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in-plane nonlinear buckling of 
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This paper investigates the in-plane nonlinear buckling of shallow steel arches 
with linear elastic supports. Differential equations of equilibrium are built 
considering a virtual work principle. To balance computational accuracy, 
efficiency, and cost, a harmonic differential quadrature method (HDQ)-based 
solution strategy combined with an iterative process is utilized to follow the 
complete buckling path. The corresponding critical buckling load is obtained. 
The convergence of HDQ algorithm is then examined, and the accuracy of 
presented solutions is validated by comparing the FE predictions. It was found 
that the nonlinear behavior of circular arches with linear elastic supports can 
be precisely predicted by the presented HDQ-based solution strategy. The arch 
could buckle either in a limit point mode or a bifurcation mode, depending on 
the modified slenderness ratio.
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 1 Introduction

Arches are commonly used in civil, mechanical, and aerospace engineering [1]. It 
can convert external force into inner axial force and bending moment. Due to its unique 
bearing characteristics, arches may collapse abruptly within elastic range, leading to 
structural failure [2]. This complex mechanical behavior has attracted widespread attention 
from scholars both domestically and internationally.

Considering that ideal fixed and hinged boundaries do not exist in practical engineering, 
the actual boundary is usually approximated by linear springs, torsional springs, elastic 
foundations, etc. In accordance with the principle of stiffness equivalence. Pi and Bradford 
[3, 4] investigated the nonlinear in-plane buckling of circular arches with linear elastic 
supports and rotational end restraints. Closed form solutions for the critical buckling 
load were derived by using an energy principle. Internal connections between restraint 
stiffness and buckling shape were revealed. Han et al. [5] proposed a 9-node assumed 
natural strain shell element dealing with the geometrical nonlinear buckling of deep 
circular arches with arbitrary elastic edge supports. The primary path at any point on 
the axis during buckling were recorded. The in-plane snap-through buckling of sinusoidal
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arches with rotational supports that stiffen under compressed was 
analyzed by plaut [6]. He claimed that the critical buckling load 
of arch may be increased significantly due to support stiffening, 
especially if the initial flexural resistance is small. Cai and his-corkers 
[7, 8] numerically explored the snap-through behavior of elastic 
shallow inextensible circular arches with variable elastic horizontal 
supports under unilateral displacement control. They found the 
critical stiffness increases with the decrease of arch length, and 
the decrease of horizontal stiffness can expand the snap region. 
Zhou et al. [9] confirmed that shallow arches with symmetric 
elastic supports can bifurcate into secondary paths with high-order 
symmetric modes under the action of uniformly distributed vertical 
load, from a theoretical perspective. Han et al. [10, 11] carried 
out elastic-plastic in-plane buckling experiments of steel circular 
arch with horizontal elastic supports and torsional constraints. The 
complete equilibrium path, as well as the corresponding failure 
mode were captured. Design method for the ultimate bearing 
capacity of arches has been proposed for engineering applications. 
Hu et al. [12, 13] explored the nonlinear elastic stability of pin-
ended parabolic multi-span continuous arches. In their analysis, the 
horizontal connections between loaded and unloaded elements were 
simulated by linear springs. Despite extensive research have been 
conducted and innovative results have been found, there are still 
many inconveniences in determining the critical buckling load of 
arches under complex boundary conditions in open literature, such 
as complex formulas and high computational costs.

To fulfill the research gap, this paper proposes a HDQ-based 
solution strategy dealing with the in-plane nonlinear buckling of 
shallow steel arches with linear elastic support. The differential 
equations of equilibrium were built initially utilizing a virtual work 
principle. By introducing the differential quadrature element (HDQ) 
algorithm, the governing equations were discretized. An iterative 
process was then performed to follow the limit point buckling path. 
After that, the displacement perturbation was conducted to establish 
the governing equations for bifurcation, the corresponding path was 
traced. Finally, the convergence of HDQ algorithm and the accuracy 
of the presented solutions were examined. 

2 Limit point buckling analysis

Consider a steel arch having a bi-symmetric I-shape 
cross-section subjected to uniformly distributed radial loads, 
as shown in Figure 1. The Young’s modulus of the steel E = 2×
1011 N/m2, Poisson’s ratio μ = 0.3. The radius and included angle 
of the arch are denoted as R and 2Θ. The overall height (width) of 
the cross-section h = 400mm (b = 180mm), and the flange (web) 
thickness t f = 13.5mm (tw = 8.6mm). The x and y axes are arranged 
at the principal centroid axes of the cross-section.

It is assumed the circular arch satisfies the classic Euler Bernoulli 
deformation condition. In the framework of virtual work principle, 
the variation of the total potential energy can be expressed as [14].

δΠ = ∫
2Θ

0
{NRδ[w̃′ − ̃v+ 1

2
( ̃v′)2] +Mδ ̃v″ + qR2δ ̃v}dθ

+
2

∑
i=1
(kvi
̃vδ ̃vi + kwi

w̃δw̃i)R2 = 0 (1)

where ̃v = v/R and w̃ = w/R are the dimensionless radial and axial 
displacements, R is the radius of the arch, q is the load density, 
( )′ = d( )/dθ, ( )″ = d2( )/dθ2, and θ is the angular coordinate, kv
and kw are the axial and radial stiffness coefficients of the elastic 
supports, and number 1 (2) at the upper (lower) limit of cumulative 
symbol represents the left (right) arch foot, N and M are the axial 
compressive forces and bending moment, which are defined by

N = −∫
A

σdA = −EA[w̃′ − ̃v+ 1
2
( ̃v′)2] (2)

M = ∫
A

σydA = −EI
R
̃v″ (3)

where A and I are the cross-sectional area and second moment of 
area of cross-section about the major principal axis, σ denotes the 
cross-section normal stress and E is the Young’s modulus.

Integrating Equation 1 by parts leads to [15].

δw̃: N′ = 0⇒ N = const (4)

δ ̃v: M″ +NR ̃v″ +NR = qR2 (5)

Substituting Equations 2, 3 into Equations 4, 5 has

w̃″ − ̃v′ + ̃v′ ̃v″ = 0 (6)

EI
R
̃v(iv) +EAR(w̃″ − ̃v′ + ̃v′ ̃v″) +EAR[w̃′ − ̃v+ 1

2
( ̃v′)2] ̃v″ = −qR2

(7)

To obtain the real root of Equations 6, 7 a harmonic differential 
quadrature algorithm is adopted to solve the governing equation in 
spatial domain. The ξth-order derivation of the function w̃( ̃v) at any 
discrete point can be expressed as [16]

{ ̃v, w̃} =
n

∑
j=1

hj(ξ){ ̃vm, w̃m} and ∂m

∂ξm { ̃v, w̃}ξ=ξj
=

n

∑
j=1

C(m)ij { ̃vm, w̃m} (8)

where m is the number of sampling points, hi(ξ) is the harmonic test 
function, and is defined by [17]

hi(ξ) =
n

∏
k=0,k≠i

sin [π(ξ− ξk)/2]/
n

∏
k=0,k≠i

sin [π(ξi − ξk)/2] (9)

The first and second derivatives of weighting coefficients for i ≠ j
can be written using the following formula [18]:

C(1)ij =
πP(ξi)/2

P(ξj) sin[π(ξi − ξj)/2]
i, j = 1,2…n (10)

C(2)ij = C(1)ij {2C(1)ij − π cot[
π(ξi − ξk)

2
]} i, j = 1,2…n (11)

where

P(ξi) =
n

∏
j=1,j≠i

sin [π(ξi − ξk)/2] i, j = 1,2…n (12)

The weighting coefficients of the first-order and second-order 
derivatives for i = j can be written as

C(r)ii = −
n

∑
j=1,j≠i

C(r)ij  r = 1or2with i = 1,2…n (13)
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FIGURE 1
Geometry model of shallow steel arches under uniformly distributed radial load.

The weighting coefficient of the third- and fourth-order 
derivatives can be computed easily from C(1)ij  and C(2)ij  as

C(3)ij =
n

∑
k=1

C(1)ij C(2)ij  and C(4)ij =
n

∑
k=1

C(2)ij C(2)ij (14)

The Chebyshev–Gauss–Lobatto polynomial with adjacent-δ
points is used to generate the nodal grid point [19]:

ξ1 = 0,ξ2 = 10−4,ξi

= 1
2
{1− cos [

(i− 1)π
N− 1
]}

i=3,4,…k−2
,ξk−1 = 1− 10−4,ξk = 1 (15)

Considering Equations 8–15 and rewriting Equations 6, 7 in a 
differential quadrature form has

{KL +KNL}{d} = −{Q} (16)

with

{d} = {{w̃i}
T, { ̃vi}

T}T and {Q} = {{0}T, {qR2}T}T (17)

KL =
{{{{
{{{{
{

1
2Θ

n

∑
m=1

C(2)im −
n
∑

m=1
C(1)im

EAR
4Θ2

n

∑
m=1

C(2)im
EI

16RΘ4

n
∑

m=1
C(4)im −

EAR
2Θ

n
∑

m=1
C(1)im

}}}}
}}}}
}

(18)

KNL =

{{{{{{{
{{{{{{{
{

0 1
4Θ2

n
∑

m=1
C(1)im ̃vm

n
∑

m=1
C(2)im

EAR
32Θ5

n

∑
m=1

C(1)im

n

∑
m=1

C(2)im ̃vm

EAR
8Θ3

n

∑
m=1

C(1)im ̃vm

n

∑
m=1

C(2)im −
EAR
16Θ4

n

∑
m=1

C(2)im ̃vm

+ EAR
128Θ6

n

∑
m=1

C(1)im ̃vm

n

∑
m=1

C(1)im ̃vm

n

∑
m=1

C(2)im

}}}}}}}
}}}}}}}
}

(19)

 where KL is linear stiffness matrix, KNL is nonlinear stiffness matrix, 
{Q} and {d} are the displacement and load vectors.

The radial and axial elastic supports for circular arches can 
be written as

EA[w̃1 − ̃v1 +
1

8Θ2

n

∑
m=1

C(1)1m ̃vm

n

∑
m=1

C(1)1m ̃vm]− kw1
w̃1R = 0 (20)

EA[w̃n − ̃vn +
1

8Θ2

n

∑
m=1

C(1)nm ̃vm

n

∑
m=1

C(1)nm ̃vm]+ kwn
w̃nR = 0 (21)

n

∑
m=1

C(2)1m ̃vm =
1

2Θ
EA[w̃1 − ̃v1 +

1
8Θ2

n

∑
m=1

C(1)1m ̃vm

n

∑
m=1

C(1)1m ̃vm]

×
n

∑
m=1

C(1)1m ̃vm −
EI

8R2Θ3

n

∑
m=1

C(3)1m ̃vm + kv1
̃v1R = 0 (22)

n

∑
m=1

C(2)nm ̃vm =
1

2Θ
EA[w̃n − ̃vn +

1
8Θ2

n

∑
m=1

C(1)nm ̃vm

n

∑
m=1

C(1)nm ̃vm]

×
n

∑
m=1

C(1)1m ̃vm −
EI

8R2Θ3

n

∑
m=1

C(3)nm ̃vm − kvn
̃vnR = 0 (23)

Since the nonlinear equations are hard to solve, an iterative 
method is employed to gradually approach the true solution. 
Ignoring the nonlinear stiffness matrix, Equation 16 can be further 
simplified as

{KL}{d} = −{Q} (24)

Keeping Equations 17, 18, 20–24 in mind and performing
{d}l⇒ {KL}

−1{Q} = {{w̃il}
T, { ̃vil}

T}T i = 1,2,…n (25)

linear solution for the nodal deformation can be determined.
Substituting {d}l as an initial value into Equation 25 and solving 

Equations 16–19, the first-teration solution for the nonlinear 
displacement is obtained. Repeating iteration process until 
max  { {d}k+1 − {d}k}} < 10−4, the nonlinear nodal displacement 
vector {dk} under {Qk} can be derived. Traversing the load density 
q ∈ [0,1.5ql

cr] subsequently, the complete limit point buckling path 
can be traced. 

3 Bifurcation buckling analysis

Since the bifurcation point is in a primary equilibrium path 
{w̃, ̃v} as well as in a bifurcation path {w̃+ w̃b, ̃v+ ̃vb} with constant 
cross-sectional inner forces {N,M} and external load {q}, the axial 
and radial governing equations for bifurcation can be stated as [20]

N′b = 0⇒ w̃″b − ̃v
′
b + ̃v
′
b ̃v
″
b = 0 (26)

EI ̃v(iv)b +NbR2 ̃v″b = 0 (27)

where subscript ( )b = δ( ).
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FIGURE 2
In-plane buckling behaviors of circular arches: (a) limit point buckling path, (b) bifurcation buckling path.

Writing Equations 26, 27 into a differential quadrature form has
{Kb}{db} = {0} (28)

in which
{db} = {{w̃bi

}T, { ̃vbi
}T}

T
(29)

Kb =
{{{{
{{{{
{

1
4Θ2

n

∑
m=1

C(2)im
1

4Θ3

n
∑

m=1
C(1)im

n
∑

m=1
C(2)im ̃vbm
− 1

2Θ
n
∑

m=1
C(1)im

0 EI
16Θ4

n
∑

m=1
C(4)im +

NbR2

4Θ2

n
∑

m=1
C(2)im

}}}}
}}}}
}

(30)

Substituting nonlinear nodal displacement vector {dk} and axial 
force Nk into Equations 28–30 and checking whether R(Kb) < 2n is 
satisfied, the corresponding bifurcation path can be followed.

Figure 2 illustrates the typical limit point path and bifurcation 
path of circular arches, according to Equations 16, 28. The horizontal 
axis takes the dimensionless radial displacement at crown, and 
vertical axis takes the dimensionless critical buckling load. Where 
NTB = π2EI/(S/2)2 represents the lowest load for limit point 
buckling, proposed by Pi and Bradford [1, 2]. λ = ΘS/2rx denotes the 
modified slenderness ratio, the radius of gyration rx = √EI/EA, and 
αv = 4EI/kS3 (αw = EA/kS3) is the dimensionless flexible coefficient 
of the radial (axial) elastic supports. As observed, the buckling 
path exhibits highly nonlinear characteristics during the whole 
deformation processes. The bifurcation point may occur either 
before or after the upper limit point on the primary equilibrium 
path, depending on the value of the modified slenderness ratio.

4 Convergence and validation

To examine the convergence of HDQ algorithm in handling 
nonlinear problems, Table 1 lists the variations of critical buckling 
load of circular arches including limit point buckling as well as 
the bifurcation buckling with the increasing grid point numbers. 
It is assumed the arch has an included angle of 2Θ = 90, common 
slenderness ratio in practical engineering S/rx = 100 or 150. As 

observed, the critical buckling load rapidly approaches stable as 
the grid point number gradually grows. When the nodal grid 
points number is greater than 15, any further growth of grid 
points has no significant impact on the calculation results. Thus 
n = 15 is used in subsequent analysis to ensure ideal results can be
determined.

To further validate the accuracy of the presented solutions, 
finite element analysis is carried out by using commercial software 
Ansys. In the analysis, the 188-beam element is utilized to 
model the arch axis, and a total of 220 elements were meshed. 
The element shape is checked in advance. Control nodes that 
are fixed along and perpendicular to the axis are tied to 
the arch feet node with Combine14 element to simulate the 
linear elastic supports. Riks algorithm is implemented with 
proper displacement increment to follow the nonlinear buckling 
path. Three percent of the anti-symmetric buckling displacement 
which is determined by eigenvalue analysis is introduced to the 
nonlinear analysis, tracing the bifurcation path. The convergence 
of analysis is strictly controlled. The critical buckling load, 
together with the corresponding buckling evolution process are
recorded.

Figure 3 illustrates the comparisons of HDQ and FE results for 
the dimensionless in-plane critical buckling load qR/NTB against 
included angle 2Θ ∈ [0,90] in Figure 3a, and in Figure 3b for the 
dimensionless in-plane critical buckling load against the modified 
slenderness ratio λ ∈ [0,40]. In these figures, the dash line and chain 
line represent the upper limit point buckling load and bifurcation 
buckling load, respectively. FE predictions are marked in hollow 
circles with red, blue, and orange colors for different slenderness 
ratios S/rx = {100, 150, 200}. As observed, the HDQ solutions are in 
good agreement with FE predictions for shallow arches with 2Θ <
60, but it slightly overestimates the critical buckling load for deep 
arches, with a maximum difference of 3.75%. Hence it can concluded 
that the nonlinear buckling behavior of circular arches with linear 
elastic supports can be precisely predicted by the presented HDQ-
based solution strategy.
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TABLE 1  Convergence of HDQ algorithm for solving critical buckling load.

2Θ S/rx Grid point number Critical buckling load (×105 N/m)

Upper limit point Upper bifurcation buckling

60

100

5 7.320 5.571

10 5.336 4.761

15 4.238 4.010

20 4.237 4.010

150

5 4.116 3.215

10 2.367 1.730

15 1.531 1.195

20 1.530 1.194

αv0
= 1/10π2,αvn

= 1/12π2,αw1
= αwn
= 1/π2.

FIGURE 3
Comparisons with FE results for (a) Buckling load against central angle, (b) Buckling load against modified slenderness ratio.

5 Conclusion

This paper investigates the nonlinear in-plane buckling of 
shallow steel arches with linear elastic supports. A HDQ-based 
solution strategy is proposed to follow the complete buckling path. 
Convergence analysis and FE comparison results confirmed that 
the presented method has good attributes of low computational 
cost and high accuracy in handling strong nonlinear problems. 
The buckling behaviors of arches is clarified. It is found that, 
under uniformly distributed radial load, the circular arch having 
linear elastic supports could buckle either in a limit point 
buckling mode or a bifurcation mode, depending on the modified 
slenderness ratio. The location of bifurcation point on the primary 
equilibrium path may occur before or after the upper limit 

point. Since the shear deformation effect is not considered in 
the analysis, the current calculation method may overestimate the 
critical buckling load of circular arches with small slendnerness 
ratio and large included angle. Future endeavor will be made 
on the buckling behaviors analysis by employing a new strain 
form that considers shear deformation to improve the calculation
accuracy.
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