOLOV10n 0.823 0.848 80.0 87.2 48.9
YOLOvlln 0.852 0.876 83.0 90.8 514
YOLOvI2n 0.840 0.872 811 89.6 514
CAC-YOLOVS 0.858 0.878 0.821 0.897 0.506
EHA-YOLOV5 0.875 0.883 0.842 0.909 0522
LSA-YOLO 0.881 0.914 85.0 92.6 53.7

The values in bold are the best results.

To verify the performance difference between the YOLO11n
and LSA-YOLO models, we conducted an independent sample t-
test. The results showed a p-value of 0.03, indicating a statistically
significant difference in F1 scores between the two models.
Specifically, the F1 score of the LSA-YOLO model is significantly
higher than that of YOLOI1ln, demonstrating that LSA-YOLO
performs better in the defect detection task.

In summary, the performance advantages of LSA-YOLO
primarily stem from the synergistic effect of its innovative designs.
The LRPAN network structure preserves rich shallow-layer details
through its low-order response path and channel-aware modules.
The MSRB module enhances multi-scale feature representation
and the ability to model complex geometric defects, while the
SPAA module significantly improves the model’s robustness in
interference-prone scenarios. These improvements not only surpass
existing methods on individual metrics but, more importantly,
maintain a leading edge under the strict mAP@0.5:0.95 evaluation
standard, validating its broad applicability and engineering value in
industrial defect detection.

Based on the computational complexity and inference efficiency
analysis in Table 2, the LSA-YOLO model significantly improves
detection accuracy by introducing three innovative modules:
LRPAN, MSRB, and SPAA. Specifically, the model’s parameter count
increases to 3.956 million, with GFLOPs reaching 16.2 and a model
size of 8.3MB. This is in contrast to the lighter YOLOv5n (2.509
million parameters, 7.2 GFLOPs) and YOLO11n (2.583 million
parameters, 6.4 GFLOPs), which have relatively lower computational
costs. However, the inference time of LSA-YOLO is only 0.8 m,
which, although slightly higher than models like YOLOv6, YOLOVS,
and YOLOv10 (with 0.4 m inference time), represents a minimal
increase and is fully acceptable, especially given the high detection
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accuracy it maintains. Further analysis shows that the LSA-YOLO
model achieves an mAP@0.5 of 92.6%, which is 2-3 percentage
points higher than other baseline models. This result indicates
that, despite the increased computational complexity, the accuracy
improvement is significant, demonstrating the potential of LSA-
YOLO in handling complex industrial scenarios. Particularly in
tasks like bearing defect detection, LSA-YOLO effectively balances
computational cost and detection accuracy, meeting the dual
demands of precision and real-time performance in practical
applications.

Overall, by optimizing the model architecture, LSA-YOLO
successfully enhances both accuracy and robustness while making
reasonable compromises in computational cost. Although the
increase in parameters and GFLOPs may lead to higher hardware
requirements, the increase in inference time is only 0.4 m, still
meeting the real-time detection needs of industrial environments.
Therefore, considering its advantages in detection accuracy and
real-time inference, LSA-YOLO holds significant potential for
applications in industrial defect detection and other fields.

4.4 Ablation studies

To thoroughly analyze the effectiveness of each core module
in LSA-YOLO and their synergistic mechanisms, a systematic
ablation study was designed. By progressively introducing the
LRPAN, MSRB, and SPAA modules, we quantitatively assessed the
contribution of each component to the overall performance and
verified their collaborative enhancement effects. The baseline YOLO
network served as the reference model, evaluated on the bearing
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TABLE 2 Comparison of computational complexity and inference speed.

10.3389/fphy.2025.1722962

Algorithm Inference time (ms) Paramet -ers (M) GFLOPs Weight size (MB)
YOLOV5n 0.4 2.509 7.2 53

YOLOvVé6n 0.4 4238 11.9 8.7

YOLOv7-Tiny 41 6.020 132 123

YOLOV8n 0.4 3.011 8.2 63

YOLOV9n 0.6 2.006 7.9 47

YOLOV10n 0.4 2.708 8.4 5.8

YOLOv1in 0.4 2.583 6.4 55

YOLOvI2n 0.7 2.569 65 55

LSA-YOLO 0.8 3.956 16.2 8.3

The values in bold are the best results.

TABLE 3 Ablation experiment.

LRPAN MSRB ‘ SPAA Recall Precision mAP@0.5 mAP@0.5:0.95 Fl1-score (%)
x x x 0.830 0.876 0.908 0.514 852
v x x 0.847 0.883 0.917 0.527 86.5
x v x 0.832 0.895 0.910 0.515 86.2
x x v 0.834 0.887 0.906 0.520 86.0
v v v 0.850 0.914 0.926 0.537 88.1
v Module included.
x Module excluded.

The values in bold are the best results.

surface defect dataset by examining key metrics such as Recall,
Precision, mean Average Precision (mAP), and F1-score.

As shown in Table 3, the ablation results clearly demonstrate
the individual contributions and synergistic effects of each module.
In the baseline configuration (no modules enabled), the model
achieved a Recall of 83.0%, Precision of 87.6%, mAP@0.5 of 90.8%,
mAP@0.5:0.95 of 51.4%, and an F1-score of 85.2%.

When the LRPAN network was introduced alone, performance
improved significantly: Recall increased to 84.7% (+1.7%), Precision
to 88.3% (+0.7%), mAP@0.5% to 91.7% (+0.9%), mAP@0.5:0.95%
to 52.7% (+1.3%), and the Fl-score to 86.5% (+1.3%). This
result fully validates the effectiveness of LRPAN in preserving
detail information and enhancing the extraction of minute defect
features through its low-order response aggregation path and
CSFFC module.

The standalone introduction of the MSRB module also led to
performance gains, particularly in Precision, which rose from 87.6%
to 89.5% (+1.9%), with mAP@0.5 reaching 91.0% (+0.2%) and the
Fl-score increasing to 86.2% (+1.0%). This indicates that MSRB’s
multi-scale cascaded architecture effectively enhances the model’s
ability to recognize irregularly shaped defects, thereby reducing
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the false positive rate. The SPAA modules primary contribution
was in improving anti-interference capabilities, raising Precision to
88.7% (+1.1%), mAP@0.5:0.95% to 52.0% (+0.6%), and the F1-score
to 86.0% (+0.8%), proving its effectiveness in distinguishing true
defects from environmental noise.

When all three modules were integrated, LSA-YOLO exhibited
a remarkable synergistic effect. The fully configured model achieved
a Recall of 85.0%, Precision of 91.4%, mAP@0.5 of 92.6%,
mAP@0.5:0.95 of 53.7%, and an Fl-score of 88.1%. Compared
to the baseline, these figures represent improvements of 2.0%,
3.8%, 1.8%, 2.3%, and 2.9%, respectively. Notably, the performance
increase of the complete model significantly exceeds the simple
sum of the individual modules’ contributions, indicating a strong
synergy between LRPAN, MSRB, and SPAA. LRPAN provides
high-quality detailed features that lay the foundation for MSRB’s
multi-scale processing. The attention aggregation mechanism
of SPAA further enhances the discriminative power of these
multi-scale features. Together, they form a complete technical
chain from feature extraction and multi-scale adaptation to
attention enhancement, achieving a comprehensive improvement in
bearing defect detection performance.
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TABLE 4 Learning rate experiment.

10.3389/fphy.2025.1722962

Learning rate Recall Precision mAP@ 0.5 mAP@ 0.5:0.95 F1-score
0.0001 0.821 0.879 0.895 0.501 0.849
0.001 0.850 0.914 0.926 0.537 0.881
0.01 0.834 0.896 0913 0.524 0.864
0.1 0.798 0.862 0.878 0.486 0.829

The values in bold are the best results.

4.5 Learning rate experiment

The learning rate is a critical hyperparameter that directly
influences the convergence speed and final performance of
the model. To determine the optimal learning rate for the
bearing defect detection model, we conducted comparative
0.0001, 0.001, 0.01,
0.1. All other hyperparameters were kept constant (batch
Adam). The results

experiments with four values: and

size = = =

32, epochs 200, optimizer
are shown in Table 4.

The experimental results show that the choice of learning rate
has a significant impact on the performance of the LSA-YOLO
model. With a learning rate of 0.0001, the model converged too
slowly, failing to fully learn the data’s underlying patterns after 200
epochs. All metrics were at a low level: Recall was 82.1%, Precision
was 87.9%, mAP@0.5 was 89.5%, mAP@0.5:0.95 was 50.1%, and the
F1-score was 84.9%.

When the learning rate was set to 0.001, LSA-YOLO achieved
its optimal performance, with all evaluation metrics reaching
their peak values: Recall at 85.0%, Precision at 91.4%, mAP@0.5
at 92.6%, mAP@0.5:0.95 at 53.7%, and an Fl-score of 88.1%.
At this learning rate, the model achieved sufficient parameter
optimization while maintaining a good convergence speed, allowing
the three core modules (LRPAN, MSRB, and SPAA) to function
optimally and effectively balancing the model’s learning capacity and
generalization performance.

Increasing the learning rate to 0.01 resulted in a slight decline
in performance, with Recall at 83.4%, Precision at 89.6%, mAP@0.5
at 91.3%, mAP@0.5:0.95 at 52.4%, and an F1-score of 86.4%. This
suggests that the faster parameter updates began to affect the model’s
stable convergence.

When the learning rate was further increased to 0.1, the
large update steps led to an unstable training process and a
significant drop in performance. Recall fell to 79.8%, Precision
to 86.2%, mAP@0.5% to 87.8%, mAP@0.5:0.95% to 48.6%,
and the Fl-score was only 82.9%. This demonstrates that an
excessively high learning rate disrupts the model’s convergence,
causing parameters to oscillate around the optimal solution
without effectively converging. In conclusion, a learning rate
of 0.001 is the optimal choice for LSA-YOLO in the bearing
defect detection task. This setting ensures that the model achieves
the best detection performance within a reasonable training
time, providing an important hyperparameter reference for
subsequent industrial deployment.
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4.6 Testing in a new scene for
generalization

To evaluate the generalization ability of the proposed LSA-
YOLO model in new scenarios, we conducted experiments on
the widely used benchmark dataset, NEU-DET. The NEU-DET
dataset contains a variety of defect types and presents considerable
challenges, making it an ideal choice for assessing the model’s
adaptability to unseen data.

In this section, we performed an ablation study to analyze the
performance of the LSA-YOLO model on the NEU-DET dataset.
The main objective of the ablation study was to evaluate the
contributions of the key components in the LSA-YOLO architecture,
including the Low-level Response Path Aggregation Network
(LRPAN), Multi-Scale Enhancement Block (MSRB), and Stepwise
Spatial Attention Aggregation (SPAA) modules. By systematically
removing or modifying these components, we comprehensively
assessed their impact on the overall performance and examined how
they affected defect detection accuracy in unseen data.

Ablation Study Results are presented in Table 5. By progressively
removing the modules, we observed significant effects on the
model’s performance. First, with only the LRPAN module, the model
achieved a balanced Recall (0.747) and Precision (0.742), but the
mAP@0.5 (0.785) and mAP@0.5:0.95 (0.457) were relatively lower.
This suggests that while the LRPAN module effectively improves the
recall rate for defect detection, it has not fully optimized detection
accuracy and localization capabilities. When the MSRB module
was added, there was an improvement in precision, with mAP@0.5
rising to 0.781, and a slight increase in mAP@0.5:0.95 (0.455).
However, it is noteworthy that Recall slightly decreased, indicating
that the MSRB module plays a crucial role in improving the model’s
precision but may result in missing some small defects. Overall, the
MSRB module enhanced the model’s ability to perceive defects at
various scales.

Most notably, the addition of the SPAA module significantly
improved the model’s performance across all evaluation metrics,
especially with a substantial increase in mAP@0.5 (0.806) and
mAP@0.5:0.95 (0.467). This result indicates that the SPAA module
plays a critical role in integrating global and local features
and enhancing the model’s adaptability to complex backgrounds.
By using progressive spatial attention aggregation and adaptive
threshold modulation, the SPAA module effectively suppresses
interference signals while amplifying genuine defect features,
resulting in higher detection accuracy under complex conditions.
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TABLE 5 Ablation study on the NEU-DET dataset.

10.3389/fphy.2025.1722962

LRPAN MSRB SPAA Recall Precision mAP@0.5 mAP@0.5:0.95
x x x 0.743 0.71 0.778 0.448
v x x 0.747 0.742 0.785 0.457
x v x 0.738 0.721 0.781 0.455
x x v 0.732 0.727 0.786 0.452
v v v 0.75 0.734 0.806 0.467

v Module included.
x Module excluded.
‘The values in bold are the best results.

In summary, the ablation study validates the unique
contributions of each module in the LSA-YOLO architecture,
particularly the SPAA module, which significantly enhances the
model’s generalization ability when dealing with industrial data
containing complex backgrounds and diverse defect types. These
results demonstrate that LSA-YOLO is highly adaptable to defect
detection tasks in unseen data and exhibits strong robustness,
especially in handling complex real-world industrial applications
with various defect types and backgrounds.

4.7 Comparison of detection results

To visually demonstrate the superior performance of LSA-
YOLO in bearing surface defect detection, this study selected
five typical bearing samples for a comparative analysis of
detection results. Figure 8 shows the detection effects of nine
models—YOLOv5n, YOLOvé6n, YOLOv7-Tiny, YOLOvV8n,
YOLOV9-Tiny, YOLOv10n, YOLOvIlln, YOLOvI12n, and LSA-
YOLO—on the same test samples. By comparing the detection
accuracy, miss rate, bounding box localization precision, and
confidence score distribution of each model, we comprehensively
evaluate the technical advantages of LSA-YOLO.

From the perspective of detection completeness, LSA-YOLO
demonstrated a significant advantage. In the detection of defects
on the inner ring of the bearing in the first column, conventional
YOLO models commonly exhibited missed detections. YOLOv5n,
YOLOV8n, and YOLOv10n failed to effectively identify some of
the minute defect areas. In contrast, LSA-YOLO, leveraging the
detail preservation capabilities of its LRPAN network structure,
successfully detected all defect targets with confidence scores above
0.89. In the detection of surface defects on the outer ring in
the second column, YOLOv7-Tiny and YOLOvV9-Tiny had clear
missed detections. LSA-YOLO not only achieved complete detection
but also had significantly higher detection confidence scores than
other models, reflecting the effectiveness of the SPAA module
in suppressing background interference and enhancing defect
feature response.

In terms of detection accuracy and bounding box localization,
LSA-YOLO also showed outstanding performance. The results
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for the irregular crack defect in the third column show that
the bounding box localization of traditional YOLO models had
noticeable deviations; models like YOLOv6n and YOLOvlln
produced detection boxes that did not accurately cover the entire
contour of the defect area. In contrast, LSA-YOLO, through the
multi-scale cascaded processing architecture of the MSRB module,
achieved precise localization of complex geometric defects. The
overlap between the bounding box and the actual defect area was
significantly improved, with confidence scores maintained at a high
level above 0.85.

In the composite defect detection scenario in the fourth column,
LSA-YOLO was able to accurately identify multiple different types
of defect targets simultaneously, whereas some traditional models
like YOLOV12n only detected a subset of the defects, indicating that
LSA-YOLO is more robust in complex detection scenarios.

Particularly noteworthy is LSA-YOLO’s advantage in detecting
small-object defects, as shown in the fifth column. The minute
defect in this sample occupies less than 1% of the image area,
making it a classic small-object detection challenge. Most traditional
YOLO models suffered from severe missed detections; YOLOvV5n,
YOLOV8n, and YOLOv10n completely failed to detect the defect.
While YOLOv6n and YOLOv7-Tiny produced detection results,
their confidence scores were low (between 0.3 and 0.5). LSA-YOLO,
through the synergistic action of its three core modules, not only
successfully detected the minute defect but did so with a high
confidence score of 0.82. This fully validates the technical advantages
of the LRPAN network in preserving details, the MSRB module in
multi-scale feature processing, and the SPAA module in attention
aggregation.

From the perspective of confidence score distribution, LSA-
YOLO demonstrated higher detection reliability. Statistical analysis
showed that the average detection confidence of LSA-YOLO was
0.86, significantly higher than the 0.65-0.75 range of other models.
This indicates that LSA-YOLO can not only accurately identify
defect targets but also has a higher degree of certainty in its results,
which is of great importance for practical applications in industrial
quality inspection. Overall, the visual detection results confirm that
LSA-YOLO exhibits comprehensive technical advantages in bearing
surface defect detection, offering a more reliable and precise solution
for the field of industrial defect detection.
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FIGURE 8
Comparison of detection results.

4.8 Analysis of detection results

To further validate the detection performance of LSA-YOLO
in real-world industrial environments, this section provides
an in-depth analysis of nine representative bearing defect
detection cases. Figure 9 illustrates LSA-YOLO’s performance on
various defect types, including abrasions (ceshang), grooves (gocao),
and scratches (huahen). By connecting these results to the three
core innovations of this paper—LRPAN, MSRB, and SPAA—we
analyze the technical advantages and practical value of LSA-YOLO
in complex industrial scenarios.

Analyzing from the perspective of the LRPAN network’s detail
preservation capability, the detection results in Figure 9 fully validate
its excellent performance against complex texture backgrounds. In
the top-left image, the bearing surface features intricate metallic
textures and reflective interference, where traditional methods
often struggle to accurately extract minute defect features. LSA-
YOLO, through LRPAN’s low-order response aggregation path and
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CSFEC module, successfully identified multiple abrasion defects
with confidence scores of 0.34, 0.52, and 0.80, demonstrating the
model’s ability to effectively retain rich detail from shallow network
layers. The middle image in the second row presents an even
more challenging scenario with strong metallic reflections. LSA-
YOLO still accurately located a groove defect (confidence 0.73),
fully showcasing LRPAN’s technical advantage in detail feature
extraction.

The multi-scale feature processing capability of the MSRB
module is well-demonstrated in the results. The top-middle image
shows a typical multi-object detection scene with defects of varying
sizes and shapes. LSA-YOLO, through MSRB’s hierarchical cascaded
architecture, successfully identified all defect types, with confidence
scores of 0.31 for abrasion, 0.51 for groove, and 0.35 for scratch.
Particularly noteworthy is the detection of complex defect shapes in
the bottom-left image. The scratch defect exhibits an irregular linear
distribution. The MSRB module, through the synergy of its multiple
MSEB sub-modules, achieved adaptive modeling of this complex
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Detection results analysis.

geometry, yielding good confidence levels between 0.52 and 0.75
and effectively overcoming the limitations of traditional rectangular
bounding boxes in describing irregular defect contours.

The anti-interference capability of the SPAA module is prominent
in several detection cases. The top-right image shows a typical scene
with metallic surface reflections, where strong lighting variations
can easily create false-positive interference. LSA-YOLO, using SPA A’
progressive spatial attention aggregation mechanism, accurately
distinguished between true defects and environmental noise, achieving
confidence scores of 0.82 for abrasion and 0.77 for groove, well above
any potential interference threshold. In the middle-rightimage, various
types of surface stains and reflective interference are present. The
adaptive threshold modulation strategy of the SPA A module effectively
suppressed these interferences, ensuring accurate identification of true
defects. Scratches were detected with confidence scores of 0.31-0.40,
and grooves with a reliable 0.63-0.79.

From an overall performance perspective, the results in Figure 9
demonstrate excellent synergy among the three innovative modules.
In the complex detection scenario of the bottom-middle image—with
multiple defect types, irregular shapes, and strong background
interference—LSA-YOLO accurately detected all defect targets
through LRPAN’s detail extraction, MSRB’s multi-scale adaptation,
and SPAAs attention aggregation. Confidence scores for scratches
ranged from 0.26 to 0.77, and for grooves was 0.60, fully validating
the effectiveness of the modules working in concert. The bottom-right
image further highlights LSA-YOLO's superior performance in dense
defect detection, where multiple scratches and grooves were accurately
identified with stable confidence levels between 0.63 and 0.74.

An analysis of all detection results in Figure 9 reveals that LSA-
YOLO maintains a good confidence distribution across different
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defect types, with an average detection confidence above 0.58. High-
confidence detections (30.7) accounted for about 35%, and medium-
confidence detections (0.4-0.7) for about 45%. This distribution
indicates that LSA-YOLO has stable detection performance and
strong generalization ability. In summary, the analysis of detection
results confirms that LSA-YOLO, through the synergy of its three
core innovative modules, effectively addresses the key technical
challenges in bearing surface defect detection, providing a reliable
technical solution for industrial quality inspection.

Although the proposed LSA-YOLO model has shown good
performance in defect detection, there are still some failure cases
observed in certain test scenarios as shown in Figure 10, primarily
including missed detections, false detections, and duplicate boxes.
Missed detection occurs when the model fails to detect certain actual
defects, especially when the defects are small or the background is
complex. This indicates that the model’s sensitivity to small defects
and its ability to handle complex backgrounds need improvement.
False detection happens when the model incorrectly identifies non-
defective regions as defects, particularly in areas with complex textures
orirregular shapes. This affects the accuracy and precision of detection,
suggesting that the model faces challenges in distinguishing between
background and defects during feature extraction. Duplicate boxes
occur when the model generates multiple overlapping bounding boxes
for the same defect, leading to redundant detections. This is usually due
to the model being overly sensitive to certain features or insufficient
post-processing. While this issue is relatively minor, it still impacts
detection efficiency and precision.

These failure cases provide valuable insights for further
improving the model, particularly in enhancing its sensitivity
to small defects, reducing background noise interference, and
optimizing post-processing algorithms. Addressing these issues will
help improve the model’s robustness and accuracy in complex
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FIGURE 10

Failure case Analysis: (a) Missed detection, (b) False detection, (c) Duplicate boxes.

industrial scenarios, strengthening its adaptability and performance
in real-world applications.

5 Conclusion

This study addresses the key technical challenges in bearing
surface defect detection—namely, interference from complex
texture backgrounds, difficulty in extracting minute defect features,
and inaccurate localization of irregularly shaped defects—by
proposing the LSA-YOLO network architecture. This architecture
integrates three core modules: LRPAN, MSRB, and SPAA, which
respectively achieve detail information preservation, optimized
modeling of irregular defects, and effective differentiation between
true defects and environmental interference. Experimental results
show that LSA-YOLO achieves outstanding performance on a
bearing defect dataset, with an Fl-score of 88.1%, Precision of
91.4%, Recall of 85.0%, mAP@0.5 of 92.6%, and mAP@0.5:0.95
of 53.7%, representing a significant improvement over existing
state-of-the-art methods. At the same time, the model maintains
excellent computational efficiency, with a parameter count of
3.956 million and an inference time of just 0.8 m, meeting
the demands of real-time industrial inspection. This research
provides an effective solution for the advancement of bearing
defect detection technology and holds significant application
value in fields such as industrial equipment safety, predictive
maintenance, and quality control. It also offers a valuable
reference for surface defect detection of other industrial
components. Future work will further explore the model’s
adaptability to a wider range of industrial defect types, optimize
its lightweight design for deployment on edge computing devices,
and expand its application to multi-modal industrial detection
data fusion.
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