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High speed flying drones and helicopters poses a significant flight safety risk 
due to the potential for collision with power lines and uneven landing grounds. 
There are few reports on light detection and ranging (LIDAR) systems for high-
speed flight platforms. This study established an airborne, high-resolution light 
detection and ranging LIDAR system integrating a dual-wavelength laser source, 
a multi-beam transceiver scanning device, a two-dimensional mirror, and 
micro-electro-mechanical system (MEMS) scanning technology. Furthermore, 
the system achieves high-precision calibration with navigation systems by 
employing a voxel minimization strategy and a least squares fitting algorithm. It 
was compared with the performance of height-based clustering (k-means) and 
Hough transform and an improved point pillars convolutional neural network 
algorithm in power line recognition. The LIDAR system was tested on a high-
speed helicopter platform reaching speeds of 120 km/h, enabling real-time 
recognition of power lines. Terrain assessment plays an important role in 
aircraft landing. The random sample consensus (RANSAC) method was used to 
extract ground points from the point cloud in real time at a rate of 5 ms per 
scan, ensuring terrain inclination estimation with minimal latency. This research 
provides an effective solution for real-time power line recognition and terrain 
assessment for flight platforms, thereby enhancing flight safety.
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 1 Introduction

LIDAR systems have emerged as a pivotal technique in the field of remote sensing 
applications, thanks to their high measurement accuracy, excellent pointing characteristics 
and ability to adapt to various platforms [1–4]. The advent of airborne LIDAR systems has 
significantly expanded the scope of LIDAR applications [5, 6]. Airborne LIDAR systems 
are currently widely used for advanced topographic mapping [7, 8], power line inspection 
[9–11], and navigation obstacle avoidance [12, 13].

For instance, Li et al. [14] designed lightweight, UAV-mounted LIDAR systems 
that are suitable for complex terrain conditions. They addressed system placement
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angle errors during imaging using a connection point-based self-
calibration model and calibration scheme. This improved the 
accuracy of the system's measurements and ultimately enabled the 
extraction of data on power lines 30 m away with a diameter of 4 cm. 
Kaputa et al. [15] designed the MX-1, a novel multimodal remote 
sensing airborne system. It is equipped with a high-precision global 
positioning system (GPS) and an inertial measurement unit (IMU). 
Mounted on the DJI Matrice 600 Pro UAV, the MX-1 can achieve an 
18-min flight time with a spatial resolution of 1–3 cm RMS.

When using airborne LIDAR systems to identify power lines, 
it is crucial to process and analyses the acquired point cloud 
data efficiently. Jwa et al. [16] used an airborne LIDAR system to 
capture 30 points per square meter of the 3D power line scene 
and proposed a voxel-based line segment detector (VPLD) for the 
automatic reconstruction of 3D power line models. Guan et al. [17] 
proposed an LIDAR -supported detection concept for the intelligent, 
autonomous driving of UAVs. For the LiDAR data collected by UAV, 
intelligent optimization and risk prediction of the transmission line 
path are carried out through deep learning [18].

Airborne LIDAR systems also provide a useful tool for terrain 
assessment, where a key is to accurately extract ground points 
from the raw point cloud data. Filter-based extraction have been 
studied for decades and they are still the most widely used. Zhang 
et al. [19] introduced a progressive morphological filter to separate 
ground and non-ground points, which proved effective in forested 
areas. Sithole and Vosselman [20] conducted a comparative study 
of filtering techniques and highlighted the strengths of surface-
based and TIN-based methods for complex urban terrain. Zhang 
et al. [21] developed the Cloth Simulation Filtering (CSF) method, 
which simulates a physical cloth draped over an inverted point 
cloud to identify ground points. This approach is widely praised for 
its simplicity, efficiency, and adaptability to rugged terrain. More 
recently, learning-based methods have been introduced for more 
refined extraction in varying data. Luo et al. [22] proposed a deep 
learning model that integrates local topological information with 
graph convolutional networks (GCNs) to enhance ground filtering 
from airborne LIDAR data in mountainous regions.

These limitations primarily manifest as an inability to adapt to 
high-speed flight platforms, as well as limited real-time processing 
and analysis of point cloud data. In order to overcome these 
challenges, this study proposes a settlement for airborne LIDAR 
systems. Based on the real-time processing of point clouds, the 
advantages of high-speed-borne LIDAR are revealed in terms of, e.g., 
calibration, power line recognition, slope gradient calculation, and 
digital terrain model (DTM) refinement. 

2 System composition

2.1 System design

The airborne LIDAR system operates using a pulse-echo 
detection mechanism. It comprises a dual-wavelength laser 
source, dual detection units, transmission and reception optical 
components, a Position and Orientation System (POS), control 
and real-time processing units, and a Graphics Processing Unit 
(GPU) processing card. Vibration isolators are installed between the 
device and the installation reference to isolate the high-frequency 

FIGURE 1
System design.

TABLE 1  Design specifications.

Parameter name Specification

Laser repetition rate 100 khz

Scanning field of view 40° × 30°

Divergence angle per beam 0.3 mrad

Data refresh rate 2 Hz

Ranging distance 600 m

Resolution 10 mm

Weight 16 kg

Power consumption 120 W

Receiving optical lens 45 mm

vibrations of the airborne platform. Figure 1 illustrates the overall 
system design and vibration isolation features.

Taking into account the allocation of indices for each subsystem 
as shown in Table 1.

2.2 Dual-wavelength laser

The key factors for improving the image quality of long-distance 
laser radar include the laser emission energy, repetition frequency, 
and angular resolution, etc. However, increasing the laser's emission 
power by boosting its energy, can lead to a significant increase in 
its size and power consumption. This is particularly problematic in 
airborne platform applications, where space and power are highly 
constrained. Moreover, an excessively high repetition rate shortens 
the blur distance; This study proposes an innovative solution by 
designing and employing a high-repetition-rate fiber laser with 
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FIGURE 2
(A) Schematic diagram of opt mechanical layout, (B) Receiving optical path diagram.

dual wavelengths (1,064 nm and 1,550 nm). Each wavelength is 
equipped with two sets of lasers, with a 100 kHz repetition rate for 
each set, effectively balancing the relationship between size, power 
consumption, and performance.

To further enhance the accuracy and efficiency of 
measurements, this study also introduces a dual-channel receiving 
unit. These two receiving channels precisely isolate different 
wavelengths by using narrowband filters. With the design of this 
dual-wavelength laser, the data rate has been successfully increased 
to 400,000 measurement points per second, significantly enhancing 
the system's real-time processing capabilities. 

2.3 Opto-mechanical scanning mechanism

Under the requirements for long-range, wide-field and high-
resolution scanning. Traditional mirrors are not suitable for this 
purpose. Although this technology provides a broad scanning 
range of over ±20°, its application in real-time imaging is 
limited by a scanning frequency below 300 Hz. Meanwhile, 
despite their somewhat limited scanning field, MEMS mirrors 
offer the possibility of super-resolution imaging thanks to their 
high scanning frequency exceeding 1 kHz and precise control
capabilities.

In order to achieve long-range, wide-field and high-resolution 
scanning, this research project has designed a scanning system 
combining a two-dimensional scanning mirror (M1, M2) and a 
MEMS mirror. As illustrated in Figure 2, M1 scans in the X-
axis direction and M2 in the Y-axis direction, together forming 
a two-dimensional scanning platform. The MEMS mirror then 
achieves super-resolution scanning in two dimensions, significantly 
improving imaging quality. Additionally, to cover a larger scanning 
area, the system is equipped with four sets of lasers (CoLID-I) 
and two sets of detectors, achieving efficient scanning of a large 
area through a compact transceiver common scanning mechanism. 
Figure 2A shows the schematic diagram of the system's scanning 
method. The receiving optics for the two bands adopt the same 
receiving optical system as shown in Figure 2B, thereby achieving 
the miniaturization of the entire machine.

2.4 Processing unit

The processing circuit is implemented with a design based on 
Field-Programmable Gate Array (FPGA), Digital Signal Processor 
(DSP), and GPU, as shown in the schematic diagram and board card 
in Figure 3. Figure 3A shows the high-speed sampling processing 
board, while Figure 3B shows neural network processing board.

2.5 POS system

During the high-speed motion and complex attitude variations 
of the airborne platform, including pitch, roll, and yaw, the LIDAR 
system often encounters distortion and layering issues in its point 
cloud data when performing scanning and imaging tasks. To 
effectively address this issue, this study integrates an advanced 
composite navigation system into the LIDAR system. This system 
is capable of capturing real-time positional and attitude information 
of the device, providing necessary corrections for the point cloud 
data during the dynamic imaging process. Specifically, the system 
incorporates a POS, which integrates two core components: the 
Global Navigation Satellite System (GNSS) and the IMU. The GNSS 
provides precise geographic location information, while the IMU 
can monitor and record the device's attitude changes in real-time, 
including heading, pitch, and roll angles. 

3 Methods

3.1 System calibration

This airborne LIDAR system is an assembly of laser scanning 
and composite navigation systems. Installation errors between these 
two systems (i.e., errors caused by misalignment of their coordinate 
systems in terms of position and axis parallelism) affect the absolute 
accuracy of the point cloud coordinates. This involves a calibration 
issue between the two systems. As a core component of multi-sensor 
fusion, the calibration model and the calibration scheme determine 
the precision of the final product.
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FIGURE 3
(A) High-Speed sampling processing board. (B) Neural network processing board.

A voxel (short for ‘volume pixel') is the three-dimensional 
equivalent of a pixel in a two-dimensional image. Voxels effectively 
represent the spatial distribution of point clouds. If an object 
within the point cloud exhibits no layering or misalignment in 
three-dimensional space, the number of voxels it occupies should 
be minimized. This paper describes a high-precision calibration 
process for the LIDAR and composite navigation systems, 
combining voxel minimization with the least squares method.

The transformation Equation 1 from the LIDAR coordinate 
system (Xb,Yb,Zb) to the inertial navigation coordinate 
system(Xi,Yi,Zi) is as follows:

[[[[

[

Xi

Yi

Zi

]]]]

]

= Ci
b ∗(
[[[[

[

Xb

Yb

Zb

]]]]

]

−
[[[[

[

dx

dy

dz

]]]]

]

) (1)

where (dx,dy,dz) denotes the translational offset of the coordinate 
system origins along the axes, and Ci

b is a function of the 
three installation angles (α, β, γ),representing the rotation matrix 
from the LIDAR coordinate system to the inertial navigation 
coordinate system.

The transformation Equation 2 from the inertial navigation 
coordinate system (Xi,Yi,Zi) to the local horizontal geodetic 
coordinate system (Xb,Yb,Zb) is as follows:

[[[[

[

Xg

Yg

Zg

]]]]

]

= Cg
i ∗
[[[[

[

Xi

Yi

Zi

]]]]

]

(2)

In the transformation matrix, Cg
i  is a function of the heading 

angle Α, pitch angle P, and roll angle R. Representing the rotation 
matrix from the inertial navigation coordinate system to the local 
horizontal geodetic coordinate system.

The transformation Equation 3 from the local horizontal 
geodetic coordinate system (Xg,Yg,Zg) to the Earth-Centered, 

Earth-Fixed (ECEF) coordinate system (Xe,Ye,Ze) is as follows:

[[[[

[

Xe

Ye

Ze

]]]]

]

= Ce
g ∗
[[[[

[

Xe

Ye

Ze

]]]]

]

+
[[[[

[

X0

Y0

Z0

]]]]

]

(3)

where Ce
g represents the rotation matrix that transitions from the 

inertial navigation coordinate system to the local horizontal geodetic 
coordinate system, determined by the heading angle A, pitch angle 
P, and roll angle R. The transformation matrix Ce

g, which is a 
function of the geodetic latitude B0 and longitude L0, facilitates the 
rotation from the local horizontal geodetic coordinate system to the 
Earth-centered inertial (ECI) coordinate system. The coordinates 
(X0,Y0,Z0) correspond to the geocentric position of the device as 
determined by the composite navigation system.

In summary, The transformation relationship from the LIDAR 
coordinate system (Xb,Yb,Zb) to the geocentric coordinate system 
(Xe,Ye,Ze) is delineated as follows:

[[[[

[

Xe

Ye

Ze

]]]]

]

= Ce
g ∗Cg

i ∗Ci
b ∗(
[[[[

[

Xb

Yb

Zb

]]]]

]

−
[[[[

[

dx

dy

dz

]]]]

]

)+
[[[[

[

X0

Y0

Z0

]]]]

]

(4)

where Ce
g, Cg

i , X0, Y0 and Z0 can be derived from the positional 
and attitude data provided by the integrated navigation system. 
Meanwhile, Ci

b, dx, dy and dz are the calibration parameters required 
by the method described in this paper.

Specifically, we use Precise Point Positioning (PPP) with GPS 
to establish two high-precision ground control points. We then 
use a total station to extend these points to several others to form 
a high-precision control field (as illustrated in Figure 4). A laser 
scanner is used to single-point target the control points within the 
control field, recording the coordinates of each control point in 
the laser scanner frame (Xb,Yb,Zb), and the positional and attitude 
information (x,y,z,A,P,R) from the integrated navigation system 
at the time of targeting. At least six sets of data must be recorded. 
The recorded data are substituted into Equation 4, and the rotation 
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FIGURE 4
Calibration process flowchart.

FIGURE 5
(A) Ground calibration image, (B) Ground calibration point cloud.

matrix Ci
b (which yields the three rotation parameters α, β, γ) and the 

three translation parameters dx, dy and dz are solved using the least 
squares method. Using these results as initial values, the dynamic 
point cloud data from the vehicle is transformed into the Earth-
centered coordinate system. The point cloud is then voxelized, and 
the number of voxels is counted. Iterative adjustments are made to 
the rotation parameters α, β, γ and the translation parameters dx, dy
and dz. The iteration ranges for the angle parameters are ±2°, and for 
the distance parameters, they are ±20 cm, with iteration steps of 0.1°
and 1 cm, respectively. If the number of voxels increases, iteration 
for the current parameter is stopped, and the next parameter is 
adjusted until all parameters have been refined (see algorithm 
flow in Figure 4). The six parameters at the end of the iteration 
process are the final calibration results. Figure 5A shows the ground 
calibration image. Figure 5B shows the ground calibration point
cloud.

3.2 Principle of power line recognition

High-density airborne LIDAR point clouds contain power lines 
with distinct geometric priors: they usually appear as multiple 
parallel layers and can be approximated locally as straight or slightly 
curved lines. Based on these characteristics, this study proposes 
a power line extraction method using height-based clustering (k-
means) and Hough transform line detection. Let the original point 

cloud be in Equation 5:

Ρ = {pi}
N,pi = (xi,yi,zi)

T (5)

Where N is the number of points, i is the different sequences, 
Since power lines typically exist within a certain height range, we 
define a height constraint in Equation 6:

Ps = {pi ∈ P |zmin < zi < zmax} (6)

Ps is thus obtained by filtering ground, tower, and noise points.
Power lines usually show layered distribution in the Z-axis 

direction. We apply k-means clustering to the height component 
{zi} in Equation 7:

min
{Hj}

K
j=1

|Ps|

∑
i=1

min
1≤j≤K
‖zi −Hj‖

2 (7)

K : expected number of layers (corresponding to power line 
levels), Hj: cluster center of the j-th layer.

Each candidate point is then assigned a cluster label 
as shown in Equation 8:

οi ∈ {1,2,…,K},pi ∈ Ps (8)

Thus the candidate set is partitioned into sub-layer 
as shown in Equation 9.

Ps = UK
j=1P(j),P(j) = {pi|oj = j} (9)
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For each layer: P(j), the power lines are approximately linear in 
the X-Y plane, We first project the points in Equation 10:

Π:ℝ3→ℝ2,Π(x,y,z) = (x,y) (10)

yielding in Equation 11:

R(j) = {(xi,yi)|pi ∈ P(j)} (11)

A Hough transform is then applied for line detection. In polar 
coordinates, a line is represented as shown in Equation 12:

ρ =𝓍 cos θ+𝓎 sin θ (12)

Where 𝓍,𝓎 denote polar coordinate parameters, θ denote 
direction angle of the normal line of a straight line.

By searching for peaks in the accumulator space, we obtain a set 
of candidate lines as shown in Equation 13:

L(j) = {(ρk,θk)}
Mj

k=1 (13)

For a candidate point: pi = (xi,yi,zi)
T, the orthogonal distance to 

line (ρk,θk) is shown in Equation 14:

dik = |𝓍 i cos θk +𝓎i sin θk − ρk| (14)

Where dik denote the vertical distance from the i
point to the k candidate straight line, if the conditions 
specified in Equation 15 are met

min
k

dik < δ (15)

Where δ denote linear tolerance threshold. The point is classified 
as a power line point as shown in Equation 16:

pi ∈ Pline (16)

The final set of power line is shown in Equation 17:

Pline =
K

⋃
j=1

Pline
(j) (17)

 

3.3 Slope gradient calculation

Terrain assessment is an important application of aircraft 
landing at night. Robust identification of terrain characteristics 
improves segmentation accuracy and provides information about 
the monitoring area. In this study, we calculate the slope gradient 
to characterize the terrain of the landing area.

Firstly, we use the random sample consensus (RANSAC) 
method to extract ground points from the point cloud. RANSAC 
is a robust fitting approach designed to identify the best model 
parameters while rejecting outliers. Due to the noise and 
irregularities inherent in airborne LIDAR point clouds, RANSAC 
efficiently distinguishes ground points from non-ground objects, 
such as vegetation, infrastructure or measurement artefacts. 
RANSAC operates by iteratively selecting small subsets of points 
and estimating a plane model based on the selected samples. The 
core steps of the algorithm include random subset selection, model 
estimation, consensus evaluation and selection of the best model.

FIGURE 6
Airborne platform experiment.

RANSAC identifies inlier points corresponding to the ground 
surface in a point cloud obtained through airborne LIDAR by 
iteratively selecting minimal subsets and fitting a plane model. The 
extracted ground points are then used to derive the Equation 18 of 
the best-fit plane.

a𝓍+ b𝓎+ c𝓏+ d = 0 (18)

where a, b, c are the plane's normal vector components, and d is the 
offset parameter.

Then, the slope gradient is determined by evaluating the 
deviation of the normal vector of the ground plane from the vertical 
axis. As the LIDAR system is calibrated, the obtained point cloud 
is regarded as horizontally referenced. Given a perfectly horizontal 
reference plane, the inclination angle θ of the extracted ground plane 
can be computed as shown in Equation 19:

θ = arccos(
|ν|

√a2 + b2 + ac2
) (19)

where ν represents the vertical component of the normal vector.
The slope gradient metric effectively estimates terrain 

inclination, providing a simple yet robust mathematical 
representation of the ground surface. Integrating RANSAC with 
real-time airborne LIDAR processing enhances the reliability of 
terrain assessment, thereby improving the efficiency of power line 
detection systems. 

3.4 Experiment

A flight test was conducted at a designated site to implement 
real-time power line detection and terrain assessment. A specific 
type of helicopter was used for the test, which took place in a 
forest area. The helicopter flew at an altitude of 200 m at a speed of 
120 km/h, as shown in Figure 6.

4 Applications and results

4.1 Calibration results

During the initial ground calibration stage, significant 
misalignment and layering phenomena were observed in the 
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FIGURE 7
Pre-calibration point cloud data.

FIGURE 8
Post-calibration point cloud data.

top-view point cloud data. Advanced calibration techniques were 
used to iteratively adjust the initial calibration parameters, which 
substantially improved the quality of the point cloud data. Figure 8 
shows that the post-calibration point cloud of the building exhibits 
high alignment and consistency in the top-view projection. This 
improvement was further validated by conducting wall point 
cloud thickness measurements using Cloud Compare software, 
which increased precision from 0.14 m to 0.005 m, as shown in 
Figure 7 and in Figure 8. These results demonstrate the effectiveness 
of the calibration method in enhancing the accuracy of point 
cloud data.

4.2 Real-time power line recognition

This study combines LIDAR point cloud data and integrated 
navigation data in the field of power line detection. The point 
cloud coordinates are mapped to the geodetic coordinate system 
using transformation Equation 4. To minimize the amount of data 
while preserving the geometric integrity of the original point cloud, 
we use a uniform point cloud subsampling method. This method 
reduces data density while maintaining the original structure of the 
point cloud.

After subsampling, the average elevation of the point cloud is 
calculated. Points above this average are defined as non-ground 
points and are excluded, while those below are considered ground 
points. The eigenvalues for each point are computed and ranked in 
descending order, and the two largest are selected. The linearity of 
each point is then assessed by calculating the ratio of the difference 
between the largest and second-largest eigenvalues to the largest 
eigenvalue. Points exceeding a set threshold (0.79 in this study) are 
identified as power line points.

Elevation filtering algorithms were applied to the experimental 
data, achieving a detection rate of 90% original point cloud as 
depicted in Figure 9A. Figures 9B–E show the processing results. 
The detection of power lines exhibits outstanding performance not 
only in the side view but also maintains high accuracy in the top 
view. These results demonstrate that the method proposed in this 
study consistently achieves a high detection rate across different 
perspectives.

4.3 Point pillars recognition

In the field of deep learning-driven point cloud target detection, 
several algorithms such as PointNet [23], PointNet++ [24], Dynamic 
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FIGURE 9
(Continued).

Graph Convolutional Neural Network (DGCNN) [25], Point 
RCNN [26], and KPConv [27] have demonstrated their strengths. 
However, the Point Pillars algorithm excels in balancing speed 

and accuracy. The algorithm innovatively converts complex 3D 
point cloud data into a 2D “pillar” representation, leveraging 
mature 2D Convolutional Neural Networks (2D CNNs) for 
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FIGURE 9
(Continued). (A) Original point cloud (Red indicates power lines), (B) Z-X, (C) Z-Y, (D) X-Y, (E) Altitude distribution.

efficient feature extraction and target detection. This approach 
significantly enhances computational efficiency while retaining the 
rich information of the point cloud data.

In order to meet the demand for the real-time, efficient 
detection of power lines from airborne platforms, this study employs 
an improved Point Pillars algorithm. In traditional vehicle-based 
target detection, the orientation of targets is usually defined by 
a single heading angle. However, for airborne platforms, precise 
target orientation requires consideration of three attitude angles. 
Consequently, critical modifications were made to the interface 
functions of the algorithm to enable it to adapt seamlessly from 
vehicle-based to airborne target detection scenarios. Furthermore, 
to enhance detection accuracy, the study integrates LIDAR point 
cloud data with POS measurements, converting the point cloud 
data into the geodetic coordinate system. This effectively mitigates 
deformation effects in Point Pillars projections caused by varying 
flight altitudes, as shown in Figure 10. By annotating and training 

on a large dataset (at least 6,000 frames), this study utilized SUSTech 
POINT software and the Open PCDet platform to train the point 
cloud data. The trained algorithm was then deployed on the NVIDIA 
Jetson NX platform for real-time power line detection on new point 
cloud data.

As illustrated in Figure 11, the Point Pillars algorithm, when 
deployed on the NVIDIA Jetson NX platform, accurately identified 
both power lines and towers, achieving an identification rate of 32% 
for individual power lines in 100 ms. Figure 11 corresponds to the 
same frame of data as Figure 9.

The experimental results indicate that the combination 
of traditional elevation filtering algorithms and convolutional 
neural networks can effectively extract individual power 
lines from point cloud data. Due to the limited 
amount of pre training data, the correct recognition 
rate of neural networks is lower than that elevation
algorithm.
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FIGURE 10
The point pillars algorithm process flowchart.

FIGURE 11
The point pillars algorithm identifies power lines and power towers. 
This diagram shows the effect of the algorithm. Blue represents power 
lines and green represents power towers. This frame of data includes 
60,000 points, with 100 points for each individual power line.

4.4 Slope gradient calculation results

To validate the proposed method of calculating slope gradients, 
we performed slope gradient calculations using airborne LIDAR 
point cloud scans. We visualized the processed data, which included 
ground extraction and slope estimation, to assess the accuracy and 
efficiency of the algorithm.

Figure 12 shows the helicopter trajectory, the segmented ground 
and non-ground points, and the calculated slope gradient of the 
terrain. Please note that the slope gradient representing the ground 
was calculated dynamically in real time at a rate of 5 ms per 
point cloud scan, ensuring terrain inclination estimation with 
minimal latency. A comparison analysis was conducted between 
the measured data and the actual obtained slope data. The slope 
calculation error was 5%.

This experimental visualization confirms the effectiveness of the 
proposed method for calculating slope gradients, which enables 

FIGURE 12
Slope gradient calculation in point cloud. Cyan represents the 
helicopter trajectory, green represents ground points, red represents 
non-ground points, the yellow box represents the helicopter landing 
position and the purple text shows the calculated slope gradient of the 
ground in real time.

efficient and accurate terrain assessment for airborne LIDAR-based 
power line recognition systems. 

5 Discussions and conclusion

This study involved the implementation of innovative design 
and implementation strategies to mitigate flight safety risks 
associated with night-time flying and landing, such as potential 
collisions with power lines and uneven landing grounds. The 
research successfully developed an efficient processing algorithm 
and platform, providing a robust technical foundation for the design 
of compact airborne LIDAR system. The system achieved long-
distance, high-resolution detection capabilities and met critical real-
time performance requirements. Regarding algorithm processing, 
the study successfully overcame the challenges of real-time 
coordinate transformation and power line detection and terrain 
assessment on a high-speed platform reaching speeds of 120 km/h.

As the pioneering study on high-speed flight platforms and 
LIDAR development, the promising gains may encourage other 
researchers to work on this topic. The merits of LiDAR are 
not limited to the aforementioned aspects. The system can be 
installed on top of any high-speed transport vehicle to form an 
safety monitoring system instantly. Additionally, the integration of 
infrared, camera and lidar data on the flight platform will be a 
important research focus in the future.
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