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Kinetic freeze-out properties
from transverse momentum
spectra of kaon, pion, and
(anti-)proton production in U+U
collisions at /sy = 193 GeV

Ying Yuan*

Mathematics and Physics Teaching and Research Section, College of Pharmacy, Guangxi University of
Chinese Medicine, Nanning, China

In the framework of the multi-source thermal model employing the Tsallis
distribution, the transverse momentum distributions of kaon, pion, and (anti-)
proton production in U + U collisions at Syy = 193 GeV with varying
centrality are investigated. The transverse momentum spectra are appropriately
characterized. The dependencies of parameters (average transverse momenta,
effective temperature, and entropy index) on event centrality are determined.
It is observed that the g parameters increase as the average number of
particles participating in the collisions rises, which implies that the nuclear
stopping degree elevates with the increase of collision centrality. The T value
remains fundamentally consistent for the same particle under different collision
parameters, suggesting that the kinetic freezing temperature of particle ejection
in this collision system is independent of the collision parameters. However, the
q value exceeded the previously determined research range, which might be
related to the deformation of the U-nucleus.

transverse momentum distributions, U+U collisions, Tsallis distribution, kinetic freeze-
out temperature, \/sNN= 193 GeV

1 Introduction

Ultra-relativistic heavy-ion collisions (URHICs) provide an unparalleled experimental
avenue to explore strongly interacting matter under extreme temperatures and
densities—conditions analogous to those prevailing microseconds after the Big Bang
[1-7]. A central objective of such studies is to unravel the quantum chromodynamics
(QCD) phase structure, particularly the transition from the deconfined quark-gluon
plasma (QGP) to the confined hadron gas (HG) [8, 9]. The production mechanisms of
hadrons and nuclei in these collisions encode critical signatures of this phase transition,
making their investigation pivotal to advancing our understanding of QCD matter. The
Relativistic Heavy Ion Collider (RHIC) is uniquely positioned for this research, as it
is designed to operate near the critical energy threshold for the hadron-to-QGP phase
transition, enabling precise probing of the boundary between these matter states [10].
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FIGURE 1
Transverse momentum spectra of 7" and 7~ are calculated at mid-rapidity (ly] < 0.1) in U + U collisions at /Syy = 193 GeV for 0-5%, 5-10%, 10 - 20%,
20 - 30%, 30 -40%, 40 -50%, 50 - 60%, 60 - 70% and 70 — 80% centrality. The theoretical calculation results based on the Tsallis distribution are
represented by lines. Experimental data taken from the STAR Collaboration [21] are represented by the symbols.

Over decades, theoretical frameworks such as the thermal
model and coalescence model have been developed to interpret
hadron production, offering complementary insights into
the evolution of collision systems [11-15]. In particular, the
study of transport phenomena is of significant importance
for comprehending numerous fundamental properties [16].
Among the most informative observables in URHICs are the
transverse momentum spectra of produced particles, which
serve as a window into the kinetic freeze-out stage-the point
at which hadrons cease strong interactions and their final
momenta are fixed [17]. This stage is characterized by key
parameters, including the kinetic freeze-out temperature (T};,)
and average collective flow velocity, which together reflect the
thermal excitation and expansion dynamics of the system [I18,
19]. Notably, the “effective temperature” often extracted directly
from p;, spectra is not a true thermodynamic temperature
but a composite measure encompassing both the system’s
excitation degree and the contribution of transverse flow [20].
Disentangling these effects to obtain Tj;,—a fundamental marker
of the system’s state at freeze-out-remains a core challenge in
the field [18].

While extensive studies have probed kinetic freeze-out
properties in symmetric, near-spherical heavy-ion systems like Au
+ Au and Pb + Pb [19], collisions involving highly deformed nuclei
such as uranium (U) introduce unique complexities that remain
underexplored. The strong deformation of U nuclei modulates the

geometric overlap of colliding systems across different centralities,
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TABLE 1 Values of T, q, and xz/dof corresponding to the curvesin U + U
collisions for 7" /7~ at \/Syy = 193 GeV for 0 - 5%, 5-10%, 10 - 20%,
20-30%, 30 -40%, 40 - 50%, 50 - 60%, 60 — 70% and 70 — 80% centrality.

Figure | Typel Type 2
0%-5% 0.075+ 1.288 + 0.010
0.042 0.100
59%-10% 0.077 + 1.280 + 0.004
0.018 0.068
10%-20% 0.079+ 1272+ 0.006
0.005 0.014
20%-30% 0.081 + 1.268 + 0.010
0.035 0.160
) L 30%-40% 0.080 + 1.258 + 0.006
Figure 1 ks
0.008 0.357
40%-50% 0.079 + 1.263 + 0.008
0.008 0.356
50%-60% 0.081 + 1.258 + 0.013
0.008 0.339
60%-70% 0.079 + 1.258 + 0.032
0.037 0.137
70%-80% 0.078 + 1.258 + 0.007
0.032 0.086
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FIGURE 2

Transverse momentum spectra of k" and k™ are calculated at mid-rapidity (Jy| < 0.1) in U + U collisions at /Syy = 193 GeV for 0 -5%, 5-10%, 10 - 20%,
20-30%, 30 -40%, 40-50%, 50 -60%, 60 -70% and 70 — 80% centrality. The theoretical calculation results based on the Tsallis distribution are
represented by lines. Experimental data taken from the STAR Collaboration [21] are represented by the symbols.

TABLE 2 Values of T, g, and y?/dof corresponding to the curves in U + U potentially altering nuclear stopping, collective flow, and ultimately
collisions for k*/k™ at /syy = 193 GeV for 0 - 5%, 5-10%, 10 - 20%, .
20-30%, 30 - 40%, 40 — 50%, 50 - 60%, 60 — 70% and 70 — 80% centrality. freeze-out dynamics [21].

This study is motivated by the need to leverage this new

Figure Typel | Type 2 T

experimental data to extract reliable kinetic freeze-out temperatures

GeV o e
( ) for U + U collisions. We employ the Tsallis distribution-renowned
0%-5% 0.098 + 1308 + 0.016 for its ability to capture non-equilibrium features of high-
0.030 0.269 energy collision systems [22-24] —within the multi-source thermal
model, a framework well-suited to describing the multi-component
5%-10% O(‘)lgfsi 1(‘)382; 0005 emission of hadrons. By simulating the p;. distributions of kaons,
' ' pions, and (anti-)protons and comparing our results with STAR’s
10%-20% 0.100+ 1292+ 0.006 experimental data [21], we aim to quantify T};, and its dependence
0.048 0.102 on collision centrality. Beyond extracting this key parameter,
our work seeks to lay the groundwork for comparing freeze-out
20%-30% | 0.102% 1.288 + 0.021 . .
0.009 0356 properties between deformed U + U and spherical Au + Au systems,
offering insights into how nuclear deformation influences the late-
‘ ~ 30%-40% 0.100 + 1.284+ 0.006 stage evolution of QCD matter.
Figure 2 k*/k
0.015 0.068
40%-50% 0.098 + 1.278 0.026
0012 o 060 2 The model and methods
50%-60% 0.100+ 1278+ 0.021 The model employed in the current study is the multi-source
0.013 0.056 thermal model [25-27]. In this model, numerous emission sources
60%_70% 0.100+ 1270+ 0.038 are formed during high - energy nucleus - nucleus collisions. Various
0.018 0.004 distributions can be utilized to characterize the emission sources
and particle spectra, including the Tsallis distribution, the standard
70%-80% 0.102+ 1.260 + 0.023 (Boltzmann, Fermi - Dirac, and Bose - Einstein) distributions, the
0.013 0.076 . R A
Tsallis + standard distributions [28-33], the Erlang distribution [25],
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The transverse momentum spectra of p and p are computed at mid-rapidity (ly| < 0.1) in U+ U collisions at /Sy = 193 GeV for centrality intervals of
0-5%, 5-10%, 10 -20%, 20 - 30%, 30 -40%, 40 -50%, 50 -60%, 60 —70% and 70 — 80%. The theoretical calculation results based on the Tsallis
distribution are represented by lines. The experimental data sourced from the STAR Collaboration [21] are denoted by the symbols.

p; (GeV/c)

etc.,.The Tsallis distribution can be depicted by two or three standard
distributions.

The experimental data of the transverse momentum spectrum
of the particles are fitted using the Tsallis distribution, which can
account for the temperature fluctuation in several sources to yield an
average value. The Tsallis distribution exhibits multiple functional
forms [22-24, 28-35], among which the normalized standard
momentum distribution relying on the Boltzmann distribution can
be expressed as

LN _

flp)= N dp

+L]71

sz{[liq;Tl(\lpz+m(2,—‘u):| ql} (D

Here, N represents the particle number, C is the normalization
constant, m, is the rest mass of the studied particle, T is
the temperature that averagely describes several sources (local
equilibrium states), q is the entropy index which describes the
degree of non-equilibrium among different states, p is the chemical
potential related to /syy [36].

In the rest frame of a considered source, a simplified form
of the joint probability is selected: density function of transverse
momentum (p) and rapidity (y) [10],

4

flppoy) o
(2

Here, g is the degeneracy factor, V is the volume of emission
sources. In the RHIC energy region, y is very small, the + in
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PN gV q-1 s
ddpr = —(zﬂ)zpr VP% + m(z)cosh)/x [1 + - (\[p% + mé coshy—y)] .

04

the formula takes the plus sign. The values of T, q and V are
obtained from reproducing the particle spectra, where T and q are
independently fitted for the studied particle, and Vis related to other
parameters.

The Monte Carlo distribution generating method is adopted to
obtain p.. Let r; denote the random numbers uniformly distributed
in [0,1]. A series of values of p;. can be acquired through:

Pr prrdpr

. I, (pr)dpr<r < . o, (pr)dpr. ®)
Here, fPT is the transverse momentum probability density

function, which is an alternative representation of the Tsallis

distribution as follows:

1dN

e, (pr) = NE = jymf(PTJ’) dy.

Ymin

(4)

where y . and y . are the maximum and minimum rapidity,
respectively.

Under the assumption of isotropic emission in the source rest
frame, the Monte Carlo method is used to obtain the polar angle:

0 =2 arcsin \/r,. (5)

Thus, a series of values of momentum and energy can be
Pr

sin 6
p? + mj. Therefore, the corresponding values of rapidity can be

obtained based on the momentum p = and the energy E=

derived according to the definition of rapidity.
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TABLE 3 Values of T, g, and y?/dof corresponding to the curvesin U + U
collisions for p and p at \/syy = 193 GeV for 0 - 5%, 5-10%, 10 - 20%, 20—
30%, 30 - 40%, 40 - 50%, 50 - 60%, 60 — 70% and 70 - 80% centrality.

Figure Typel | Type 2 T
(GeV)
0%-5% 0.102+ 1418+ 0.011
0.014 0.485
5%-10% 0.102+ 1414+ 0.007
0.023 0.072
10%-20% 0.100 + 1.409 + 0.021
0.042 0.132
20%-30% 0.102+ 1.394 + 0.022
0.021 0.111
Fioure 3 30%-40% 0.102+ 1384 + 0.010
& P 0.010 0.081
40%-50% 0.100+ 1370 + 0.009
0.016 0.055
50%-60% 0.100+ 1345+ 0.004
0.003 0.037
60%-70% 0.100 + 1335+ 0.008
0.020 0.064
70%-80% 0.100+ 1305+ 0.006
0.018 0.081
0%-5% 0.103 + 1442+ 0.042
0.022 0.081
5%-10% 0.103 + 1435+ 0.022
0.012 0.140
10%-20% 0.103+ 1425+ 0.015
0.025 0.165
20%-30% 0.103+ 1415+ 0.015
0.020 0.149
! _ 30%-40% 0.102+ 1.400 + 0.021
Figure 3 P
0.005 0.076
40%-50% 0.102+ 1375+ 0.021
0.013 0.088
50%-60% 0.102+ 1355+ 0.019
0.007 0.031
60%-70% 0.102+ 1325+ 0.025
0.008 0.282
70%-80% 0.102+ 1295+ 0.027
0.002 0.079
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3 Results and discussion

3 1 Transverse momentum spectra

Figure 1 depicts the transverse momentum spectra within nine
centrality classes in U + U collisions at +/syy = 193 GeV at mid-
rapidity (]y| < 0.1) for 7" and 7. There exist nine centrality classes,
representing ranges of 0—5%, 5-10%, 10 —20%, 20 —30%, 30 —
40%, 40 — 50%, 50 —60%, 60 —70% and 70 — 80% respectively. The
symbols denote the experimental data from the STAR Collaboration
[21]. The lines represent our calculated results fitted by utilizing
the Tsallis distribution based on Equation 2 in the mid-rapidity
region. The values of the relevant parameters T and gq are
presented in Table 1, along with y*/do f (where x* is the chi-square
value and dof is the number of degrees of freedom). It is observed
that the calculations from the Tsallis distribution are in good
agreement with the experimental data.

Figure 2 illustrates the transverse momentum spectra across
nine centrality classes in U + U collisions at /syy = 193 GeV at
mid-rapidity (Jy] <0.1) for k* and k™. The lines are the results
computed from the Tsallis distribution. The symbols represent the
experimental data of the STAR Collaboration [21]. The values of the
relevant parameters T and g are given in Table 2, along with x*/do .
It is found that the calculations of the Tsallis distribution are in good
accordance with the experimental data.

Figure 3 presents the transverse momentum spectra for nine
centrality classes in U + U collisions at /sy = 193 GeV, measured
at mid-rapidity (]y] <0.1) for protons (p) and antiprotons (p).
The lines are the results obtained from the Tsallis distribution.
The symbols represent the experimental data of the STAR
Collaboration [21]. The values of the related parameters T and g
are provided in Table 3, along with y*/dof. It is noted that the
calculations of the Tsallis distribution are in good conformity with
the experimental data.

Under normal conditions, the g value value lies between 1.0 and
1.2; however, the g values in the above tables exceed this range [37].
Given that the U nucleus is the most deformed nucleus, the
correction for nuclear deformation is not considered in the current
Tsallis distribution, thus resulting in a relatively large q value.
The T value remains essentially consistent under different collision
centrality, which is attributable to the fact that the orientation of the
U nucleus is isotropic in the calculation.

3.2 Average transverse momenta
distributions

Figure 4 shows the variation of (p;) with <Npm> at mid-rapidity

(lyl <0.1) for 7", k* and p particles in U + U collisions at +/Syy
= 193 GeV. The red solid circles represent the experimental data

frontiersin.org


https://doi.org/10.3389/fphy.2025.1713658
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Yuan 10.3389/fphy.2025.1713658
0.60
+ +
TC 0.8 K 12 p
0.55
—~
O
~
> os0- &
(O T 0.7 104
O e
N 4
A 0.45
— [ ]
\9- ® 0.6 0.8
0401 of
0.35
0.5 0.6
® STAR Collaboration
0.30 4 Tsallis distribution
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
< > < >
<Npan> Npart Npart
FIGURE 4
The (p7) as a function of <Npa,(> at mid-rapidity (ly| < 0.1) of n*, k* and p for U+ U collisions at /5yy = 193 GeV. The red solid circles represent data
collected by the STAR Collaboration [21]. The black diamonds represent the calculations based on the Tsallis distribution.

TABLE 4 Values of (p7) in GeV/c within mid-rapidity (ly| < 0.1) of z*, n~, k*, k™, p and p for U + U collisions at \/Syy = 193 GeV using the Tsallis distribution.

Centrality

0%-5% 0.466 + 0.040 0.466 + 0.040 0.706 + 0.061 0.706 + 0.061 0.900 +0.077 0.938 +0.081
5%-10% 0.477 +0.041 0.477+0.041 0.708+0.061 0.708+0.061 0.894+0.077 0.929+0.080
10%-20% 0.487 +0.042 0.487 +0.042 0.695 + 0.060 0.695 + 0.060 0.874+0.075 0.916 +0.079
20%-30% 0.502+0.043 0.502+0.043 0.703 +0.060 0.703 +0.060 0.866+0.074 0.902+0.078
30%-40% 0.480 +0.041 0.480 +0.041 0.683 +0.059 0.683 +0.059 0.852+0.073 0.875+0.075
40%-50% 0.477 +0.041 0.477+0.041 0.659+0.057 0.659+0.057 0.817+0.070 0.838+0.072
50%-60% 0.489 +0.042 0.489 +0.042 0.674+0.058 0.674+0.058 0.779 +0.067 0.808 +0.069
60%-70% 0.471+0.041 0.47140.041 0.661+0.057 0.661+0.057 0.763 +0.066 0.762+0.066
70%-80% 0.462+0.040 0.462+0.040 0.660 +0.057 0.660 +0.057 0.716+0.062 0.714+0.061

from the STAR Collaboration [21], and the black diamonds are
the calculations from the Tsallis distribution. The calculations can
be derived by

ZPTl“
o)== ©6)
da
Here, p, is the value of transverse momentum corresponding
&N
that

i  Neyen27pydpdy
corresponds to the p,,. It is found that the experimental results can

to the experimental data, and « is the value of

be described within the margin of error. The values of (p,) increase
gradually with the increase of number of participating nucleons, and
they are listed in Table 4. In other words, the greater the intensity of
the collision, the higher the transverse momentum of the emitted
particles.

Frontiers in Physics

3.3.Dependence of parameters on number
of participating nucleons

Figures 5, 6 illustrate the variation trends of parameters (T and
q) with the average number of participants for 7 (n*/n7), k(k*/k™),
pand p generated in U + U collisions at 1/syy = 193 GeV in the mid-
rapidity region (|y| < 0.1). The symbols denote the parameter values
extracted from Figures 1-3 and listed in Tables 1-3.

From Figures 5, 6, it can be observed that the T value remains
relatively stable for the same particle, whereas the g value increases
as the collision centrality rises. In high-energy experiments, the
tip-to-tip collisions and body-to-body collisions of the U nucleus
exhibit distinctly different characteristics. However, a slight mass
hierarchy phenomenon was also observed: protons (and anti-
protons) exhibited the highest T value, followed by k mesons, with 7
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FIGURE 5
Dependence of T on the average number of participants for /7", k*/k™, p and p in events with different centrality intervals. The symbols represent the
parameter values listed in Tables 1-3.
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Dependence of g on the average number of participants for /7", k*/k™, p and p in events with different centrality intervals. The symbols represent the
parameter values listed in Tables 1-3.

mesons displaying the lowest. The g value also shows a dependence fitted effective temperature T. The closer to the center of the collision,
on the mass of the particle. This trend can be attributed to the  the higher the temperature generated by the fireball, the greater
fact that heavier particles, such as protons, more efficiently acquire ~ the energy density, and the more significant the non-equilibrium
kinetic energy from the system’s collective expansion, leading to a  characteristics of the system are usually, thus having a higher
harder transverse momentum spectrum and consequently a higher ~ entropy value.
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4. Summary and outlook

In conclusion, within the centrality classes of 0—5%, 5—10%,
10 —20%,20 — 30%, 30 — 40%, 40 — 50%, 50 — 60%, 60 — 70%,and 70 —
80% in U + U collisions at /sy = 193 GeV;the transverse momentum
spectra of 7%, k*, and p(p) in mid-rapidity region (|y| < 0.1) were
measured. Additionally, other observable extracted from the transverse
momentum spectra, such as the average transverse momentum ((p)),
and the relationships regarding effective temperature and entropy
are presented as functions of collision centrality. The experimental
results from the STAR Collaboration [21] were analyzed using the
Tsallis distribution. It was found that the theoretical calculation results
can effectively describe the experimental data, and the function of
(py) depends on centrality. The T value remains basically consistent
for the same particle under different collision parameters. The q
value increases as the collision parameters decrease, yet it exceeds
the previously determined research scope. Subsequently, in-depth
research will examine Tsallis distribution corrections in deformed
nuclei. Further studies on the kinetic freeze-out temperature and
collision time evolution are still needed.
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