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Since decades quantum gravity tries to close the gap to general relativity, but
all attempts remain pure theory without empirical test. The present study now
extends loop quantum gravity to a verified theory that determines how matter
causes the space-time curvature. A recap of the ‘problem of time in quantum
gravity’ reveals that quantum theory on principle cannot quantize time. Hence,
we quantize time on a meta-level. The network links thus oscillate at the
Planck frequency as an SU(2) gauge field. They carry a Planck energy each,
which due to background independence is not directly effective. The Higgs
field propagates in the space-time lattice as a lower frequency SU(2) fluctuation
mode. A modified Higgs mechanism transfers energy from the space-time
network to the massive particles, modifying the local space-time quanta. Linear
combination of space-time quanta yields the space-time curvature due to
macroscopic masses, in rotational symmetry the Schwarzschild or Kerr metric.
Instead of Einstein’s field equations, Higgs quantum gravity reproduces the
key solutions for static or stationary mass configurations. Yet, the empirical
evidence for general relativity applies. Higgs quantum gravity represents the
first experimentally verified quantum gravity, and the first theory predicting the
space-time curvature by mass generation from the space-time structure.

Higgs mechanism, loop quantum gravity, general relativity, space-time curvature,
Schwarzschild metric, Kerr metric, Planck energy, problem of time

1 Introduction

The present study is part of the series ‘Universe 2.0 which aims at new concepts
clarifying a number of open issues of cosmology. The first part [1] showed that black holes
in fact are black stars. The study on hand presents a new quantum gravity theory that
determines the space-time curvature by mass generation. It entails a third study on the
physics of hidden worlds explaining dark matter. The planned final study shall use all these
concepts for a new Big Bang model yielding a plausible explanation of the inflation period
and of dark energy.

The present contribution covers the quantum gravity part. The question whether
gravitation is a quantum entity is as old as general relativity. In 1916 already, Einstein himself
showed that according to his equations gravitational waves carrying energy should exist and
suspected that quantum theory will have to modify not only Maxwell’s electrodynamics, but
the theory of gravitation as well [[2], p. 696].

After some failed attempts to quantize gravity, Rosenfeld [3] in 1930 presented the
canonical quantization approach based on the Einstein-Hilbert action and using the tetrad
formalism. In the same year he proposed a splitting of the metric tensor into a perturbation
of the Minkowski metric [4], a procedure which more than 20 years later Gupta [5] adopted
for the covariant quantization approach. Around 1960, Dirac [6, 7] presented a simplified
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Hamiltonian form of Einstein’s theory that facilitates quantization,
and Feynman [8] suggested a quantization of geometry. Feynman
also sketched the great difficulties in quantum gravity, namely,
because of its weakness.

Facing challenges such as gravitational singularities and
regarding a theory of everything, numerous scientists ever since put
effort into quantum gravity. Six decades of controversial research
followed, yielding a variety of ansatzes such as string theory and
loop quantum gravity (LQG), with some promising results, but still
awaiting a major breakthrough. The quantization of gravity thus
was proposed in the very beginning of general relativity, but many
decades and thousands of studies later we still are struggling for a
cogent solution.

A key advance with regard to quantum gravity would be the
discovery of the hypothetical gravitons. According to Rothman and
Boughn [9], however, the graviton energy would be so small that it
might be impossible to detect. Nevertheless, Quach [10] proposed a
theory involving a gravitational Casimir effect due to the non-zero
vacuum energy. Yet, experiments failed to establish it [11]. Advanced
LIGO observations applied kinematic methods to gravitational
waves and found that 7iw gravitons must be excluded [12]. Carney
etal. [13] gave an overview of promising laboratory experiments
to detect gravitons, but they still are in the stage of thought
experiments. Bose etal. [14], for example, suggested correlation
measurements of spin entanglement, and Pitelli and Perche [15]
proposed a detector based on angular momentum. Yet none of these
experiments have been implemented yet. The past 20 years thus
yielded various suggestions for experimental arrangements but no
astronomical evidence.

Hence, quantum gravity remains a mystery, even after more
than a century of struggles by thousands of renowned scientists,
be it from the viewpoint of quantum theory, by turning Einstein’s
equations into an operator form, or by astronomical evidence.
Furthermore, general relativity only describes how masses curve the
space-time. But, we know nothing about an interaction between
mass and geometry.

The former approaches all suffer from the same conceptual
weakness. The indications are strong that quantum theory by itself
on principle cannot quantize gravitation. We need a completely
different approach. The present study starts out from a fundamental
irreconcilability of quantum theory and general relativity, known
as the ‘problem of time in quantum gravity. Quantum theory on
the one hand requires a continuous background time parameter to
describe particle motion and field interactions. General relativity
on the other hand postulates strict background independence and
only allows for a proper time depending on the standpoint and the
state of motion.

Quantum gravity must consolidate this discrepancy. We
approach the ‘problem of time’ from a meta-level and elaborate
a quantum gravity theory which is verified by observations and in
addition provides a physical interrelation which determines how and
why masses curve the space-time geometry.

2 Methods

We start out in Section 3 by introducing LQG as the basis of
Higgs quantum gravity. In Section 4 we address the ‘problem of
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time, which severely limits all associated efforts and cannot be solved
by quantum theory alone. The Higgs gravity network presented in
Section 5 approaches the problem from a meta-level and results
in a space-time lattice oscillating as an SU(2) field with an energy
potential of a Planck energy per space-time quantum. Section 6
describes the modified Higgs mechanism that receives its energy
from the corresponding Higgs-Planck potential, while preserving
the mass generation of the standard model. In Section 7 we relate
the Higgs-Planck potential to the energy potential available in the
links of the Higgs gravity space-time network. The energy drain by
the modified Higgs mechanism curves the local space-time quanta
according to the line element associated with a single particle.
Linear combination of space-time quanta yields the line element due
to macroscopic masses. In spherical symmetry the Schwarzschild
solution results. The discussion in Section 8 resumes the analogies
used and illuminates how these findings can be transformed to the
Kerr solution for rotating masses. Higgs quantum gravity combines
two quantum theories to solve at one stroke two key problems of
a century. It quantizes general relativity, while at the same time
explaining the interrelationship of mass generation and space-time
curvature.

3 Loop quantum gravity in a nutshell

Higgs quantum gravity builds on LQG, which is the only
background independent ansatz for quantum gravity available to
date. In the current section we briefly introduce the very basics of
LQG before providing below some more details in the course of a
discussion of the ‘problem of time’

Rovelli [16] summarized LQG and labelled it “a tentative, but
intriguing possible formalism for describing quantum space-time”.
It is Lorentz invariant and has no ultraviolet divergences. We have
theoretical evidence (but no solid proof) that its large distance
limit is general relativity. There is a diffeomorphism-invariant
LQG representation of the Maxwell-Dirac-Einstein system [16, 17].
Fermions and Yang-Mills fields couple to the spin network, as shown
by Bianchi et al. [17] and Han and Rovelli [18].

On the down side, LQG like all other quantum gravity concepts
remains pure theory, without empirical test, and it is far from being
complete [[16], p. 18]. In the past 15 years, the promising spin foam
variant of LQG emerged. Asante et al. [19] describe the spin foam
by a gauge theory, which relieves from the burden of calculating
node amplitudes and brings the model in the reach of simulating
large networks. Numerical simulations by Dittrich [20] have shown
that spin foams create dynamical effects that may be interpreted as
gravitational waves. Yet, these results are limited to a small piece of
spin foam and based on an interplay between the various parameters
of the model. Thus, LQG is a promising concept for quantum gravity,
but simulating a macroscopic space-time remains far out of reach.

The study on hand nevertheless builds on the original
LQG as described by Rovelli [16]. LQG models the space-
time as a quantum spin network at the Planck scale. It is an
SU(2) algebra formally related to quantum electrodynamics and
quantum chromodynamics. Each quantum node has a metric tensor
generated by the momentum operators of its links. The momentum
operators behave like the one of an elementary particle with spin.
The nodes are not located on a background metric but associated in

frontiersin.org


https://doi.org/10.3389/fphy.2025.1721386
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Bohm-Mader

an abstract graph to constitute the space-time itself. They are only
localized with respect to one another and carry no vector quantum
numbers such as momentum or position. The states of the LQG
Hilbert space are invariant under gauge transformations V, € SU(2),

W(Uz)—’W(Vs,UIVEI)’ ey
where U, denotes the transporter link variable and s, and ¢, the source
and target nodes. The gauge transformations V,, are equivalent to
those of lattice gauge theories. The measure of the LQG metric is the
area gap, which corresponds to the Planck area, the area operator’s
lowest possible non-vanishing eigenvalue. The areas combine to
polyhedral volumes. Area and volume form a complete set of
commuting operators and define an orthonormal basis of the
geometry. Yet, the nodes carry no length dimension.

To date, the emphasis in LQG has been put on the curvature
of the graph. The study on hand instead extends the space
quantization to the time dimension and by an energy balance
focuses on the modification of area and volume. The correspondence
limit results from area and volume of a multi-node network
amounting to the sum of expected values. Linear combination
leads to the Schwarzschild and Kerr solutions of general relativity.
Higgs quantum gravity not only tolerates but even depends on the
macroscopic measure of length being only indirectly defined, by
the area gap.

4 New approach to the ‘problem of
time’

The ‘problem of time in quantum gravity’ challenges all
corresponding efforts from the outset. As we will see in what follows,
all former quantum gravity theories fail to solve it. A brief history of
quantum gravity shall identify the fundamental conceptual conflict
and its current state regarding LQG in particular. In addition, this is
an opportunity to introduce LQG in some more detail.

A history of quantum gravity must briefly address the very
popular string theory, an approach directly from perturbative
quantum theory. Originally, string theory was a rather unsuccessful
attempt for hadron physics (history see [21], e.g.). In the early
seventies Fritzsch, Gell-Mann, and Leutwyler [22] developed the
groundbreaking color concept of quantum chromodynamics, thus
marginalizing string theory. Shortly thereafter, Scherk and Schwarz
[23] and Yoneya [24] independently showed that the scalar strings
vibrate in spin-2 states, as expected for the hypothetical graviton.
String theory gradually revived as a quantum gravity aiming at grand
unification. It formally reproduces the equations of general relativity,
but its latest descendant M-theory bases on a fixed 11-dimensional
background space-time [25], while general relativity indicates
background independence. The ‘string landscape’ comprises at least
0O(10°) possible flux vacua, with no clear-cut selection method
in sight. It requires supersymmetry, which to each fermion adds
an unknown bosonic partner and vice versa. Collider experiments
never detected any of them.

The present study aims at a strictly non-perturbative and
background independent theory and thus concentrates on LQG.
The latter emerges from a canonical (or Hamiltonian) quantization
of general relativity, as proposed in 1967 by DeWitt [26]. He
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uses the ADM formalism [27], a foliation of the space-time in
space-like hypersurfaces with a connecting time parameter. The
foliation is well justified, because general relativity does not support
an interchange of the time with space dimensions, as recently
shown by the author [1]. The resulting Hamiltonian constraint
yields the Wheeler-DeWitt equation H(x)|¥) = 0. Unlike the similar
Schrédinger equation, |¥) is not a normalized function on a space-
like surface but contains all the information of geometry and matter
of the universe. The Hamiltonian H(x) does not determine the
evolution of the system. The wavefunction of the universe appears
frozen. Time becomes an unphysical gauge variable. The ‘problem
of time in quantum gravity’ was born. It was born to stay.

Canonical quantization did not yield a significant improvement
until 1986, when Ashtekar [28] presented his new set of variables,
an SU(2) connection and the associated orthonormal triads (drei-
beins) as the conjugate momenta. “The emphasis is shifted from
distances and geodesics to holonomies and Wilson loops” [[29],
p.14]. This connection dynamics resembles a classical Yang-Mills
gauge theory. “However, unlike the familiar Yang-Mills theory in
Minkowski spacetime, now there is no metric or any other field
in the background” [[30], p.6]. This was the genesis of LQG.
The Gauss constraint (due to the SU(2) gauge symmetry group)
and the vector constraints generating the diffeomorphisms of the
space-like hypersurfaces could be solved rather directly [31]. Thus,
the space-like hypersurfaces could be quantized, mostly in an
arbitrary number of space dimensions, including a derived measure
on the Planck scale, as described by Thiemann [32, 33]. Rovelli,
one of the major founders of LQG, concludes [[34], p.10]: “The
space continuum ‘on which’ things are located and the time ‘along
which’ evolution happens are semiclassical approximate notions in
the theory”

Yet, are these continuum notions of time and space both
semiclassical and approximate? The space dimensions are quantized
into Planck scale bits, but the time of their evolution is continuous
and “the clear-cut quantum dynamics remains open” [[31], p.8].
The scalar Hamiltonian constraint, which is related to the time
parameter, remains unsolved [[35], p.12]: “There is still a large
number of poorly controlled ambiguities in the definition of the
Hamiltonian constraint” The ‘problem of time in quantum gravity’
persists. But a fully background independent theory requires radical
rethinking anyway: “The theory gives up unitarity, time evolution,
Poincaré invariance at the fundamental level, and the very notion
that physical objects are localized in space and evolve in time” [[36],
p-1302] and “there is no need to expect or to search for unitary time
evolution in quantum gravity, because there is no time in which we
[37], p.114]. Kiefer concludes [[38],
p-9]: “Such constraints result from any theory that is classically

could have unitary evolution”

reparameterization invariant, that is, a theory without background
structure”.

The ‘problem of time in quantum gravity’ originates in
the interpretation of the diffeomorphism invariance as a gauge
invariance. In general relativity the impact may be attenuated
by concentrating on one specific solution [[36], p.1318]: “A
single solution of the [general relativity] equations of motion
determines a spacetime, where a notion of proper time is associated
to each timelike worldline” In LQG, however, we are dealing
with background independent space-time networks, with serious
consequences [[34], p.21]: “In quantum gravity the notion of
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spacetime disappears in the same manner in which the notion of
trajectory disappears in the quantum theory of a particle” Should
we drop the concept of time and of the evolution of space altogether
and regard it as an illusion, as Barbour suggests [39]?

The latest descendant of LQG are spin foams, its covariant
counterpart. They have been introduced in detail by Perez [31]. The
concept goes back to Reisenberger and Rovelli [40], who formulated
a heuristic method of how to solve the Hamiltonian constraint by
switching to a constrained SU(2) BF topological theory. Various
models emerged until about 15 years later an effective theory of spin
foams could be formulated in 3 + 1 dimensions. The conceptual
issues regarding the Hamiltonian constraint were addressed by
defining observables not with respect to space-time points, but in
terms of relations between dynamical fields [[16], p.12].

Spin foam models may be rated the most successful quantum
gravity theory to date. Being 4-geometries from the start, they
allow not only for space-like, but also for time-like triangles [41].
The spin networks abruptly change their node and link structure,
which is interpreted as a quantization not only of space, but also
of time. Yet, the price for switching to a covariant base of ‘sum
over spin network state histories’ is considerable. The relational
solution of the Hamiltonian constraint at random generates and
removes links at the network nodes. The quantum networks thus
represent chaotically wobbling foams. Despite some respectable
achievements lately [20], we still have no solid proof that the long-
distance limit is general relativity. As mentioned in Section 3, the
limit of semiclassical states requires various assumptions.

The ‘problem of time’ may appear overcome by switching to
covariant spin foams and by solving the Hamiltonian constraint
in terms of dynamic relations. Time and evolution are not lost
completely, but we end up in a chaotically wobbling space-time
network. May this be considered a solution to the ‘problem of time’?
Indeed, this might be the best solution we could ever expect. Spin
foam models are quantum theory and as such on principle depend
on a continuous time parameter. The lowest possible eigenvalue
of the area operator has been determined for the space-like
hypersurfaces, by the original canonical theory. A corresponding
lowest possible eigenvalue regarding time is not available and a
translation between canonical LQG and spin foams is missing [[34],
p.262]: “There are several gaps between the Hamiltonian loop theory
and the spinfoam models”

Sixty years of efforts regarding the ‘problem of time in quantum
gravity’ did not yield a cogent solution within quantum theory.
We conclude that quantum theory can perfectly quantize space,
but it cannot quantize time, because it would extinguish all regular
evolution and invalidate itself. In order to solve the ‘problem
of time¢’ we must rise to a meta-level, beyond the concepts of
quantum theory.

5 Higgs gravity network

In the previous section we delineated the ‘problem of time in
quantum gravity’ and concluded that a solution cannot be expected
from quantum theory itself. Moreover, in quantum gravity the
coupling to matter remains as descriptive as in general relativity.
Spin foams are the most successful theory to date, but “the issue
of the coupling of the new spin foam models to matter remains to
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a large extend un-explored territory” [[31], p.73]. The couplings of
the spin network to fermions and Yang-Mills fields [17, 18] have
been developed in canonical LQG and do not account for the strong
back reaction of matter [[30], p.3]: “As is the case with classical
general relativity, while requirements of background independence
and general covariance do restrict the form of interactions between
gravity and matter fields [...], the theory would not have a built-in
principle which determines these interactions”

The present section proposes a quantization of the time
parameter, emanating from canonical LQG, but avoiding quantum
theoretical methods. We aim at a quantum network, which on a
semiclassical level carries a Higgs field suitable to determine the
interaction between matter and the quantum space-time.

Canonical LQG quantizes the space-time by the aid of the area
operator. The 3-dimensional momentum operators on L2[SU(2)L]
are the left invariant derivative operators L, acting on the group
elements h; € SU(2) for each link I [16]. They generate the metric
tensor of the quantum node. The diagonal elements of the Penrose
metric operator

AT =L, )
are the Casimirs of the SU(2) group associated with the link I
They denote the area of the surface bounding two connected quanta
of space. The lowest possible non-zero eigenvalue of Equation 2
yields the Planck area, 612,, which is the scale of LQG, the area
gap (for details, see [32, 33]). LQG thus quantizes the space-like
hypersurfaces but lacks a quantization of the time parameter on an
equal footing.

Simple triangulation of this space-like network in the classical
limit yields a flat 3-dimensional Euclidian metric. Minkowski [42]
extended the flat space by the product of the time ¢ with the light
speed ¢, x* = (ct,x), thus postulating his 4-dimensional space-time
metric. With regard to what follows, we represent it by a line element

ds? = nmdx“dx" = —2d? + dx? (3)
with the ‘mostly plus’ metric #,, =diag(-1,1,1,1). Because
quantum theory cannot quantize time, we likewise complement
the quantized space-like hypersurfaces by transposing the time
differential of Equation 3 down to the smallest possible time step at
the Planck scale,

czdt2|dHP =7 =0, (4)
where t, denotes the Planck time.

Equation 4 cannot indicate any movement or evolution, because,
as mentioned in Section 3, the nodes of the spin network carry
no vector quantum numbers such as momentum or position. It
must be a local oscillation, but it can neither be a vibration of the
network nodes on an inexistent background. Equation 4 indicates a
quantum field oscillation, attributed to the bosonic links /, which are
associated with the group elements h; € SU(2) and span the area gap
provided by Equation 2.

Time on principle can only be metered from an arbitrary
reference point, based on a stable oscillator defining the smallest
measurable time interval. The Higgs gravity space-time network
provides such an oscillator, a scalar SU(2) field oscillating at the
Planck frequency wp = ¢/€p = £;', with the same gauge symmetry as
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the Higgs field. A quantum field equation for this oscillation does not
exist, because the time differential dt < ¢, is undefined. Herewith,
we have the space-time network equipped with densely distributed
clocks. As shown in what follows, this time measure is not absolute
like in the Minkowski space-time.

In the absence of matter, Higgs quantum gravity thus constitutes
a flat spin lattice of fermionic nodes connected by bosonic SU(2)
links. The latter span the faces between space-time quanta and
oscillate at the Planck frequency wp. The energy associated with the
oscillation of the links or faces is hiwp = Ep, the Planck energy, where
T denotes the Planck constant. The enormous energy potential E, =
10"GeV per space-time quantum should not come as a surprise,
because the space-time provides the energy for all matter, whose
volume density may approach the Planck limit. This energy potential
is not directly effective, because the links are not defined on a fixed
background. They only are associated with respect to each other,
forming an abstract graph, which represents the space-time itself.

The latent energy potential of the universe is exorbitant indeed
and is expected to increase as the universe expands. The same is
true for the pervasive Higgs field of the original Higgs mechanism.
However, the observed baryonic and dark matter is enormous as
well. Attributing its source to the Big Bang just shifts the problem,
because we do not know where the energy for the Big Bang came
from. We may conclude that all energy should have the same origin,
be it latent, like the oscillation of the space-time network, observable,
like baryonic matter, hidden, like dark matter, or mysterious, like
dark energy. We must humbly admit that we currently have no clue
regarding its source.

The Higgs quantum gravity network provides a base of
measurement at the Planck limit. The light speed as the maximum
propagation velocity of signals is given by the quantum space-time
oscillation, ¢ = €pwp, which according to Equation 1 invariantly
translates the coupled fields along the links. The upper limit of mass
concentration is a Planck mass mp = Ep/c” per space-time quantum,
that is, the Planck density p, = m;/£3.

Thiemann [43] showed that the Hamiltonian of the standard
model supports a representation including Higgs field insertions at
the end points of open lines, that is, of the network links. We make
a step forward and promote the Higgs field to a modulation of the
Higgs gravity network itself. In analogy to phonons in a crystal lattice
(see, e.g., [44]) the oscillation of the links or faces may be regarded as
the normal mode of the entire quantum space-time, oscillating as a
scalar field with an SU(2) gauge symmetry. When excited by matter
fields the space-time may fluctuate as propagating SU(2) modes of
a lower frequency. Hence, the Higgs gravity field corresponds to
the SU(2) normal mode oscillation of the entire space-time, while
the Higgs field of the Higgs boson represents a lower frequency
modulation in the oscillating lattice.

6 Higgs gravity mechanism

The Higgs gravity mechanism adheres to the original Higgs
mechanism (see, e.g., [45]), while modifying the mass term. Putra
and Alrizal [46] also modify the Higgs equation, adding a mass
term based on their relativistic Heisenberg uncertainty principle.
The relativistic action causes explicit symmetry breaking and thus
results in a new type of mass generating field. A discontinuity of the
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inertial mass in the transition between relativistic energy and action
thus generates both ordinary and dark matter. Their mechanism
creates masses from the fluctuating vacuum, but they do not relate
the mass generation to the space-time curvature. Putra et al. [47]
on the other hand use the Ehrenfest paradox in the Bohr atomic
model in relation to their generalized uncertainty principles [46].
The atom induces a quantization of the space-time curvature caused
by other masses.

The present study in contrast determines how the masses cause
the curvature. In Section 5 we transposed a flat Minkowski space-
time down to the Planck scale and thus found that the links
(or area gaps) oscillate and carry the Planck energy E; as their
energy potential. Please recall that the space-time nodes of LQG
build an abstract graph representing the space-time geometry. They
carry neither momentum nor position and cannot contribute to
a space-time pressure. The energy potential Ep = 1.2x10GeV
per area gap is not related to the issue of dark energy or the
cosmological constant.

The Higgs mechanism acts at the scale of the Higgs energy vy =
246GeV = O(10""7E,). The markedly different scales indicate that
the energy transfer from the Higgs gravity network to the Higgs field
fluctuation mode spreads over a high number of space-time quanta,
N> 1. Due to Equation 1 the excitations may invariantly translate
between nodes. The Higgs field represents a lower frequency
fluctuation mode of the oscillating Higgs gravity network, analogous
to phonons in a crystal lattice, as discussed in Section 5.

The Higgs-Planck gravity potential Viyp thus is composed of
the partial contributions by elementary excitations of N space-
time nodes. A quantum excitation by an external field indicates a
corresponding mass term, for the scalar Higgs field an explicit term
(. The Planck mass term y3, contributed by the links or area gaps
involved, must compensate for the energy absorbed in Higgs field
fluctuation mode, that is, y5 — (up — )*. Each of the N space-time
nodes to the total potential contributes a partial term p,, where
Y=l

In the usual units with 7 = ¢ = 1 we find the Lagrangian for the
complex scalar doublet ¢ interacting with the N space-time nodes,

L=(39)'0.9 = Virp (9) )
with the accumulated potential
N
Vi (8) = X [pi{~(up = 10" + 47} ] 19 + Mgt
i=1
(6)

(up — )19 + 12161 + AlgI*
(up = 2upie) 19> + Mgl

where A denotes the dimensionless coupling constant. The Higgs
equation basically corresponds to the Klein-Gordon equation, but
it has a negative mass term. The latter resembles an imaginary
valued mass and turns the Higgs field ¢ into a complex valued two-
component field with a sombrero-like shape, with a ‘spontaneously
broken gauge symmetry. The Higgs field thus is short-ranged
and acquires a ‘charge, that is, a mass. Accordingly, —(up — ) <
0 in Equation 6 resembles an imaginary valued energy. It replaces
the corresponding negative mass term in the original Higgs equation
and represents the local energy potential of the space-time lattice,
whose gauge symmetry is globally broken.
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Without excitation the potential Vi;p(¢) only becomes manifest
as the oscillation energy in the area gaps, which provide the space-
time quanta with their area and volume. The term +4? is the regular
mass term of the Higgs field, which as an excitation of the oscillating
lattice receives its mass. Figure 1 depicts a schematic of Vip(¢). The
expected field value equivalent to the original Higgs mechanism is
located at the minimum

Ve _ . [Hp— 2tplt
<¢>_\/§_ - @

= Eyp = V2 = 2Epmy; = Ep —myg + O (1077 myy),

where myp denotes the mass of the Higgs boson. The
greatest masses of the standard model are <wvy. The higher
order terms in Equation 7 are O(10~7my,). Thus, the Higgs gravity
mechanism compared to the original Higgs mechanism just shifts
the potential by a constant, Ep, which is irrelevant regarding the
expansions of the electroweak theory. The standard model remains
unaffected.

Similar to the original Higgs mechanism, the Higgs gravity
mechanism, as represented by the equations above, is limited to
low mass concentrations, Eyp = Ep. When the mass concentration
approaches the Planck limit, that is, when the sum of all locally
generated my; becomes significant with respect to Ep, higher order
effects can no longer be ignored. Such effects are expected in
extremely dense stellar objects like black stars, which were discussed
in the first paper of the series ‘Universe 2.0’ [1]. Higher order terms
in the scope of the original Higgs mechanism have been analyzed
by Cai and Wang [48], who show that the Higgs vacuum in fact is
metastable. The implications of analogous effects in Higgs quantum
gravity shall be discussed in a forthcoming study, as briefly outlined
in the outlook below.

7 Higgs quantum gravity

With regard to an arbitrary coupled massive field and returning
to explicit units, the excited Higgs-Planck energy from Equation 7

Vip

FIGURE 1

Schematic of the excited Higgs-Planck potential V\;p(¢)(orange line)
and the associated vacuum potential (u = 0, green line). For visibility,
the energy drop vf,,ms depicted many orders of magnitude too large.

Frontiers in Physics

10.3389/fphy.2025.1721386

relates to the vacuum Planck energy Ep as

Ewp tup b

Ey &ty Ep

, ®)

where m denotes the resulting mass of the coupled particle. The
Higgs-Planck length £p = EgpG/c* indicates a smaller area gap,
that is, a tighter spatial base of measurement compared to the &,
of a flat vacuum. Likewise, the Higgs-Planck time typ = 71/Eyp > tp
indicates an extended time scale. Referring to the Minkowski metric
in Equation 3, the measured local line element due to the excitations
of N> 1 network nodes is inversely proportional, extended in space
and contracted in time,

t e
ds’ = —cth—Pdtz + =t dr? +dQ?

HP e 9)

:_52(1_ r—:)dt2+(l— r_:)l dr? +2d0?,

where rg=2Gm/c* denotes the particles Schwarzschild radius
and r*dQ the surface area element of the spherically symmetric
metric. The Schwarzschild line element in Equation 9 applies to
a distribution of @(10'7) elementary excitations. The surface area
element is just included for conceptual completeness. It is not
modified by mass generation. The mixed term dtdr of the general
metric is not part of the Schwarzschild coordinates and would not
be modified either.

In the next steps we consider the linear combination of
contracted and non-contracted area gaps of the quantum space-
time, not the non-linear equations of general relativity. The metric
of the space-time nodes is defined by their links, which span the
area gap but provide no length. A path in the quantum space-time
may be viewed as a chain of bubbles with the local area gap as their
cross section. A distance r = nép combines the area gaps of all the
nodes in the chain, in flat vacuum, nl’lz, = rlp. If some of the area gaps
along the path are contracted by masses, the base of measurement of
r is contracted by the corresponding sum of contractions. For the
particle m in vacuum this results in

Ditin® (-G48 e o)
ney - ney g

The Schwarzschild line element in Equation 9 thus applies for a
distance r = nfp. The Higgs-Planck potential in Equation 6 is a linear
combination of elementary excitations of N > 1 network nodes and
refers to a linear combination of masses squared. All the subsequent
steps combined this sum of squared energy contributions up to the
preliminary result for €IZ{P(k) o« EIZ{P(k) in Equation 10.

Most relevant for gravity are the stable nucleons that contribute
the baryonic mass of the universe. The masses of fermions are
explained by a Yukawa coupling of their fermionic field, y, to
the Higgs doublet, ¢ (see, e.g., [45]). The resulting coupling term,
—gyy, is linear in ¢ and results in a Lagrangian that is linear in the
fermion masses.

In a macroscopic, static mass M confined in a volume V), the
infinitesimal volume element dV(x) at the location x shall contain
a number k(x)dV(x) of fermions with a mass m ¢ each. Interactions
of nucleons preserve the sum of stable masses with deviations of
O(1073). Thus, the assumption of an average, constant ¢is justified
with good accuracy for cold matter or stars, for instance. The
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FIGURE 2
Sketch regarding the integration of a Newtonian shell with mass M,.

area gaps, the masses, and the mass terms of the remote fermion
Lagrangians are linearly associated and combined. The area gaps and
their contractions in dV(x) both accumulate linearly, resulting in the
space-time curvature caused by M.

Let, for instance, a Newtonian shell have a radius r, = £, and
a mass M, = Nmy. Let a reference point P; be at a distance d =
n4lp = r,, from the center, r = 0. P; without loss of generality may
be assumed over the pole of the spherical coordinates, on the axis
9 =0, as sketched in Figure 2.

The opposing gravitational components at ¢ and ¢ + 7, related
to rsin 9, compensate due to the rotational symmetry. For each
fermion in the shell, the gradient towards the center is defined by
the axial component of its distance, that is, by the sum of the area
gaps, n(9)€12, = (d —r cos 9)¢p. Similar to Equation 10, the total effect
at the distance from the center to P, linearly combines to

(”m_N)elz)+Nelz—IP -1 ZGMr _ | (11)
nmef) - T c2d __gtt_grr
1 y
n,, = ﬂ—eljjod—rcos 9d9 = ny, (12)

where g, and g, are the time and radius components of the
Schwarzschild solution and #,, the mean number of area gaps. The
linear combination in Equation 11 equivalent to Equation 10 leads
to the Schwarzschild line element for the Newtonian shell, M,. In
the first study of the series ‘Universe 2.0’ [1], the author showed
that the Newtonian shell theorem is valid for the relativistic case
without restriction. A spherically symmetric body in general may be
composed as a linear combination of concentric Newtonian shells,
each of which may be represented by a point mass at r=0. A
point mass may represent a spherically symmetric mass distribution,
regardless of radial density variations and whether the body is static
or stationary.

8 Discussion and conclusions

The theory of superconductivity inspired the Higgs mechanism.
The atomic fluctuation in a superconductor at low temperature
results in a coupling of electrons to bosonic Cooper pairs. The Bose-
Einstein condensate leads to a spontaneously broken U(1),,, gauge
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symmetry, which causes a longitudinal polarization state of photons.
They become massive, which explains the limited penetration depth
of a magnetic field into a superconductor. The Higgs mechanism’s
analogy is the broken gauge symmetry.

The proposed Higgs gravity mechanism is more evident
regarding both the physical context and its analogy to
superconductivity. We solved the ‘problem of time in quantum
gravity’ by transposing the Minkowski metric down to the Planck
scale and thus found the Higgs gravity spin network, which
represents the lattice with the globally broken gauge symmetry.
The energy source for the masses is the quantum space-time itself,
in analogy to the Bose-Einstein condensate. The Higgs field, that is,
the Higgs boson, as a local modulation of the space-time oscillation
receives its mass, in analogy to phonons in a crystal lattice.

The Higgs gravity mechanism thus transfers energy from the
spin network to the massive particles. The Higgs boson represents
the interaction agent. The local network nodes are left with an
energy drop that amounts to the mass of the coupled particle. The
area gap of the nodes, the base of their metric, contracts, while the
corresponding measure of time extends, equivalent to the particle’s
Schwarzschild line element. Linear combination of modified area
gaps yields the space-time curvature due to macroscopic masses. In
spherical symmetry the Schwarzschild metric results.

Chou [49] presented a method to construct from the
Schwarzschild coordinates the Kerr metric for rotating masses. He
transforms the coordinates to the new symmetry and then adds the
rotational energy. The kinetic energy is part of the relativistic mass
and thus leads to a corresponding additional energy drop in the
network nodes of the quantum space-time. This indicates that the
Kerr metric may be derived equivalent to the Schwarzschild metric,
by arguments of energy density.

LQG aims at explaining general relativity as a limit in the sense
of the correspondence principle. Its most promising descendant,
spin foam theory, still relies on additional assumptions such as the
scale of the triangulation and the curvature scales around the bulk
triangles, for instance. The current theory is not subject to additional
assumptions.

Higgs quantum gravity combines two quantum field theories
with shortcomings each. The original Higgs mechanism generates
the masses from an unobservable energy field pervading the
universe. LQG describes the curved space-time as a superposition
with various degrees of freedom. By combining the two, the particles
from the space-time receive their masses and the space-time by
providing the masses its well defined curvature.

Higgs quantum gravity as presented above in the classical limit
does not correspond to Einstein’s equations, but it reproduces key
solutions of them. The quantum space-time itself represents its
gravity field, in accordance with Einstein’s notion of gravitation.
Higgs quantum gravity thus by a simple concept mediates between
quantum theory and general relativity. Much of the experimental
evidence for general relativity addresses the Schwarzschild and Kerr
solutions. This includes, for instance, the perihelion precession of
Mercury, the deflection of light by the sun, the gravitational redshift
of light, or basic properties of gravitational lensing like the radius
of the Einstein ring. All this evidence equivalently supports Higgs
quantum gravity.

By its basis LQG, Higgs quantum gravity explains additional
phenomena. To mention some examples, LQG reproduces the
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Beckenstein-Hawking entropy and the Hawking radiation of black
holes [50]. Gravitational waves, discovered by Abbott et al. [51], were
successfully simulated by Dittrich [20] and are an important aspect
of loop quantum cosmology [52].

Yet, Higgs quantum gravity in its current form handles static or
stationary mass distributions only. Using relativistic masses should
improve the predictions for objects in motion, but the Higgs gravity
network at the time being does not allow for dynamic space-
time effects such as gravitational waves. Due to the background
independence the network nodes carry no momentum or position
and cannot generate waves. They are, however, associated with one
another by the oscillating links, which carry the Higgs fluctuation
modes. The latter are massive and short-ranged, but the links of
the Higgs gravity network may carry a different kind of long-
ranged fluctuation that the present study does not cover. The relation
between the Higgs energy and the Planck energy from Section 6
might allow deriving the required coupling between the associated
links or area gaps.

Another open question relates to the expansion of the universe
and was addressed in the concluding remarks of Section 5. Spatial
expansion indicates newly created space-time quanta that carry
latent energy, the source of which we do not know. The same is true,
however, for all other forms of energy in the universe.

Higgs quantum gravity compared to LQG has advantages
regarding simplicity. The linear combination of area gaps is much
simpler and less intricate than the triangulation by Regge calculus.
Nevertheless, future studies should extend the current theory based
on Regge calculus, which is the standard method for discretizing
general relativity. The deficit angles of 2-faces, which result in the
space-time curvature, might be determined by the well-defined area
differences in neighboring triangles.

The author encourages forthcoming studies to test Higgs
quantum gravity versus general relativity. We should compare
numerical relativity to the linear combination of area gaps, using
the relativistic mass, when indicated. Lattice calculus all the way
down to the Planck scale would be prohibitive regarding numerical
effort, but the linear combination from the Planck scale to the
semiclassical scale allows for averaging over the corresponding scale
gap of a factor of O(10'7), which drastically reduces the resolution.
Astronomical objects of interest might be complex gravitational
lenses or binary stars, including black stars.

Higgs quantum gravity is not a new form of gravity, but a new
approach to the well-established form. It is the first experimentally
verified quantum gravity and the first theory that determines the
space-time curvature by mass generation from the space-time
structure.

9 QOutlook

As a next step of research, the author based on Higgs quantum
gravity plans to challenge the Planck scale by a new ansatz related to
the metastable electroweak vacuum of the Higgs potential [48]. Near
the Planck limit, Higgs quantum gravity could allow for an escape
to a separate sombrero potential representing a different oscillation
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mode of the space-time network. The Higgs gravity mechanism
would provide masses in a similar sense as described in the present
study, but excluding field interactions with the observable baryonic
matter. The space-time network, however, would nevertheless be
left with a curvature. This might yield a promising explanation for
dark matter.
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