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This paper investigates the in-plane nonlinear buckling of shallow steel arches with linear elastic supports. Differential equations of equilibrium are built considering a virtual work principle. To balance computational accuracy, efficiency, and cost, a harmonic differential quadrature method (HDQ)-based solution strategy combined with an iterative process is utilized to follow the complete buckling path. The corresponding critical buckling load is obtained. The convergence of HDQ algorithm is then examined, and the accuracy of presented solutions is validated by comparing the FE predictions. It was found that the nonlinear behavior of circular arches with linear elastic supports can be precisely predicted by the presented HDQ-based solution strategy. The arch could buckle either in a limit point mode or a bifurcation mode, depending on the modified slenderness ratio.
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1 INTRODUCTION
Arches are commonly used in civil, mechanical, and aerospace engineering [1]. It can convert external force into inner axial force and bending moment. Due to its unique bearing characteristics, arches may collapse abruptly within elastic range, leading to structural failure [2]. This complex mechanical behavior has attracted widespread attention from scholars both domestically and internationally.
Considering that ideal fixed and hinged boundaries do not exist in practical engineering, the actual boundary is usually approximated by linear springs, torsional springs, elastic foundations, etc. In accordance with the principle of stiffness equivalence. Pi and Bradford [3, 4] investigated the nonlinear in-plane buckling of circular arches with linear elastic supports and rotational end restraints. Closed form solutions for the critical buckling load were derived by using an energy principle. Internal connections between restraint stiffness and buckling shape were revealed. Han et al. [5] proposed a 9-node assumed natural strain shell element dealing with the geometrical nonlinear buckling of deep circular arches with arbitrary elastic edge supports. The primary path at any point on the axis during buckling were recorded. The in-plane snap-through buckling of sinusoidal arches with rotational supports that stiffen under compressed was analyzed by plaut [6]. He claimed that the critical buckling load of arch may be increased significantly due to support stiffening, especially if the initial flexural resistance is small. Cai and his-corkers [7, 8] numerically explored the snap-through behavior of elastic shallow inextensible circular arches with variable elastic horizontal supports under unilateral displacement control. They found the critical stiffness increases with the decrease of arch length, and the decrease of horizontal stiffness can expand the snap region. Zhou et al. [9] confirmed that shallow arches with symmetric elastic supports can bifurcate into secondary paths with high-order symmetric modes under the action of uniformly distributed vertical load, from a theoretical perspective. Han et al. [10, 11] carried out elastic-plastic in-plane buckling experiments of steel circular arch with horizontal elastic supports and torsional constraints. The complete equilibrium path, as well as the corresponding failure mode were captured. Design method for the ultimate bearing capacity of arches has been proposed for engineering applications. Hu et al. [12, 13] explored the nonlinear elastic stability of pin-ended parabolic multi-span continuous arches. In their analysis, the horizontal connections between loaded and unloaded elements were simulated by linear springs. Despite extensive research have been conducted and innovative results have been found, there are still many inconveniences in determining the critical buckling load of arches under complex boundary conditions in open literature, such as complex formulas and high computational costs.
To fulfill the research gap, this paper proposes a HDQ-based solution strategy dealing with the in-plane nonlinear buckling of shallow steel arches with linear elastic support. The differential equations of equilibrium were built initially utilizing a virtual work principle. By introducing the differential quadrature element (HDQ) algorithm, the governing equations were discretized. An iterative process was then performed to follow the limit point buckling path. After that, the displacement perturbation was conducted to establish the governing equations for bifurcation, the corresponding path was traced. Finally, the convergence of HDQ algorithm and the accuracy of the presented solutions were examined.
2 LIMIT POINT BUCKLING ANALYSIS
Consider a steel arch having a bi-symmetric I-shape cross-section subjected to uniformly distributed radial loads, as shown in Figure 1. The Young’s modulus of the steel E=2×1011 N/m2, Poisson’s ratio μ=0.3. The radius and included angle of the arch are denoted as R and 2Θ. The overall height (width) of the cross-section h=400 mm (b=180 mm), and the flange (web) thickness tf=13.5 mm (tw=8.6 mm). The x and y axes are arranged at the principal centroid axes of the cross-section.
[image: Diagram illustrating a curved beam with various labeled elements and annotations. The beam is subjected to a uniformly distributed load \( q \) over a sector angle \( 2\Theta \). The beam’s geometry includes radii \( r \), central angle \( \theta \), and length \( L \). Additional labels include vertical deflection \( w \), shear force \( V \), and distance \( S \). A cross-sectional view shows dimensions \( b \), \( t_f \), \( t_w \), and \( h \), with axes labeled \( x \) and \( y \) and point \( O \).]FIGURE 1 | Geometry model of shallow steel arches under uniformly distributed radial load.It is assumed the circular arch satisfies the classic Euler Bernoulli deformation condition. In the framework of virtual work principle, the variation of the total potential energy can be expressed as [14].
δΠ=∫02ΘNRδw∼′−v∼+12v∼′2+Mδv∼″+qR2δv∼dθ+∑i=12kviv∼δv∼i+kwiw∼δw∼iR2=0(1)
where v∼=v/R and w∼=w/R are the dimensionless radial and axial displacements, R is the radius of the arch, q is the load density,  ′=d /dθ,  ″=d2 /dθ2, and θ is the angular coordinate, kv and kw are the axial and radial stiffness coefficients of the elastic supports, and number 1 (2) at the upper (lower) limit of cumulative symbol represents the left (right) arch foot, N and M are the axial compressive forces and bending moment, which are defined by
N=−∫AσdA=−EAw∼′−v∼+12v∼′2(2)
M=∫AσydA=−EIRv∼″(3)
where A and I are the cross-sectional area and second moment of area of cross-section about the major principal axis, σ denotes the cross-section normal stress and E is the Young’s modulus.
Integrating Equation 1 by parts leads to [15].
δw∼: N′=0⇒ N=const(4)
δv∼: M″+NRv∼″+NR=qR2(5)
Substituting Equations 2, 3 into Equations 4, 5 has
w∼″−v∼′+v∼′v∼″=0(6)
EIRv∼iv+EARw∼″−v∼′+v∼′v∼″+EARw∼′−v∼+12v∼′2v∼″=−qR2(7)
To obtain the real root of Equations 6, 7 a harmonic differential quadrature algorithm is adopted to solve the governing equation in spatial domain. The ξth-order derivation of the function w∼v∼ at any discrete point can be expressed as [16]
v∼,w∼=∑j=1nhjξv∼m,w∼m and ∂m∂ξmv∼,w∼ξ=ξj=∑j=1nCijmv∼m,w∼m(8)
where m is the number of sampling points, hiξ is the harmonic test function, and is defined by [17]
hiξ=∏k=0,k≠insin⁡πξ−ξk/2/∏k=0,k≠insin⁡πξi−ξk/2(9)
The first and second derivatives of weighting coefficients for i≠j can be written using the following formula [18]:
Cij1=πPξi/2Pξjsinπξi−ξj/2 i,j=1,2…n(10)
Cij2=Cij12Cij1−π⁡cotπξi−ξk2 i,j=1,2…n(11)
where
Pξi=∏j=1,j≠insin⁡πξi−ξk/2 i,j=1,2…n(12)
The weighting coefficients of the first-order and second-order derivatives for i=j can be written as
Ciir=−∑j=1,j≠inCijr r=1 or 2 with i=1,2…n(13)
The weighting coefficient of the third- and fourth-order derivatives can be computed easily from Cij1 and Cij2 as
Cij3=∑k=1nCij1Cij2 and Cij4=∑k=1nCij2Cij2(14)
The Chebyshev–Gauss–Lobatto polynomial with adjacent-δ points is used to generate the nodal grid point [19]:
ξ1=0,ξ2=10−4,ξi=121−cos⁡i−1πN−1i=3,4,…k−2,ξk−1=1−10−4,ξk=1(15)
Considering Equations 8–15 and rewriting Equations 6, 7 in a differential quadrature form has
KL+KNLd=−Q(16)
with
d=w∼iT, v∼iTT and Q=0T,qR2TT(17)
KL=12Θ∑m=1nCim2−∑m=1nCim1EAR4Θ2∑m=1nCim2EI16RΘ4∑m=1nCim4−EAR2Θ∑m=1nCim1(18)
KNL=014Θ2∑m=1nCim1v∼m∑m=1nCim2EAR32Θ5∑m=1nCim1∑m=1nCim2v∼mEAR8Θ3∑m=1nCim1v∼m∑m=1nCim2−EAR16Θ4∑m=1nCim2v∼m+EAR128Θ6∑m=1nCim1v∼m∑m=1nCim1v∼m∑m=1nCim2(19)
where KL is linear stiffness matrix, KNL is nonlinear stiffness matrix, Q and d are the displacement and load vectors.
The radial and axial elastic supports for circular arches can be written as
EAw∼1−v∼1+18Θ2∑m=1nC1m1v∼m∑m=1nC1m1v∼m−kw1w∼1R=0(20)
EAw∼n−v∼n+18Θ2∑m=1nCnm1v∼m∑m=1nCnm1v∼m+kwnw∼nR=0(21)
∑m=1nC1m2v∼m=12ΘEAw∼1−v∼1+18Θ2∑m=1nC1m1v∼m∑m=1nC1m1v∼m×∑m=1nC1m1v∼m−EI8R2Θ3∑m=1nC1m3v∼m+kv1v∼1R=0(22)
∑m=1nCnm2v∼m=12ΘEAw∼n−v∼n+18Θ2∑m=1nCnm1v∼m∑m=1nCnm1v∼m×∑m=1nC1m1v∼m−EI8R2Θ3∑m=1nCnm3v∼m−kvnv∼nR=0(23)
Since the nonlinear equations are hard to solve, an iterative method is employed to gradually approach the true solution. Ignoring the nonlinear stiffness matrix, Equation 16 can be further simplified as
KLd=−Q(24)
Keeping Equations 17, 18, 20–24 in mind and performing
dl⇒KL−1Q=w∼ilT,v∼ilTT i=1,2,…n(25)
linear solution for the nodal deformation can be determined.
Substituting dl as an initial value into Equation 25 and solving Equations 16–19, the first-teration solution for the nonlinear displacement is obtained. Repeating iteration process until maxdk+1−dk<10−4, the nonlinear nodal displacement vector dk under Qk can be derived. Traversing the load density q∈0,1.5qcrl subsequently, the complete limit point buckling path can be traced.
3 BIFURCATION BUCKLING ANALYSIS
Since the bifurcation point is in a primary equilibrium path w∼,v∼ as well as in a bifurcation path w∼+w∼b,v∼+v∼b with constant cross-sectional inner forces N,M and external load q, the axial and radial governing equations for bifurcation can be stated as [20]
Nb′=0⇒w∼b″−v∼b′+v∼b′v∼b″=0(26)
EIv∼biv+NbR2v∼b″=0(27)
where subscript  b=δ .
Writing Equations 26, 27 into a differential quadrature form has
Kbdb=0(28)
in which
db=w∼biT,v∼biTT(29)
Kb=14Θ2∑m=1nCim214Θ3∑m=1nCim1∑m=1nCim2v∼bm−12Θ∑m=1nCim10EI16Θ4∑m=1nCim4+NbR24Θ2∑m=1nCim2(30)
Substituting nonlinear nodal displacement vector dk and axial force Nk into Equations 28–30 and checking whether RKb<2n is satisfied, the corresponding bifurcation path can be followed.
Figure 2 illustrates the typical limit point path and bifurcation path of circular arches, according to Equations 16, 28. The horizontal axis takes the dimensionless radial displacement at crown, and vertical axis takes the dimensionless critical buckling load. Where NTB=π2EI/S/22 represents the lowest load for limit point buckling, proposed by Pi and Bradford [1, 2]. λ=ΘS/2rx denotes the modified slenderness ratio, the radius of gyration rx=EI/EA, and αv=4EI/kS3 (αw=EA/kS3) is the dimensionless flexible coefficient of the radial (axial) elastic supports. As observed, the buckling path exhibits highly nonlinear characteristics during the whole deformation processes. The bifurcation point may occur either before or after the upper limit point on the primary equilibrium path, depending on the value of the modified slenderness ratio.
[image: Two graphs labeled (a) and (b) depict equilibrium paths. Graph (a) shows a primary equilibrium path for λ equals eight with upper and lower limit points marked. Graph (b) includes primary and bifurcation equilibrium paths for λ equals fourteen and twenty, with limit points indicated. Both graphs have axes labeled \(qR/N_{TB}\) and \(v_c/f\), featuring mathematical parameters at the top.]FIGURE 2 | In-plane buckling behaviors of circular arches: (a) limit point buckling path, (b) bifurcation buckling path.4 CONVERGENCE AND VALIDATION
To examine the convergence of HDQ algorithm in handling nonlinear problems, Table 1 lists the variations of critical buckling load of circular arches including limit point buckling as well as the bifurcation buckling with the increasing grid point numbers. It is assumed the arch has an included angle of 2Θ=90, common slenderness ratio in practical engineering S/rx = 100 or 150. As observed, the critical buckling load rapidly approaches stable as the grid point number gradually grows. When the nodal grid points number is greater than 15, any further growth of grid points has no significant impact on the calculation results. Thus n=15 is used in subsequent analysis to ensure ideal results can be determined.
TABLE 1 | Convergence of HDQ algorithm for solving critical buckling load.	2Θ	S/rx	Grid point number	Critical buckling load (×105 N/m)
	Upper limit point	Upper bifurcation buckling
	60	100	5	7.320	5.571
	10	5.336	4.761
	15	4.238	4.010
	20	4.237	4.010
	150	5	4.116	3.215
	10	2.367	1.730
	15	1.531	1.195
	20	1.530	1.194


αv0=1/10π2,αvn=1/12π2,αw1=αwn=1/π2.
To further validate the accuracy of the presented solutions, finite element analysis is carried out by using commercial software Ansys. In the analysis, the 188-beam element is utilized to model the arch axis, and a total of 220 elements were meshed. The element shape is checked in advance. Control nodes that are fixed along and perpendicular to the axis are tied to the arch feet node with Combine14 element to simulate the linear elastic supports. Riks algorithm is implemented with proper displacement increment to follow the nonlinear buckling path. Three percent of the anti-symmetric buckling displacement which is determined by eigenvalue analysis is introduced to the nonlinear analysis, tracing the bifurcation path. The convergence of analysis is strictly controlled. The critical buckling load, together with the corresponding buckling evolution process are recorded.
Figure 3 illustrates the comparisons of HDQ and FE results for the dimensionless in-plane critical buckling load qR/NTB against included angle 2Θ∈0,90 in Figure 3a, and in Figure 3b for the dimensionless in-plane critical buckling load against the modified slenderness ratio λ∈0,40. In these figures, the dash line and chain line represent the upper limit point buckling load and bifurcation buckling load, respectively. FE predictions are marked in hollow circles with red, blue, and orange colors for different slenderness ratios S/rx = {100, 150, 200}. As observed, the HDQ solutions are in good agreement with FE predictions for shallow arches with 2Θ<60, but it slightly overestimates the critical buckling load for deep arches, with a maximum difference of 3.75%. Hence it can concluded that the nonlinear buckling behavior of circular arches with linear elastic supports can be precisely predicted by the presented HDQ-based solution strategy.
[image: Graphs a and b display the variation of \( qR/N_{TB} \) against \( 2\Theta \) and \( \lambda_{\text{eff}} \), respectively. Both graphs compare finite element results with different \( S/r_x \) values (100, 150, 200) using red circles, blue squares, and orange crosses. The HDQ solutions for limit point buckling and bifurcation buckling are shown with dashed lines. Graph a shows an increasing trend peaking near \( 75 \) on the x-axis, while graph b shows a more linear increase.]FIGURE 3 | Comparisons with FE results for (a) Buckling load against central angle, (b) Buckling load against modified slenderness ratio.5 CONCLUSION
This paper investigates the nonlinear in-plane buckling of shallow steel arches with linear elastic supports. A HDQ-based solution strategy is proposed to follow the complete buckling path. Convergence analysis and FE comparison results confirmed that the presented method has good attributes of low computational cost and high accuracy in handling strong nonlinear problems. The buckling behaviors of arches is clarified. It is found that, under uniformly distributed radial load, the circular arch having linear elastic supports could buckle either in a limit point buckling mode or a bifurcation mode, depending on the modified slenderness ratio. The location of bifurcation point on the primary equilibrium path may occur before or after the upper limit point. Since the shear deformation effect is not considered in the analysis, the current calculation method may overestimate the critical buckling load of circular arches with small slendnerness ratio and large included angle. Future endeavor will be made on the buckling behaviors analysis by employing a new strain form that considers shear deformation to improve the calculation accuracy.
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