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The discovery of the rotational Doppler effect (RDE) has opened new 
opportunities for detecting parameters of rotating targets. In recent years, 
the physical mechanisms underlying this effect have been thoroughly 
investigated. However, existing methods for extracting target rotation rates 
remain largely confined to conventional spectral analysis techniques like Fourier 
transformation. In this study, we propose a machine learning-based approach 
for automatic rotation rate extraction, which enables rapid and accurate 
measurement under conditions which misalignment exists between vortex 
beam axis and the target rotating axis. This method significantly simplifies the 
rotation rate retrieval process while maintaining high precision. Furthermore, we 
provide an in-depth investigation into the intrinsic mechanisms of the algorithm, 
uncovering new physical insights that pave the way for practical applications of 
this technology.
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 1 Introduction

The rotational Doppler effect (RDE) refers to the frequency shift in scattered light 
caused by relative motion between structured beams and rotating targets [1, 2]. Since the 
first demonstration by Padgett et al. in Science (2013) for rotational speed measurement 
[3], significant advancements have been made to enhance the practical applicability of 
this technique [4–9]. Initial implementations required strict alignment between the beam 
propagation axis and target rotation axis [10–12]. Subsequent studies extended this principle 
to misaligned configurations (non-cooperative detection), establishing new measurement 
methodologies under beam-target misalignment [13–15]. Recent progress has reduced the 
requirements for structured light characteristics: while early implementations demanded 
high-purity vortex beams, current approaches can utilize supercontinuum white light and 
even incoherent light sources [16, 17]. Notably, spectral broadening phenomena observed 
under both mode impurity and beam misalignment conditions exhibit frequency intervals 
matching rotational speeds. This discovery has led to the development of robust speed 
extraction methods based on spectral interval analysis [18–20], significantly expanding the 
technique’s application potential.

Despite recent advancements in rotational speed detection based on the RDE, existing 
speed extraction methods university rely on spectral analysis of echo signals [21–25]. The 
conventional procedure involves: (1) acquiring time-domain echo signals, (2) performing
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frequency-domain analysis through Fourier transforms, (3) 
extracting spectral features, and (4) calculating rotational speeds. 
This approach suffers from computational complexity and 
dependence on expert interpretation, particularly under non-
cooperative detection conditions where spectral signatures become 
highly intricate [26–28]. Manual analysis becomes impractical 
for accurate and efficient speed extraction in such scenarios. 
The rapid development of artificial intelligence technology has 
demonstrated remarkable capabilities across various domains [29]. 
Inspired by these advances, this study proposes an end-to-end deep 
learning model designed to directly regress rotational speeds from 
raw time-domain signals. This paradigm eliminates the need for 
frequency-domain conversion and manual feature engineering, 
thereby enhancing automation and computational efficiency.

Convolutional Neural Networks (CNNs) are a class of deep 
feedforward neural networks characterized by convolutional 
operations and hierarchical architectures, representing one of the 
cornerstone algorithms in deep learning [30–32]. Based on the 
CNN framework, this study proposes an end-to-end deep learning 
model based on one-dimensional convolutional neural network 
(1D-CNN), featuring a three-stage cascade structure composed of 
1D convolutional and pooling players. This architecture enables 
progressive extraction of both local features and global temporal 
dependencies directly from raw time-domain signals. A full-
process simulation of the RDE was implemented to generate 
a training dataset under non-cooperative detection conditions. 
Experimental validation demonstrates the model’s superior 
predictive performance, achieving 90% accuracy in rotational speed 
estimation. 

2 Theory

2.1 Non-cooperative rotational Doppler 
effect

The rotational Doppler effect (RDE) of vortex beams is well 
established, referring to the phenomenon where scattered light 
undergoes a frequency shift when orbital angular momentum 
(OAM) carrying structured beams illuminate a rotating object. 
The magnitude of this frequency shift depends on the structural 
parameters of the light beams and the rotational speed of the object. 
Consider the expression for a typical Laguerre–Gaussian (LG) mode 
vortex beam as Equation 1 [33]:

LGp,l(r,φ,z) =
C

(1+ z2/z2
R)

1/2
( r√2

wz
)
|l|

L|l|p (
2r2
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z
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where p and l are the radial and azimuth index, respectively, C
is a constant which stands for the amplitude, L|l|p  represents the 
generalized Laguerre polynomial of order p and degree |l|, zR is 
the Rayleigh range expressed by zR = πw2

0/λ, where w0 is the beam 
waist at the initial plane (z = 0) where the beam is narrowest. 
The functions wz, Rz are the beam waist and curvature radius of 
wavefront, respectively.

The Poynting vector refers to the energy flux density in an 
electromagnetic field, which can be expressed by P⃗ = E⃗× B⃗, where E⃗
represents the electric field intensity and B⃗ denotes the magnetic field 
intensity at a specific location. Based on the above LG expression, the 
Poynting vector within the vortex field can be expressed as,

P⃗ = 1
c
[ rz
(z2 + z2

R)
|u|2 ̂r+ l

kr
|u|2 ̂ϕ+ |u|2 ̂z] (2)

where ̂r, ̂ϕ and ̂z are unit vectors, |u|2 = |u(r,φ,z)|2 denotes the 
total energy intensity, and k = 2π/λ denotes the wavenumber. It 
can be seen from Equation 2 that there are three independent 
component components in the Poynting vector, where the second 
term gives the skew angle of the Poynting vector with respect to the 
beam axis as,

α = l/kr (3)

For any scattering point under beam irradiation, when the 
scattering point moves along the direction of beam propagation (the 
direction of the Poynting vector) at a velocity v, the reflected light 
will experience a Doppler shift of Δ f = fv/c, where f represents 
the frequency of the light. However, when the direction of motion 
does not coincide with the beam propagation axis, the calculation 
of the Doppler shift magnitude requires projecting the velocity of 
the scattering point onto the direction of beam propagation. For 
vortex beams, the Doppler shift for each scattering point within the 
irradiation range can be expressed as follows:

Δ f =
fv
c
= 2ωR

λ
· sin α (4)

Combining Equations 3, 4, the Doppler shift magnitude for 
each point is calculated to be Δ f = 𝓁ωR/2πr, where R represents the 
radius of the small scatter on the rotating object, while r denotes the 
beam radius at the scattering point. It can be seen that the magnitude 
of the Doppler shift generated at each point depends on its radial 
position (R) and the beam radius at that location. When the vortex 
beam illuminating the rotating object on its axis, for each scatterer, 
the beam radius always equals the scatterer rotating axis. Therefore, 
the Doppler shift becomes Δ fRDE = 𝓁ω/2π, which is the so-called 
rotational Doppler shift. However, when the beam axis does not 
coincide with the object’s axis of rotation (which can be called non-
cooperative detection), the magnitude of the Doppler shift could 
relate with the position of each scatterer is not a uniform value. 
This is the fundamental principle of the non-cooperative rotational 
Doppler effect. At this point, it is no longer possible to directly 
calculate the target’s rotational speed from the spectrum, as there 
is no single peak in the spectral.

2.2 1D-CNN model

This study proposes an end-to-end deep learning model based 
on 1D-CNN architecture to address the direct regression of target 
values from time-domain signals. Unlike conventional approached 
relying on Fourier transforms and manual feature computation, 
our model automatically learns frequency-domain latent features 
through multi-layer convolutional operations, eliminating intricate 
manual processing. The architecture accepts raw time-domain 
signals of length 1,002 as input and outputs target rotating speed 
information, with core design comprising two key components. 
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FIGURE 1
RDE simulation process. First, a Gaussian beam propagates through space according to the beam propagation matrix, subsequently interacting with a 
designed spiral phase mask of a vortex beam through multiplicative phase modulation to form a Laguerre–Gaussian vortex beam. Next, the generated 
vortex beam interacts with a rotating object characterized by a specific amplitude intensity distribution B(xi,yi). The resulting scattered light is then fully 
captured based on the light intensity calculation formula. Finally, the collected signals are sampled to form time-domain signal data.

FIGURE 2
Time and Frequency domain signal of RDE. (a,c) represent the signals in the time domain, while (b,d) are the frequency domain signals. Under off-axis 
conditions, the frequency signals from both measurements shifted and exhibited broadening.

2.2.1 Feature extraction module
The architecture employs a three-stage cascade 1D 

convolutional-pooling hierarchy that hierarchically extracts both 
localized features and global patterns from time domain signals. 
Each stage progressively deploys 64, 128, and 256 filters (kernel 

size = 3), with ReLU activation introducing non-linearity and 
batch normalization (BN) accelerating convergence. Max-pooling 
(pooling size = 2), subsequently reduces feature dimensionality 
while enhancing robustness against minor temporal shifts in
signals.
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FIGURE 3
Training process and the predicted value. (a) The model training process with the decrease of MSE loss. (b) The predictions of the training sets with 10% 
error margin.

2.2.2 Feature compression and regression 
module

This module employs a structure incorporating global average 
pooling and fully-connected layers to achieve feature dimensionality 
reduction and value regression. The compressed feature tensor 
is projected into the target space through sequential operations. 
Firstly, global average pooling eliminates spatial redundancy while 
preserving discriminative patterns. Secondly, three dense layers 
(512->256->1 neurons) with dropout regularization (p = 0) prevent 
overfitting. And finally, adaptive SELU activation enables self-
normalized propagation, ensuring stable gradient flow during end-
to-end optimization. 

2.2.3 Training strategy
The training strategy incorporated three technical components. 

Data preprocessing implemented cross-sample standardization on 
time-domain signals based on Equation 5.

Xnorm(i) =
X(i) − μtime

σtime
(5)

where X(i) denotes the raw signal value at the ith timestep, μtime
represents the mean value across all samples at the same timestep, 
and σtime indicates the corresponding standard deviation. This 
operation eliminated dimensional inconsistencies while retaining 
temporal correlations.

For optimization, the mean squared error (MSE) loss function 
was employed to quantify prediction errors, with the Adam 
optimizer dynamically adjusting parameter update steps (initial 
learning rate: 1× 10−3) to balance convergence speed and stability. 
To control model complexity, and early stopping mechanism 
tracked validation loss trends, automatically halting training if 
no improvement persisted for 20 consecutive epochs, thereby 
preventing overfitting and ensuring generalizability to unseen non-
cooperative detection scenarios. 

3 Experiment

3.1 Design of the prove-of-concept 
experiment

To validate the feasibility of the aforementioned model, a 
comprehensive training dataset was first constructed in a simulated 
environment. Analogous to practical scenarios, the simulated 
data is generated through procedures including beam generation, 
diffraction propagation, illumination of rotating targets, scattered 
light collection, and sampling recording. As illustrated in Figure 1, 
a laser first generates Gaussian beam and then is converted into 
a vortex beam via a spiral phase Exp(imφ), then interacts with 
the rotating target characterized by a specific amplitude intensity 
distribution, and finally generates time-domain signals through 
scattered light collection. More details of the simulation process can 
be found in Ref. [19].

When configuring the simulation parameters, the topological 
charge m of the vortex beam was set as a random integer between 
10 and 25. Based on this value m, a superposition-state vortex beam 
was subsequently generated. The diffraction propagation distance 
was set to approximately 1 m. The rotational speed of the target was 
assigned a random value within the range of 10–110, consistent with 
the rotational speeds of common objects in daily life, such as fans 
and turbines. Regarding the parameters for off-axis illumination, the 
distance between the beam and the target’s rotation center was set 
between 0 and r, where r denotes the radius of the vortex beam 
ring projected on the object’s surface. The tilt angle between the 
beam propagations axis and the target’s rotation axis was configured 
between 0 and π/3. Through the configuration of these parameters, 
realistic detection scenarios involving off-axis illumination of the 
target can be effectively simulated.

Based on the simulation parameter configuration, each set of 
training data includes: the target value, i.e., the preset rotational 
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FIGURE 4
Prediction results of experimental data. (a,b) display the data ordered by the actual rotational speed values and the corresponding relative errors, 
respectively. This arrangement reveals that larger errors predominantly occur in the lower target speed range. In contract, (c,d) present the prediction 
outcomes and relative errors sorted by the index number of the experimental data. As evidenced, the majority of the experimental data demonstrate 
high prediction accuracy.

speed of the object, off-axis parameters, comprising lateral 
displacement and title angle, the topological charge m of the 
beam, the system sampling rate f, and the time-domain signal 
values obtained from sampling. To clearly illustrate the information 
contained in the training dataset, a sampled signal was selected 
and subjected to Fast Fourier Transform (FFT), with the results 
presented in Figure 2. We selected two sets of experimental data for 
time-frequency analysis. In the first dataset, as shown in Figures 2a, 
b, the rotational speed was set to 106 rounds per second (RPS), and 
the detection was performed using vortex beams with topological 
charges of ±18. Under ideal coaxial conditions where the beam 
propagation axis aligns with the target’s rotation axis, the theoretical 
rotational Doppler shift would be 3,816 Hz. However, under off-
axis illumination conditions, the signal deviated from its theoretical 
position and exhibited spectral broadening, with the highest peak 
observed at 4,238 Hz, as is shown in Figure 2b, making it impossible 
to accurately determine the target rotational speed. For the second 

dataset, as shown in Figures 2c, d, the rotational speed was set 
to 33 RPS, with probe beams carrying topological charges of 
±11. Similarly, the signals displayed equally spaced broadening, 
preventing accurate calculate of the target rotational speed.

Subsequently, signal extraction experiments were conducted 
using our constructed 1D-CNN model. Based on the simulated 
rotational Doppler effect model, a total of 1,000 samples were 
collected to form the training dataset. During the 1D-CNN model 
training, the entire dataset was divided into training and test sets 
in an 8:2 ratio. In the initial training session, data containing all 
parameters were used as training inputs to train the model, and 
the results are illustrated in Figure 3. Here, Figure 3a represents 
the descent process of the training loss, while Figure 3b is the 
prediction results of the validation set. It can be observed from 
the training history that the loss decreased to an acceptable 
range after approximately 110 training epochs, at which point the 
model ceased training. In the validation datasets, the predicted 
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FIGURE 5
Prediction results without beam displacement parameters (a) and probe beam topological charge (b) information. The results demonstrate that the 
model maintains high predictive accuracy in such condition. This indicates that the implemented algorism deduces rotational speed by learning 
characteristic patterns in the spectral distribution of the experimental data.

values generally align closely with the true values. The prediction 
errors for most datasets remain 10%, with the exception of a few 
outliers. Furthermore, the model demonstrates higher prediction 
accuracy when the target rotational speed ranges between 30 and 
100 RPS, whereas its performance degrades significantly at speeds 
below 25 RPS. 

3.2 Key parameter analysis

Based on the pre-trained model mentioned above, we first 
evaluated its performance using experimental data with all 
parameters intact. The rotational speed in the experimental data was 
set to random values between 1 and 100 RPS while the topological 
charge was configured between 15 and 30. Each dataset included 
parameters such as lateral displacement, tilt angle, sampling rate, the 
topological charge of the probe beam, and complete time-frequency 
signals. The prediction results of the model are shown in Figure 4. It 
can be observed that under the condition of complete parameters, 
the model effectively extracts the target rotational speed embedded 
in the measurement data. Across a total of 83 experimental datasets, 
the maximum prediction error observed was 64.5%, where the true 
rotational speed of the target is 14 RPS while the predicted value 
reached 23.04 RPS. In contrast, the optimal prediction was achieved 
with dataset 58, recording a true value of 84 RPS against a predicted 
value of 84.11 RPS, resulting in a negligible error of merely 0.1%. 
Over 70% of the datasets exhibited relative prediction errors within 
10%, demonstrating the model’s strong predictive capability.

Based on the aforementioned analysis and experimental 
procedures, the prediction results demonstrate that the model has 
acquired the capability to compute the target’s rotational speed 
by integrating time-domain signals with relevant detection and 
sampling parameters. However, these experimental outcomes alone 
cannot fully reveal the model’s decision-making mechanism. To 
further determine whether the 1D-CNN learned the underlying 

Doppler effect principles or merely identified patterns in the 
frequency spectrum, we conducted an additional test by omitting 
the beam displacement parameters and the vortex beam topological 
charge. To maintain consistent input dimensions for the model, the 
omitted parameters were replaced with zeros. The results of this test 
are presented in Figure 5.

As shown in the prediction results, the model continues to 
accurately predict the target rotational speed with minimal error. 
The maximum prediction error reached 68.6% (only 1 set), while 
78.3% of predictions maintained errors within 10%, demonstrating 
that the model’s predictive accuracy remains unaffected by the 
omission of beam displacement and probe beam parameters. In 
contrast, traditional frequency analysis methods are difficult to 
precisely calculate the rotational speed from spectral information 
when accurate beam topological charge parameters omitted, the 
model successfully extracted the rotational speed. This indicates 
that the model deduces the rotational speed based on characteristic 
features in the frequency signal, rather than relying on the 
conventional rotational Doppler effect principle. 

4 Conclusion and discussion

In summary, to address the challenge of extracting rotational 
speed information from broadened rotational Doppler shift signals 
under non-cooperative conditions, this paper proposes an adaptive 
target rotational speed extraction method based on a machine 
learning model. A one-dimensional convolutional neural network 
(1D-CNN) was developed, and through optimized architecture 
design, the model successfully achieves accurate extraction of target 
rotational speed under off-axis illumination conditions. Based on 
the established RDE simulation process, a training dataset was 
constructed under off-axis illumination conditions, and the model 
was trained to its optimal state. The trained model was subsequently 
applied to predict experimental data, with results indicating high

Frontiers in Physics 06 frontiersin.org

https://doi.org/10.3389/fphy.2025.1721662
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Qiu et al. 10.3389/fphy.2025.1721662

accuracy for most predictions and an overall error within 10%, 
demonstrating the model’s robust predictive performance. However, 
the current training data does not account for environment noise 
such as atmosphere turbulence. Subsequent studies could further 
enhance the model’s robustness by diversifying the training dataset.

Comparative experiments further verified that the algorithm 
can extract the target rotational speed solely from the frequency 
information inherent in the spectrum, without requiring beam 
displacement or vortex beam parameters, thereby significantly 
improving the efficiency the speed extraction. The proposed model 
effectively solves the problem of extracting target rotational speed 
under off-axis vortex beam illumination, advancing the practical 
application of RDE-based methods from theoretical research to 
real-world implementation.
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