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High speed flying drones and helicopters poses a significant flight safety risk
due to the potential for collision with power lines and uneven landing grounds.
There are few reports on light detection and ranging (LIDAR) systems for high-
speed flight platforms. This study established an airborne, high-resolution light
detection and ranging LIDAR system integrating a dual-wavelength laser source,
a multi-beam transceiver scanning device, a two-dimensional mirror, and
micro-electro-mechanical system (MEMS) scanning technology. Furthermore,
the system achieves high-precision calibration with navigation systems by
employing a voxel minimization strategy and a least squares fitting algorithm. It
was compared with the performance of height-based clustering (k-means) and
Hough transform and an improved point pillars convolutional neural network
algorithm in power line recognition. The LIDAR system was tested on a high-
speed helicopter platform reaching speeds of 120 km/h, enabling real-time
recognition of power lines. Terrain assessment plays an important role in
aircraft landing. The random sample consensus (RANSAC) method was used to
extract ground points from the point cloud in real time at a rate of 5 ms per
scan, ensuring terrain inclination estimation with minimal latency. This research
provides an effective solution for real-time power line recognition and terrain
assessment for flight platforms, thereby enhancing flight safety.

KEYWORDS

LIDAR system, high-speed airborne platform, voxel minimization, point pillars, terrain
assessment, real-time recognition

1 Introduction

LIDAR systems have emerged as a pivotal technique in the field of remote sensing
applications, thanks to their high measurement accuracy, excellent pointing characteristics
and ability to adapt to various platforms [1-4]. The advent of airborne LIDAR systems has
significantly expanded the scope of LIDAR applications [5, 6]. Airborne LIDAR systems
are currently widely used for advanced topographic mapping [7, 8], power line inspection
[9-11], and navigation obstacle avoidance [12, 13].

For instance, Li etal. [14] designed lightweight, UAV-mounted LIDAR systems
that are suitable for complex terrain conditions. They addressed system placement
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angle errors during imaging using a connection point-based self-
calibration model and calibration scheme. This improved the
accuracy of the system's measurements and ultimately enabled the
extraction of data on power lines 30 m away with a diameter of 4 cm.
Kaputa et al. [15] designed the MX-1, a novel multimodal remote
sensing airborne system. It is equipped with a high-precision global
positioning system (GPS) and an inertial measurement unit (IMU).
Mounted on the DJI Matrice 600 Pro UAV, the MX-1 can achieve an
18-min flight time with a spatial resolution of 1-3 cm RMS.

When using airborne LIDAR systems to identify power lines,
it is crucial to process and analyses the acquired point cloud
data efficiently. Jwa etal. [16] used an airborne LIDAR system to
capture 30 points per square meter of the 3D power line scene
and proposed a voxel-based line segment detector (VPLD) for the
automatic reconstruction of 3D power line models. Guan et al. [17]
proposed an LIDAR -supported detection concept for the intelligent,
autonomous driving of UAVs. For the LiDAR data collected by UAV,
intelligent optimization and risk prediction of the transmission line
path are carried out through deep learning [18].

Airborne LIDAR systems also provide a useful tool for terrain
assessment, where a key is to accurately extract ground points
from the raw point cloud data. Filter-based extraction have been
studied for decades and they are still the most widely used. Zhang
etal. [19] introduced a progressive morphological filter to separate
ground and non-ground points, which proved effective in forested
areas. Sithole and Vosselman [20] conducted a comparative study
of filtering techniques and highlighted the strengths of surface-
based and TIN-based methods for complex urban terrain. Zhang
etal. [21] developed the Cloth Simulation Filtering (CSF) method,
which simulates a physical cloth draped over an inverted point
cloud to identify ground points. This approach is widely praised for
its simplicity, efficiency, and adaptability to rugged terrain. More
recently, learning-based methods have been introduced for more
refined extraction in varying data. Luo et al. [22] proposed a deep
learning model that integrates local topological information with
graph convolutional networks (GCNs) to enhance ground filtering
from airborne LIDAR data in mountainous regions.

These limitations primarily manifest as an inability to adapt to
high-speed flight platforms, as well as limited real-time processing
and analysis of point cloud data. In order to overcome these
challenges, this study proposes a settlement for airborne LIDAR
systems. Based on the real-time processing of point clouds, the
advantages of high-speed-borne LIDAR are revealed in terms of, e.g.,
calibration, power line recognition, slope gradient calculation, and
digital terrain model (DTM) refinement.

2 System composition
2.1 System design

The airborne LIDAR system operates using a pulse-echo
detection mechanism. It comprises a dual-wavelength laser
source, dual detection units, transmission and reception optical
components, a Position and Orientation System (POS), control
and real-time processing units, and a Graphics Processing Unit
(GPU) processing card. Vibration isolators are installed between the
device and the installation reference to isolate the high-frequency
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Airborne LIDAR system

FIGURE 1
System design.

TABLE 1 Design specifications.

Parameter name Specification

Laser repetition rate 100 khz
Scanning field of view 40°x 30°
Divergence angle per beam 0.3 mrad
Data refresh rate 2Hz
Ranging distance 600 m
Resolution 10 mm
Weight 16 kg
Power consumption 120 W
Receiving optical lens 45 mm

vibrations of the airborne platform. Figure 1 illustrates the overall
system design and vibration isolation features.

Taking into account the allocation of indices for each subsystem
as shown in Table 1.

2.2 Dual-wavelength laser

The key factors for improving the image quality of long-distance
laser radar include the laser emission energy, repetition frequency,
and angular resolution, etc. However, increasing the laser's emission
power by boosting its energy, can lead to a significant increase in
its size and power consumption. This is particularly problematic in
airborne platform applications, where space and power are highly
constrained. Moreover, an excessively high repetition rate shortens
the blur distance; This study proposes an innovative solution by
designing and employing a high-repetition-rate fiber laser with
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(A) Schematic diagram of opt mechanical layout, (B) Receiving optical path diagram.
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dual wavelengths (1,064 nm and 1,550 nm). Each wavelength is
equipped with two sets of lasers, with a 100 kHz repetition rate for
each set, effectively balancing the relationship between size, power
consumption, and performance.

To further the
measurements, this study also introduces a dual-channel receiving

enhance accuracy and efliciency of
unit. These two receiving channels precisely isolate different
wavelengths by using narrowband filters. With the design of this
dual-wavelength laser, the data rate has been successfully increased
to 400,000 measurement points per second, significantly enhancing

the system's real-time processing capabilities.

2.3 Opto-mechanical scanning mechanism

Under the requirements for long-range, wide-field and high-
resolution scanning. Traditional mirrors are not suitable for this
purpose. Although this technology provides a broad scanning
range of over *20° its application in real-time imaging is
limited by a scanning frequency below 300 Hz. Meanwhile,
despite their somewhat limited scanning field, MEMS mirrors
offer the possibility of super-resolution imaging thanks to their
high scanning frequency exceeding 1kHz and precise control
capabilities.

In order to achieve long-range, wide-field and high-resolution
scanning, this research project has designed a scanning system
combining a two-dimensional scanning mirror (M1, M2) and a
MEMS mirror. As illustrated in Figure 2, MI scans in the X-
axis direction and M2 in the Y-axis direction, together forming
a two-dimensional scanning platform. The MEMS mirror then
achieves super-resolution scanning in two dimensions, significantly
improving imaging quality. Additionally, to cover a larger scanning
area, the system is equipped with four sets of lasers (CoLID-I)
and two sets of detectors, achieving efficient scanning of a large
area through a compact transceiver common scanning mechanism.
Figure 2A shows the schematic diagram of the system's scanning
method. The receiving optics for the two bands adopt the same
receiving optical system as shown in Figure 2B, thereby achieving
the miniaturization of the entire machine.
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2.4 Processing unit

The processing circuit is implemented with a design based on
Field-Programmable Gate Array (FPGA), Digital Signal Processor
(DSP), and GPU, as shown in the schematic diagram and board card
in Figure 3. Figure 3A shows the high-speed sampling processing
board, while Figure 3B shows neural network processing board.

2.5 POS system

During the high-speed motion and complex attitude variations
of the airborne platform, including pitch, roll, and yaw, the LIDAR
system often encounters distortion and layering issues in its point
cloud data when performing scanning and imaging tasks. To
effectively address this issue, this study integrates an advanced
composite navigation system into the LIDAR system. This system
is capable of capturing real-time positional and attitude information
of the device, providing necessary corrections for the point cloud
data during the dynamic imaging process. Specifically, the system
incorporates a POS, which integrates two core components: the
Global Navigation Satellite System (GNSS) and the IMU. The GNSS
provides precise geographic location information, while the IMU
can monitor and record the device's attitude changes in real-time,
including heading, pitch, and roll angles.

3 Methods
3.1 System calibration

This airborne LIDAR system is an assembly of laser scanning
and composite navigation systems. Installation errors between these
two systems (i.e., errors caused by misalignment of their coordinate
systems in terms of position and axis parallelism) affect the absolute
accuracy of the point cloud coordinates. This involves a calibration
issue between the two systems. As a core component of multi-sensor
fusion, the calibration model and the calibration scheme determine
the precision of the final product.
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FIGURE 3

(A) High-Speed sampling processing board. (B) Neural network processing board.

A voxel (short for ‘volume pixel') is the three-dimensional
equivalent of a pixel in a two-dimensional image. Voxels effectively
represent the spatial distribution of point clouds. If an object
within the point cloud exhibits no layering or misalignment in
three-dimensional space, the number of voxels it occupies should
be minimized. This paper describes a high-precision calibration
process for the LIDAR and composite navigation systems,
combining voxel minimization with the least squares method.

The transformation Equation 1 from the LIDAR coordinate

system (X,,Y,,Z,) to the inertial navigation coordinate
system(X,, Y, Z;) is as follows:
Xi Xb dx
Y, | =C) Y, |- | dy (1)
; Z dz

where (dx, dy,dz) denotes the translational offset of the coordinate
system origins along the axes, and CZ is a function of the
three installation angles («a, f, y),representing the rotation matrix
from the LIDAR coordinate system to the inertial navigation
coordinate system.

The transformation Equation 2 from the inertial navigation
coordinate system (X;,Y;,Z;) to the local horizontal geodetic
coordinate system (X, Y, Z,) is as follows:

X

—
58
~

Xg ;
Yg = C;g *|Y.
Zy Z;

In the transformation matrix, C‘lg is a function of the heading
angle A, pitch angle P, and roll angle R. Representing the rotation
matrix from the inertial navigation coordinate system to the local
horizontal geodetic coordinate system.

The transformation Equation 3 from the local horizontal
geodetic coordinate system (Xg, Yg,Zg) to the Earth-Centered,
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Earth-Fixed (ECEF) coordinate system (X,, Y,,Z,) is as follows:

Xe Xe XO
Y, [=CG#| Y, [+] Y, 3)
Ze Ze ZO

where Cj represents the rotation matrix that transitions from the
inertial navigation coordinate system to the local horizontal geodetic
coordinate system, determined by the heading angle A, pitch angle
P, and roll angle R. The transformation matrix C;, which is a
function of the geodetic latitude BO and longitude L0, facilitates the
rotation from the local horizontal geodetic coordinate system to the
Earth-centered inertial (ECI) coordinate system. The coordinates
(Xg» Yy, Z,) correspond to the geocentric position of the device as
determined by the composite navigation system.

In summary, The transformation relationship from the LIDAR
coordinate system (X,,Y},Z,) to the geocentric coordinate system
(X,,Y,,Z,) is delineated as follows:

X, X, dx X,
Y, | = C; ® (f * Cz * Y, |- |dy +17Y, (4)
Ze Zb dZ Z()

where C, C%, Xy, Y, and Z, can be derived from the positional
and attitude data provided by the integrated navigation system.
Meanwhile, C;;, dx, dy and dz are the calibration parameters required
by the method described in this paper.

Specifically, we use Precise Point Positioning (PPP) with GPS
to establish two high-precision ground control points. We then
use a total station to extend these points to several others to form
a high-precision control field (as illustrated in Figure 4). A laser
scanner is used to single-point target the control points within the
control field, recording the coordinates of each control point in
the laser scanner frame (X, Y},Z,), and the positional and attitude
information (x,y,2,A,P,R) from the integrated navigation system
at the time of targeting. At least six sets of data must be recorded.
The recorded data are substituted into Equation 4, and the rotation
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Calibration process flowchart.

A

FIGURE 5
(A) Ground calibration image, (B) Ground calibration point cloud.

(B)

matrix CZ (which yields the three rotation parameters «, 3, y) and the
three translation parameters dx, dy and dz are solved using the least
squares method. Using these results as initial values, the dynamic
point cloud data from the vehicle is transformed into the Earth-
centered coordinate system. The point cloud is then voxelized, and
the number of voxels is counted. Iterative adjustments are made to
the rotation parameters , f3, y and the translation parameters dx, dy
and dz. The iteration ranges for the angle parameters are +2°, and for
the distance parameters, they are +20 cm, with iteration steps of 0.1°
and 1 cm, respectively. If the number of voxels increases, iteration
for the current parameter is stopped, and the next parameter is
adjusted until all parameters have been refined (see algorithm
flow in Figure 4). The six parameters at the end of the iteration
process are the final calibration results. Figure 5A shows the ground
calibration image. Figure 5B shows the ground calibration point
cloud.

3.2 Principle of power line recognition

High-density airborne LIDAR point clouds contain power lines
with distinct geometric priors: they usually appear as multiple
parallel layers and can be approximated locally as straight or slightly
curved lines. Based on these characteristics, this study proposes
a power line extraction method using height-based clustering (k-
means) and Hough transform line detection. Let the original point
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cloud be in Equation 5:

P= {Pz‘}N’Pi = (xi>)’i>zi)T

Where N is the number of points, i is the different sequences,
Since power lines typically exist within a certain height range, we

(5)

define a height constraint in Equation 6:

P, ={p, e P|z (6)

min < Zj < Zmax}

P is thus obtained by filtering ground, tower, and noise points.
Power lines usually show layered distribution in the Z-axis
direction. We apply k-means clustering to the height component
{z;} in Equation 7:
[P

e 2

1=

o= @

min
1<j<K
K: expected number of layers (corresponding to power line
levels), H;: cluster center of the j-th layer.
Each candidate point is then assigned a cluster label
as shown in Equation 8:

0;€{1,2,...,K},p; € P, (8)
Thus the candidate set is partitioned into sub-layer

as shown in Equation 9.
P= UL PO, PP = {p |o; = j} 9)
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For each layer: P, the power lines are approximately linear in
the X-Y plane, We first project the points in Equation 10:

LR — R, T(x, 3, 2) = (x,) (10)
yielding in Equation 11:
RV = {(xi’yi)lpi € P(j)} (11)

A Hough transform is then applied for line detection. In polar
coordinates, a line is represented as shown in Equation 12:
p=acosf+ysinb (12)

Where z,y denote polar coordinate parameters, 6 denote
direction angle of the normal line of a straight line.

By searching for peaks in the accumulator space, we obtain a set
of candidate lines as shown in Equation 13:

; M]-
L9 ={(pp 01,

For a candidate point: p, = (x;,,,z;)", the orthogonal distance to

(13)

line (p,,6)) is shown in Equation 14:

dy =|@; cos O, +y; sin 0, — p, | (14)

Where d; denote the vertical distance from the i
point to the k candidate straight line, if the conditions
specified in Equation 15 are met
mkin dy <é (15)
Where § denote linear tolerance threshold. The point is classified
as a power line point as shown in Equation 16:

12 Pline (16)
The final set of power line is shown in Equation 17:
K
Pline = UPline(]) (17)

j=1

3.3 Slope gradient calculation

Terrain assessment is an important application of aircraft
landing at night. Robust identification of terrain characteristics
improves segmentation accuracy and provides information about
the monitoring area. In this study, we calculate the slope gradient
to characterize the terrain of the landing area.

Firstly, we use the random sample consensus (RANSAC)
method to extract ground points from the point cloud. RANSAC
is a robust fitting approach designed to identify the best model
parameters while rejecting outliers. Due to the noise and
irregularities inherent in airborne LIDAR point clouds, RANSAC
efficiently distinguishes ground points from non-ground objects,
such as vegetation, infrastructure or measurement artefacts.
RANSAC operates by iteratively selecting small subsets of points
and estimating a plane model based on the selected samples. The
core steps of the algorithm include random subset selection, model
estimation, consensus evaluation and selection of the best model.
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FIGURE 6
Airborne platform experiment.

RANSAC identifies inlier points corresponding to the ground
surface in a point cloud obtained through airborne LIDAR by
iteratively selecting minimal subsets and fitting a plane model. The
extracted ground points are then used to derive the Equation 18 of
the best-fit plane.

az +by+cx+d=0 (18)

where a, b, ¢ are the plane's normal vector components, and d is the
offset parameter.

Then, the slope gradient is determined by evaluating the
deviation of the normal vector of the ground plane from the vertical
axis. As the LIDAR system is calibrated, the obtained point cloud
is regarded as horizontally referenced. Given a perfectly horizontal

reference plane, the inclination angle 6 of the extracted ground plane
can be computed as shown in Equation 19:
|v]

\/112+bz+ac2>

where v represents the vertical component of the normal vector.

0= arccos( (19)

The slope gradient metric effectively estimates terrain
providing a simple yet
representation of the ground surface. Integrating RANSAC with

inclination, robust mathematical
real-time airborne LIDAR processing enhances the reliability of
terrain assessment, thereby improving the efficiency of power line

detection systems.
3.4 Experiment

A flight test was conducted at a designated site to implement
real-time power line detection and terrain assessment. A specific
type of helicopter was used for the test, which took place in a
forest area. The helicopter flew at an altitude of 200 m at a speed of
120 km/h, as shown in Figure 6.
4 Applications and results
4.1 Calibration results

During the initial ground calibration stage, significant

misalignment and layering phenomena were observed in the
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FIGURE 7
Pre-calibration point cloud data.
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FIGURE 8
Post-calibration point cloud data.

top-view point cloud data. Advanced calibration techniques were
used to iteratively adjust the initial calibration parameters, which
substantially improved the quality of the point cloud data. Figure 8
shows that the post-calibration point cloud of the building exhibits
high alignment and consistency in the top-view projection. This
improvement was further validated by conducting wall point
cloud thickness measurements using Cloud Compare software,
which increased precision from 0.14 m to 0.005 m, as shown in
Figure 7 and in Figure 8. These results demonstrate the effectiveness
of the calibration method in enhancing the accuracy of point
cloud data.

4.2 Real-time power line recognition

This study combines LIDAR point cloud data and integrated
navigation data in the field of power line detection. The point
cloud coordinates are mapped to the geodetic coordinate system
using transformation Equation 4. To minimize the amount of data
while preserving the geometric integrity of the original point cloud,
we use a uniform point cloud subsampling method. This method
reduces data density while maintaining the original structure of the
point cloud.
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After subsampling, the average elevation of the point cloud is
calculated. Points above this average are defined as non-ground
points and are excluded, while those below are considered ground
points. The eigenvalues for each point are computed and ranked in
descending order, and the two largest are selected. The linearity of
each point is then assessed by calculating the ratio of the difference
between the largest and second-largest eigenvalues to the largest
eigenvalue. Points exceeding a set threshold (0.79 in this study) are
identified as power line points.

Elevation filtering algorithms were applied to the experimental
data, achieving a detection rate of 90% original point cloud as
depicted in Figure 9A. Figures 9B-E show the processing results.
The detection of power lines exhibits outstanding performance not
only in the side view but also maintains high accuracy in the top
view. These results demonstrate that the method proposed in this
study consistently achieves a high detection rate across different
perspectives.

4.3 Point pillars recognition

In the field of deep learning-driven point cloud target detection,
several algorithms such as PointNet [23], PointNet++ [24], Dynamic
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(Continued).

Graph Convolutional Neural Network (DGCNN) [25], Point  and accuracy. The algorithm innovatively converts complex 3D
RCNN [26], and KPConv [27] have demonstrated their strengths.  point cloud data into a 2D “pillar” representation, leveraging
However, the Point Pillars algorithm excels in balancing speed = mature 2D Convolutional Neural Networks (2D CNNs) for
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efficient feature extraction and target detection. This approach
significantly enhances computational efficiency while retaining the
rich information of the point cloud data.

In order to meet the demand for the real-time, efficient
detection of power lines from airborne platforms, this study employs
an improved Point Pillars algorithm. In traditional vehicle-based
target detection, the orientation of targets is usually defined by
a single heading angle. However, for airborne platforms, precise
target orientation requires consideration of three attitude angles.
Consequently, critical modifications were made to the interface
functions of the algorithm to enable it to adapt seamlessly from
vehicle-based to airborne target detection scenarios. Furthermore,
to enhance detection accuracy, the study integrates LIDAR point
cloud data with POS measurements, converting the point cloud
data into the geodetic coordinate system. This effectively mitigates
deformation effects in Point Pillars projections caused by varying
flight altitudes, as shown in Figure 10. By annotating and training

Frontiers in Physics 09

on a large dataset (at least 6,000 frames), this study utilized SUSTech
POINT software and the Open PCDet platform to train the point
cloud data. The trained algorithm was then deployed on the NVIDIA
Jetson NX platform for real-time power line detection on new point
cloud data.

As illustrated in Figure 11, the Point Pillars algorithm, when
deployed on the NVIDIA Jetson NX platform, accurately identified
both power lines and towers, achieving an identification rate of 32%
for individual power lines in 100 ms. Figure 11 corresponds to the
same frame of data as Figure 9.

The experimental results indicate that the combination
of traditional elevation filtering algorithms and convolutional
individual
the
recognition

elevation

neural networks can effectively extract
cloud data. Due
training data, the

networks is lower

power

lines from point to limited

correct
than that

amount of pre

rate of neural

algorithm.
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LIDAR data POS data
Point cloud data is converted to a
geodetic coordinate system
Amplitude filtering and radius
filtering remove noise
Annotate power lines on
point cloud data FIGURE 12
Slope gradient calculation in point cloud. Cyan represents the
+ helicopter trajectory, green represents ground points, red represents
The annotated data was trained using non-ground points, the yellow box represents the helicopter landing
the open pcdet framework position and the purple text shows the calculated slope gradient of the
ground in real time.
Use the trained model file to identify
power lines on subsequent
point cloud data
HCURE 10 efficient and accurate terrain assessment for airborne LIDAR-based

The point pillars algorithm process flowchart.

FIGURE 11
The point pillars algorithm identifies power lines and power towers.

This diagram shows the effect of the algorithm. Blue represents power
lines and green represents power towers. This frame of data includes
60,000 points, with 100 points for each individual power line.

4.4 Slope gradient calculation results

To validate the proposed method of calculating slope gradients,
we performed slope gradient calculations using airborne LIDAR
point cloud scans. We visualized the processed data, which included
ground extraction and slope estimation, to assess the accuracy and
efficiency of the algorithm.

Figure 12 shows the helicopter trajectory, the segmented ground
and non-ground points, and the calculated slope gradient of the
terrain. Please note that the slope gradient representing the ground
was calculated dynamically in real time at a rate of 5ms per
point cloud scan, ensuring terrain inclination estimation with
minimal latency. A comparison analysis was conducted between
the measured data and the actual obtained slope data. The slope
calculation error was 5%.

This experimental visualization confirms the effectiveness of the
proposed method for calculating slope gradients, which enables
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power line recognition systems.

5 Discussions and conclusion

This study involved the implementation of innovative design
and implementation strategies to mitigate flight safety risks
associated with night-time flying and landing, such as potential
collisions with power lines and uneven landing grounds. The
research successfully developed an efficient processing algorithm
and platform, providing a robust technical foundation for the design
of compact airborne LIDAR system. The system achieved long-
distance, high-resolution detection capabilities and met critical real-
time performance requirements. Regarding algorithm processing,
the study successfully overcame the challenges of real-time
coordinate transformation and power line detection and terrain
assessment on a high-speed platform reaching speeds of 120 km/h.

As the pioneering study on high-speed flight platforms and
LIDAR development, the promising gains may encourage other
researchers to work on this topic. The merits of LiDAR are
not limited to the aforementioned aspects. The system can be
installed on top of any high-speed transport vehicle to form an
safety monitoring system instantly. Additionally, the integration of
infrared, camera and lidar data on the flight platform will be a
important research focus in the future.
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