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Universe 2.0: Higgs quantum 
gravity

Johannes Böhm-Mäder*

Retired, Bubikon, Switzerland

Since decades quantum gravity tries to close the gap to general relativity, but 
all attempts remain pure theory without empirical test. The present study now 
extends loop quantum gravity to a verified theory that determines how matter 
causes the space-time curvature. A recap of the ‘problem of time in quantum 
gravity’ reveals that quantum theory on principle cannot quantize time. Hence, 
we quantize time on a meta-level. The network links thus oscillate at the 
Planck frequency as an SU(2) gauge field. They carry a Planck energy each, 
which due to background independence is not directly effective. The Higgs 
field propagates in the space-time lattice as a lower frequency SU(2) fluctuation 
mode. A modified Higgs mechanism transfers energy from the space-time 
network to the massive particles, modifying the local space-time quanta. Linear 
combination of space-time quanta yields the space-time curvature due to 
macroscopic masses, in rotational symmetry the Schwarzschild or Kerr metric. 
Instead of Einstein’s field equations, Higgs quantum gravity reproduces the 
key solutions for static or stationary mass configurations. Yet, the empirical 
evidence for general relativity applies. Higgs quantum gravity represents the 
first experimentally verified quantum gravity, and the first theory predicting the 
space-time curvature by mass generation from the space-time structure.
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 1 Introduction

The present study is part of the series ‘Universe 2.0’, which aims at new concepts 
clarifying a number of open issues of cosmology. The first part [1] showed that black holes 
in fact are black stars. The study on hand presents a new quantum gravity theory that 
determines the space-time curvature by mass generation. It entails a third study on the 
physics of hidden worlds explaining dark matter. The planned final study shall use all these 
concepts for a new Big Bang model yielding a plausible explanation of the inflation period 
and of dark energy.

The present contribution covers the quantum gravity part. The question whether 
gravitation is a quantum entity is as old as general relativity. In 1916 already, Einstein himself 
showed that according to his equations gravitational waves carrying energy should exist and 
suspected that quantum theory will have to modify not only Maxwell’s electrodynamics, but 
the theory of gravitation as well [[2], p. 696].

After some failed attempts to quantize gravity, Rosenfeld [3] in 1930 presented the 
canonical quantization approach based on the Einstein-Hilbert action and using the tetrad 
formalism. In the same year he proposed a splitting of the metric tensor into a perturbation 
of the Minkowski metric [4], a procedure which more than 20 years later Gupta [5] adopted 
for the covariant quantization approach. Around 1960, Dirac [6, 7] presented a simplified
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Hamiltonian form of Einstein’s theory that facilitates quantization, 
and Feynman [8] suggested a quantization of geometry. Feynman 
also sketched the great difficulties in quantum gravity, namely, 
because of its weakness.

Facing challenges such as gravitational singularities and 
regarding a theory of everything, numerous scientists ever since put 
effort into quantum gravity. Six decades of controversial research 
followed, yielding a variety of ansatzes such as string theory and 
loop quantum gravity (LQG), with some promising results, but still 
awaiting a major breakthrough. The quantization of gravity thus 
was proposed in the very beginning of general relativity, but many 
decades and thousands of studies later we still are struggling for a 
cogent solution.

A key advance with regard to quantum gravity would be the 
discovery of the hypothetical gravitons. According to Rothman and 
Boughn [9], however, the graviton energy would be so small that it 
might be impossible to detect. Nevertheless, Quach [10] proposed a 
theory involving a gravitational Casimir effect due to the non-zero 
vacuum energy. Yet, experiments failed to establish it [11]. Advanced 
LIGO observations applied kinematic methods to gravitational 
waves and found that ℏω gravitons must be excluded [12]. Carney 
et al. [13] gave an overview of promising laboratory experiments 
to detect gravitons, but they still are in the stage of thought 
experiments. Bose et al. [14], for example, suggested correlation 
measurements of spin entanglement, and Pitelli and Perche [15] 
proposed a detector based on angular momentum. Yet none of these 
experiments have been implemented yet. The past 20 years thus 
yielded various suggestions for experimental arrangements but no 
astronomical evidence.

Hence, quantum gravity remains a mystery, even after more 
than a century of struggles by thousands of renowned scientists, 
be it from the viewpoint of quantum theory, by turning Einstein’s 
equations into an operator form, or by astronomical evidence. 
Furthermore, general relativity only describes how masses curve the 
space-time. But, we know nothing about an interaction between 
mass and geometry.

The former approaches all suffer from the same conceptual 
weakness. The indications are strong that quantum theory by itself 
on principle cannot quantize gravitation. We need a completely 
different approach. The present study starts out from a fundamental 
irreconcilability of quantum theory and general relativity, known 
as the ‘problem of time in quantum gravity’. Quantum theory on 
the one hand requires a continuous background time parameter to 
describe particle motion and field interactions. General relativity 
on the other hand postulates strict background independence and 
only allows for a proper time depending on the standpoint and the 
state of motion.

Quantum gravity must consolidate this discrepancy. We 
approach the ‘problem of time’ from a meta-level and elaborate 
a quantum gravity theory which is verified by observations and in 
addition provides a physical interrelation which determines how and 
why masses curve the space-time geometry. 

2 Methods

We start out in Section 3 by introducing LQG as the basis of 
Higgs quantum gravity. In Section 4 we address the ‘problem of 

time’, which severely limits all associated efforts and cannot be solved 
by quantum theory alone. The Higgs gravity network presented in 
Section 5 approaches the problem from a meta-level and results 
in a space-time lattice oscillating as an SU(2) field with an energy 
potential of a Planck energy per space-time quantum. Section 6 
describes the modified Higgs mechanism that receives its energy 
from the corresponding Higgs-Planck potential, while preserving 
the mass generation of the standard model. In Section 7 we relate 
the Higgs-Planck potential to the energy potential available in the 
links of the Higgs gravity space-time network. The energy drain by 
the modified Higgs mechanism curves the local space-time quanta 
according to the line element associated with a single particle. 
Linear combination of space-time quanta yields the line element due 
to macroscopic masses. In spherical symmetry the Schwarzschild 
solution results. The discussion in Section 8 resumes the analogies 
used and illuminates how these findings can be transformed to the 
Kerr solution for rotating masses. Higgs quantum gravity combines 
two quantum theories to solve at one stroke two key problems of 
a century. It quantizes general relativity, while at the same time 
explaining the interrelationship of mass generation and space-time 
curvature. 

3 Loop quantum gravity in a nutshell

Higgs quantum gravity builds on LQG, which is the only 
background independent ansatz for quantum gravity available to 
date. In the current section we briefly introduce the very basics of 
LQG before providing below some more details in the course of a 
discussion of the ‘problem of time’.

Rovelli [16] summarized LQG and labelled it “a tentative, but 
intriguing possible formalism for describing quantum space-time”. 
It is Lorentz invariant and has no ultraviolet divergences. We have 
theoretical evidence (but no solid proof) that its large distance 
limit is general relativity. There is a diffeomorphism-invariant 
LQG representation of the Maxwell-Dirac-Einstein system [16, 17]. 
Fermions and Yang-Mills fields couple to the spin network, as shown 
by Bianchi et al. [17] and Han and Rovelli [18].

On the down side, LQG like all other quantum gravity concepts 
remains pure theory, without empirical test, and it is far from being 
complete [[16], p. 18]. In the past 15 years, the promising spin foam 
variant of LQG emerged. Asante et al. [19] describe the spin foam 
by a gauge theory, which relieves from the burden of calculating 
node amplitudes and brings the model in the reach of simulating 
large networks. Numerical simulations by Dittrich [20] have shown 
that spin foams create dynamical effects that may be interpreted as 
gravitational waves. Yet, these results are limited to a small piece of 
spin foam and based on an interplay between the various parameters 
of the model. Thus, LQG is a promising concept for quantum gravity, 
but simulating a macroscopic space-time remains far out of reach.

The study on hand nevertheless builds on the original 
LQG as described by Rovelli [16]. LQG models the space-
time as a quantum spin network at the Planck scale. It is an 
SU(2) algebra formally related to quantum electrodynamics and 
quantum chromodynamics. Each quantum node has a metric tensor 
generated by the momentum operators of its links. The momentum 
operators behave like the one of an elementary particle with spin. 
The nodes are not located on a background metric but associated in 
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an abstract graph to constitute the space-time itself. They are only 
localized with respect to one another and carry no vector quantum 
numbers such as momentum or position. The states of the LQG 
Hilbert space are invariant under gauge transformations Vn ∈ SU(2),

ψ(Ul) → ψ(Vsl
UlV
−1
tl
) , (1)

where Ul denotes the transporter link variable and sl and tl the source 
and target nodes. The gauge transformations Vn are equivalent to 
those of lattice gauge theories. The measure of the LQG metric is the 
area gap, which corresponds to the Planck area, the area operator’s 
lowest possible non-vanishing eigenvalue. The areas combine to 
polyhedral volumes. Area and volume form a complete set of 
commuting operators and define an orthonormal basis of the 
geometry. Yet, the nodes carry no length dimension.

To date, the emphasis in LQG has been put on the curvature 
of the graph. The study on hand instead extends the space 
quantization to the time dimension and by an energy balance 
focuses on the modification of area and volume. The correspondence 
limit results from area and volume of a multi-node network 
amounting to the sum of expected values. Linear combination 
leads to the Schwarzschild and Kerr solutions of general relativity. 
Higgs quantum gravity not only tolerates but even depends on the 
macroscopic measure of length being only indirectly defined, by 
the area gap. 

4 New approach to the ‘problem of 
time’

The ‘problem of time in quantum gravity’ challenges all 
corresponding efforts from the outset. As we will see in what follows, 
all former quantum gravity theories fail to solve it. A brief history of 
quantum gravity shall identify the fundamental conceptual conflict 
and its current state regarding LQG in particular. In addition, this is 
an opportunity to introduce LQG in some more detail.

A history of quantum gravity must briefly address the very 
popular string theory, an approach directly from perturbative 
quantum theory. Originally, string theory was a rather unsuccessful 
attempt for hadron physics (history see [21], e.g.). In the early 
seventies Fritzsch, Gell-Mann, and Leutwyler [22] developed the 
groundbreaking color concept of quantum chromodynamics, thus 
marginalizing string theory. Shortly thereafter, Scherk and Schwarz 
[23] and Yoneya [24] independently showed that the scalar strings 
vibrate in spin-2 states, as expected for the hypothetical graviton. 
String theory gradually revived as a quantum gravity aiming at grand 
unification. It formally reproduces the equations of general relativity, 
but its latest descendant M-theory bases on a fixed 11-dimensional 
background space-time [25], while general relativity indicates 
background independence. The ‘string landscape’ comprises at least 
O(10500) possible flux vacua, with no clear-cut selection method 
in sight. It requires supersymmetry, which to each fermion adds 
an unknown bosonic partner and vice versa. Collider experiments 
never detected any of them.

The present study aims at a strictly non-perturbative and 
background independent theory and thus concentrates on LQG. 
The latter emerges from a canonical (or Hamiltonian) quantization 
of general relativity, as proposed in 1967 by DeWitt [26]. He 

uses the ADM formalism [27], a foliation of the space-time in 
space-like hypersurfaces with a connecting time parameter. The 
foliation is well justified, because general relativity does not support 
an interchange of the time with space dimensions, as recently 
shown by the author [1]. The resulting Hamiltonian constraint 
yields the Wheeler-DeWitt equation Ĥ(x)|Ψ⟩ = 0. Unlike the similar 
Schrödinger equation, |Ψ⟩ is not a normalized function on a space-
like surface but contains all the information of geometry and matter 
of the universe. The Hamiltonian Ĥ(x) does not determine the 
evolution of the system. The wavefunction of the universe appears 
frozen. Time becomes an unphysical gauge variable. The ‘problem 
of time in quantum gravity’ was born. It was born to stay.

Canonical quantization did not yield a significant improvement 
until 1986, when Ashtekar [28] presented his new set of variables, 
an SU(2) connection and the associated orthonormal triads (drei-
beins) as the conjugate momenta. “The emphasis is shifted from 
distances and geodesics to holonomies and Wilson loops” [[29], 
p.14]. This connection dynamics resembles a classical Yang-Mills 
gauge theory. “However, unlike the familiar Yang-Mills theory in 
Minkowski spacetime, now there is no metric or any other field 
in the background” [[30], p.6]. This was the genesis of LQG. 
The Gauss constraint (due to the SU(2) gauge symmetry group) 
and the vector constraints generating the diffeomorphisms of the 
space-like hypersurfaces could be solved rather directly [31]. Thus, 
the space-like hypersurfaces could be quantized, mostly in an 
arbitrary number of space dimensions, including a derived measure 
on the Planck scale, as described by Thiemann [32, 33]. Rovelli, 
one of the major founders of LQG, concludes [[34], p.10]: “The 
space continuum ‘on which’ things are located and the time ‘along 
which’ evolution happens are semiclassical approximate notions in 
the theory.”

Yet, are these continuum notions of time and space both 
semiclassical and approximate? The space dimensions are quantized 
into Planck scale bits, but the time of their evolution is continuous 
and “the clear-cut quantum dynamics remains open” [[31], p.8]. 
The scalar Hamiltonian constraint, which is related to the time 
parameter, remains unsolved [[35], p.12]: “There is still a large 
number of poorly controlled ambiguities in the definition of the 
Hamiltonian constraint.” The ‘problem of time in quantum gravity’ 
persists. But a fully background independent theory requires radical 
rethinking anyway: “The theory gives up unitarity, time evolution, 
Poincaré invariance at the fundamental level, and the very notion 
that physical objects are localized in space and evolve in time” [[36], 
p.1302] and “there is no need to expect or to search for unitary time 
evolution in quantum gravity, because there is no time in which we 
could have unitary evolution” [[37], p.114]. Kiefer concludes [[38], 
p.9]: “Such constraints result from any theory that is classically 
reparameterization invariant, that is, a theory without background 
structure”.

The ‘problem of time in quantum gravity’ originates in 
the interpretation of the diffeomorphism invariance as a gauge 
invariance. In general relativity the impact may be attenuated 
by concentrating on one specific solution [[36], p.1318]: “A 
single solution of the [general relativity] equations of motion 
determines a spacetime, where a notion of proper time is associated 
to each timelike worldline.” In LQG, however, we are dealing 
with background independent space-time networks, with serious 
consequences [[34], p.21]: “In quantum gravity the notion of 
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spacetime disappears in the same manner in which the notion of 
trajectory disappears in the quantum theory of a particle.” Should 
we drop the concept of time and of the evolution of space altogether 
and regard it as an illusion, as Barbour suggests [39]?

The latest descendant of LQG are spin foams, its covariant 
counterpart. They have been introduced in detail by Perez [31]. The 
concept goes back to Reisenberger and Rovelli [40], who formulated 
a heuristic method of how to solve the Hamiltonian constraint by 
switching to a constrained SU(2) BF topological theory. Various 
models emerged until about 15 years later an effective theory of spin 
foams could be formulated in 3 + 1 dimensions. The conceptual 
issues regarding the Hamiltonian constraint were addressed by 
defining observables not with respect to space-time points, but in 
terms of relations between dynamical fields [[16], p.12].

Spin foam models may be rated the most successful quantum 
gravity theory to date. Being 4-geometries from the start, they 
allow not only for space-like, but also for time-like triangles [41]. 
The spin networks abruptly change their node and link structure, 
which is interpreted as a quantization not only of space, but also 
of time. Yet, the price for switching to a covariant base of ‘sum 
over spin network state histories’ is considerable. The relational 
solution of the Hamiltonian constraint at random generates and 
removes links at the network nodes. The quantum networks thus 
represent chaotically wobbling foams. Despite some respectable 
achievements lately [20], we still have no solid proof that the long-
distance limit is general relativity. As mentioned in Section 3, the 
limit of semiclassical states requires various assumptions.

The ‘problem of time’ may appear overcome by switching to 
covariant spin foams and by solving the Hamiltonian constraint 
in terms of dynamic relations. Time and evolution are not lost 
completely, but we end up in a chaotically wobbling space-time 
network. May this be considered a solution to the ‘problem of time’? 
Indeed, this might be the best solution we could ever expect. Spin 
foam models are quantum theory and as such on principle depend 
on a continuous time parameter. The lowest possible eigenvalue 
of the area operator has been determined for the space-like 
hypersurfaces, by the original canonical theory. A corresponding 
lowest possible eigenvalue regarding time is not available and a 
translation between canonical LQG and spin foams is missing [[34], 
p.262]: “There are several gaps between the Hamiltonian loop theory 
and the spinfoam models.”

Sixty years of efforts regarding the ‘problem of time in quantum 
gravity’ did not yield a cogent solution within quantum theory. 
We conclude that quantum theory can perfectly quantize space, 
but it cannot quantize time, because it would extinguish all regular 
evolution and invalidate itself. In order to solve the ‘problem 
of time’ we must rise to a meta-level, beyond the concepts of 
quantum theory. 

5 Higgs gravity network

In the previous section we delineated the ‘problem of time in 
quantum gravity’ and concluded that a solution cannot be expected 
from quantum theory itself. Moreover, in quantum gravity the 
coupling to matter remains as descriptive as in general relativity. 
Spin foams are the most successful theory to date, but “the issue 
of the coupling of the new spin foam models to matter remains to 

a large extend un-explored territory” [[31], p.73]. The couplings of 
the spin network to fermions and Yang-Mills fields [17, 18] have 
been developed in canonical LQG and do not account for the strong 
back reaction of matter [[30], p.3]: “As is the case with classical 
general relativity, while requirements of background independence 
and general covariance do restrict the form of interactions between 
gravity and matter fields […], the theory would not have a built-in 
principle which determines these interactions.”

The present section proposes a quantization of the time 
parameter, emanating from canonical LQG, but avoiding quantum 
theoretical methods. We aim at a quantum network, which on a 
semiclassical level carries a Higgs field suitable to determine the 
interaction between matter and the quantum space-time.

Canonical LQG quantizes the space-time by the aid of the area 
operator. The 3-dimensional momentum operators on L2[SU(2)L]
are the left invariant derivative operators L⃗l acting on the group 
elements hl ∈ SU(2) for each link l [16]. They generate the metric 
tensor of the quantum node. The diagonal elements of the Penrose 
metric operator

A2
l = L⃗lL⃗l (2)

are the Casimirs of the SU(2) group associated with the link l. 
They denote the area of the surface bounding two connected quanta 
of space. The lowest possible non-zero eigenvalue of Equation 2 
yields the Planck area, ℓ2

P, which is the scale of LQG, the area 
gap (for details, see [32, 33]). LQG thus quantizes the space-like 
hypersurfaces but lacks a quantization of the time parameter on an 
equal footing.

Simple triangulation of this space-like network in the classical 
limit yields a flat 3-dimensional Euclidian metric. Minkowski [42] 
extended the flat space by the product of the time t with the light 
speed c, xμ = (ct,x), thus postulating his 4-dimensional space-time 
metric. With regard to what follows, we represent it by a line element

ds2 = ημνdxμdxν = −c2dt2 + dx2 (3)

with the ‘mostly plus’ metric ημν = diag(−1,1,1,1). Because 
quantum theory cannot quantize time, we likewise complement 
the quantized space-like hypersurfaces by transposing the time 
differential of Equation 3 down to the smallest possible time step at 
the Planck scale,

c2dt2|dt→tP
= c2t2

P = ℓ2
P, (4)

where tP denotes the Planck time.
Equation 4 cannot indicate any movement or evolution, because, 

as mentioned in Section 3, the nodes of the spin network carry 
no vector quantum numbers such as momentum or position. It 
must be a local oscillation, but it can neither be a vibration of the 
network nodes on an inexistent background. Equation 4 indicates a 
quantum field oscillation, attributed to the bosonic links l, which are 
associated with the group elements hl ∈ SU(2) and span the area gap 
provided by Equation 2.

Time on principle can only be metered from an arbitrary 
reference point, based on a stable oscillator defining the smallest 
measurable time interval. The Higgs gravity space-time network 
provides such an oscillator, a scalar SU(2) field oscillating at the 
Planck frequency ωP = c/ℓP = t−1P , with the same gauge symmetry as 
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the Higgs field. A quantum field equation for this oscillation does not 
exist, because the time differential dt < tP is undefined. Herewith, 
we have the space-time network equipped with densely distributed 
clocks. As shown in what follows, this time measure is not absolute 
like in the Minkowski space-time.

In the absence of matter, Higgs quantum gravity thus constitutes 
a flat spin lattice of fermionic nodes connected by bosonic SU(2)
links. The latter span the faces between space-time quanta and 
oscillate at the Planck frequency ωP. The energy associated with the 
oscillation of the links or faces is ℏωP = EP, the Planck energy, where 
ℏ denotes the Planck constant. The enormous energy potential EP ≈
1019GeV per space-time quantum should not come as a surprise, 
because the space-time provides the energy for all matter, whose 
volume density may approach the Planck limit. This energy potential 
is not directly effective, because the links are not defined on a fixed 
background. They only are associated with respect to each other, 
forming an abstract graph, which represents the space-time itself.

The latent energy potential of the universe is exorbitant indeed 
and is expected to increase as the universe expands. The same is 
true for the pervasive Higgs field of the original Higgs mechanism. 
However, the observed baryonic and dark matter is enormous as 
well. Attributing its source to the Big Bang just shifts the problem, 
because we do not know where the energy for the Big Bang came 
from. We may conclude that all energy should have the same origin, 
be it latent, like the oscillation of the space-time network, observable, 
like baryonic matter, hidden, like dark matter, or mysterious, like 
dark energy. We must humbly admit that we currently have no clue 
regarding its source.

The Higgs quantum gravity network provides a base of 
measurement at the Planck limit. The light speed as the maximum 
propagation velocity of signals is given by the quantum space-time 
oscillation, c = ℓPωP, which according to Equation 1 invariantly 
translates the coupled fields along the links. The upper limit of mass 
concentration is a Planck mass mP = EP/c2 per space-time quantum, 
that is, the Planck density ρP =mP/ℓ

3
P.

Thiemann [43] showed that the Hamiltonian of the standard 
model supports a representation including Higgs field insertions at 
the end points of open lines, that is, of the network links. We make 
a step forward and promote the Higgs field to a modulation of the 
Higgs gravity network itself. In analogy to phonons in a crystal lattice 
(see, e.g., [44]) the oscillation of the links or faces may be regarded as 
the normal mode of the entire quantum space-time, oscillating as a 
scalar field with an SU(2) gauge symmetry. When excited by matter 
fields the space-time may fluctuate as propagating SU(2) modes of 
a lower frequency. Hence, the Higgs gravity field corresponds to 
the SU(2) normal mode oscillation of the entire space-time, while 
the Higgs field of the Higgs boson represents a lower frequency 
modulation in the oscillating lattice. 

6 Higgs gravity mechanism

The Higgs gravity mechanism adheres to the original Higgs 
mechanism (see, e.g., [45]), while modifying the mass term. Putra 
and Alrizal [46] also modify the Higgs equation, adding a mass 
term based on their relativistic Heisenberg uncertainty principle. 
The relativistic action causes explicit symmetry breaking and thus 
results in a new type of mass generating field. A discontinuity of the 

inertial mass in the transition between relativistic energy and action 
thus generates both ordinary and dark matter. Their mechanism 
creates masses from the fluctuating vacuum, but they do not relate 
the mass generation to the space-time curvature. Putra et al. [47] 
on the other hand use the Ehrenfest paradox in the Bohr atomic 
model in relation to their generalized uncertainty principles [46]. 
The atom induces a quantization of the space-time curvature caused 
by other masses.

The present study in contrast determines how the masses cause
the curvature. In Section 5 we transposed a flat Minkowski space-
time down to the Planck scale and thus found that the links 
(or area gaps) oscillate and carry the Planck energy EP as their 
energy potential. Please recall that the space-time nodes of LQG 
build an abstract graph representing the space-time geometry. They 
carry neither momentum nor position and cannot contribute to 
a space-time pressure. The energy potential EP ≈ 1.2× 1019GeV
per area gap is not related to the issue of dark energy or the 
cosmological constant.

The Higgs mechanism acts at the scale of the Higgs energy vH ≈
246GeV =O(10−17EP). The markedly different scales indicate that 
the energy transfer from the Higgs gravity network to the Higgs field 
fluctuation mode spreads over a high number of space-time quanta, 
N≫ 1. Due to Equation 1 the excitations may invariantly translate 
between nodes. The Higgs field represents a lower frequency 
fluctuation mode of the oscillating Higgs gravity network, analogous 
to phonons in a crystal lattice, as discussed in Section 5.

The Higgs-Planck gravity potential VHP thus is composed of 
the partial contributions by elementary excitations of N space-
time nodes. A quantum excitation by an external field indicates a 
corresponding mass term, for the scalar Higgs field an explicit term 
μ2. The Planck mass term μ2

P, contributed by the links or area gaps 
involved, must compensate for the energy absorbed in Higgs field 
fluctuation mode, that is, μ2

P→ (μP − μ)2. Each of the N space-time 
nodes to the total potential contributes a partial term ρi, where 
∑N

i=1ρi = 1.
In the usual units with ℏ = c = 1 we find the Lagrangian for the 

complex scalar doublet ϕ interacting with the N space-time nodes,

L = (∂αϕ)†∂αϕ−VHP (ϕ) (5)

with the accumulated potential

VHP (ϕ) =
N

∑
i=1
[ρi {−(μP − μ)2 + μ2}] |ϕ|2 + λ|ϕ|4

= −(μP − μ)2|ϕ|2 + μ2|ϕ|2 + λ|ϕ|4

= −(μ2
P − 2μPμ) |ϕ|2 + λ|ϕ|4,

(6)

where λ denotes the dimensionless coupling constant. The Higgs 
equation basically corresponds to the Klein-Gordon equation, but 
it has a negative mass term. The latter resembles an imaginary 
valued mass and turns the Higgs field ϕ into a complex valued two-
component field with a sombrero-like shape, with a ‘spontaneously 
broken gauge symmetry’. The Higgs field thus is short-ranged 
and acquires a ‘charge’, that is, a mass. Accordingly, −(μP − μ)2 <
0 in Equation 6 resembles an imaginary valued energy. It replaces 
the corresponding negative mass term in the original Higgs equation 
and represents the local energy potential of the space-time lattice, 
whose gauge symmetry is globally broken.
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Without excitation the potential VHP(ϕ) only becomes manifest 
as the oscillation energy in the area gaps, which provide the space-
time quanta with their area and volume. The term +μ2 is the regular 
mass term of the Higgs field, which as an excitation of the oscillating 
lattice receives its mass. Figure 1 depicts a schematic of VHP(ϕ). The 
expected field value equivalent to the original Higgs mechanism is 
located at the minimum

⟨ϕ⟩ =
vHP

√2
= √

μ2
P − 2μPμ

2λ

= EHP = √E2
P − 2EPmH = EP −mH +O (10−17mH) ,

(7)

where mH denotes the mass of the Higgs boson. The 
greatest masses of the standard model are < vH. The higher 
order terms in Equation 7 are O(10−17mH). Thus, the Higgs gravity 
mechanism compared to the original Higgs mechanism just shifts 
the potential by a constant, EP, which is irrelevant regarding the 
expansions of the electroweak theory. The standard model remains 
unaffected.

Similar to the original Higgs mechanism, the Higgs gravity 
mechanism, as represented by the equations above, is limited to 
low mass concentrations, EHP ≈ EP. When the mass concentration 
approaches the Planck limit, that is, when the sum of all locally 
generated mH becomes significant with respect to EP, higher order 
effects can no longer be ignored. Such effects are expected in 
extremely dense stellar objects like black stars, which were discussed 
in the first paper of the series ‘Universe 2.0’ [1]. Higher order terms 
in the scope of the original Higgs mechanism have been analyzed 
by Cai and Wang [48], who show that the Higgs vacuum in fact is 
metastable. The implications of analogous effects in Higgs quantum 
gravity shall be discussed in a forthcoming study, as briefly outlined 
in the outlook below. 

7 Higgs quantum gravity

With regard to an arbitrary coupled massive field and returning 
to explicit units, the excited Higgs-Planck energy from Equation 7 

FIGURE 1
Schematic of the excited Higgs-Planck potential VHP(ϕ)(orange line) 
and the associated vacuum potential (μ = 0, green line). For visibility, 
the energy drop v3

Pμis depicted many orders of magnitude too large.

relates to the vacuum Planck energy EP as

EHP

EP
=

ℓHP

ℓP
=

tP

tHP
= √1− 2mc2

EP
, (8)

where m denotes the resulting mass of the coupled particle. The 
Higgs-Planck length ℓHP = EHPG/c4 indicates a smaller area gap, 
that is, a tighter spatial base of measurement compared to the ℓP
of a flat vacuum. Likewise, the Higgs-Planck time tHP = ℏ/EHP > tP
indicates an extended time scale. Referring to the Minkowski metric 
in Equation 3, the measured local line element due to the excitations 
of N≫ 1 network nodes is inversely proportional, extended in space 
and contracted in time,

ds2 = −c2 t2
P

t2
HP

dt2 +
ℓ2

P

ℓ2
HP

dr2 + r2dΩ2

= −c2(1−
rS

r
)dt2 +(1−

rS

r
)
−1

dr2 + r2dΩ2,

(9)

where rS = 2Gm/c2 denotes the particle’s Schwarzschild radius 
and r2dΩ the surface area element of the spherically symmetric 
metric. The Schwarzschild line element in Equation 9 applies to 
a distribution of O(1017) elementary excitations. The surface area 
element is just included for conceptual completeness. It is not 
modified by mass generation. The mixed term dtdr of the general 
metric is not part of the Schwarzschild coordinates and would not 
be modified either.

In the next steps we consider the linear combination of 
contracted and non-contracted area gaps of the quantum space-
time, not the non-linear equations of general relativity. The metric 
of the space-time nodes is defined by their links, which span the 
area gap but provide no length. A path in the quantum space-time 
may be viewed as a chain of bubbles with the local area gap as their 
cross section. A distance r = nℓP combines the area gaps of all the 
nodes in the chain, in flat vacuum, nℓ2

P = rℓP. If some of the area gaps 
along the path are contracted by masses, the base of measurement of 
r is contracted by the corresponding sum of contractions. For the 
particle m in vacuum this results in

∑n
k=1

ℓ2
HP (k)

nℓ2
P

=
(n− 1)ℓ2

P + ℓ2
HP

nℓ2
P

= 1−
rS

nℓP
. (10)

The Schwarzschild line element in Equation 9 thus applies for a 
distance r = nℓP. The Higgs-Planck potential in Equation 6 is a linear 
combination of elementary excitations of N≫ 1 network nodes and 
refers to a linear combination of masses squared. All the subsequent 
steps combined this sum of squared energy contributions up to the 
preliminary result for ℓ2

HP(k) ∝ E2
HP(k) in Equation 10.

Most relevant for gravity are the stable nucleons that contribute 
the baryonic mass of the universe. The masses of fermions are 
explained by a Yukawa coupling of their fermionic field, ψ, to 
the Higgs doublet, ϕ (see, e.g., [45]). The resulting coupling term, 
−gψ̄ϕψ, is linear in ϕ and results in a Lagrangian that is linear in the 
fermion masses.

In a macroscopic, static mass M confined in a volume V , the 
infinitesimal volume element dV(x) at the location x shall contain 
a number k(x)dV(x) of fermions with a mass m f  each. Interactions 
of nucleons preserve the sum of stable masses with deviations of 
O(10−3). Thus, the assumption of an average, constant m f  is justified 
with good accuracy for cold matter or stars, for instance. The 
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FIGURE 2
Sketch regarding the integration of a Newtonian shell with mass Mr.

area gaps, the masses, and the mass terms of the remote fermion 
Lagrangians are linearly associated and combined. The area gaps and 
their contractions in dV(x) both accumulate linearly, resulting in the 
space-time curvature caused by M.

Let, for instance, a Newtonian shell have a radius rn = nrℓP and 
a mass Mr = Nm f . Let a reference point Pd be at a distance d =
ndℓP ≥ rn from the center, r = 0. Pd without loss of generality may 
be assumed over the pole of the spherical coordinates, on the axis 
ϑ = 0, as sketched in Figure 2.

The opposing gravitational components at φ and φ+ π, related 
to r sin ϑ, compensate due to the rotational symmetry. For each 
fermion in the shell, the gradient towards the center is defined by 
the axial component of its distance, that is, by the sum of the area 
gaps, n(ϑ)ℓ2

P = (d− r cos ϑ)ℓP. Similar to Equation 10, the total effect 
at the distance from the center to Pd linearly combines to

(nm −N)ℓ2
P +Nℓ2

HP

nmℓ2
P

= 1−
2GMr

c2d
= −gtt = g−1rr (11)

nm =
1

πℓP
∫

π

0
d− r cos ϑdϑ = nd, (12)

where gtt and grr are the time and radius components of the 
Schwarzschild solution and nm the mean number of area gaps. The 
linear combination in Equation 11 equivalent to Equation 10 leads 
to the Schwarzschild line element for the Newtonian shell, Mr. In 
the first study of the series ‘Universe 2.0’ [1], the author showed 
that the Newtonian shell theorem is valid for the relativistic case 
without restriction. A spherically symmetric body in general may be 
composed as a linear combination of concentric Newtonian shells, 
each of which may be represented by a point mass at r = 0. A 
point mass may represent a spherically symmetric mass distribution, 
regardless of radial density variations and whether the body is static 
or stationary. 

8 Discussion and conclusions

The theory of superconductivity inspired the Higgs mechanism. 
The atomic fluctuation in a superconductor at low temperature 
results in a coupling of electrons to bosonic Cooper pairs. The Bose-
Einstein condensate leads to a spontaneously broken U(1)em gauge 

symmetry, which causes a longitudinal polarization state of photons. 
They become massive, which explains the limited penetration depth 
of a magnetic field into a superconductor. The Higgs mechanism’s 
analogy is the broken gauge symmetry.

The proposed Higgs gravity mechanism is more evident 
regarding both the physical context and its analogy to 
superconductivity. We solved the ‘problem of time in quantum 
gravity’ by transposing the Minkowski metric down to the Planck 
scale and thus found the Higgs gravity spin network, which 
represents the lattice with the globally broken gauge symmetry. 
The energy source for the masses is the quantum space-time itself, 
in analogy to the Bose-Einstein condensate. The Higgs field, that is, 
the Higgs boson, as a local modulation of the space-time oscillation 
receives its mass, in analogy to phonons in a crystal lattice.

The Higgs gravity mechanism thus transfers energy from the 
spin network to the massive particles. The Higgs boson represents 
the interaction agent. The local network nodes are left with an 
energy drop that amounts to the mass of the coupled particle. The 
area gap of the nodes, the base of their metric, contracts, while the 
corresponding measure of time extends, equivalent to the particle’s 
Schwarzschild line element. Linear combination of modified area 
gaps yields the space-time curvature due to macroscopic masses. In 
spherical symmetry the Schwarzschild metric results.

Chou [49] presented a method to construct from the 
Schwarzschild coordinates the Kerr metric for rotating masses. He 
transforms the coordinates to the new symmetry and then adds the 
rotational energy. The kinetic energy is part of the relativistic mass 
and thus leads to a corresponding additional energy drop in the 
network nodes of the quantum space-time. This indicates that the 
Kerr metric may be derived equivalent to the Schwarzschild metric, 
by arguments of energy density.

LQG aims at explaining general relativity as a limit in the sense 
of the correspondence principle. Its most promising descendant, 
spin foam theory, still relies on additional assumptions such as the 
scale of the triangulation and the curvature scales around the bulk 
triangles, for instance. The current theory is not subject to additional 
assumptions.

Higgs quantum gravity combines two quantum field theories 
with shortcomings each. The original Higgs mechanism generates 
the masses from an unobservable energy field pervading the 
universe. LQG describes the curved space-time as a superposition 
with various degrees of freedom. By combining the two, the particles 
from the space-time receive their masses and the space-time by 
providing the masses its well defined curvature.

Higgs quantum gravity as presented above in the classical limit 
does not correspond to Einstein’s equations, but it reproduces key 
solutions of them. The quantum space-time itself represents its 
gravity field, in accordance with Einstein’s notion of gravitation. 
Higgs quantum gravity thus by a simple concept mediates between 
quantum theory and general relativity. Much of the experimental 
evidence for general relativity addresses the Schwarzschild and Kerr 
solutions. This includes, for instance, the perihelion precession of 
Mercury, the deflection of light by the sun, the gravitational redshift 
of light, or basic properties of gravitational lensing like the radius 
of the Einstein ring. All this evidence equivalently supports Higgs 
quantum gravity.

By its basis LQG, Higgs quantum gravity explains additional 
phenomena. To mention some examples, LQG reproduces the
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Beckenstein-Hawking entropy and the Hawking radiation of black 
holes [50]. Gravitational waves, discovered by Abbott et al. [51], were 
successfully simulated by Dittrich [20] and are an important aspect 
of loop quantum cosmology [52].

Yet, Higgs quantum gravity in its current form handles static or 
stationary mass distributions only. Using relativistic masses should 
improve the predictions for objects in motion, but the Higgs gravity 
network at the time being does not allow for dynamic space-
time effects such as gravitational waves. Due to the background 
independence the network nodes carry no momentum or position 
and cannot generate waves. They are, however, associated with one 
another by the oscillating links, which carry the Higgs fluctuation 
modes. The latter are massive and short-ranged, but the links of 
the Higgs gravity network may carry a different kind of long-
ranged fluctuation that the present study does not cover. The relation 
between the Higgs energy and the Planck energy from Section 6 
might allow deriving the required coupling between the associated 
links or area gaps.

Another open question relates to the expansion of the universe 
and was addressed in the concluding remarks of Section 5. Spatial 
expansion indicates newly created space-time quanta that carry 
latent energy, the source of which we do not know. The same is true, 
however, for all other forms of energy in the universe.

Higgs quantum gravity compared to LQG has advantages 
regarding simplicity. The linear combination of area gaps is much 
simpler and less intricate than the triangulation by Regge calculus. 
Nevertheless, future studies should extend the current theory based 
on Regge calculus, which is the standard method for discretizing 
general relativity. The deficit angles of 2-faces, which result in the 
space-time curvature, might be determined by the well-defined area 
differences in neighboring triangles.

The author encourages forthcoming studies to test Higgs 
quantum gravity versus general relativity. We should compare 
numerical relativity to the linear combination of area gaps, using 
the relativistic mass, when indicated. Lattice calculus all the way 
down to the Planck scale would be prohibitive regarding numerical 
effort, but the linear combination from the Planck scale to the 
semiclassical scale allows for averaging over the corresponding scale 
gap of a factor of O(1017), which drastically reduces the resolution. 
Astronomical objects of interest might be complex gravitational 
lenses or binary stars, including black stars.

Higgs quantum gravity is not a new form of gravity, but a new 
approach to the well-established form. It is the first experimentally 
verified quantum gravity and the first theory that determines the 
space-time curvature by mass generation from the space-time 
structure. 

9 Outlook

As a next step of research, the author based on Higgs quantum 
gravity plans to challenge the Planck scale by a new ansatz related to 
the metastable electroweak vacuum of the Higgs potential [48]. Near 
the Planck limit, Higgs quantum gravity could allow for an escape 
to a separate sombrero potential representing a different oscillation 

mode of the space-time network. The Higgs gravity mechanism 
would provide masses in a similar sense as described in the present 
study, but excluding field interactions with the observable baryonic 
matter. The space-time network, however, would nevertheless be 
left with a curvature. This might yield a promising explanation for 
dark matter.
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