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The discovery of the rotational Doppler effect (RDE) has opened new
opportunities for detecting parameters of rotating targets. In recent years,
the physical mechanisms underlying this effect have been thoroughly
investigated. However, existing methods for extracting target rotation rates
remain largely confined to conventional spectral analysis techniques like Fourier
transformation. In this study, we propose a machine learning-based approach
for automatic rotation rate extraction, which enables rapid and accurate
measurement under conditions which misalignment exists between vortex
beam axis and the target rotating axis. This method significantly simplifies the
rotation rate retrieval process while maintaining high precision. Furthermore, we
provide an in-depth investigation into the intrinsic mechanisms of the algorithm,
uncovering new physical insights that pave the way for practical applications of
this technology.
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1 Introduction

The rotational Doppler effect (RDE) refers to the frequency shift in scattered light
caused by relative motion between structured beams and rotating targets [1, 2]. Since the
first demonstration by Padgett et al. in Science (2013) for rotational speed measurement
[3], significant advancements have been made to enhance the practical applicability of
this technique [4-9]. Initial implementations required strict alignment between the beam
propagation axis and target rotation axis [ 10-12]. Subsequent studies extended this principle
to misaligned configurations (non-cooperative detection), establishing new measurement
methodologies under beam-target misalignment [13-15]. Recent progress has reduced the
requirements for structured light characteristics: while early implementations demanded
high-purity vortex beams, current approaches can utilize supercontinuum white light and
even incoherent light sources [16, 17]. Notably, spectral broadening phenomena observed
under both mode impurity and beam misalignment conditions exhibit frequency intervals
matching rotational speeds. This discovery has led to the development of robust speed
extraction methods based on spectral interval analysis [18-20], significantly expanding the
technique’s application potential.

Despite recent advancements in rotational speed detection based on the RDE, existing
speed extraction methods university rely on spectral analysis of echo signals [21-25]. The
conventional procedure involves: (1) acquiring time-domain echo signals, (2) performing
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frequency-domain analysis through Fourier transforms, (3)
extracting spectral features, and (4) calculating rotational speeds.
This approach suffers from computational complexity and
dependence on expert interpretation, particularly under non-
cooperative detection conditions where spectral signatures become
highly intricate [26-28]. Manual analysis becomes impractical
for accurate and efficient speed extraction in such scenarios.
The rapid development of artificial intelligence technology has
demonstrated remarkable capabilities across various domains [29].
Inspired by these advances, this study proposes an end-to-end deep
learning model designed to directly regress rotational speeds from
raw time-domain signals. This paradigm eliminates the need for
frequency-domain conversion and manual feature engineering,
thereby enhancing automation and computational efficiency.

Convolutional Neural Networks (CNNs) are a class of deep
feedforward neural networks characterized by convolutional
operations and hierarchical architectures, representing one of the
cornerstone algorithms in deep learning [30-32]. Based on the
CNN framework, this study proposes an end-to-end deep learning
model based on one-dimensional convolutional neural network
(1D-CNN), featuring a three-stage cascade structure composed of
1D convolutional and pooling players. This architecture enables
progressive extraction of both local features and global temporal
dependencies directly from raw time-domain signals. A full-
process simulation of the RDE was implemented to generate
a training dataset under non-cooperative detection conditions.
Experimental validation demonstrates the model's superior
predictive performance, achieving 90% accuracy in rotational speed
estimation.

2 Theory

2.1 Non-cooperative rotational Doppler
effect

The rotational Doppler effect (RDE) of vortex beams is well
established, referring to the phenomenon where scattered light
undergoes a frequency shift when orbital angular momentum
(OAM) carrying structured beams illuminate a rotating object.
The magnitude of this frequency shift depends on the structural
parameters of the light beams and the rotational speed of the object.
Consider the expression for a typical Laguerre-Gaussian (LG) mode
vortex beam as Equation 1 [33]:

C v2\! n( 2r*
o) o (52) 1 ()

X exp [_wﬁﬁ + 1’<lgo— f—}r:z -p+ 1+ 1)arctani>]
(1)

where p and [ are the radial and azimuth index, respectively, C
is a constant which stands for the amplitude, LJ,” represents the
generalized Laguerre polynomial of order p and degree |I|, z, is
the Rayleigh range expressed by z; = mw;/A, where w; is the beam
waist at the initial plane (z=0) where the beam is narrowest.
The functions w,, R, are the beam waist and curvature radius of
wavefront, respectively.
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The Poynting vector refers to the energy flux density in an
electromagnetic field, which can be expressed by P = E x B, where E
represents the electric field intensity and B denotes the magnetic field
intensity at a specific location. Based on the above LG expression, the
Poynting vector within the vortex field can be expressed as,
rz |2 -

p-l r+kir|u|2¢‘>+|u|22 @)

el (Z+zp)

where 7, ¢ and % are unit vectors, |u|* = |u(r, 9,2)
total energy intensity, and k =2n/A denotes the wavenumber. It

—|u

|* denotes the
can be seen from Equation 2 that there are three independent
component components in the Poynting vector, where the second
term gives the skew angle of the Poynting vector with respect to the
beam axis as,

a=I1/kr (3)

For any scattering point under beam irradiation, when the
scattering point moves along the direction of beam propagation (the
direction of the Poynting vector) at a velocity v, the reflected light
will experience a Doppler shift of Af= fv/c, where f represents
the frequency of the light. However, when the direction of motion
does not coincide with the beam propagation axis, the calculation
of the Doppler shift magnitude requires projecting the velocity of
the scattering point onto the direction of beam propagation. For
vortex beams, the Doppler shift for each scattering point within the
irradiation range can be expressed as follows:

Cc

- sin (4)

Combining Equations 3, 4, the Doppler shift magnitude for
each point is calculated to be A f = #wR/27r, where R represents the
radius of the small scatter on the rotating object, while r denotes the
beam radius at the scattering point. It can be seen that the magnitude
of the Doppler shift generated at each point depends on its radial
position (R) and the beam radius at that location. When the vortex
beam illuminating the rotating object on its axis, for each scatterer,
the beam radius always equals the scatterer rotating axis. Therefore,
the Doppler shift becomes Af,,, = £w/2m, which is the so-called
rotational Doppler shift. However, when the beam axis does not
coincide with the object’s axis of rotation (which can be called non-
cooperative detection), the magnitude of the Doppler shift could
relate with the position of each scatterer is not a uniform value.
This is the fundamental principle of the non-cooperative rotational
Doppler effect. At this point, it is no longer possible to directly
calculate the target’s rotational speed from the spectrum, as there
is no single peak in the spectral.

2.2 1D-CNN model

This study proposes an end-to-end deep learning model based
on 1D-CNN architecture to address the direct regression of target
values from time-domain signals. Unlike conventional approached
relying on Fourier transforms and manual feature computation,
our model automatically learns frequency-domain latent features
through multi-layer convolutional operations, eliminating intricate
manual processing. The architecture accepts raw time-domain
signals of length 1,002 as input and outputs target rotating speed
information, with core design comprising two key components.
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FIGURE 1

RDE simulation process. First, a Gaussian beam propagates through space according to the beam propagation matrix, subsequently interacting with a
designed spiral phase mask of a vortex beam through multiplicative phase modulation to form a Laguerre—Gaussian vortex beam. Next, the generated
vortex beam interacts with a rotating object characterized by a specific amplitude intensity distribution B(x;,y;). The resulting scattered light is then fully
captured based on the light intensity calculation formula. Finally, the collected signals are sampled to form time-domain signal data.
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FIGURE 2

Time and Frequency domain signal of RDE. (a,c) represent the signals in the time domain, while (b,d) are the frequency domain signals. Under off-axis
conditions, the frequency signals from both measurements shifted and exhibited broadening.

2.2.1 Feature extraction module
The employs a three-stage cascade 1D

size = 3), with ReLU activation introducing non-linearity and

architecture batch normalization (BN) accelerating convergence. Max-pooling

convolutional-pooling hierarchy that hierarchically extracts both
localized features and global patterns from time domain signals.
Each stage progressively deploys 64, 128, and 256 filters (kernel
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(pooling size = 2), subsequently reduces feature dimensionality
while enhancing robustness against minor temporal shifts in
signals.
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FIGURE 3

Training process and the predicted value. (a) The model training process with the decrease of MSE loss. (b) The predictions of the training sets with 10%

error margin.

2.2.2 Feature compression and regression
module

This module employs a structure incorporating global average
pooling and fully-connected layers to achieve feature dimensionality
reduction and value regression. The compressed feature tensor
is projected into the target space through sequential operations.
Firstly, global average pooling eliminates spatial redundancy while
preserving discriminative patterns. Secondly, three dense layers
(512->256->1 neurons) with dropout regularization (p = 0) prevent
overfitting. And finally, adaptive SELU activation enables self-
normalized propagation, ensuring stable gradient flow during end-
to-end optimization.

2.2.3 Training strategy

The training strategy incorporated three technical components.
Data preprocessing implemented cross-sample standardization on
time-domain signals based on Equation 5.

) = b ©
time
where X(i) denotes the raw signal value at the ith timestep, 4,;,,,
represents the mean value across all samples at the same timestep,
and oy, indicates the corresponding standard deviation. This
operation eliminated dimensional inconsistencies while retaining
temporal correlations.

For optimization, the mean squared error (MSE) loss function
was employed to quantify prediction errors, with the Adam
optimizer dynamically adjusting parameter update steps (initial
learning rate: 1x 107%) to balance convergence speed and stability.
To control model complexity, and early stopping mechanism
tracked validation loss trends, automatically halting training if
no improvement persisted for 20 consecutive epochs, thereby
preventing overfitting and ensuring generalizability to unseen non-
cooperative detection scenarios.
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3 Experiment

3.1 Design of the prove-of-concept
experiment

To validate the feasibility of the aforementioned model, a
comprehensive training dataset was first constructed in a simulated
environment. Analogous to practical scenarios, the simulated
data is generated through procedures including beam generation,
diffraction propagation, illumination of rotating targets, scattered
light collection, and sampling recording. As illustrated in Figure 1,
a laser first generates Gaussian beam and then is converted into
a vortex beam via a spiral phase Exp(im¢), then interacts with
the rotating target characterized by a specific amplitude intensity
distribution, and finally generates time-domain signals through
scattered light collection. More details of the simulation process can
be found in Ref. [19].

When configuring the simulation parameters, the topological
charge m of the vortex beam was set as a random integer between
10 and 25. Based on this value m, a superposition-state vortex beam
was subsequently generated. The diffraction propagation distance
was set to approximately 1 m. The rotational speed of the target was
assigned a random value within the range of 10-110, consistent with
the rotational speeds of common objects in daily life, such as fans
and turbines. Regarding the parameters for off-axis illumination, the
distance between the beam and the target’s rotation center was set
between 0 and 7, where r denotes the radius of the vortex beam
ring projected on the object’s surface. The tilt angle between the
beam propagations axis and the target’s rotation axis was configured
between 0 and 77/3. Through the configuration of these parameters,
realistic detection scenarios involving off-axis illumination of the
target can be effectively simulated.

Based on the simulation parameter configuration, each set of
training data includes: the target value, i.e., the preset rotational
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FIGURE 4
Prediction results of experimental data. (a,b) display the data ordered by the actual rotational speed values and the corresponding relative errors,
respectively. This arrangement reveals that larger errors predominantly occur in the lower target speed range. In contract, (c,d) present the prediction
outcomes and relative errors sorted by the index number of the experimental data. As evidenced, the majority of the experimental data demonstrate
high prediction accuracy.

speed of the object, off-axis parameters, comprising lateral  dataset, as shown in Figures 2c, d, the rotational speed was set
displacement and title angle, the topological charge m of the to 33 RPS, with probe beams carrying topological charges of
beam, the system sampling rate f, and the time-domain signal ~ +11. Similarly, the signals displayed equally spaced broadening,
values obtained from sampling. To clearly illustrate the information ~ preventing accurate calculate of the target rotational speed.

contained in the training dataset, a sampled signal was selected Subsequently, signal extraction experiments were conducted
and subjected to Fast Fourier Transform (FFT), with the results  using our constructed 1D-CNN model. Based on the simulated
presented in Figure 2. We selected two sets of experimental data for ~ rotational Doppler effect model, a total of 1,000 samples were
time-frequency analysis. In the first dataset, as shown in Figures 2a,  collected to form the training dataset. During the 1D-CNN model
b, the rotational speed was set to 106 rounds per second (RPS), and training, the entire dataset was divided into training and test sets
the detection was performed using vortex beams with topological ~ in an 8:2 ratio. In the initial training session, data containing all
charges of +18. Under ideal coaxial conditions where the beam  parameters were used as training inputs to train the model, and
propagation axis aligns with the target’s rotation axis, the theoretical ~ the results are illustrated in Figure 3. Here, Figure 3a represents
rotational Doppler shift would be 3,816 Hz. However, under off-  the descent process of the training loss, while Figure 3b is the
axis illumination conditions, the signal deviated from its theoretical = prediction results of the validation set. It can be observed from
position and exhibited spectral broadening, with the highest peak  the training history that the loss decreased to an acceptable
observed at 4,238 Hz, as is shown in Figure 2b, making it impossible ~ range after approximately 110 training epochs, at which point the
to accurately determine the target rotational speed. For the second =~ model ceased training. In the validation datasets, the predicted
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https://doi.org/10.3389/fphy.2025.1721662
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Qiu et al. 10.3389/fphy.2025.1721662
. . Experimental Data Validation
Experimental Data: True vs Predicted Values RZ = (5984' 78.3% within 10% error
120 A +10% Error Margin True Values
@ Predictions
= Perfect Prediction 100 4 [ ) Predictions 60
® True Values
100 A
50
80

80 =
o " 4%
2 o
g 5
L 5 60 $
£ % £ 0%
&

40 4 40 A 20

10

204 204
20 40 60 80 100 b 20 40 60 80 100
(a) True Values ( ) True Values
FIGURE 5

model maintains high predictive accuracy in such condition. This indicates
characteristic patterns in the spectral distribution of the experimental data.

Prediction results without beam displacement parameters (a) and probe beam topological charge (b) information. The results demonstrate that the

that the implemented algorism deduces rotational speed by learning

values generally align closely with the true values. The prediction
errors for most datasets remain 10%, with the exception of a few
outliers. Furthermore, the model demonstrates higher prediction
accuracy when the target rotational speed ranges between 30 and
100 RPS, whereas its performance degrades significantly at speeds
below 25 RPS.

3.2 Key parameter analysis

Based on the pre-trained model mentioned above, we first
evaluated its performance using experimental data with all
parameters intact. The rotational speed in the experimental data was
set to random values between 1 and 100 RPS while the topological
charge was configured between 15 and 30. Each dataset included
parameters such as lateral displacement, tilt angle, sampling rate, the
topological charge of the probe beam, and complete time-frequency
signals. The prediction results of the model are shown in Figure 4. It
can be observed that under the condition of complete parameters,
the model effectively extracts the target rotational speed embedded
in the measurement data. Across a total of 83 experimental datasets,
the maximum prediction error observed was 64.5%, where the true
rotational speed of the target is 14 RPS while the predicted value
reached 23.04 RPS. In contrast, the optimal prediction was achieved
with dataset 58, recording a true value of 84 RPS against a predicted
value of 84.11 RPS, resulting in a negligible error of merely 0.1%.
Over 70% of the datasets exhibited relative prediction errors within
10%, demonstrating the model’s strong predictive capability.

Based on the aforementioned analysis and experimental
procedures, the prediction results demonstrate that the model has
acquired the capability to compute the target’s rotational speed
by integrating time-domain signals with relevant detection and
sampling parameters. However, these experimental outcomes alone
cannot fully reveal the model’s decision-making mechanism. To
further determine whether the 1D-CNN learned the underlying
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Doppler effect principles or merely identified patterns in the
frequency spectrum, we conducted an additional test by omitting
the beam displacement parameters and the vortex beam topological
charge. To maintain consistent input dimensions for the model, the
omitted parameters were replaced with zeros. The results of this test
are presented in Figure 5.

As shown in the prediction results, the model continues to
accurately predict the target rotational speed with minimal error.
The maximum prediction error reached 68.6% (only 1 set), while
78.3% of predictions maintained errors within 10%, demonstrating
that the model’s predictive accuracy remains unaffected by the
omission of beam displacement and probe beam parameters. In
contrast, traditional frequency analysis methods are difficult to
precisely calculate the rotational speed from spectral information
when accurate beam topological charge parameters omitted, the
model successfully extracted the rotational speed. This indicates
that the model deduces the rotational speed based on characteristic
features in the frequency signal, rather than relying on the
conventional rotational Doppler effect principle.

4 Conclusion and discussion

In summary, to address the challenge of extracting rotational
speed information from broadened rotational Doppler shift signals
under non-cooperative conditions, this paper proposes an adaptive
target rotational speed extraction method based on a machine
learning model. A one-dimensional convolutional neural network
(ID-CNN) was developed, and through optimized architecture
design, the model successfully achieves accurate extraction of target
rotational speed under off-axis illumination conditions. Based on
the established RDE simulation process, a training dataset was
constructed under off-axis illumination conditions, and the model
was trained to its optimal state. The trained model was subsequently
applied to predict experimental data, with results indicating high
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accuracy for most predictions and an overall error within 10%,
demonstrating the model’s robust predictive performance. However,
the current training data does not account for environment noise
such as atmosphere turbulence. Subsequent studies could further
enhance the model’s robustness by diversifying the training dataset.

Comparative experiments further verified that the algorithm
can extract the target rotational speed solely from the frequency
information inherent in the spectrum, without requiring beam
displacement or vortex beam parameters, thereby significantly
improving the efficiency the speed extraction. The proposed model
effectively solves the problem of extracting target rotational speed
under off-axis vortex beam illumination, advancing the practical
application of RDE-based methods from theoretical research to
real-world implementation.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

SQ: Methodology, Writing - review and editing, Data curation,
Writing - original draft. JZ: Validation, Supervision, Writing —
original draft. YS: Writing — review and editing, Validation. MX:
Writing - review and editing, Investigation, Formal Analysis. QW:
Project administration, Resources, Writing - review and editing.

Funding

The author(s) declared that financial support was received for
this work and/or its publication. This work was partly supported

References

1. Garetz BA. Angular doppler effect. J Opt Soc Am B (1981) 71:609-11.
doi:10.1364/j0sa.71.000609

2. Bialynicki-Birula I, Bialynicka-Birula Z. Rotational frequency shift. Phys Rev Lett
(1997) 78:2539-42. doi:10.1103/physrevlett.78.2539

3. Lavery MP, Speirits FC, Barnett SM, Padgett MJ. Detection of a spinning
object using light's orbital angular momentum. Science (2013) 341:537-40.
doi:10.1126/science.1239936

4. Korech O, Steinitz U, Gordon RJ, Averbukh IS, Prior Y. Observing
molecular spinning via the rotational doppler effect. Nat Photon (2013) 7:711-14.
doi:10.1038/nphoton.2013.189

5. Fu S, Wang T, Zhang Z, Zhai Y, Gao C. Non-diffractive bessel-gauss beams for
the detection of rotating object free of obstructions. Opt Express (2017) 25:20098-108.
doi:10.1364/OE.25.020098

6. Kang L, Cheng Y, Xiang L, Wang H, Qin Y, Yue G. Spinning target detection using
OAM-Based radar. In: International Workshop on Electromagnetics: Applications and
Student Innovation Competition; 30 May 2017 - 01 June 2017; London, UK. IEEE
(2017). p. 29-30.

7. Fang L, Padgett MJ, Wang J. Sharing a common origin between the rotational and
linear doppler effects. Laser Photon Rev. (2017) 11:1700183. doi:10.1002/lpor.201700183

8. Deng J, Li KE, Liu W, Li G. Cascaded rotational doppler effect. Opt Lett (2019)
44:2346-49. doi:10.1364/0L.44.002346

9. Anderson AQ, Strong EF, Heffernan BM, Siemens ME, Rieker GB, Gopinath
JT. Detection technique effect on rotational doppler measurements. Opt Lett (2020)
45:2636-9. doi:10.1364/01.390425

Frontiers in Physics

07

10.3389/fphy.2025.1721662

by the National Natural Science Foundation of China under
grant 62305007 and partly supported by the Internal Funding
of National Key Laboratory of Space Integrated Information
System.

Conflict of interest

The author(s) declared that this work was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declared that generative AI was not used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

10. Rosales-Guzman C, Hermosa N, Belmonte A, Torres JP. Direction-sensitive
transverse velocity measurement by phase-modulated structured light beams. Opt Lett
(2014) 39:5415-10. doi:10.1364/0L.39.005415

11. Zhou H, Fu D, Dong ], Zhang P, Zhang X. Theoretical analysis and experimental
verification on optical rotational doppler effect. Opt Express (2016) 24:10050-6.
doi:10.1364/0E.24.010050

12. Hu XB, Zhao B, Zhu ZH, Gao W, Rosales-Guzman C. In situ detection of a
cooperative target’s longitudinal and angular speed using structured light. Opt Lett
(2019) 44:3070-3. doi:10.1364/0L.44.003070

13. Qiu S, Liu T, Li Z, Wang C, Ren Y, Shao Q. Influence of lateral misalignment on
the optical rotational doppler effect. Appl Opt (2019) 58:2650-5. doi:10.1364/A0.58.
002650

14. Qiu S, Liu T, Ren Y, Li Z, Wang C, Shao Q. Detection of spinning objects at
oblique light incidence using the optical rotational doppler effect. Opt Express (2019)
27:24781-92. doi:10.1364/OE.27.024781

15. Lii]J-Q, Cheng T-Y, GuoJ-X, Li]-S, Wang Y, Lu Z. Robust measurement of angular
velocity based on rotational doppler effect in misaligned illumination. Appl Phys Lett
(2023) 123:131107. doi:10.1063/5.0163937

16. Lavery MPJ, Barnett SM, Speirits FC, Padgett MJ. Observation of the rotational
doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered
from a rotating body. Optica (2014) 1:1-4. doi:10.1364/optica.1.000001

17. Zhao X, Lu X, Hu Z, Liu T, Hang Y, Gao ]. Robust detection of a
rotational doppler shift with randomly fluctuated light. Opt Lett (2024) 49:4198-201.
doi:10.1364/0L.524332

frontiersin.org


https://doi.org/10.3389/fphy.2025.1721662
https://doi.org/10.1364/josa.71.000609
https://doi.org/10.1103/physrevlett.78.2539
https://doi.org/10.1126/science.1239936
https://doi.org/10.1038/nphoton.2013.189
https://doi.org/10.1364/OE.25.020098
https://doi.org/10.1002/lpor.201700183
https://doi.org/10.1364/OL.44.002346
https://doi.org/10.1364/OL.390425
https://doi.org/10.1364/OL.39.005415
https://doi.org/10.1364/OE.24.010050
https://doi.org/10.1364/OL.44.003070
https://doi.org/10.1364/AO.58.002650
https://doi.org/10.1364/AO.58.002650
https://doi.org/10.1364/OE.27.024781
https://doi.org/10.1063/5.0163937
https://doi.org/10.1364/optica.1.000001
https://doi.org/10.1364/OL.524332
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Qiu et al.

18. Qiu S, Ding Y, Liu T, Liu Z, Ren Y. Rotational object detection at noncoaxial
light incidence based on the rotational doppler effect. Opt Express (2022) 30:20441-50.
doi:10.1364/OE.461179

19. Qiu S, Ding Y, Liu T, Liu Z, Wu H, Ren Y. Fragmental optical vortex for the
detection of rotating object based on the rotational doppler effect. Opt Express (2022)
30:47350-60. doi:10.1364/OE.476870

20. Qiu S, Liu T, Ding Y, Liu Z, Chen L, Ren Y. Rotational doppler effect with vortex
beams: fundamental mechanism and technical progress. Front Phys (2022) 10:938593.
doi:10.3389/fphy.2022.938593

21. Ren Y, Qiu S, Liu T, Liu Z. Compound motion detection based on OAM
interferometry. Nanophotonics (2022) 11:1127-35. doi:10.1515/nanoph-2021-0622

22. Zhai Y, Fu S, Yin C, Zhou H, Gao C. Detection of angular acceleration
based on optical rotational doppler effect. Opt Express (2019) 27:15518-27.
doi:10.1364/0OE.27.015518

23. Zhang W, Zhang D, Qiu X, Chen L. Quantum remote sensing of
the angular rotation of structured objects. Phys Rev A (2019) 100:043832.
doi:10.1103/physreva.100.043832

24.Qiu S, Ren Y, Liu T, Chen L, Wang C, Li Z. Spinning object
detection based on perfect optical vortex. Opt Lasers Eng (2020) 124:105842.
doi:10.1016/j.optlaseng.2019.105842

25. Zhai Y, Fu S, Zhang J, Lv Y, Zhou H, Gao C. Remote detection of a rotator based
on rotational doppler effect. Appl Phys Express (2020) 13:022012. doi:10.35848/1882-
0786/ab6e0c

Frontiers in Physics

08

10.3389/fphy.2025.1721662

26. Deng D, Zhao H, Ni J, Li Y, Qiu C-W. A phase-to-intensity strategy of angular
velocity measurement based on photonic orbital angular momentum. Nanophotonics
(2022) 11:865-72. doi:10.1515/nanoph-2021-0461

27. Emile O, Rochefort G, Le Stradic K, Emile J. Air vortex detection using the
rotational doppler effect. Appl Opt (2024) 63:7669. doi:10.1364/a0.534245

28. Larnimaa S, Vainio M. Fourier-transform spectroscopy based on the rotational
doppler effect. AIP Adv (2024) 14:105329. doi:10.1063/5.0220119

29. Wang H, Yang X, Liu Z, Pan ], Meng Y, Shi Z. Deep-learning-based recognition of
multi-singularity structured light. Nanophotonics (2021) 0. doi:10.1515/nanoph-2021-
0489

30. Sato T, Hotta K. CNN to capsule network transformation. In: 2020 Digital Image
Computing: Techniques and Applications (DICTA); 29 November 2020 - 02 December
2020; Melbourne, Australia. IEEE (2020) 1-2.

31. Cheng WY, Wan ZW, Chen YD, Chen ZW. Automatic classification of
ionogram with CNN. In: 2020 IEEE International Conference on Consumer
Electronics - Taiwan (ICCE-Taiwan); 28-30 September 2020; Taoyuan, Taiwan. IEEE
(2020) 1-2.

32. Tian C, Xu Y, Zuo W, Lin CW, Zhang D. Asymmetric CNN for
image superresolution. IEEE Trans Syst Man, Cybernetics (2022) 52:3718-30.
doi:10.1109/tsmc.2021.3069265

33. Allen L, Beijersbergen MW, Spreeuw R], Woerdman JP. Orbital angular
momentum of light and the transformation of laguerre-gaussian laser modes. Phys Rev
A (1992) 45:8185-9. doi:10.1103/physreva.45.8185

frontiersin.org


https://doi.org/10.3389/fphy.2025.1721662
https://doi.org/10.1364/OE.461179
https://doi.org/10.1364/OE.476870
https://doi.org/10.3389/fphy.2022.938593
https://doi.org/10.1515/nanoph-2021-0622
https://doi.org/10.1364/OE.27.015518
https://doi.org/10.1103/physreva.100.043832
https://doi.org/10.1016/j.optlaseng.2019.105842
https://doi.org/10.35848/1882-0786/ab6e0c
https://doi.org/10.35848/1882-0786/ab6e0c
https://doi.org/10.1515/nanoph-2021-0461
https://doi.org/10.1364/ao.534245
https://doi.org/10.1063/5.0220119
https://doi.org/10.1515/nanoph-2021-0489
https://doi.org/10.1515/nanoph-2021-0489
https://doi.org/10.1109/tsmc.2021.3069265
https://doi.org/10.1103/physreva.45.8185
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

	1 Introduction
	2 Theory
	2.1 Non-cooperative rotational Doppler effect
	2.2 1D-CNN model
	2.2.1 Feature extraction module
	2.2.2 Feature compression and regression module
	2.2.3 Training strategy


	3 Experiment
	3.1 Design of the prove-of-concept experiment
	3.2 Key parameter analysis

	4 Conclusion and discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

