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Introduction: Copper has the dual attributes of industrial raw materials and
financial assets, and its price formation mechanism presents complex non-
linear characteristics under the dual role of supply and demand mechanism
and financialization. The structural upgrading of industrial demand and the
risk contagion effect in the futures market make it difficult to effectively
analyze the fluctuation characteristics of copper price in the traditional linear
analytical framework. Consequently, it is significant to explore the fluctuation
characteristics of copper futures price from the perspective of complex
system science.

Methods: This study employed complex network theory and the Markov
switching model to develop a Markov network model of copper futures and to
explore the evolving characteristics of copper prices.

Results and discussion: This study finds that: (1) There are 243 price switch
states in theory, but only 126 types of states actually occur. Among them, 33
high-frequency states account for 90% of the total number of times, indicating
that price fluctuations are active and concentrated in a regular manner. (2)
The average path length of network state transition is 54, and the symmetry
coefficient is 0.99, which shows that the transition efficiency is high but the
path is highly asymmetric. (3) There are some nodes with low degree centrality
and high betweenness centrality in the network, which act as mediators in
the network, connecting the transitions between states. (4) The network has a
significant association structure, and we find that the state nodes have a relatively
obvious “rich club” effect. This study reveals that the nonlinear dynamics and
network structures of copper future return.

KEYWORDS

copper, future return, markov network, leiden’s algorithm, louvain’s algorithm

1 Introduction

As the critical material of the modern industrial system, price fluctuations of copper
resources have become a key factor affecting the stability of the global industrial economy
and the security of the resource supply chain [1-4]. In recent years, the global copper
price has exhibited periodic and volatile, and their price formation mechanism has become
very complex. On the one hand, there is a structural contradiction between the surge in
demand caused by the accelerated industrialization process of emerging economies and the
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traditional supply system [5, 6]. On the other hand, copper pricing
is not only affected by supply and demand, but also by the coupling
of multiple factors such as finance, geopolitics, and climate change
under the wave of commodity financialization [7, 8]. Current
research focuses on the impact of exogenous variables such as the
macroeconomic environment on copper prices [9, 10], but ignores
the fact that the copper future time series essentially reflects the
evolution of the market’s endogenous driving mechanism, especially
from the perspective of the auto-correlation characteristics and
nonlinear dynamic characteristics of price fluctuations, to analyze
the internal operating laws of the copper futures market.

Nonlinear time series analysis and complex network theory
are widely regarded as mature fields of complex system science.
The thorough combination of these two methods has become
an active field of nonlinear time series analysis [11]. The metal
market represented by copper is a complex system. Scholars have
widely used complex networks to explore the characteristics of
its market [7, 12-20], such as trade characteristics [13-15], price
characteristics [7, 12, 16] and financial characteristics [17-20]. The
copper futures price time series can be regarded as a nonlinear
and non-stationary complex system. The fluctuation of copper
futures prices can be regarded as a random change between its
internal generation mechanism and state. The Markov switching
model can be used to describe this process. Markov-switching time-
series models were proposed by Hamilton [21, 22], and widely
used in the financial research [23-25]. This model is particularly
suitable for the division of economic cycles, the transformation of
financial market volatility mechanisms (such as the alternation of
calm periods and crisis periods), and the analysis of commodity
price mutations. It can effectively identify state migration signals
before “black swan” events [26]. Taking the copper futures market as
an example, the model can reveal the intrinsic dynamic mechanism
of prices by quantifying the volatility characteristics and transition
probabilities under different regimes (such as steady state, transition
state, and chaotic state), and provide a quantitative basis for cross-
region risk warning. In order to more fully and reasonably study the
characteristics and dynamic characteristics of copper futures price
fluctuations, we integrate complex network theory and the Markov
conversion model to construct a Markov network model for copper
futures prices.

As the world’s largest copper consumer and futures trading
market, on the demand side, the demand for copper in the new
energy industry in 2024 is expected to a year-on-year increase of
17%, accounting for 20% of China’s total copper demand [27]. On
the supply side, the lagging development of domestic mines has led
to a continuous dependence on raw material imports, forming a risk
transmission path of “high external dependence + high financial
hedging” [28]. In 2024, the annual trading volume of copper
futures (CU) of the Shanghai Futures Exchange was 50,864,680 lots,
with a transaction amount of 19,398.69 billion yuan, and it has
developed into one of the most influential metal derivatives markets
in the world [29]. Considering the importance of China’s copper
market and the complexity of China’s copper price changes, it is of
practical significance to explore the characteristics of China’s copper
price changes.

The innovations of this study include the following two points:
firstly, unlike many studies on the linkage effects between the copper
market and other markets, this study focuses on the copper futures
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price volatility itself, and then investigates the characteristics and
dynamics of the price volatility of copper futures; secondly, this study
combines the theory of complex networks and the Markov switching
model, and constructs a Markov network model, while considering
the complexity and stochastic migration of the price state of the
copper futures market.

2 Markov network theory
2.1 Construction of markov network

The first step is to convert the copper futures price time series
into several discrete states. At present, the method to discretize time
series into several states is relatively mature [11]. This study adopts
the idea of coarse-graining to transform the copper futures price
series into several modes. In order to clearly represent the change law
of copper futures prices, we use I to represent an increase in copper
futures prices, O to represent no change in prices, and D to represent
a decrease in prices, as shown in Formula 1.

=LAP;>0
l={=0,AP,=0 (1)
=D,AP,<0

where J; represents the mode of the copper price on the ith day, AP; =
P; —P;_,, and P; represents the copper futures price on the ith day.

Through coarse-graining, the original copper futures price is
transformed into a series of continuous symbols that can indicate the
rise and fall of copper prices. Generally, the copper futures trading
day is 5 days, so we regard the symbol string composed of the
modalities of five consecutive trading days as a state of the copper
futures price ;. Each state reflects a specific price fluctuation law. For
example, m; = ITIII means that the copper futures price continues to
rise, and m; = IITID means that the copper price continues to rise, but
there is a trend of falling back. Theoretically, there are 243 discrete
states of copper futures prices in this study, and all discrete states IT =
{m,m, ... ;... T,y5} constitute all state spaces of historical copper
futures prices.

The second step is to calculate the Markov network parameters.
First, we use the state space obtained in the first step IT as the node of
the Markov network. Next, we use the following steps to construct
the edges of the Markov network.

1. Calculate the number of transitions between each two states
n;;, and n;; indicates the number of times the state 7; changes
into another state 7;. All the transition times n;; constitute the
transition matrix N.

2. Calculate the total number of times each state transforms into
other states within the time period N; = Zjnij.

3. Calculate the state transition probability between every two
states p;; = %, p;; represents the transition probability of a state
7; changing into a state ;. All state transition probabilities p;
constitute the state transition probability matrix P.

The third step is to build a Markov network. The parameters
calculated in the first and second steps are used to construct a
Markov network G (, P) with states as nodes and state transition
probability as edges. It is obvious that the Markov network is a

frontiersin.org


https://doi.org/10.3389/fphy.2025.1713083
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Zhao et al.

directed network that can reflect the state transition of copper
futures prices, and it has the properties of both complex networks
and Markov processes.

2.2 Markov network topology
characteristics

Since the Markov network has significant complex network
characteristics, the general indicators of complex networks are still
applicable in the Markov network. Based on the principle of being
able to reflect the state transition law of copper futures prices in this
study, we selected the following indicators for specific description.

1. Average path length [30]. The average path length of the
network is defined as the average distance between any two
points. In this study, the network distance and average path
length can directly reflect the speed of transition between
different copper price fluctuation states and the speed of state
transition in the entire network. The Formula 2 is as follows:

1
L= 2 ZlgistNdij 2)
N

Where N represents the number of nodes, d;; represents the
distance from state node i to state node j.

Masoller the
symmetry coefficient [31], which reflects whether the

2. Symmetry coeflicient. et. al. proposed
transitions between different nodes in a directed network

are symmetrical. The Formula 3 is as follows:

_ ZAZ#;'PU B pji|

a——|

ZiZiﬁ |pij *Pji
m;, and

Where p;; is the weight of the edge from node 7; to node m;,
pj; is the weight of the edge from node 7; to node 7;. When a = 0, it

©)

means that the network is completely symmetrical, and when a = 1,
it means that the network is completely asymmetrical. In the copper
futures Markov network of this article, a represents the degree of
symmetry of the transition between different states of copper futures
price fluctuations.

3. Centrality. Node centrality reflects the relative importance of
a network node in the network. Compared with other state
nodes, state nodes with high node centrality can better reflect
the fluctuation state of copper prices. Here we simply give
the calculation formulas for degree centrality and betweenness
centrality.

Degree centrality [32] is the most basic and simplest measure
of centrality, reflecting the centrality of a node among several nodes
directly connected to it. The Formula 4 is as follows:

k

Cp(v;) = —

N-1 (4)

Among them, k; represents the degree of node i, and N represents
the total number of network points.
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Betweenness centrality [33, 34] is an extremely important
indicator for measuring network centrality. It reflects how much
of a “bridge” role the node plays in the network. Removing
nodes with high betweenness may cause the entire network to be
disconnected. The Formula 5 is as follows:

nl

y la
stift o

Where 1, represents the number of paths passing through node i

_ 2

T (N-1)(N-2) )

Cy(v;)

and constituting the shortest path. g, represents the count of shortest
paths connecting nodes s and t. N represents the total number of
nodes in the network.

4. Network uncertainty. Since the Markov network has the
characteristics of state transition, we introduce the concept of
information entropy to describe the uncertainty of the state
transition of the copper futures Markov network. Based on the
application of information entropy [35], we give the local node
out-of-link entropy of the copper futures Markov network
to reflect the uncertainty of each state node. The Formula 6
is as follows:

Si == Zpij log(Pij) (6)

Where p;; represents the probability of a node transitioning from
state ; to state ;. The smaller Si is, the lower the uncertainty of the
corresponding node and the entire network. When Sf =0, we can say

that the price change of copper futures prices in the period after state
iis certain.

3 Data and empirical results
3.1 Data sources and basic analysis

This paper uses the continuous daily price of copper futures
of the Shanghai Futures Exchange as the research object, and
selects 4,859 copper futures price data from 2000 to 2020. This
range covers all situations of the world economy’s ups and
downs, and also includes many major events such as the 2008
economic crisis, and studies all possibilities of copper futures price
fluctuations as comprehensively as possible. The data comes from
the Wind database.

According to the construction steps of the Markov network, the
relevant parameters of the Markov network for copper futures prices,
N and P, are calculated. According to the calculation results, we
found that there are only 126 fluctuation states of copper futures
prices, which is 117 less than the theoretical value of 243. The
number of transitions between states is shown in Table 1. Combining
Table 1 and Figure 1, we found that the number of occurrences of
the 33 states with the largest number accounted for 91.57% of the
total number of states. The 15 states with the highest proportion
are mostly “3 + 2”patterns, that is, in five consecutive trading days,
the copper price rose for 3 days and fell for 2 days, or rose for
2 days and fell for 3 days. The state containing “O” only accounted
for 8.43%, and the state containing “OO” only appeared for 1.6%,
indicating that the futures price volatility of Chinas copper market
is relatively large.
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TABLE 1 Number of changes in copper futures price volatility.

10.3389/fphy.2025.1713083

State IDIDI DIDII IIDID DIDID DI 1Dl IDIDD IDIID DIDDI DIIDI
Status times 198 181 180 174 166 164 160 159 158 157
Ratio to total transfer | 4.08 373 371 359 3.42 338 330 328 326 324

times/%

Status times 155 148 147 145 138 135 135 135 1
Ratio to total transfer 3.19 3.05 3.03 2.99 2.84 2.78 2.78 278 L 0.02
times/%
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FIGURE 1
Copper futures price volatility state change times histogram.

TABLE 2 Copper futures price fluctuation symbol combination
frequency.

Combination Frequency Combination| Frequency

I 98.2 7% D 97.44%
I 57.88% DD 52.92%
111 23.18% DDD 19.25%
11T 7.87% DDDD 6.14%
TIIIT 227% DDDDD 1.32%

Since the frequency of “O” is relatively low,
attention to the rise and fall of copper futures prices. We combined
the symbols “I” and “D”. These combinations and the frequency of

we pay more

occurrence are shown in Table 2. We found that at the corresponding
level, the probability of copper price rise is always higher than the
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probability of fall. That is to say, within five trading days, copper
prices are more inclined to rise, indicating that the overall trend of
China’s copper futures prices is rising. The frequency of IIIT and ITIII
is about 10%, and the frequency of DDDD and DDDDD is about
7.4%, indicating that in the copper futures market, continuous rises
and falls often occur.

3.2 Analysis of markov network topology

According to the calculated ILP value, we constructed the
Markov network G = G (IL,P), as shown in Figure 2. The topological
structure of the Markov network G reflects the transformation
between different fluctuation states of copper futures prices. The
diameter of the network G is 12, and the average path length
is 5.4, which means that the number of transitions between the
two states of copper futures price fluctuations is as high as 12
times, and the average number of transitions between the copper
futures price fluctuation states is 5.4 times, indicating that the
conversion efficiency between the copper futures price fluctuation
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Markov network diagram.
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Cumulative distribution of degree centrality.

states is relatively high. The symmetry coefficient of the network
G nodes is 0.99, indicating that the transition between states in
the copper futures price network is highly asymmetric, which
provides a reference for predicting the trend of copper price
fluctuations in the next period.
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Figures 3-5 show the cumulative distribution of degree
centrality and betweenness centrality of Markov network G.
Intuitively, the distribution of degree centrality and betweenness
centrality of network G is different. From the perspective of node
degree centrality, 73% of the nodes in the network have low degree
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The relationship between degree centrality and betweenness
centrality.

centrality, and 25% of the nodes have high degree centrality, which
means that there are a large number of state nodes that have little
impact on other nodes during the copper price fluctuation process,
and the nodes that have a more drastic impact on the copper
price fluctuation process only account for 25% of all state nodes.
From the perspective of betweenness centrality, the distribution of
betweenness centrality of network G is relatively uniform overall,
but there are still some nodes with very high betweenness in
the network, indicating that there are some nodes that act as
transmission intermediaries during the copper price fluctuation

Frontiers in Physics

process, and play an important role in the formation of the copper
price time series.

Considering degree centrality and betweenness centrality
comprehensively, we plotted the relationship between degree
centrality and betweenness centrality, as shown in Figure 5. When
degree centrality is less than 0.5, betweenness centrality and
degree centrality are positively correlated. When degree centrality
is greater than 0.5, betweenness centrality and degree centrality
have no significant correlation. In general, nodes with higher degree
centrality generally do not have very low betweenness centrality,
but some nodes with very low degree centrality have higher
betweenness centrality. This indicates that some states that do not
occur often may play an important transmission role in the 126 state
changes of copper price fluctuations. When these high-betweenness
centrality but low-degree centrality states appear during copper
price fluctuations, this is likely to be a transitional period in copper
futures price fluctuations, which can provide an early warning for
copper price fluctuations in the next period.

Next, we examine the uncertainty of each state from the
perspective of information entropy. Figure 6 shows the value of the
local out-of-link entropy of each state node. The horizontal axis
represents each state, and the frequency of states from left to right is
getting lower and lower. Generally speaking, the uncertainty of states
with low frequency is also relatively low. The higher the frequency
of states, the higher the out-of-link entropy value they contain. This
means that when the copper futures price fluctuations are in a high-
frequency state, it is difficult to predict the copper futures price.
This difficulty is largely because the copper futures price fluctuation
state at this time has high uncertainty in changing to other states.
Of course, not all high-frequency states are characterized by high
uncertainty. For example, the uncertainty of high-frequency states
such as IIIIT and DDDDD is relatively low, and the same is true
for actual copper price fluctuations. When copper futures prices
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127 12+
o o
1+0 1k (e}
P o o
o o o
0.8 DF° © & 0.8 %0 082 &
S é;OODOOGD@O8 o e 0 &g 0go® o ©
I o co o070 00 @o 0
05 a0 %@o@o o ©
0613 0.6 o o
co@M®O 00 O
o o o
% o o oo
0.4 o 04 o ¢}
o
02t 022
0 & ' ' ‘ ) ‘ ) ' 0 -o—oa oo ; ‘ ‘ ' '
0 0.5 ! 15 225 3 35 0 200 400 600 800 1000 1200 1400
Degree centrality Betweenness centrality
FIGURE7 . FIGURE 8
Relationship between node degree centrality and node The relationship between node betweenness centrality and node
out-link entropy. out-link entropy.

continue to rise or fall, the probability of stopping rising and falling
is very high.

In order to further explore the uncertainty of the state nodes
of copper futures price fluctuations, we study the relationship
between the out-link entropy of each node and the node degree
centrality and betweenness centrality. The results are shown in
Figures 7, 8. In general, degree centrality and betweenness centrality
are positively correlated with node out-link entropy, which means
that it is more difficult to predict the state transition of nodes with
high frequency of state nodes and important status in the network
structure. It is worth noting that for points with low centrality,
the characteristics reflected by degree centrality and betweenness
centrality are different. The uncertainty of state nodes with low
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betweenness centrality is very low, while most of the state nodes with
low degree centrality are in a low uncertainty state, but some nodes
are in a high uncertainty state. When the copper futures price is at
a low centrality point, the price fluctuations in the copper futures
market are traceable, and the uncertainty of predicting the price state
is relatively small at this time.

3.3 Community structure
The community structure of a complex network refers to

small groups with similar structures and close connections in the
network. The internal nodes of each community structure tend to
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FIGURE 9
Markov network graph based on community structure distribution. (a) Louvain algorithm. (b) Leiden Algorithm.

transmit information within the community. Community analysis
can divide the 126 nodes in the entire Markov network into several
substructures, and then study the characteristics of the state changes
of these substructures, which is very meaningful for studying the
fluctuations of copper futures prices. We use Louvains algorithm and
Leiden’s algorithm [36, 37] to analyze the association structure of
the copper futures price Markov network. Both algorithms divides
the network into 10 communities, with modularities Q (0.64)
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and Q (0.65) respectively. The modularity Q function value is an
indicator that can reflect the quality of clustering effect, ranging
from 0 to 1. The larger the Q value is, the more significant the
community structure in the network is. We can say that the Markov
network for copper futures prices in this study has a significant
community effect. Furthermore, we find that the Normalized Mutual
Information (NMI) and Normalized Mutual Information (ARI)
between the two distinct community partitioning methods are 0.91
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and 0.84, respectively, indicating consistent results. The Markov
network of copper futures prices based on community structure
is shown in Figure 9.

3.4 Rich club effect

To investigate whether the Markov network of copper futures
prices exhibits a “rich club effect’, this study calculated the rich club
coeflicient ¢(k) [38-40]. The results in Figure 10 showed that nodes
with degrees 0, 1, 2, 3, 4, and 5 had ¢(k) values 0£1.00,1.04,1.04,1.33,
and 3.00, respectively. This indicates a pronounced rich club effect
in the copper futures price Markov network, where the coefficient
increases significantly with node degree. Notably, the coefficient
peaks at 3.0 for nodes with degree 5, suggesting that connections
between core nodes are three times denser than in a random
network. This structural feature reveals tightly connected core
groups within the network, where high-degree nodes act as critical
information hubs. While this configuration facilitates efficient
interactions among core groups, it may also exacerbate network
inequality and increase dependence on core nodes, potentially
compromising the network’s robustness and the equilibrium of
information dissemination.

4 Conclusion

This study constructs a Markov network based on complex
network theory and Markov transition mechanism, and analyzes the
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fluctuation law of time series between China’s copper futures prices
and the dynamic characteristics of different state transitions. The
main research conclusions are as follows.

1. Theoretically, there are 243 states that reflect the fluctuation
of copper futures prices. However, according to the daily
data, only 126 of these states appeared, and the 33 states
with the highest frequency accounted for 90% of the total
number of states. These 33 states do not include the “O”
state, indicating that the fluctuation of China’s copper futures
prices is very active, and the main fluctuation pattern is among
these 33 states.

The average path length of the state nodes in the network
is 5.4, indicating that the efficiency of the state transition in
reflecting the fluctuation of copper prices is relatively high.
The symmetry coeflicient is 0.99, indicating that the transition
between state nodes is highly asymmetric.

By analyzing the centrality of the network, we found that there
are a large number of nodes with low degree centrality in
the network, but some of these nodes have high betweenness
centrality. These nodes with low degree centrality and high
betweenness centrality act as intermediaries in the network,
connecting the transitions between states. Paying close
attention to these nodes is conducive to accurately predicting
the fluctuations in copper futures prices.

From the perspective of node uncertainty indicators, generally
speaking, nodes with high frequency have higher out-of-link
entropy, which means that their uncertainty is high. From
the relationship between out-of-link entropy and centrality,
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we can clearly see that for degree centrality, the higher the
out-of-link entropy of nodes with high degree centrality,
the higher the uncertainty of these states changing to other
states. Nodes with low degree centrality show a polarized
status, with some having high out-of-link entropy and others
having low out-of-link entropy, which means that when these
states change to other states, some have high uncertainty and
others have low uncertainty. For betweenness centrality, nodes
with low betweenness centrality have relatively small out-
of-link entropy, which means that the uncertainty of these
states changing to other states is relatively small. When price
fluctuations appear in this state, the accuracy of network
prediction is relatively high. Nodes with relatively high
betweenness centrality have relatively high out-of-link entropy,
which means that the uncertainty of these states changing to
other states is relatively high.

5. This network has a significant community structure, and there
is a relatively obvious “rich club” effect. When the degree of a
node reaches 4, the “rich club’effect begins to appear. When the
degree of a node is 5, the “rich club” effect is very obvious.
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