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Bearing defect detection is crucial for equipment safety and maintenance costs, 
but challenges remain under complex textured backgrounds, reflective stains, 
and irregular defect shapes. This paper presents the LSA-YOLO method for 
industrial field applications, which strengthens detail retention through low-
order feature aggregation, improves irregular defect representation through 
multi-scale residual modeling, and enhances anti-interference ability via a 
progressive spatial attention mechanism, without the need for additional 
annotations or complex post-processing. Experimental results on a bearing 
surface defect dataset show that LSA-YOLO achieves a good balance between 
precision and efficiency, with an F1 score of 88.1% and mAP@0.5 of 92.6%, 
significantly outperforming the baseline model. This method is suitable for 
online quality inspection scenarios, and relevant training details and limitations 
are discussed in the paper.
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 1 Introduction

With the rapid advancement of intelligent manufacturing paradigms, rotating 
machinery has become integral to a vast array of industrial production lines. The operational 
integrity of this machinery is intrinsically linked to the reliability and safety of the entire 
production system. As fundamental components, bearings perform the critical functions of 
supporting rotors, transmitting loads, and mitigating friction. Empirical evidence indicates 
that bearing failure constitutes a primary cause of mechanical malfunction. Catastrophic 
failures precipitated by such defects can incur not only substantial economic losses 
but also severe safety incidents resulting in injury or loss of life. Consequently, within 
the contemporary Industry 4.0 framework emphasizing high efficiency and low energy 
consumption, the capacity for early and precise detection of bearing defects has emerged 
as a critical technological imperative. By virtue of its intrinsic advantages—including non-
contact inspection, low implementation cost, and high throughput—computer vision has 
emerged as a potent methodology for the inspection of bearing surface defects [1–3]. 
This technology demonstrates significant potential across numerous applications, including 
quality control, predictive maintenance, and automated in-line inspection.
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Notwithstanding the continual advancements in computer 
vision, existing methodologies for bearing defect detection continue 
to confront formidable challenges. Conventional algorithms 
predicated on handcrafted features, such as manually engineered 
descriptors for edges, textures, and shapes, struggle to contend with 
the variability inherent in industrial settings, including fluctuations 
in illumination, specular reflections, and surface contaminants [4, 
5]. While deep learning methodologies have catalyzed significant 
progress, they are not without their own distinct limitations. 
Although region-based convolutional neural network (R-CNN) 
variants [6–8] can effectively identify conspicuous defects like 
large-area spalling and fissures, they exhibit markedly reduced 
sensitivity to minute anomalies such as pitting and micro-cracks. 
Similarly, while algorithms in the YOLO family [9–11] offer the 
advantage of real-time, end-to-end detection, their constrained 
feature-representation capacity often leads to an increased incidence 
of both false positives and false negatives, particularly in scenarios 
involving densely clustered, fine-grained defects. More recently, 
Transformer-based architectures [12–14] have demonstrated 
potential for modeling complex backgrounds by leveraging global 
self-attention mechanisms; however, their substantial parameter 
counts and prohibitive computational overhead impede their 
practical deployment on edge-computing platforms. Collectively, 
these extant methods exhibit suboptimal performance when 
confronted with the intertwined challenges of extracting features 
from minuscule defects against complex textural backgrounds, 
accommodating multi-scale anomalies, and mitigating interference 
from metallic reflections and stains. Consequently, they fail to satisfy 
the stringent, multifaceted requirements of industrial applications, 
where high accuracy, real-time performance, and operational 
robustness are simultaneously demanded.

To surmount these challenges, we propose a novel bearing 
defect detection model derived from a YOLO-based framework. 
Our model is specifically engineered to address the persistent 
challenges of discriminating defects from confounding surface 
textures, achieving precise localization of geometrically irregular 
anomalies, and maintaining robust detection performance within 
dynamic industrial environments. By integrating innovative feature-
enhancement modules within an optimized network architecture, 
our approach achieves substantial gains in both detection accuracy 
and generalization capability across a spectrum of surface anomalies, 
thereby offering a more effective and reliable solution for automated 
industrial inspection tasks. The principal contributions of this work 
are as follows: 

1. To address the challenge of extracting features from minute 
defects embedded within complex textural backgrounds, 
we designed the LRPAN. This architecture establishes an 
independent pathway for low-order response aggregation 
and integrates a CSFFC module. This design facilitates the 
preservation of rich, fine-grained detail from shallow network 
strata, thereby substantially enhancing both the extraction and 
the discriminative power of features associated with minute 
anomalies.

2. To overcome the challenge of precisely localizing defects 
with irregular morphologies, we introduce the MSRB. By 
integrating multiple MSEB sub-modules, the MSRB constructs 
a hierarchical, cascaded architecture for multi-scale feature 

processing. This design enables the adaptive modeling of 
anomalies with complex geometries, such as fissures and 
spalling, thereby surmounting the inherent limitations of 
conventional rectangular bounding boxes in a delineating such 
non-uniform contours.

3. To mitigate the high incidence of false positives arising 
from specular reflections and surface blemishes on metallic 
substrates, we devised the SPAA module. The SPAA employs 
a progressive spatial attention aggregation mechanism 
coupled with an adaptive threshold modulation strategy. 
This approach facilitates a robust differentiation between 
authentic defect signatures and spurious signals originating 
from environmental artifacts, thereby markedly enhancing 
the detection system’s robustness and stability within complex 
industrial settings.

2 Related work

In recent years, the rapid development of deep learning 
technology has brought revolutionary breakthroughs to the 
field of defect detection [36, 38, 39]. Detection methods based 
on deep neural networks [41, 45] have gradually become the 
mainstream technological approach in this field. Differentiated 
by their network architectures and detection paradigms, these 
contemporary methods can be broadly categorized into two 
principal classes: (i) Transformer-based approaches that leverage 
self-attention mechanisms, and (ii) single-stage, regression-based 
detection algorithms. In this section, we systematically review 
the technological trajectory, pivotal innovations, and persistent 
challenges associated with each of these two paradigms as applied 
to defect detection tasks. 

2.1 Transformer-based defect detection 
methods

By virtue of their powerful global modeling capabilities and 
inherent self-attention mechanisms, Transformer architectures 
are demonstrating distinct advantages within the domain of 
industrial defect detection. These frameworks facilitate the capture 
of long-range dependencies between anomalous regions and 
their surrounding context, thereby offering a novel technological 
pathway for defect identification within complex industrial settings. 
Zhang et al. [15], for instance, pioneered the application of the 
Vision Transformer (ViT) to the detection of surface defects on 
steel plates. In their approach, an input image is partitioned into a 
sequence of fixed-size patches, and the self-attention mechanism 
is subsequently employed to establish global correlations among 
them. This strategy significantly enhanced the accuracy of defect 
identification against intricate textural backgrounds. The model 
achieved exemplary performance on the NEU-DET dataset, 
substantiating the potential of Transformer architectures for 
effectively processing complex industrial surface textures.

The advent of the DEtection TRansformer (DETR) architecture 
and its variants has further propelled advancements in this domain. 
Fang et al. [16], for instance, developed a modified DETR model 
for fabric defect inspection. Their model incorporated multi-scale 
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feature fusion and optimized positional encoding, which effectively 
addressed the challenge of identifying irregularly shaped defects 
on textile surfaces. In a similar vein, Ji et al. [17] adapted the 
Deformable DETR for the inspection of printed circuit boards. 
The deformable attention mechanism enabled the model to 
selectively focus on salient regions of interest, leading to a marked 
improvement in the detection accuracy of minute soldering defects. 
Collectively, these studies underscore the distinct advantages 
of the Transformer’s global modeling capabilities for resolving 
industrial defects characterized by irregular morphologies and scale 
variations. Addressing the imperative for real-time performance, 
researchers have also engineered several computationally efficient 
Transformer-based solutions. Wu et al. [18] constructed a system 
for detecting blade surface defects using RT-DETR. By leveraging 
a hybrid encoder design and optimizing query selection, their 
system substantially reduced computational overhead without 
compromising detection accuracy, facilitating its deployment 
for real-time, in-line inspection. Furthermore, Wu et al. [19] 
proposed a lightweight defect detection model based on the Swin 
Transformer. This model achieved high computational efficiency on 
resource-constrained edge devices through the implementation of 
hierarchical windowed attention and the fusion of feature pyramids.

Nonetheless, the direct application of Transformer-based 
methods to the specific domain of bearing defect detection is 
fraught with challenges. For instance, while Ji et al. [20] adapted 
the Vision Transformer (ViT) for identifying defects on bearing 
raceways, their model—despite performing capably on large-scale 
defects—exhibited markedly diminished sensitivity to minute 
anomalies such as pitting and superficial scratches. This limitation 
was primarily attributed to the ViT’s rigid patch partitioning 
strategy, which struggles to accommodate the periodic textural 
features characteristic of bearing surfaces and is consequently 
prone to misclassifying normal machining marks as genuine 
defects. Similarly, a DETR-based system developed by Liu et al. [21] 
demonstrated excellent performance in processing irregular cracks; 
however, its substantial parameter count and high computational 
complexity have hindered its widespread adoption in practical 
industrial settings. Furthermore, a broader challenge facing 
extant Transformer models is their characteristically slow training 
convergence and high sensitivity to small datasets, making it difficult 
to fully exploit their powerful modeling capabilities in scenarios 
where annotated bearing defect data are inherently scarce [22–24].

Recent studies by Zhang et al. [36] and Xu et al. [37] have 
proposed Transformer-based defect detection methods, further 
validating the potential of the Transformer architecture in 
complex industrial environments. Qiao et al. [40] introduced a 
self-supervised sensor feature extraction network—Multi-Head 
Attention Self-Supervised (MAS) representation model, applying 
a self-supervised contrastive learning method using positive 
samples for anomaly detection in multidimensional industrial 
sensor data. Wang et al. [42] proposed a physically interpretable 
Wavelet-guided Network (WaveGNet) for Machine Intelligence 
Fault Prediction (MIFP), expanding the feature learning space 
of CNN through deep frequency separation. Wang et al. [47] 
utilized a cross-modal fusion module based on a dual multi-head 
cross-attention mechanism (Dual-MCM) to achieve collaborative 
interaction of cross-modal information, completing bidirectional 

deep collaborative representation of internal and external signal 
features in the fusion process of the robot. 

2.2 YOLO-based defect detection methods

Algorithms within the You Only Look Once (YOLO) family have 
been extensively applied and investigated in the domain of industrial 
defect detection, primarily owing to their exceptional real-time 
performance and end-to-end detection architecture. These methods 
employ a unified regression framework to directly predict object 
locations and class probabilities in a single pass, thereby obviating 
the need for complex post-processing stages. This characteristic 
renders them eminently suitable for industrial applications where 
high inspection throughput is a critical requirement.

In defect detection applications within the steel industry, YOLO-
based methods have demonstrated considerable efficacy. Jing et al. 
[25] developed a system for detecting surface defects on hot-rolled 
steel plates using YOLOv3. Through data augmentation and multi-
scale training strategies, they effectively enhanced the detection 
accuracy for typical defects such as oxide scale and cracks. This 
system achieved detection latencies on the order of milliseconds in 
an operational production line, satisfying the real-time monitoring 
demands of high-speed rolling processes. Li et al. [26] applied a 
modified YOLOv4 to the surface quality inspection of cold-rolled 
steel strips, incorporating an attention mechanism and a focal 
loss function to markedly improve the identification of minute 
scratches and punctate defects. Furthermore, a steel pipe defect 
detection system built on YOLOv5 by Duman et al. [27] utilized 
a lightweight network design, facilitating deployment on mobile 
platforms without a significant trade-off in performance and thus 
providing a viable solution for in-line quality inspection.

YOLO-based approaches have also yielded significant 
advancements in electronics manufacturing. Li et al. [28] applied 
YOLOv3 to the inspection of printed circuit boards, mitigating 
the issue of false negatives in environments with high component 
density by employing multi-layer feature fusion and an improved 
non-maximum suppression algorithm. A solder joint quality 
inspection system developed by Zhang et al. [29], based on 
YOLOv8, substantially enhanced detection accuracy across various 
solder defect sizes by introducing deformable convolutions and a 
multi-scale receptive field enhancement module. Research in the 
textile industry has similarly leveraged the technical strengths of 
YOLO. Li et al. [30] proposed a fabric defect detection method using 
an enhanced YOLOv5 framework. By designing an adaptive anchor 
box generation strategy and a multi-scale feature enhancement 
module, their approach effectively contended with challenges 
posed by complex fabric textures and diverse defect types. The 
method achieved exemplary performance across multiple textile 
defect datasets, providing a robust technological foundation for the 
automated quality control of textiles.

However, in the specific application of bearing defect detection, 
YOLO-based methods confront a distinct of technical hurdles. A 
system for bearing raceway inspection constructed by Xing et al. 
[31] based on YOLOv3, while excellent in terms of detection 
speed, exhibited limited accuracy in identifying minute pitting 
and shallow scratches. This limitation is primarily attributed to 
the difficulty of standard convolutional operations in effectively 
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extracting the fine-grained textural features of bearing surfaces. 
While Ding et al. [32] improved the feature extraction network 
of YOLOv8 by incorporating multi-scale dilated convolutions 
and a channel attention mechanism to enhance performance on 
bearing inner ring defects, its robustness remained insufficient 
when confronted with complex illumination conditions and surface 
contamination.

Furthermore, Xu et al. [37] proposed a novel lightweight 
information-enhanced fusion network (IEFNet) for anomaly 
detection in hydroturbine operational sounds. A filter bank 
computes the sound tensor, which serves as input to the IEFNet 
feature extraction module. Sound features are extracted through 
residual block convolutions, and an attention mechanism is used 
in the feature enhancement fusion module to combine sound 
features with load information. Li et al. [43] proposed the YOLOv8-
GhostConv-SEV2 model based on the lightweight YOLOv8n 
framework. This model optimizes feature extraction by introducing 
the GhostConv module and enhances noise suppression capabilities 
using the SEV2 (Squeeze-and-Excitation Version 2) attention 
mechanism. Shen et al. [44] extracted multi-scale defect features 
through the MFE module, optimized feature fusion using the LGFA 
module, and applied the HDD mechanism to transform detection 
into a denoising process, thereby reducing prior dependence. 
Experiments showed that their method improved detection 
accuracy by 6.1% over specialized methods and adapted well to 
complex detection scenarios. Wan et al. [46] proposed the FMD-
MCNN fault diagnosis method. Vibration signals from the auxiliary 
gearbox are first collected, then processed by FMD decomposition, 
reconstruction, and normalization preprocessing. The signals are 
then input to the MCNN for multi-scale feature extraction and 
fusion, with fault recognition completed through a softmax classifier.

Extant YOLO-based methodologies [33–35], when applied to 
bearing defect detection, are encumbered by several key technical 
bottlenecks. First, conventional feature extraction backbones 
struggle to effectively discriminate between the benign, periodic 
textures of the bearing surface and genuine anomalous defects, a 
limitation that contributes to a high false-positive rate. Second, the 
reliance on rectangular bounding boxes is fundamentally inadequate 
for precisely delineating the contours of morphologically irregular 
defects, such as fissures and spalls. Third, conventional feature fusion 
strategies often operate at a limited scale, failing to concurrently 
satisfy the distinct detection requirements of both minute pitting 
and extensive surface flaws. These persistent challenges collectively 
delineate a clear trajectory for research and provide significant scope 
for innovation, particularly for technical advancements built upon 
the latest generation of the YOLO architecture. 

3 Methodology

This paper proposes an improved network architecture for 
bearing defect detection, named LSA-YOLO, with its overall 
framework illustrated in Figure 1. LSA-YOLO is deeply optimized 
based on the YOLOv11 architecture, integrating the advantages 
of multi-scale feature aggregation and attention mechanisms. 
Furthermore, it incorporates innovative modules specifically 
designed to address the unique challenges in bearing defect 
detection, including core technologies for extracting minute defect 

features under surface texture interference, accurately locating 
irregularly shaped defects, and suppressing interference from metal 
surface reflections and stains.

The input image initially undergoes hierarchical feature 
extraction through a backbone network, generating multi-scale 
feature maps at different semantic levels. These feature maps contain 
rich visual information ranging from fine-grained surface textures to 
high-level semantics, providing a solid representational foundation 
for subsequent defect detection tasks. The backbone network 
utilizes MSRB modules instead of conventional C3k2 modules, 
achieving effective extraction and enhancement of multi-scale 
features through the integration of MSRB units, which significantly 
improves the modeling capability for irregularly shaped defects.

To address the challenge of extracting minute defect features 
from bearing surfaces against complex textural backgrounds, LSA-
YOLO introduces the LRPAN module. LRPAN effectively preserves 
feature representations containing rich detail information from 
shallow network layers by constructing independent low-order 
response paths. Additionally, it implements frequency domain 
feature enhancement through the CSFFC module, establishing 
dedicated channels from intermediate layers of the backbone 
network to the feature fusion network. This design ensures the 
effective preservation of minute defect features throughout their 
propagation process in deep network layers.

In the feature fusion stage, the network employs an improved 
FPN structure, which significantly reduces interference from 
surface textures and enhances the discriminative expressive 
capability of defect features in complex industrial environments 
through deep fusion of multi-scale features. To further enhance 
robustness against interference from metal surface reflections and 
stains, LSA-YOLO integrates the SPAA module at each detection 
scale. SPAA effectively distinguishes genuine defect features from 
environmental interference signals through a progressive spatial 
attention aggregation mechanism, significantly improving detection 
stability in complex industrial settings via multi-directional spatial 
convolution and adaptive weight modulation. The optimized multi-
scale feature representations are ultimately processed through a 
decoupled detection head to accomplish object bounding box 
regression and category classification tasks. The detection head 
achieves specialized feature processing through independent 
classification and regression branches, outputting precise defect 
location and category information. Through this meticulously 
designed modular architecture, LSA-YOLO significantly enhances 
the detection performance of various surface defects on bearings 
while maintaining real-time detection capabilities, providing 
a reliable technical solution for practical applications such as 
industrial quality control and equipment predictive maintenance. 

3.1 LRPAN

The conventional YOLOv11 network, when processing bearing 
surface defect detection, tends to confuse normal processing marks 
with actual defects due to its standard feature fusion strategy 
that primarily relies on high-level semantic information. When 
confronted with complex periodic textural backgrounds on bearing 
surfaces, the effective information of minute defect features is 
gradually lost during propagation through deep network layers. To 
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FIGURE 1
The structure diagram of LSA-YOLO model.

address this critical issue, this paper proposes an innovative network 
architecture named LRPAN, specifically designed to enhance the 
extraction and preservation capabilities of minute defect features on 
bearing surfaces. As shown in Figure 2, LRPAN effectively preserves 
feature representations containing rich detailed information from 
shallow network layers by constructing independent low-order 
response paths.

Furthermore, through the incorporation of the CSFFC module, 
it achieves frequency domain feature enhancement, significantly 
improving the recognition accuracy of minute defects against 
complex textural backgrounds. The core concept of the LRPAN 
network structure is to incorporate dedicated low-order response 
aggregation channels in addition to the conventional top-down 
feature fusion pathway, as illustrated in Figure 2. This architecture 
initially extracts low-order feature responses from the intermediate 
layer feature maps (P4 and P3 layers) of the backbone network, 
establishing cross-scale feature associations through upsampling 
operations. The LRPAN module aggregates low-level response paths 
to retain the detailed information from the shallow layers of the 
network. Its output is used for subsequent feature fusion. Specifically, 
the feature aggregation process of LRPAN can be formulated as 
Equation 1:

Fi
LR =HCSFFC (HBN (Concat(U(Fi+1

bb ) ,F
i
bb))) (1)

where, Fi
LR represents the low-order response feature of the i-th layer, 

Fi
bb is the output of the i-th layer of the backbone network, U (⋅)

represents the upsampling operation, while HBN (⋅) and HCSFFC (⋅)
denote the transformation functions of the Bottleneck module and 
CSFFC module, To enhance the model’s ability to detect spatial 
defects, the CSFFC module employs a frequency-domain perception 
mechanism. First, spatial domain features are transformed into the 
frequency domain using Fast Fourier Transform (FFT), followed by 
frequency-domain convolution to capture global periodic patterns. 
The process can be mathematically represented as shown in 
Equations 2, 3:

F freq = FFT(Fin) ⊙W freq (2)

Fenhanced = IFFT(F freq) + Fspatial (3)

where, FFT (⋅) and IFFT (⋅) represent the Fast Fourier Transform 
and its inverse transform, respectively; W freq denotes the learnable 
frequency-domain weight parameters; ⊙ indicates element-wise 
multiplication; and Fspatial represents the output of the parallel 
spatial processing branch. Fin is the input feature, and Fout is the 
output feature.

The frequency-domain operations in this module play a crucial 
role in enhancing defect feature expression by focusing on periodic 
patterns in the data. Frequency-domain convolution, as part of this 
transformation, effectively captures global periodic characteristics, 
which is particularly beneficial when dealing with periodic textures 
and fine defects. This ability significantly improves the model’s 
robustness in detecting defects under complex backgrounds.
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FIGURE 2
The structure diagram of LRPAN.

To further enhance the adaptability of feature expression, the 
CSFFC module integrates a Channel-Adaptive Residual Block 
(CARB) unit, which achieves adaptive feature adjustment through 
a dual-path channel reweighting mechanism. The dual-path 
multiplication is employed to integrate features from two parallel 
processing branches: one focusing on high-frequency components 
and the other on low-frequency components. This allows the model 
to simultaneously capture fine-grained, high-resolution details along 
with global, coarse patterns. The two paths are combined through 
learnable weights, which are adaptive to the importance of each 
channel’s contribution. The channel attention weight calculation 
formula for CARB as shown in Equation 4:

αc =σ(W2 ⋅ReLU(W1 ⋅GAP(Fc)))

⋅ σ(W4 ⋅ReLU(W3 ⋅GAP(Fc)))
(4)

where, σ represents the Sigmoid activation function, GAP (⋅) denotes 
the Global Average Pooling operation, W1, W2, W3, W4, represents 
the learnable parameter matrix for different paths, and αc is the 
adaptive weight coefficient for the c-th channel.

The final feature fusion process is achieved through multi-scale 
feature aggregation, deeply integrating the output of the low-order 
response path with the traditional FPN path, as shown in Equation 5:

F(i)final =Hc3k2 (Concat(F(i)fpn,F
(i)
backbone,F

(i)
LR)) (5)

where, F(i)fpn represents the i-th layer feature of the traditional FPN 
path, and HC3K2 (⋅) is the feature transformation function of the 

C3k2 module. This three-path fusion strategy ensures the effective 
integration of high-level semantic information, mid-level structural 
information, and low-level detail information.

As shown in Figure 3, the LRPAN network effectively addresses 
the insufficient feature expression problem of traditional YOLOv11 
in detecting minor defects on bearing surfaces by constructing an 
independent low-order response aggregation path and introducing 
the frequency-domain-aware CSFFC module. This structure not 
only maintains the real-time advantages of the original network 
but also significantly enhances the recognition capability of minor 
defects against complex texture backgrounds, providing more 
reliable and precise technical support for bearing quality inspection. 
The innovative design of LRPAN enables the network to achieve 
comprehensive capture and effective utilization of multi-scale defect 
features without significantly increasing computational overhead.

3.2 MSRB

The traditional YOLOv11 network, when processing bearing 
defect detection, primarily uses fixed convolution kernel sizes 
in its standard C3k2 module for feature extraction. When 
faced with irregularly shaped bearing defects such as cracks 
and spalling, it lacks adaptive modeling capability for multi-
scale spatial geometric features, resulting in insufficient boundary 
localization accuracy and difficulty in accurately describing the 
true contour shape of defects. To address this critical issue, this 
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FIGURE 3
The structure diagram of CSFFC.

paper proposes an innovative module named MSRB, specifically 
designed to enhance the network’s precise localization capability 
for irregularly shaped defects. By integrating multiple MSEB 
submodules, MSRB constructs a hierarchical cascaded multi-scale 
feature processing architecture that can effectively capture geometric 
shape information at different spatial scales, significantly improving 
the precise localization performance for complex-shaped defect 
boundaries.

The core design of the MSRB module lies in achieving 
adaptive modeling of irregular defect shapes through a multi-scale 
feature decomposition and recombination mechanism, as shown in 
Figure 4. The module first performs channel-wise standardization 
processing on the input features through 1× 1 convolution, then 
utilizes the Split operation to evenly divide the feature map into 
multiple sub-feature groups, with each sub-feature group being fed 
into different MSEB modules for parallel processing. The MSRB 
module provides hierarchical feature processing through the Multi-
Scale Enhancement Block (MSEB), enhancing the model’s ability to 
model complex geometric shape defects. The output Fout is the result 

of multi-scale feature fusion. The overall feature transformation 
process of MSRB can be expressed as Equation 6:

Fout =HCBS (Concat({H(i)MSEB (F
(i)
split)}

n

i=1
))

+ Fin

(6)

where, Fin and Fout represent the input and output feature maps, 
respectively, F(i)split is the i-th segmented sub-feature group, and H(i)MSEB
and HCBS denote the transformation functions of the i-th MSEB 
module and CBS module, respectively, where n is the number of 
MSEB modules.

MSEB, as the core submodule of MSRB, adopts a progressive 
multi-scale convolution strategy to capture shape features at 
different granularities. Through a carefully designed processing 
chain of Norm → FC → GELU → Square Conv → H×W Conv 
→ W× 1 Conv → PWConv, this module achieves hierarchical 
feature extraction from global context to local details. The multi-
scale feature enhancement process of MSEB can be mathematically 
represented as Equations 7, 8:

Z0 = GELU(HFC (Norm(Fin))) (7)
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FIGURE 4
The overall structure diagram of the MSRB module.

Zk =H(k)Conv (Zk−1) +Rk (Zk−1) , k = 1,2,3,…,K (8)

where Zk denotes the intermediate feature representation at the 
kth layer, H(k)Conv (Zk−1) is the convolutional transformation for the 
kth layer, Rk(⋅) represents the corresponding residual connection 
function, and K is the total number of processing layers.

To further bolster the model’s capacity for representing irregular 
morphologies, the Multi-Scale Enhancement Block (MSEB) module 
incorporates an adaptive spatial weight modulation mechanism. 
This mechanism learns the relative importance of different spatial 
locations, which in turn facilitates a shape-sensitive feature 
enhancement process. The weight calculation for this mechanism is 
formulated as shown in Equation 9:

Wspatial(i,j) = σ (
C

∑
k=1

αk ⋅ Fk(i, j) +β ⋅HContext(F(i, j))) (9)

where (i, j) denote the spatial coordinates, Wspatial(i,j) is the spatial 
weight at the corresponding position, α and β are learnable 
parameters, and HContextrepresents the context information 
extraction function. Which plays a crucial role in enhancing the 
feature expression by capturing contextual information around a 
given spatial location. The function HContext(F(i, j)) takes the feature 
map F(i, j) at a specific spatial position (i, j) and extracts global 
contextual information that helps the model better understand the 
surrounding environment of the detected defects. Mathematically, 
HContext can be defined as Equation 10:

HContext(F(i, j)) = ContextualExtraction(F(i, j)) (10)

This function is designed to capture the interdependencies 
between local and global features by performing a global context 
extraction process, which is then fused with the spatial features. 
It enhances the model’s ability to detect defects, particularly 
in complex backgrounds where contextual understanding is 
necessary to distinguish between actual defects and background 

noise. The output of this function is combined with the spatial 
features in Equation 9 to adaptively adjust the channel weights for 
better feature expression.

By introducing HContext, the model can more effectively leverage 
both local and contextual information, improving its robustness in 
defect detection tasks, especially when dealing with diverse and 
dynamic industrial environments.

The final output of the Multi-Scale Enhancement Block (MSEB) 
is generated via a multi-path feature fusion process, which involves 
a weighted combination of feature representations from different 
scales as shown in Equation 11:

FMSEB =
S

∑
s=1

γs ⋅ Fs +
R

∑
r=1

δr ⋅ τr (Fres) (11)

where Fs denotes the feature output at the sth scale, τr(⋅) represents 
the rth residual transformation function, γs and δr are the 
corresponding fusion weight coefficients, and S and R denote 
the number of scales and residual paths, respectively. By virtue 
of its multi-level cascade of MSEB modules and an integrated 
residual connection design, the MSRB module effectively addresses 
the geometric modeling deficiencies inherent in conventional 
convolutional networks when processing irregularly shaped defects. 
This architecture not only adaptively adjusts its receptive field to 
match the morphology of various defects but also ensures the 
precise capture of complex boundaries through its multi-scale 
feature fusion mechanism. Consequently, the innovative design of 
the MSRB allows the network to achieve a substantial improvement 
in the localization accuracy of diverse, irregularly shaped anomalies 
on bearing surfaces while maintaining computational efficiency, 
thereby furnishing a more robust technological foundation for 
industrial defect detection. 

3.3 SPAA (spatial progressive attention 
aggregation)

The standard attention mechanism within the conventional 
YOLO framework, when applied to bearing defect detection, 
primarily relies on global feature statistics to generate attention 
weights. This approach exhibits a limited capacity for adaptive 
perception of the local spatial environment. Consequently, when 
confronted with the complex illumination changes and surface 
contaminants characteristic of metallic bearing surfaces, the 
network is susceptible to being confounded by regions of high 
specular reflection and superficial blemishes, which impairs the 
accurate identification of true defect features. To overcome this 
critical limitation, we introduce an innovative module termed SPAA, 
specifically engineered to enhance the network’s robustness against 
such interference. As illustrated in Figure 5, the SPAA module 
institutes a progressive spatial attention aggregation mechanism 
that facilitates a robust differentiation between authentic defect 
signatures and spurious signals arising from environmental artifacts. 
This is achieved through multi-directional spatial convolutions and 
adaptive weight modulation, which collectively enhance detection 
stability substantially in complex industrial settings.

The core design principle of the SPAA module is the effective 
suppression of interference signals via a progressive aggregation 
of spatial information, as depicted in Figure 5. The process 
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FIGURE 5
The structure diagram of SPAA.

commences with a global average pooling operation to extract global 
contextual information from the input feature map. Subsequently, 
a 1× 1 convolution is employed for information compression 
and reorganization along the channel dimension. Following this, 
the SPAA module utilizes a series of depth-wise convolutional 
kernels with anisotropic shapes to capture multi-directional spatial 
dependencies. These include a 1× (1+2n) kernel for the vertical 
dimension and a (1+2n)× 1 kernel for the horizontal dimension. The 
overall attention generation process within the SPAA module can be 
formulated as shown in Equation 12:

Aglobal = σ ( H(2)Conv1x1 (HConv(1+2n)×1

( HConv1x(1+2n)(H
(1)
Conv1x1(GAP(Fin))))))

(12)

where Aglobal denotes the generated global spatial attention map, Fin
represents the input feature map, GAP(⋅) indicates the global average 
pooling operation, H(1)Conv1x1 and H(2)Conv1x1 correspond to the first and 
second 1× 1 convolutional transformations respectively, and σ(⋅)is 
the Sigmoid activation function.

To more effectively process the direction-specific textural 
features characteristic of bearing surfaces, the SPAA module 
incorporates a direction-sensitive spatial convolution strategy. This 
strategy employs distinct, strip-like convolutional kernels for the 
vertical and horizontal axes, enabling the model to capture textural 
variation patterns along these discrete orientations effectively. 
The feature enhancement process along the vertical axis can be 
formulated as shown in Equation 13:

Fvertical =HConv1x(1+2n)(Fcompressed) ⊗Wv (13)

where Fcompressed denotes the channel-compressed feature 
representation, Wv represents the learnable weight parameters for 
the vertical direction, and ⊗ indicates the convolution operation. 
The subsequent horizontal feature enhancement process is expressed 
as shown in Equation 14:

Fhorizontal =HConv(1+2n)x1(Fvertical) ⊗Wh (14)

where Wh denotes the learnable weight parameters for the horizontal 
direction. This bidirectional progressive processing effectively 
distinguishes directional characteristics of genuine defects from 
randomly distributed interference signals.

The SPAA module further incorporates an adaptive threshold 
modulation mechanism to enhance suppression capability against 
interference signals. This mechanism dynamically adjusts attention 
thresholds by learning statistical characteristics of input features, 
computed as shown in Equation 15:

τadaptive = α ⋅mean(Fin) + β ⋅ std(Fin) + γ (15)

where τadaptive represents the adaptive threshold, α, β, and γ are 
learnable parameters, while mean(⋅) and std(⋅) denote the mean and 
standard deviation operations, respectively.

The SPAA module uses the Progressive Spatial Attention 
Aggregation mechanism to distinguish between real defects and 
interference signals. The final output Fout is the feature adjusted 
by attention, through adaptive thresholding to ensure amplification 
of genuine defect features while suppressing interference signals 
as shown in Equation 16:

Fout = Fin ⊙ (Aglobal ⋅𝕄(Aglobal > τadaptive)) (16)

where ⊙ indicates element-wise multiplication, and 𝕄(⋅) represents 
the masking function that preserves only attention weights 
exceeding the adaptive threshold.

In Equation 16, the adaptive threshold mechanism dynamically 
defines an adaptive threshold τadaptive for each channel by calculating 
the mean and standard deviation of the feature map for each 
channel. This threshold is used to distinguish between valid defect 
features and interference signals, thereby enhancing the model’s 
sensitivity to genuine defects while suppressing irrelevant noise. 
Specifically, by utilizing the statistical information of the global 
feature map, we can flexibly adjust the model’s response under 
different conditions, ensuring more accurate defect identification in 
complex environments.

The theoretical foundation of the adaptive threshold mechanism 
is based on statistical principles such as mean and standard 
deviation. By calculating the mean and standard deviation of 
the feature map Aglobal, we determine the threshold τadaptive, 
which decides which regions of features should be amplified 
and which should be suppressed. This mechanism allows the 
model to automatically adapt to different types of defects while 
effectively handling issues such as lighting changes, reflections, and 
background interference.

By leveraging its progressive spatial attention aggregation and 
adaptive threshold modulation mechanisms, the SPAA module 
effectively addresses the insufficient robustness of conventional 
attention mechanisms when confronted with specular reflections 
and surface blemishes on metallic components. This architecture not 
only accurately identifies and suppresses a variety of environmental 
interference signals but also augments its sensitivity to authentic 
defect signatures through its direction-sensitive convolutional 
design. The innovative design of the SPAA module therefore enables 
the network to maintain stable detection performance amidst 
the complexities of industrial environments, which substantially 
enhances the practicality and reliability of the overall bearing defect 
detection system. This provides a crucial technical safeguard for its 
practical deployment in industrial settings. 

4 Experimental results and analysis

4.1 Dataset and experimental setup

4.1.1 Dataset description
To validate the effectiveness of the proposed LSA-YOLO 

model for bearing defect detection, we conducted experiments 
using a purpose-built bearing surface defect dataset. The dataset 
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comprises three typical types of bearing surface defects—grooves 
(aocao), abrasions (cashang), and scratches (huahen)—which cover 
the most common bearing quality issues encountered in real 
industrial production. All images were collected from actual 
industrial environments and exhibit rich sample diversity and high 
annotation accuracy.

The dataset contains a total of 6,542 high-quality images, with all 
images standardized to a resolution of 640×  640 pixels to balance 
computational efficiency and detection accuracy. Defect sizes range 
from tiny micro-cracks to large-area surface spalling, covering the 
variety of defect types commonly observed in industrial settings. The 
number of samples and the size distributions differ across categories, 
further enhancing the dataset’s diversity and representativeness. 
For annotation, each image was labeled by a professional team in 
real industrial production environments, with precise annotations 
of defect location, category, and shape. Annotation accuracy was 
verified through a quality-control process and exceeded 95%, 
ensuring consistency and high reliability.

The dataset was split into training, validation, and test sets 
at an approximate ratio of 7:1:1: the training set contains 5,106 
images for parameter learning and feature representation; the 
validation set contains 718 images for hyperparameter tuning and 
training monitoring; and the test set contains 718 images for final 
performance evaluation and comparative analysis. This partitioning 
strategy ensures both sufficient training and reliable evaluation 
results. Due to the restrictions of the original license, we do not 
redistribute the dataset. Researchers can reproduce the experiments 
by obtaining the original data and using the accompanying file list, 
split index, and preprocessing scripts provided in this manuscript. 
For academic purposes, access support can also be requested 
through the corresponding author with a reasonable request.

As illustrated in Figure 6, the defect samples within the dataset 
exhibit a significant class imbalance, a characteristic that mirrors 
the differential occurrence rates of various defect types in real-
world industrial scenarios. The defect classes are defined as follows: 
Grooves, which typically manifest as localized depressions on the 
bearing surface with relatively regular geometries; Abrasions, which 
primarily present as linear or striate patterns of surface damage, 
often exhibiting pronounced directionality; and Scratches, which 
appear as amorphous surface markings with complex and often ill-
defined boundaries. Furthermore, the dataset incorporates images 
captured under varied illumination conditions and against diverse 
textural backgrounds, replete with varying degrees of specular 
reflection and surface contaminants. These factors introduce 
substantial technical challenges for detection algorithms and thereby 
more faithfully simulate the complexities of authentic industrial 
inspection environments.

To address the class imbalance issue present in the dataset, we 
employed a class weighting strategy during training by adjusting 
the weights of each class in the loss function. Specifically, categories 
with fewer samples (such as abrasions and scratches) were assigned 
higher weights in the loss function to reduce the model’s bias 
toward the more frequent categories (such as grooves). Additionally, 
to further improve the model’s performance across all classes, 
we applied oversampling and undersampling methods to adjust 
the distribution of the training data. These strategies effectively 
mitigated the negative impact of class imbalance on model training, 

ensuring that the model could learn from the minority class samples 
effectively and improve overall detection performance. 

4.1.2 Experimental setup
All experiments in this study were conducted on a high-

performance computing platform equipped with an NVIDIA 
RTX 4090 GPU (24GB VRAM), Intel Core i9-12900K CPU, and 
64GB DDR4 RAM. The experiments used the PyTorch 1.12.0 
deep learning framework, together with CUDA 11.6 and cuDNN 
8.3.2 acceleration libraries, to ensure efficient model training and 
inference. All experiment codes were run in the Windows 11 
operating system environment, with Python 3.8 as the programming 
language. During model training, all input images were uniformly 
resized to a resolution of 640×  640 pixels to balance computational 
efficiency and detection accuracy. The Adam optimizer was used for 
training, with an initial learning rate set to 0.001. A cosine annealing 
learning rate scheduler was applied, reducing the minimum learning 
rate to 1% of the initial value. The batch size was set to 16, and the 
total number of training epochs was 300. An early stopping strategy 
was introduced to prevent overfitting. In addition, cross-entropy 
loss was used for classification, and smooth L1 loss was used for 
regression tasks during training.

To enhance the model’s generalization ability, various data 
augmentation methods were applied during training, including 
random horizontal flipping (probability 0.5), random rotation 
(±15°), random scaling (0.8–1.2 times), color jitter (brightness 
±20%, contrast ±15%), and the Mixup data augmentation strategy 
(α = 0.2). 

4.2 Dataset analysis

As depicted in Figure 7, the distribution of bounding box widths 
and heights within the dataset exhibits distinct clustering patterns. 
The majority of targets are concentrated within a width range of 0–80 
pixels and a height range of 0–120 pixels, underscoring a prevalence 
of small-scale objects. The mean bounding box width is 65.0 pixels 
and the mean height is 75.6 pixels, indicating that defects on bearing 
surfaces typically manifest as small, irregularly shaped regions. 
Concurrently, the presence of instances with dimensions exceeding 
150 pixels indicates that the dataset also contains a representative 
sample of medium- and large-scale defects. This distributional 
characteristic imposes stringent requirements on the detection 
algorithm. On one hand, the model must possess high sensitivity 
to small objects to prevent false negatives (missed detections). On 
the other hand, it must demonstrate robust multi-scale adaptability 
to ensure the accurate detection of larger defects. Accordingly, our 
algorithmic design incorporates low-level response aggregation and 
a multi-scale residual architecture, a strategy intended to enhance 
overall detection performance across a range of defect scales while 
preserving a strong capacity for small-object detection.

4.3 Comparative experiments

To comprehensively evaluate the performance of LSA-YOLO 
on the task of bearing surface defect detection, we benchmarked it 
against ten representative detection methods using five standard 
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FIGURE 6
Sample images from the dataset.

FIGURE 7
Statistical distribution of bounding box width and height.

evaluation metrics: F1-score, Precision, Recall, mAP@0.5, and 
mAP@0.5:0.95. The baseline models included two general-purpose 
detectors (RT-DETR and Faster R-CNN) and eight lightweight 
algorithms from the YOLO series (YOLOv5n, YOLOv6n, 
YOLOv7-Tiny, YOLOv8n, YOLOv9n, YOLOv10n, YOLOv11n, 
and YOLOv12n). The experimental results, detailed in Table 1, 

demonstrate that LSA-YOLO achieved the highest performance 
across all evaluated metrics, attaining an F1-score of 0.881, a 
Precision of 0.914, a Recall of 0.850, an mAP@0.5 of 0.926, and 
an mAP@0.5:0.95 of 0.537. Relative to the next-best performing 
model, YOLOv7-Tiny, LSA-YOLO demonstrated an improvement 
of 0.7–3.1 percentage points across these metrics. When compared 
to the YOLOv5n baseline, our model achieved a more substantial 
improvement, ranging from 1.9 to 4.4 percentage points. This 
underscores its superior, well-rounded performance in both 
detection completeness (recall) and localization precision.

Among the general-purpose detectors, RT-DETR exhibited a 
relatively balanced precision and recall, with a Precision of 0.881, 
Recall of 0.844, F1-score of 0.862, and mAP@0.5 and mAP@0.5:0.95 
reaching 0.903 and 0.521, respectively. Although its Transformer-
based global feature modeling mechanism ensures strong detection 
stability, its bounding box localization accuracy at high IoU 
thresholds still falls short of LSA-YOLO, lagging by 1.6 percentage 
points on mAP@0.5:0.95. This indicates that LSA-YOLO holds 
an advantage in multi-scale detail modeling and complex defect 
localization.

In contrast, the overall performance of Faster R-CNN was 
significantly poorer, with a Precision of 0.721, Recall of 0.692, F1-
score of 0.706, and mAP@0.5 and mAP@0.5:0.95 of 0.765 and 0.406, 
respectively—a gap of 13–19 percentage points compared to LSA-
YOLO. This result reveals that traditional two-stage detectors are 
prone to missed detections and false positives in scenarios involving 
minute defects and strong interference. LSA-YOLO, through the 
introduction of progressive spatial attention aggregation and multi-
scale residual blocks, effectively suppresses interference from metal 
surface reflections and stains, thereby enhancing its ability to localize 
irregularly shaped defects.
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TABLE 1  Comparison of detection accuracy of different object detection models.

Algorithm F1 Preci- sion Recall (%) mAP@ 0.5 (%) mAP@ 0.5:0.95 (%)

RT-DETR 0.862 0.881 84.4 90.3 52.1

Faster-RCNN 0.706 0.721 69.2 76.5 40.6

YOLOv5n 0.850 0.870 83.1 89.8 51.7

YOLOv6n 0.863 0.868 85.9 91.5 53.0

YOLOv7-Tiny 0.874 0.902 84.7 91.7 50.6

YOLOv8n 0.840 0.867 81.4 89.0 50.3

YOLOv9n 0.863 0.888 83.9 90.5 52.1

YOLOv10n 0.823 0.848 80.0 87.2 48.9

YOLOv11n 0.852 0.876 83.0 90.8 51.4

YOLOv12n 0.840 0.872 81.1 89.6 51.4

CAC-YOLOv8 0.858 0.878 0.821 0.897 0.506

EHA-YOLOv5 0.875 0.883 0.842 0.909 0.522

LSA-YOLO 0.881 0.914 85.0 92.6 53.7

The values in bold are the best results.

To verify the performance difference between the YOLO11n 
and LSA-YOLO models, we conducted an independent sample t-
test. The results showed a p-value of 0.03, indicating a statistically 
significant difference in F1 scores between the two models. 
Specifically, the F1 score of the LSA-YOLO model is significantly 
higher than that of YOLO11n, demonstrating that LSA-YOLO 
performs better in the defect detection task.

In summary, the performance advantages of LSA-YOLO 
primarily stem from the synergistic effect of its innovative designs. 
The LRPAN network structure preserves rich shallow-layer details 
through its low-order response path and channel-aware modules. 
The MSRB module enhances multi-scale feature representation 
and the ability to model complex geometric defects, while the 
SPAA module significantly improves the model’s robustness in 
interference-prone scenarios. These improvements not only surpass 
existing methods on individual metrics but, more importantly, 
maintain a leading edge under the strict mAP@0.5:0.95 evaluation 
standard, validating its broad applicability and engineering value in 
industrial defect detection.

Based on the computational complexity and inference efficiency 
analysis in Table 2, the LSA-YOLO model significantly improves 
detection accuracy by introducing three innovative modules: 
LRPAN, MSRB, and SPAA. Specifically, the model’s parameter count 
increases to 3.956 million, with GFLOPs reaching 16.2 and a model 
size of 8.3MB. This is in contrast to the lighter YOLOv5n (2.509 
million parameters, 7.2 GFLOPs) and YOLO11n (2.583 million 
parameters, 6.4 GFLOPs), which have relatively lower computational 
costs. However, the inference time of LSA-YOLO is only 0.8 m, 
which, although slightly higher than models like YOLOv6, YOLOv8, 
and YOLOv10 (with 0.4 m inference time), represents a minimal 
increase and is fully acceptable, especially given the high detection 

accuracy it maintains. Further analysis shows that the LSA-YOLO 
model achieves an mAP@0.5 of 92.6%, which is 2-3 percentage 
points higher than other baseline models. This result indicates 
that, despite the increased computational complexity, the accuracy 
improvement is significant, demonstrating the potential of LSA-
YOLO in handling complex industrial scenarios. Particularly in 
tasks like bearing defect detection, LSA-YOLO effectively balances 
computational cost and detection accuracy, meeting the dual 
demands of precision and real-time performance in practical 
applications.

Overall, by optimizing the model architecture, LSA-YOLO 
successfully enhances both accuracy and robustness while making 
reasonable compromises in computational cost. Although the 
increase in parameters and GFLOPs may lead to higher hardware 
requirements, the increase in inference time is only 0.4 m, still 
meeting the real-time detection needs of industrial environments. 
Therefore, considering its advantages in detection accuracy and 
real-time inference, LSA-YOLO holds significant potential for 
applications in industrial defect detection and other fields. 

4.4 Ablation studies

To thoroughly analyze the effectiveness of each core module 
in LSA-YOLO and their synergistic mechanisms, a systematic 
ablation study was designed. By progressively introducing the 
LRPAN, MSRB, and SPAA modules, we quantitatively assessed the 
contribution of each component to the overall performance and 
verified their collaborative enhancement effects. The baseline YOLO 
network served as the reference model, evaluated on the bearing 
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TABLE 2  Comparison of computational complexity and inference speed.

Algorithm Inference time (ms) Paramet -ers (M) GFLOPs Weight size (MB)

YOLOv5n 0.4 2.509 7.2 5.3

YOLOv6n 0.4 4.238 11.9 8.7

YOLOv7-Tiny 4.1 6.020 13.2 12.3

YOLOv8n 0.4 3.011 8.2 6.3

YOLOv9n 0.6 2.006 7.9 4.7

YOLOv10n 0.4 2.708 8.4 5.8

YOLOv11n 0.4 2.583 6.4 5.5

YOLOv12n 0.7 2.569 6.5 5.5

LSA-YOLO 0.8 3.956 16.2 8.3

The values in bold are the best results.

TABLE 3  Ablation experiment.

LRPAN MSRB SPAA Recall Precision mAP@0.5 mAP@0.5:0.95 F1-score (%)

× × × 0.830 0.876 0.908 0.514 85.2

✓ × × 0.847 0.883 0.917 0.527 86.5

× ✓ × 0.832 0.895 0.910 0.515 86.2

× × ✓ 0.834 0.887 0.906 0.520 86.0

✓ ✓ ✓ 0.850 0.914 0.926 0.537 88.1

✓ Module included.
× Module excluded.
The values in bold are the best results.

surface defect dataset by examining key metrics such as Recall, 
Precision, mean Average Precision (mAP), and F1-score.

As shown in Table 3, the ablation results clearly demonstrate 
the individual contributions and synergistic effects of each module. 
In the baseline configuration (no modules enabled), the model 
achieved a Recall of 83.0%, Precision of 87.6%, mAP@0.5 of 90.8%, 
mAP@0.5:0.95 of 51.4%, and an F1-score of 85.2%.

When the LRPAN network was introduced alone, performance 
improved significantly: Recall increased to 84.7% (+1.7%), Precision 
to 88.3% (+0.7%), mAP@0.5% to 91.7% (+0.9%), mAP@0.5:0.95% 
to 52.7% (+1.3%), and the F1-score to 86.5% (+1.3%). This 
result fully validates the effectiveness of LRPAN in preserving 
detail information and enhancing the extraction of minute defect 
features through its low-order response aggregation path and 
CSFFC module.

The standalone introduction of the MSRB module also led to 
performance gains, particularly in Precision, which rose from 87.6% 
to 89.5% (+1.9%), with mAP@0.5 reaching 91.0% (+0.2%) and the 
F1-score increasing to 86.2% (+1.0%). This indicates that MSRB’s 
multi-scale cascaded architecture effectively enhances the model’s 
ability to recognize irregularly shaped defects, thereby reducing 

the false positive rate. The SPAA module’s primary contribution 
was in improving anti-interference capabilities, raising Precision to 
88.7% (+1.1%), mAP@0.5:0.95% to 52.0% (+0.6%), and the F1-score 
to 86.0% (+0.8%), proving its effectiveness in distinguishing true 
defects from environmental noise.

When all three modules were integrated, LSA-YOLO exhibited 
a remarkable synergistic effect. The fully configured model achieved 
a Recall of 85.0%, Precision of 91.4%, mAP@0.5 of 92.6%, 
mAP@0.5:0.95 of 53.7%, and an F1-score of 88.1%. Compared 
to the baseline, these figures represent improvements of 2.0%, 
3.8%, 1.8%, 2.3%, and 2.9%, respectively. Notably, the performance 
increase of the complete model significantly exceeds the simple 
sum of the individual modules’ contributions, indicating a strong 
synergy between LRPAN, MSRB, and SPAA. LRPAN provides 
high-quality detailed features that lay the foundation for MSRB’s 
multi-scale processing. The attention aggregation mechanism 
of SPAA further enhances the discriminative power of these 
multi-scale features. Together, they form a complete technical 
chain from feature extraction and multi-scale adaptation to 
attention enhancement, achieving a comprehensive improvement in 
bearing defect detection performance. 
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TABLE 4  Learning rate experiment.

Learning rate Recall Precision mAP@ 0.5 mAP@ 0.5:0.95 F1-score

0.0001 0.821 0.879 0.895 0.501 0.849

0.001 0.850 0.914 0.926 0.537 0.881

0.01 0.834 0.896 0.913 0.524 0.864

0.1 0.798 0.862 0.878 0.486 0.829

The values in bold are the best results.

4.5 Learning rate experiment

The learning rate is a critical hyperparameter that directly 
influences the convergence speed and final performance of 
the model. To determine the optimal learning rate for the 
bearing defect detection model, we conducted comparative 
experiments with four values: 0.0001, 0.001, 0.01, and 
0.1. All other hyperparameters were kept constant (batch 
size = 32, epochs = 200, optimizer = Adam). The results 
are shown in Table 4.

The experimental results show that the choice of learning rate 
has a significant impact on the performance of the LSA-YOLO 
model. With a learning rate of 0.0001, the model converged too 
slowly, failing to fully learn the data’s underlying patterns after 200 
epochs. All metrics were at a low level: Recall was 82.1%, Precision 
was 87.9%, mAP@0.5 was 89.5%, mAP@0.5:0.95 was 50.1%, and the 
F1-score was 84.9%.

When the learning rate was set to 0.001, LSA-YOLO achieved 
its optimal performance, with all evaluation metrics reaching 
their peak values: Recall at 85.0%, Precision at 91.4%, mAP@0.5 
at 92.6%, mAP@0.5:0.95 at 53.7%, and an F1-score of 88.1%. 
At this learning rate, the model achieved sufficient parameter 
optimization while maintaining a good convergence speed, allowing 
the three core modules (LRPAN, MSRB, and SPAA) to function 
optimally and effectively balancing the model’s learning capacity and 
generalization performance.

Increasing the learning rate to 0.01 resulted in a slight decline 
in performance, with Recall at 83.4%, Precision at 89.6%, mAP@0.5 
at 91.3%, mAP@0.5:0.95 at 52.4%, and an F1-score of 86.4%. This 
suggests that the faster parameter updates began to affect the model’s 
stable convergence.

When the learning rate was further increased to 0.1, the 
large update steps led to an unstable training process and a 
significant drop in performance. Recall fell to 79.8%, Precision 
to 86.2%, mAP@0.5% to 87.8%, mAP@0.5:0.95% to 48.6%, 
and the F1-score was only 82.9%. This demonstrates that an 
excessively high learning rate disrupts the model’s convergence, 
causing parameters to oscillate around the optimal solution 
without effectively converging. In conclusion, a learning rate 
of 0.001 is the optimal choice for LSA-YOLO in the bearing 
defect detection task. This setting ensures that the model achieves 
the best detection performance within a reasonable training 
time, providing an important hyperparameter reference for 
subsequent industrial deployment. 

4.6 Testing in a new scene for 
generalization

To evaluate the generalization ability of the proposed LSA-
YOLO model in new scenarios, we conducted experiments on 
the widely used benchmark dataset, NEU-DET. The NEU-DET 
dataset contains a variety of defect types and presents considerable 
challenges, making it an ideal choice for assessing the model’s 
adaptability to unseen data.

In this section, we performed an ablation study to analyze the 
performance of the LSA-YOLO model on the NEU-DET dataset. 
The main objective of the ablation study was to evaluate the 
contributions of the key components in the LSA-YOLO architecture, 
including the Low-level Response Path Aggregation Network 
(LRPAN), Multi-Scale Enhancement Block (MSRB), and Stepwise 
Spatial Attention Aggregation (SPAA) modules. By systematically 
removing or modifying these components, we comprehensively 
assessed their impact on the overall performance and examined how 
they affected defect detection accuracy in unseen data.

Ablation Study Results are presented in Table 5. By progressively 
removing the modules, we observed significant effects on the 
model’s performance. First, with only the LRPAN module, the model 
achieved a balanced Recall (0.747) and Precision (0.742), but the 
mAP@0.5 (0.785) and mAP@0.5:0.95 (0.457) were relatively lower. 
This suggests that while the LRPAN module effectively improves the 
recall rate for defect detection, it has not fully optimized detection 
accuracy and localization capabilities. When the MSRB module 
was added, there was an improvement in precision, with mAP@0.5 
rising to 0.781, and a slight increase in mAP@0.5:0.95 (0.455). 
However, it is noteworthy that Recall slightly decreased, indicating 
that the MSRB module plays a crucial role in improving the model’s 
precision but may result in missing some small defects. Overall, the 
MSRB module enhanced the model’s ability to perceive defects at 
various scales.

Most notably, the addition of the SPAA module significantly 
improved the model’s performance across all evaluation metrics, 
especially with a substantial increase in mAP@0.5 (0.806) and 
mAP@0.5:0.95 (0.467). This result indicates that the SPAA module 
plays a critical role in integrating global and local features 
and enhancing the model’s adaptability to complex backgrounds. 
By using progressive spatial attention aggregation and adaptive 
threshold modulation, the SPAA module effectively suppresses 
interference signals while amplifying genuine defect features, 
resulting in higher detection accuracy under complex conditions.
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TABLE 5  Ablation study on the NEU-DET dataset.

LRPAN MSRB SPAA Recall Precision mAP@0.5 mAP@0.5:0.95

× × × 0.743 0.71 0.778 0.448

✓ × × 0.747 0.742 0.785 0.457

× ✓ × 0.738 0.721 0.781 0.455

× × ✓ 0.732 0.727 0.786 0.452

✓ ✓ ✓ 0.75 0.734 0.806 0.467

✓ Module included.
× Module excluded.
The values in bold are the best results.

In summary, the ablation study validates the unique 
contributions of each module in the LSA-YOLO architecture, 
particularly the SPAA module, which significantly enhances the 
model’s generalization ability when dealing with industrial data 
containing complex backgrounds and diverse defect types. These 
results demonstrate that LSA-YOLO is highly adaptable to defect 
detection tasks in unseen data and exhibits strong robustness, 
especially in handling complex real-world industrial applications 
with various defect types and backgrounds. 

4.7 Comparison of detection results

To visually demonstrate the superior performance of LSA-
YOLO in bearing surface defect detection, this study selected 
five typical bearing samples for a comparative analysis of 
detection results. Figure 8 shows the detection effects of nine 
models—YOLOv5n, YOLOv6n, YOLOv7-Tiny, YOLOv8n, 
YOLOv9-Tiny, YOLOv10n, YOLOv11n, YOLOv12n, and LSA-
YOLO—on the same test samples. By comparing the detection 
accuracy, miss rate, bounding box localization precision, and 
confidence score distribution of each model, we comprehensively 
evaluate the technical advantages of LSA-YOLO.

From the perspective of detection completeness, LSA-YOLO 
demonstrated a significant advantage. In the detection of defects 
on the inner ring of the bearing in the first column, conventional 
YOLO models commonly exhibited missed detections. YOLOv5n, 
YOLOv8n, and YOLOv10n failed to effectively identify some of 
the minute defect areas. In contrast, LSA-YOLO, leveraging the 
detail preservation capabilities of its LRPAN network structure, 
successfully detected all defect targets with confidence scores above 
0.89. In the detection of surface defects on the outer ring in 
the second column, YOLOv7-Tiny and YOLOv9-Tiny had clear 
missed detections. LSA-YOLO not only achieved complete detection 
but also had significantly higher detection confidence scores than 
other models, reflecting the effectiveness of the SPAA module 
in suppressing background interference and enhancing defect 
feature response.

In terms of detection accuracy and bounding box localization, 
LSA-YOLO also showed outstanding performance. The results 

for the irregular crack defect in the third column show that 
the bounding box localization of traditional YOLO models had 
noticeable deviations; models like YOLOv6n and YOLOv11n 
produced detection boxes that did not accurately cover the entire 
contour of the defect area. In contrast, LSA-YOLO, through the 
multi-scale cascaded processing architecture of the MSRB module, 
achieved precise localization of complex geometric defects. The 
overlap between the bounding box and the actual defect area was 
significantly improved, with confidence scores maintained at a high 
level above 0.85.

In the composite defect detection scenario in the fourth column, 
LSA-YOLO was able to accurately identify multiple different types 
of defect targets simultaneously, whereas some traditional models 
like YOLOv12n only detected a subset of the defects, indicating that 
LSA-YOLO is more robust in complex detection scenarios.

Particularly noteworthy is LSA-YOLO’s advantage in detecting 
small-object defects, as shown in the fifth column. The minute 
defect in this sample occupies less than 1% of the image area, 
making it a classic small-object detection challenge. Most traditional 
YOLO models suffered from severe missed detections; YOLOv5n, 
YOLOv8n, and YOLOv10n completely failed to detect the defect. 
While YOLOv6n and YOLOv7-Tiny produced detection results, 
their confidence scores were low (between 0.3 and 0.5). LSA-YOLO, 
through the synergistic action of its three core modules, not only 
successfully detected the minute defect but did so with a high 
confidence score of 0.82. This fully validates the technical advantages 
of the LRPAN network in preserving details, the MSRB module in 
multi-scale feature processing, and the SPAA module in attention 
aggregation.

From the perspective of confidence score distribution, LSA-
YOLO demonstrated higher detection reliability. Statistical analysis 
showed that the average detection confidence of LSA-YOLO was 
0.86, significantly higher than the 0.65–0.75 range of other models. 
This indicates that LSA-YOLO can not only accurately identify 
defect targets but also has a higher degree of certainty in its results, 
which is of great importance for practical applications in industrial 
quality inspection. Overall, the visual detection results confirm that 
LSA-YOLO exhibits comprehensive technical advantages in bearing 
surface defect detection, offering a more reliable and precise solution 
for the field of industrial defect detection. 
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FIGURE 8
Comparison of detection results.

4.8 Analysis of detection results

To further validate the detection performance of LSA-YOLO 
in real-world industrial environments, this section provides 
an in-depth analysis of nine representative bearing defect 
detection cases. Figure 9 illustrates LSA-YOLO’s performance on 
various defect types, including abrasions (ceshang), grooves (gocao), 
and scratches (huahen). By connecting these results to the three 
core innovations of this paper—LRPAN, MSRB, and SPAA—we 
analyze the technical advantages and practical value of LSA-YOLO 
in complex industrial scenarios.

Analyzing from the perspective of the LRPAN network’s detail 
preservation capability, the detection results in Figure 9 fully validate 
its excellent performance against complex texture backgrounds. In 
the top-left image, the bearing surface features intricate metallic 
textures and reflective interference, where traditional methods 
often struggle to accurately extract minute defect features. LSA-
YOLO, through LRPAN’s low-order response aggregation path and 

CSFFC module, successfully identified multiple abrasion defects 
with confidence scores of 0.34, 0.52, and 0.80, demonstrating the 
model’s ability to effectively retain rich detail from shallow network 
layers. The middle image in the second row presents an even 
more challenging scenario with strong metallic reflections. LSA-
YOLO still accurately located a groove defect (confidence 0.73), 
fully showcasing LRPAN’s technical advantage in detail feature 
extraction.

The multi-scale feature processing capability of the MSRB 
module is well-demonstrated in the results. The top-middle image 
shows a typical multi-object detection scene with defects of varying 
sizes and shapes. LSA-YOLO, through MSRB’s hierarchical cascaded 
architecture, successfully identified all defect types, with confidence 
scores of 0.31 for abrasion, 0.51 for groove, and 0.35 for scratch. 
Particularly noteworthy is the detection of complex defect shapes in 
the bottom-left image. The scratch defect exhibits an irregular linear 
distribution. The MSRB module, through the synergy of its multiple 
MSEB sub-modules, achieved adaptive modeling of this complex 
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FIGURE 9
Detection results analysis.

geometry, yielding good confidence levels between 0.52 and 0.75 
and effectively overcoming the limitations of traditional rectangular 
bounding boxes in describing irregular defect contours.

The anti-interference capability of the SPAA module is prominent 
in several detection cases. The top-right image shows a typical scene 
with metallic surface reflections, where strong lighting variations 
can easily create false-positive interference. LSA-YOLO, using SPAA’s 
progressive spatial attention aggregation mechanism, accurately 
distinguished between true defects and environmental noise, achieving 
confidence scores of 0.82 for abrasion and 0.77 for groove, well above 
any potential interference threshold. In the middle-right image, various 
types of surface stains and reflective interference are present. The 
adaptive threshold modulation strategy of the SPAA module effectively 
suppressed these interferences, ensuring accurate identification of true 
defects. Scratches were detected with confidence scores of 0.31–0.40, 
and grooves with a reliable 0.63–0.79. 

From an overall performance perspective, the results in Figure 9 
demonstrate excellent synergy among the three innovative modules. 
In the complex detection scenario of the bottom-middle image—with 
multiple defect types, irregular shapes, and strong background 
interference—LSA-YOLO accurately detected all defect targets 
through LRPAN’s detail extraction, MSRB’s multi-scale adaptation, 
and SPAA’s attention aggregation. Confidence scores for scratches 
ranged from 0.26 to 0.77, and for grooves was 0.60, fully validating 
the effectiveness of the modules working in concert. The bottom-right 
image further highlights LSA-YOLO’s superior performance in dense 
defect detection, where multiple scratches and grooves were accurately 
identified with stable confidence levels between 0.63 and 0.74. 

An analysis of all detection results in Figure 9 reveals that LSA-
YOLO maintains a good confidence distribution across different 

defect types, with an average detection confidence above 0.58. High-
confidence detections (¿0.7) accounted for about 35%, and medium-
confidence detections (0.4–0.7) for about 45%. This distribution 
indicates that LSA-YOLO has stable detection performance and 
strong generalization ability. In summary, the analysis of detection 
results confirms that LSA-YOLO, through the synergy of its three 
core innovative modules, effectively addresses the key technical 
challenges in bearing surface defect detection, providing a reliable 
technical solution for industrial quality inspection.

Although the proposed LSA-YOLO model has shown good 
performance in defect detection, there are still some failure cases 
observed in certain test scenarios as shown in Figure 10, primarily 
including missed detections, false detections, and duplicate boxes. 
Missed detection occurs when the model fails to detect certain actual 
defects, especially when the defects are small or the background is 
complex. This indicates that the model’s sensitivity to small defects 
and its ability to handle complex backgrounds need improvement. 
False detection happens when the model incorrectly identifies non-
defective regions as defects, particularly in areas with complex textures 
or irregular shapes. This affects the accuracy and precision of detection, 
suggesting that the model faces challenges in distinguishing between 
background and defects during feature extraction. Duplicate boxes 
occur when the model generates multiple overlapping bounding boxes 
for the same defect, leading to redundant detections. This is usually due 
to the model being overly sensitive to certain features or insufficient 
post-processing. While this issue is relatively minor, it still impacts 
detection efficiency and precision. 

These failure cases provide valuable insights for further 
improving the model, particularly in enhancing its sensitivity 
to small defects, reducing background noise interference, and 
optimizing post-processing algorithms. Addressing these issues will 
help improve the model’s robustness and accuracy in complex 
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FIGURE 10
Failure case Analysis: (a) Missed detection, (b) False detection, (c) Duplicate boxes.

industrial scenarios, strengthening its adaptability and performance 
in real-world applications. 

5 Conclusion

This study addresses the key technical challenges in bearing 
surface defect detection—namely, interference from complex 
texture backgrounds, difficulty in extracting minute defect features, 
and inaccurate localization of irregularly shaped defects—by 
proposing the LSA-YOLO network architecture. This architecture 
integrates three core modules: LRPAN, MSRB, and SPAA, which 
respectively achieve detail information preservation, optimized 
modeling of irregular defects, and effective differentiation between 
true defects and environmental interference. Experimental results 
show that LSA-YOLO achieves outstanding performance on a 
bearing defect dataset, with an F1-score of 88.1%, Precision of 
91.4%, Recall of 85.0%, mAP@0.5 of 92.6%, and mAP@0.5:0.95 
of 53.7%, representing a significant improvement over existing 
state-of-the-art methods. At the same time, the model maintains 
excellent computational efficiency, with a parameter count of 
3.956 million and an inference time of just 0.8 m, meeting 
the demands of real-time industrial inspection. This research 
provides an effective solution for the advancement of bearing 
defect detection technology and holds significant application 
value in fields such as industrial equipment safety, predictive 
maintenance, and quality control. It also offers a valuable 
reference for surface defect detection of other industrial 
components. Future work will further explore the model’s 
adaptability to a wider range of industrial defect types, optimize 
its lightweight design for deployment on edge computing devices, 
and expand its application to multi-modal industrial detection 
data fusion.
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