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This paper investigates the in-plane nonlinear buckling of shallow steel arches
with linear elastic supports. Differential equations of equilibrium are built
considering a virtual work principle. To balance computational accuracy,
efficiency, and cost, a harmonic differential quadrature method (HDQ)-based
solution strategy combined with an iterative process is utilized to follow the
complete buckling path. The corresponding critical buckling load is obtained.
The convergence of HDQ algorithm is then examined, and the accuracy of
presented solutions is validated by comparing the FE predictions. It was found
that the nonlinear behavior of circular arches with linear elastic supports can
be precisely predicted by the presented HDQ-based solution strategy. The arch
could buckle either in a limit point mode or a bifurcation mode, depending on
the modified slenderness ratio.

limit point buckling, bifurcation buckling, HDQ algorithm, equilibrium path, shallow
arch

1 Introduction

Arches are commonly used in civil, mechanical, and aerospace engineering [1]. It
can convert external force into inner axial force and bending moment. Due to its unique
bearing characteristics, arches may collapse abruptly within elastic range, leading to
structural failure [2]. This complex mechanical behavior has attracted widespread attention
from scholars both domestically and internationally.

Considering that ideal fixed and hinged boundaries do not exist in practical engineering,
the actual boundary is usually approximated by linear springs, torsional springs, elastic
foundations, etc. In accordance with the principle of stiffness equivalence. Pi and Bradford
[3, 4] investigated the nonlinear in-plane buckling of circular arches with linear elastic
supports and rotational end restraints. Closed form solutions for the critical buckling
load were derived by using an energy principle. Internal connections between restraint
stiffness and buckling shape were revealed. Han etal. [5] proposed a 9-node assumed
natural strain shell element dealing with the geometrical nonlinear buckling of deep
circular arches with arbitrary elastic edge supports. The primary path at any point on
the axis during buckling were recorded. The in-plane snap-through buckling of sinusoidal
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arches with rotational supports that stiffen under compressed was
analyzed by plaut [6]. He claimed that the critical buckling load
of arch may be increased significantly due to support stiffening,
especially if the initial flexural resistance is small. Cai and his-corkers
[7, 8] numerically explored the snap-through behavior of elastic
shallow inextensible circular arches with variable elastic horizontal
supports under unilateral displacement control. They found the
critical stiffness increases with the decrease of arch length, and
the decrease of horizontal stiffness can expand the snap region.
Zhou etal. [9] confirmed that shallow arches with symmetric
elastic supports can bifurcate into secondary paths with high-order
symmetric modes under the action of uniformly distributed vertical
load, from a theoretical perspective. Han etal. [10, 11] carried
out elastic-plastic in-plane buckling experiments of steel circular
arch with horizontal elastic supports and torsional constraints. The
complete equilibrium path, as well as the corresponding failure
mode were captured. Design method for the ultimate bearing
capacity of arches has been proposed for engineering applications.
Hu etal. [12, 13] explored the nonlinear elastic stability of pin-
ended parabolic multi-span continuous arches. In their analysis, the
horizontal connections between loaded and unloaded elements were
simulated by linear springs. Despite extensive research have been
conducted and innovative results have been found, there are still
many inconveniences in determining the critical buckling load of
arches under complex boundary conditions in open literature, such
as complex formulas and high computational costs.

To fulfill the research gap, this paper proposes a HDQ-based
solution strategy dealing with the in-plane nonlinear buckling of
shallow steel arches with linear elastic support. The differential
equations of equilibrium were built initially utilizing a virtual work
principle. By introducing the differential quadrature element (HDQ)
algorithm, the governing equations were discretized. An iterative
process was then performed to follow the limit point buckling path.
After that, the displacement perturbation was conducted to establish
the governing equations for bifurcation, the corresponding path was
traced. Finally, the convergence of HDQ algorithm and the accuracy
of the presented solutions were examined.

2 Limit point buckling analysis

Consider a steel arch having a bi-symmetric I-shape
cross-section subjected to uniformly distributed radial loads,
as shown in Figure 1. The Young’s modulus of the steel E=2x
10" N/m?, Poisson’s ratio y = 0.3. The radius and included angle
of the arch are denoted as R and 20. The overall height (width) of
the cross-section h =400mm (b = 180mm), and the flange (web)
thickness f; = 13.5mm (t,, = 8.6 mm). The x and y axes are arranged
at the principal centroid axes of the cross-section.

It is assumed the circular arch satisfies the classic Euler Bernoulli
deformation condition. In the framework of virtual work principle,
the variation of the total potential energy can be expressed as [14].

20
ST = J {NR@[W v+ %(v')z] - MOV + quav}de
0

2
+3 (k, 707+ k,, wow,)R? = 0 (1)
i=1
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where 7 =v/R and w = w/R are the dimensionless radial and axial
displacements, R is the radius of the arch, g is the load density,
0" =d()/d6, )" =d*()/d6* and 0 is the angular coordinate, k,
and k,, are the axial and radial stiffness coeflicients of the elastic
supports, and number 1 (2) at the upper (lower) limit of cumulative
symbol represents the left (right) arch foot, N and M are the axial
compressive forces and bending moment, which are defined by

N:—j adA:—EA[w’—ml(v’)2 )
A 2
M:J ayda = -ELyr 3)
" R

where A and I are the cross-sectional area and second moment of

area of cross-section about the major principal axis, o denotes the

cross-section normal stress and E is the Young’s modulus.
Integrating Equation 1 by parts leads to [15].

Ow: N' =0= N = const (4)
8v: M" + NRv" + NR = gR? (5)
Substituting Equations 2, 3 into Equations 4, 5 has
W' =7+ 77 =0 (6)
%ﬁ“” +EAR(W" — 7' +7'9") + EAR| W' — ¥+ %(v’)2 7" = —qR?
)

To obtain the real root of Equations 6, 7 a harmonic differential
quadrature algorithm is adopted to solve the governing equation in
spatial domain. The &th-order derivation of the function w(¥) at any
discrete point can be expressed as [16]

IR I " < )
mm=2mmmwAam&;mm%:z%{mwa<w
j=1 j=1
where m is the number of sampling points, /;(§) is the harmonic test
function, and is defined by [17]

h@ =[] sin[7(€-&)/2)/ [] sin[n(&-&)/2] ()
k=0,k#i k=0,k#i

The first and second derivatives of weighting coefficients for i # j
can be written using the following formula [18]:

(_1) _ ”P(fi)/z
g -5)7]
”(fi - fk)

L,2... (10)

i,j= n

(2) _ A1) (1)
Cij —Cij {ZCU —ﬂcot[

” ij=12..n (11

where

P(&) = [ sin[n(-£)/2) ij=12...n

=1

(12)

The weighting coeflicients of the first-order and second-order
derivatives for i = j can be written as

n
==y cl?j” r=1lor2with i=1,2...n
oL

(13)
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FIGURE 1
Geometry model of shallow steel arches under uniformly distributed radial load.
The weighting coefficient of the third- and fourth-order .
o , (1 ) 2 [
derivatives can be computed easily from C;;” and C;;" as Z @5 — %EA _9 + = Z C(l) v, Z C(llrivm]
m=1
n n
G) _ 1) ~2) ) _ @ 2 M 5 G5
c'=yclc) and =3 clc (14) lec ooV = 8R2®3 Z Cin¥m+k, HR=0 (22)
k=1 k=1 m=
n -
- 1 - _ _
The Chebyshev-Gauss-Lobatto polynomial with adjacent-6 Z Cﬁvm = %EA =V 30 Z chn mz Chn? m:|
points is used to generate the nodal grid point [19]: m=1 y
(1)~ (3) o -
, x z Cii V= 8R2®3 z ComVp—k, 7,R=0 (23)
51 = 0:{2 =10" >£i
_ l{l —cos {(i— l)ﬂ” £ =1- 10,4)51( _1 (5) Since. the nonlinear equations are hard to solve, an itera.tive
2 N-1 |)is4 i method is employed to gradually approach the true solution.

Ignoring the nonlinear stiffness matrix, Equation 16 can be further

Considering Equations 8-15 and rewriting Equations 6, 7 in a simplified as

differential quadrature form has (K Hd} = -(Q) (24)
{K+ Ky Hd} =-{Q} (16) Keeping Equations 17, 18, 20-24 in mind and performing
_ N T
{dy = K Q= {w) ] =12 (25)
with
linear solution for the nodal deformation can be determined.
{d} = {{Wi}T> {17i}T}Tand{Q} = {{O}T, {qRZ}T}T (17) Substituting {d}; as an initial value into Equation 25 and solving
Equations 16-19, the first-teration solution for the nonlinear
1 Z": @ i W displacement is obtained. Repeating iteration process until
20 4 i max {{d};,, —{d};}} <107, the nonlinear nodal displacement
K= EAR < o EAR ) (8)  Jector {d,} under {Q;} can be derived. Traversing the load density
467 z Cim 16R®4 Z im Z G qe [O, I.Sqir] subsequently, the complete limit point buckling path
W » can be traced.
0 @2 Z Cin? Z Ci
EAR (1). @) _ w (z)-
Kxi=1 Ear Z C“) Z Cim ’”ZIC' 160" 4 z Cin 7
26° o’ liggﬁz fj;-mz 5,3 @ 3 Bifurcation buckling analysis
m=1

(19)
Since the bifurcation point is in a primary equilibrium path

where K| islinear stiffness matrix, K; is nonlinear stiffness matrix, {17, as well as in a bifurcation path {#+ i, 7+ 7,} with constant

{Q} and {d} are the displacement and load vectors. cross-sectional inner forces {N, M} and external load {g}, the axial

The radial and axial elastic supports for circular arches can 4 ragiq) governing equations for bifurcation can be stated as [20]

be written as

) ) = 0= W — 7+ 77 =0 (26)
EA[W1 v Z Ci¥ z clmyn] ~k, mR=0  (20)
N N EY + N,R! =0 (27)
EA[ -7, Zcm,;mz cm;n] Ww,R=0 (21
where subscript (), = 6().
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In-plane buckling behaviors of circular arches: (a) limit point buckling path, (b) bifurcation buckling path.

Writing Equations 26, 27 into a differential quadrature form has

{K,Hd,} = {0} (28)
in which
_ T (-~ 1M T
{dh}:{{wbl} A7} } (29)
n
1 @ 1 ¢ e 2 1 < )
— Y Lycy %5 - Ly
B 4@2”;1 im 4®3m2=:1 1mm2=:1 im"b,, z@m; im
K, = . N (30)
EI ), Ny @)
0 — Y C +—=YC
1667 2, Cm * 307 &, Cm

Substituting nonlinear nodal displacement vector {d, } and axial
force Ny into Equations 28-30 and checking whether R(K},) < 27 is
satisfied, the corresponding bifurcation path can be followed.

Figure 2 illustrates the typical limit point path and bifurcation
path of circular arches, according to Equations 16, 28. The horizontal
axis takes the dimensionless radial displacement at crown, and
vertical axis takes the dimensionless critical buckling load. Where
Ny = PEI/(S/2)* represents the lowest load for limit point
buckling, proposed by Piand Bradford [1, 2]. A = ®§/2r, denotes the
modified slenderness ratio, the radius of gyration r, = \/EI/EA, and
o, =4EI/ kS? (o, =EA/ kS?) is the dimensionless flexible coefficient
of the radial (axial) elastic supports. As observed, the buckling
path exhibits highly nonlinear characteristics during the whole
deformation processes. The bifurcation point may occur either
before or after the upper limit point on the primary equilibrium
path, depending on the value of the modified slenderness ratio.

4 Convergence and validation

To examine the convergence of HDQ algorithm in handling
nonlinear problems, Table 1 lists the variations of critical buckling
load of circular arches including limit point buckling as well as
the bifurcation buckling with the increasing grid point numbers.
It is assumed the arch has an included angle of 20 = 90, common
slenderness ratio in practical engineering S/r, = 100 or 150. As
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observed, the critical buckling load rapidly approaches stable as
the grid point number gradually grows. When the nodal grid
points number is greater than 15, any further growth of grid
points has no significant impact on the calculation results. Thus
n =15 is used in subsequent analysis to ensure ideal results can be
determined.

To further validate the accuracy of the presented solutions,
finite element analysis is carried out by using commercial software
Ansys. In the analysis, the 188-beam element is utilized to
model the arch axis, and a total of 220 elements were meshed.
The element shape is checked in advance. Control nodes that
are fixed along and perpendicular to the axis are tied to
the arch feet node with Combinel4 element to simulate the
linear elastic supports. Riks algorithm is implemented with
proper displacement increment to follow the nonlinear buckling
path. Three percent of the anti-symmetric buckling displacement
which is determined by eigenvalue analysis is introduced to the
nonlinear analysis, tracing the bifurcation path. The convergence
of analysis is strictly controlled. The critical buckling load,
together with the corresponding buckling evolution process are
recorded.

Figure 3 illustrates the comparisons of HDQ and FE results for
the dimensionless in-plane critical buckling load gR/Np against
included angle 2@ € [0,90] in Figure 3a, and in Figure 3b for the
dimensionless in-plane critical buckling load against the modified
slenderness ratio A € [0,40]. In these figures, the dash line and chain
line represent the upper limit point buckling load and bifurcation
buckling load, respectively. FE predictions are marked in hollow
circles with red, blue, and orange colors for different slenderness
ratios S/, = {100, 150, 200}. As observed, the HDQ solutions are in
good agreement with FE predictions for shallow arches with 20 <
60, but it slightly overestimates the critical buckling load for deep
arches, with a maximum difference of 3.75%. Hence it can concluded
that the nonlinear buckling behavior of circular arches with linear
elastic supports can be precisely predicted by the presented HDQ-
based solution strategy.
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TABLE 1 Convergence of HDQ algorithm for solving critical buckling load.

Grid point number

Upper limit point

10.3389/fphy.2025.1717268

Critical buckling load (x10°> N/m)

Upper bifurcation buckling

5 7.320 5.571
10 5.336 4.761
100
15 4.238 4.010
20 4.237 4.010
60
5 4.116 3.215
10 2.367 1.730
150
15 1.531 1.195
20 1.530 1.194
«, =1/107%,a, =1/127%,a, =a, =1/
a 12 T T T T b 12 T T
o =1/107% « . =1/127°% & =a . =l/x° a =1/107%, o . =1127% o« =a . =liz°
v0 > 20 > Tw0 w20 v0 ’ 20 w0 w20
—-_———oFE=
- ;"' o -oﬁ’ -5 r Q) o o o
0.8 v 27 5 ; 08 Ff g 1
el -
;2 A
2 rH ) &
~ </ Rd &~ o
LB o | 0.4 F yd ]
5 0.4 e :
S L > s
@ @ Finite element results for S/~ =100
o Finite element results for S/rx=100 © x
0 o Finite element results for S/rx=150 ol 0 anfte element results for S/rx=150 )
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FIGURE 3
Comparisons with FE results for (a) Buckling load against central angle, (b) Buckling load against modified slenderness ratio.

5 Conclusion

This paper investigates the nonlinear in-plane buckling of
shallow steel arches with linear elastic supports. A HDQ-based
solution strategy is proposed to follow the complete buckling path.
Convergence analysis and FE comparison results confirmed that
the presented method has good attributes of low computational
cost and high accuracy in handling strong nonlinear problems.
The buckling behaviors of arches is clarified. It is found that,
under uniformly distributed radial load, the circular arch having
linear elastic supports could buckle either in a limit point
buckling mode or a bifurcation mode, depending on the modified
slenderness ratio. The location of bifurcation point on the primary
equilibrium path may occur before or after the upper limit
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point. Since the shear deformation effect is not considered in
the analysis, the current calculation method may overestimate the
critical buckling load of circular arches with small slendnerness
ratio and large included angle. Future endeavor will be made
on the buckling behaviors analysis by employing a new strain
form that considers shear deformation to improve the calculation
accuracy.
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