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Introduction: Copper has the dual attributes of industrial raw materials and 
financial assets, and its price formation mechanism presents complex non-
linear characteristics under the dual role of supply and demand mechanism 
and financialization. The structural upgrading of industrial demand and the 
risk contagion effect in the futures market make it difficult to effectively 
analyze the fluctuation characteristics of copper price in the traditional linear 
analytical framework. Consequently, it is significant to explore the fluctuation 
characteristics of copper futures price from the perspective of complex 
system science.
Methods: This study employed complex network theory and the Markov 
switching model to develop a Markov network model of copper futures and to 
explore the evolving characteristics of copper prices.
Results and discussion: This study finds that: (1) There are 243 price switch 
states in theory, but only 126 types of states actually occur. Among them, 33 
high-frequency states account for 90% of the total number of times, indicating 
that price fluctuations are active and concentrated in a regular manner. (2) 
The average path length of network state transition is 5.4, and the symmetry 
coefficient is 0.99, which shows that the transition efficiency is high but the 
path is highly asymmetric. (3) There are some nodes with low degree centrality 
and high betweenness centrality in the network, which act as mediators in 
the network, connecting the transitions between states. (4) The network has a 
significant association structure, and we find that the state nodes have a relatively 
obvious “rich club” effect. This study reveals that the nonlinear dynamics and 
network structures of copper future return.
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 1 Introduction

As the critical material of the modern industrial system, price fluctuations of copper 
resources have become a key factor affecting the stability of the global industrial economy 
and the security of the resource supply chain [1–4]. In recent years, the global copper 
price has exhibited periodic and volatile, and their price formation mechanism has become 
very complex. On the one hand, there is a structural contradiction between the surge in 
demand caused by the accelerated industrialization process of emerging economies and the
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traditional supply system [5, 6]. On the other hand, copper pricing 
is not only affected by supply and demand, but also by the coupling 
of multiple factors such as finance, geopolitics, and climate change 
under the wave of commodity financialization [7, 8]. Current 
research focuses on the impact of exogenous variables such as the 
macroeconomic environment on copper prices [9, 10], but ignores 
the fact that the copper future time series essentially reflects the 
evolution of the market’s endogenous driving mechanism, especially 
from the perspective of the auto-correlation characteristics and 
nonlinear dynamic characteristics of price fluctuations, to analyze 
the internal operating laws of the copper futures market.

Nonlinear time series analysis and complex network theory 
are widely regarded as mature fields of complex system science. 
The thorough combination of these two methods has become 
an active field of nonlinear time series analysis [11]. The metal 
market represented by copper is a complex system. Scholars have 
widely used complex networks to explore the characteristics of 
its market [7, 12–20], such as trade characteristics [13–15], price 
characteristics [7, 12, 16] and financial characteristics [17–20]. The 
copper futures price time series can be regarded as a nonlinear 
and non-stationary complex system. The fluctuation of copper 
futures prices can be regarded as a random change between its 
internal generation mechanism and state. The Markov switching 
model can be used to describe this process. Markov-switching time-
series models were proposed by Hamilton [21, 22], and widely 
used in the financial research [23–25]. This model is particularly 
suitable for the division of economic cycles, the transformation of 
financial market volatility mechanisms (such as the alternation of 
calm periods and crisis periods), and the analysis of commodity 
price mutations. It can effectively identify state migration signals 
before “black swan” events [26]. Taking the copper futures market as 
an example, the model can reveal the intrinsic dynamic mechanism 
of prices by quantifying the volatility characteristics and transition 
probabilities under different regimes (such as steady state, transition 
state, and chaotic state), and provide a quantitative basis for cross-
region risk warning. In order to more fully and reasonably study the 
characteristics and dynamic characteristics of copper futures price 
fluctuations, we integrate complex network theory and the Markov 
conversion model to construct a Markov network model for copper 
futures prices.

As the world’s largest copper consumer and futures trading 
market, on the demand side, the demand for copper in the new 
energy industry in 2024 is expected to a year-on-year increase of 
17%, accounting for 20% of China’s total copper demand [27]. On 
the supply side, the lagging development of domestic mines has led 
to a continuous dependence on raw material imports, forming a risk 
transmission path of “high external dependence + high financial 
hedging” [28]. In 2024, the annual trading volume of copper 
futures (CU) of the Shanghai Futures Exchange was 50,864,680 lots, 
with a transaction amount of 19,398.69 billion yuan, and it has 
developed into one of the most influential metal derivatives markets 
in the world [29]. Considering the importance of China’s copper 
market and the complexity of China’s copper price changes, it is of 
practical significance to explore the characteristics of China’s copper 
price changes.

The innovations of this study include the following two points: 
firstly, unlike many studies on the linkage effects between the copper 
market and other markets, this study focuses on the copper futures 

price volatility itself, and then investigates the characteristics and 
dynamics of the price volatility of copper futures; secondly, this study 
combines the theory of complex networks and the Markov switching 
model, and constructs a Markov network model, while considering 
the complexity and stochastic migration of the price state of the 
copper futures market. 

2 Markov network theory

2.1 Construction of markov network

The first step is to convert the copper futures price time series 
into several discrete states. At present, the method to discretize time 
series into several states is relatively mature [11]. This study adopts 
the idea of coarse-graining to transform the copper futures price 
series into several modes. In order to clearly represent the change law 
of copper futures prices, we use I to represent an increase in copper 
futures prices, O to represent no change in prices, and D to represent 
a decrease in prices, as shown in Formula 1.

li =
{{{{
{{{{
{

= I,ΔPi > 0

= O,ΔPi = 0

= D,ΔPi < 0

}}}}
}}}}
}

(1)

where li represents the mode of the copper price on the ith day, ΔPi =
Pi −Pi−1, and Pi represents the copper futures price on the ith day.

Through coarse-graining, the original copper futures price is 
transformed into a series of continuous symbols that can indicate the 
rise and fall of copper prices. Generally, the copper futures trading 
day is 5 days, so we regard the symbol string composed of the 
modalities of five consecutive trading days as a state of the copper 
futures price πi. Each state reflects a specific price fluctuation law. For 
example, πi = IIIII means that the copper futures price continues to 
rise, and πi = IIIID means that the copper price continues to rise, but 
there is a trend of falling back. Theoretically, there are 243 discrete 
states of copper futures prices in this study, and all discrete states Π =
{π1,π2…πi…π243} constitute all state spaces of historical copper 
futures prices.

The second step is to calculate the Markov network parameters. 
First, we use the state space obtained in the first step Π as the node of 
the Markov network. Next, we use the following steps to construct 
the edges of the Markov network. 

1. Calculate the number of transitions between each two states 
nij, and nij indicates the number of times the state πi changes 
into another state πj. All the transition times nij constitute the 
transition matrix N.

2. Calculate the total number of times each state transforms into 
other states within the time period Ni = ∑jnij.

3. Calculate the state transition probability between every two 
states pij =

nij

Ni
, pij represents the transition probability of a state 

πi changing into a state πj. All state transition probabilities pij
constitute the state transition probability matrix P.

The third step is to build a Markov network. The parameters 
calculated in the first and second steps are used to construct a 
Markov network G (, P) with states as nodes and state transition 
probability as edges. It is obvious that the Markov network is a 
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directed network that can reflect the state transition of copper 
futures prices, and it has the properties of both complex networks 
and Markov processes. 

2.2 Markov network topology 
characteristics

Since the Markov network has significant complex network 
characteristics, the general indicators of complex networks are still 
applicable in the Markov network. Based on the principle of being 
able to reflect the state transition law of copper futures prices in this 
study, we selected the following indicators for specific description. 

1. Average path length [30]. The average path length of the 
network is defined as the average distance between any two 
points. In this study, the network distance and average path 
length can directly reflect the speed of transition between 
different copper price fluctuation states and the speed of state 
transition in the entire network. The Formula 2 is as follows:

L = 1
C2
N
∑

I≤i≤j≤N
dij (2)

Where N represents the number of nodes, dij represents the 
distance from state node i to state node j. 

2. Symmetry coefficient. Masoller et. al. proposed the 
symmetry coefficient [31], which reflects whether the 
transitions between different nodes in a directed network 
are symmetrical. The Formula 3 is as follows:

α =
∑

i
∑

i≠j
|pij − pji|

∑
i
∑

i≠j
|pij + pji|

(3)

Where pij is the weight of the edge from node πi to node πj, and 
pji is the weight of the edge from node πj to node πi. When α = 0, it 
means that the network is completely symmetrical, and when α = 1, 
it means that the network is completely asymmetrical. In the copper 
futures Markov network of this article, α represents the degree of 
symmetry of the transition between different states of copper futures 
price fluctuations. 

3. Centrality. Node centrality reflects the relative importance of 
a network node in the network. Compared with other state 
nodes, state nodes with high node centrality can better reflect 
the fluctuation state of copper prices. Here we simply give 
the calculation formulas for degree centrality and betweenness 
centrality.

Degree centrality [32] is the most basic and simplest measure 
of centrality, reflecting the centrality of a node among several nodes 
directly connected to it. The Formula 4 is as follows:

CD(vi) =
ki

N − 1
(4)

Among them, ki represents the degree of node i, and N represents 
the total number of network points.

Betweenness centrality [33, 34] is an extremely important 
indicator for measuring network centrality. It reflects how much 
of a “bridge” role the node plays in the network. Removing 
nodes with high betweenness may cause the entire network to be 
disconnected. The Formula 5 is as follows:

CB(vi) =
2

(N − 1)(N − 2)
∑

s≠i≠t

nist
g st

(5)

Where ni
st represents the number of paths passing through node i

and constituting the shortest path. gst represents the count of shortest 
paths connecting nodes s and t. N represents the total number of 
nodes in the network. 

4. Network uncertainty. Since the Markov network has the 
characteristics of state transition, we introduce the concept of 
information entropy to describe the uncertainty of the state 
transition of the copper futures Markov network. Based on the 
application of information entropy [35], we give the local node 
out-of-link entropy of the copper futures Markov network 
to reflect the uncertainty of each state node. The Formula 6 
is as follows:

Sli = −∑pij log(pij) (6)

Where pij represents the probability of a node transitioning from 
state πi to state πj. The smaller Sl

i is, the lower the uncertainty of the 
corresponding node and the entire network. When Sl

i = 0, we can say 
that the price change of copper futures prices in the period after state 
i is certain.

3 Data and empirical results

3.1 Data sources and basic analysis

This paper uses the continuous daily price of copper futures 
of the Shanghai Futures Exchange as the research object, and 
selects 4,859 copper futures price data from 2000 to 2020. This 
range covers all situations of the world economy’s ups and 
downs, and also includes many major events such as the 2008 
economic crisis, and studies all possibilities of copper futures price 
fluctuations as comprehensively as possible. The data comes from 
the Wind database.

According to the construction steps of the Markov network, the 
relevant parameters of the Markov network for copper futures prices, 
N and P, are calculated. According to the calculation results, we 
found that there are only 126 fluctuation states of copper futures 
prices, which is 117 less than the theoretical value of 243. The 
number of transitions between states is shown in Table 1. Combining 
Table 1 and Figure 1, we found that the number of occurrences of 
the 33 states with the largest number accounted for 91.57% of the 
total number of states. The 15 states with the highest proportion 
are mostly “3 + 2”patterns, that is, in five consecutive trading days, 
the copper price rose for 3 days and fell for 2 days, or rose for 
2 days and fell for 3 days. The state containing “O” only accounted 
for 8.43%, and the state containing “OO” only appeared for 1.6%, 
indicating that the futures price volatility of China’s copper market 
is relatively large.
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TABLE 1  Number of changes in copper futures price volatility.

State πi IDIDI DIDII IIDID DIDID IDIII IIIDI IDIDD IDIID DIDDI DIIDI

Status times 198 181 180 174 166 164 160 159 158 157

Ratio to total transfer 
times/%

4.08 3.73 3.71 3.59 3.42 3.38 3.30 3.28 3.26 3.24

State πi DDIDI IDDID DIIID IIDII IDDII DIIII IIIID DDDID …… ODDDI

Status times 155 148 147 145 138 135 135 135 1

Ratio to total transfer 
times/%

3.19 3.05 3.03 2.99 2.84 2.78 2.78 2.78 …… 0.02

FIGURE 1
Copper futures price volatility state change times histogram.

TABLE 2  Copper futures price fluctuation symbol combination 
frequency.

Combination Frequency Combination Frequency

I 98.2 7% D 97.44%

II 57.88% DD 52.92%

III 23.18% DDD 19.25%

IIII 7.87% DDDD 6.14%

IIIII 2.2 7% DDDDD 1.32%

Since the frequency of “O” is relatively low, we pay more 
attention to the rise and fall of copper futures prices. We combined 
the symbols “I” and “D”. These combinations and the frequency of 
occurrence are shown in Table 2. We found that at the corresponding 
level, the probability of copper price rise is always higher than the 

probability of fall. That is to say, within five trading days, copper 
prices are more inclined to rise, indicating that the overall trend of 
China’s copper futures prices is rising. The frequency of IIII and IIIII 
is about 10%, and the frequency of DDDD and DDDDD is about 
7.4%, indicating that in the copper futures market, continuous rises 
and falls often occur. 

3.2 Analysis of markov network topology

According to the calculated Π,P value, we constructed the 
Markov network G = G (Π,P), as shown in Figure 2. The topological 
structure of the Markov network G reflects the transformation 
between different fluctuation states of copper futures prices. The 
diameter of the network G is 12, and the average path length 
is 5.4, which means that the number of transitions between the 
two states of copper futures price fluctuations is as high as 12 
times, and the average number of transitions between the copper 
futures price fluctuation states is 5.4 times, indicating that the 
conversion efficiency between the copper futures price fluctuation 
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FIGURE 2
Markov network diagram.

FIGURE 3
Cumulative distribution of degree centrality.

states is relatively high. The symmetry coefficient of the network 
G nodes is 0.99, indicating that the transition between states in 
the copper futures price network is highly asymmetric, which 
provides a reference for predicting the trend of copper price 
fluctuations in the next period.

Figures 3–5 show the cumulative distribution of degree 
centrality and betweenness centrality of Markov network G. 
Intuitively, the distribution of degree centrality and betweenness 
centrality of network G is different. From the perspective of node 
degree centrality, 73% of the nodes in the network have low degree 
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FIGURE 4
Cumulative distribution of betweenness centrality.

FIGURE 5
The relationship between degree centrality and betweenness 
centrality.

centrality, and 25% of the nodes have high degree centrality, which 
means that there are a large number of state nodes that have little 
impact on other nodes during the copper price fluctuation process, 
and the nodes that have a more drastic impact on the copper 
price fluctuation process only account for 25% of all state nodes. 
From the perspective of betweenness centrality, the distribution of 
betweenness centrality of network G is relatively uniform overall, 
but there are still some nodes with very high betweenness in 
the network, indicating that there are some nodes that act as 
transmission intermediaries during the copper price fluctuation 

process, and play an important role in the formation of the copper 
price time series.

Considering degree centrality and betweenness centrality 
comprehensively, we plotted the relationship between degree 
centrality and betweenness centrality, as shown in Figure 5. When 
degree centrality is less than 0.5, betweenness centrality and 
degree centrality are positively correlated. When degree centrality 
is greater than 0.5, betweenness centrality and degree centrality 
have no significant correlation. In general, nodes with higher degree 
centrality generally do not have very low betweenness centrality, 
but some nodes with very low degree centrality have higher 
betweenness centrality. This indicates that some states that do not 
occur often may play an important transmission role in the 126 state 
changes of copper price fluctuations. When these high-betweenness 
centrality but low-degree centrality states appear during copper 
price fluctuations, this is likely to be a transitional period in copper 
futures price fluctuations, which can provide an early warning for 
copper price fluctuations in the next period.

Next, we examine the uncertainty of each state from the 
perspective of information entropy. Figure 6 shows the value of the 
local out-of-link entropy of each state node. The horizontal axis 
represents each state, and the frequency of states from left to right is 
getting lower and lower. Generally speaking, the uncertainty of states 
with low frequency is also relatively low. The higher the frequency 
of states, the higher the out-of-link entropy value they contain. This 
means that when the copper futures price fluctuations are in a high-
frequency state, it is difficult to predict the copper futures price. 
This difficulty is largely because the copper futures price fluctuation 
state at this time has high uncertainty in changing to other states. 
Of course, not all high-frequency states are characterized by high 
uncertainty. For example, the uncertainty of high-frequency states 
such as IIIII and DDDDD is relatively low, and the same is true 
for actual copper price fluctuations. When copper futures prices 

Frontiers in Physics 06 frontiersin.org

https://doi.org/10.3389/fphy.2025.1713083
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Zhao et al. 10.3389/fphy.2025.1713083

FIGURE 6
Outbound entropy of each node in the Markov network.

FIGURE 7
Relationship between node degree centrality and node 
out-link entropy.

continue to rise or fall, the probability of stopping rising and falling 
is very high.

In order to further explore the uncertainty of the state nodes 
of copper futures price fluctuations, we study the relationship 
between the out-link entropy of each node and the node degree 
centrality and betweenness centrality. The results are shown in 
Figures 7, 8. In general, degree centrality and betweenness centrality 
are positively correlated with node out-link entropy, which means 
that it is more difficult to predict the state transition of nodes with 
high frequency of state nodes and important status in the network 
structure. It is worth noting that for points with low centrality, 
the characteristics reflected by degree centrality and betweenness 
centrality are different. The uncertainty of state nodes with low 

FIGURE 8
The relationship between node betweenness centrality and node 
out-link entropy.

betweenness centrality is very low, while most of the state nodes with 
low degree centrality are in a low uncertainty state, but some nodes 
are in a high uncertainty state. When the copper futures price is at 
a low centrality point, the price fluctuations in the copper futures 
market are traceable, and the uncertainty of predicting the price state 
is relatively small at this time. 

3.3 Community structure

The community structure of a complex network refers to 
small groups with similar structures and close connections in the 
network. The internal nodes of each community structure tend to 

Frontiers in Physics 07 frontiersin.org

https://doi.org/10.3389/fphy.2025.1713083
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Zhao et al. 10.3389/fphy.2025.1713083

FIGURE 9
Markov network graph based on community structure distribution. (a) Louvain algorithm. (b) Leiden Algorithm.

transmit information within the community. Community analysis 
can divide the 126 nodes in the entire Markov network into several 
substructures, and then study the characteristics of the state changes 
of these substructures, which is very meaningful for studying the 
fluctuations of copper futures prices. We use Louvain’s algorithm and 
Leiden’s algorithm [36, 37] to analyze the association structure of 
the copper futures price Markov network. Both algorithms divides 
the network into 10 communities, with modularities Q (0.64) 

and Q (0.65) respectively. The modularity Q function value is an 
indicator that can reflect the quality of clustering effect, ranging 
from 0 to 1. The larger the Q value is, the more significant the 
community structure in the network is. We can say that the Markov 
network for copper futures prices in this study has a significant 
community effect. Furthermore, we find that the Normalized Mutual 
Information (NMI) and Normalized Mutual Information (ARI) 
between the two distinct community partitioning methods are 0.91 
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FIGURE 10
Markov network’s rich club coefficients.

and 0.84, respectively, indicating consistent results. The Markov 
network of copper futures prices based on community structure 
is shown in Figure 9. 

3.4 Rich club effect

To investigate whether the Markov network of copper futures 
prices exhibits a “rich club effect”, this study calculated the rich club 
coefficient φ(k) [38–40]. The results in Figure 10 showed that nodes 
with degrees 0, 1, 2, 3, 4, and 5 had φ(k) values of 1.00,1.04,1.04,1.33, 
and 3.00, respectively. This indicates a pronounced rich club effect 
in the copper futures price Markov network, where the coefficient 
increases significantly with node degree. Notably, the coefficient 
peaks at 3.0 for nodes with degree 5, suggesting that connections 
between core nodes are three times denser than in a random 
network. This structural feature reveals tightly connected core 
groups within the network, where high-degree nodes act as critical 
information hubs. While this configuration facilitates efficient 
interactions among core groups, it may also exacerbate network 
inequality and increase dependence on core nodes, potentially 
compromising the network’s robustness and the equilibrium of 
information dissemination. 

4 Conclusion

This study constructs a Markov network based on complex 
network theory and Markov transition mechanism, and analyzes the 

fluctuation law of time series between China’s copper futures prices 
and the dynamic characteristics of different state transitions. The 
main research conclusions are as follows. 

1. Theoretically, there are 243 states that reflect the fluctuation 
of copper futures prices. However, according to the daily 
data, only 126 of these states appeared, and the 33 states 
with the highest frequency accounted for 90% of the total 
number of states. These 33 states do not include the “O” 
state, indicating that the fluctuation of China’s copper futures 
prices is very active, and the main fluctuation pattern is among 
these 33 states.

2. The average path length of the state nodes in the network 
is 5.4, indicating that the efficiency of the state transition in 
reflecting the fluctuation of copper prices is relatively high. 
The symmetry coefficient is 0.99, indicating that the transition 
between state nodes is highly asymmetric.

3. By analyzing the centrality of the network, we found that there 
are a large number of nodes with low degree centrality in 
the network, but some of these nodes have high betweenness 
centrality. These nodes with low degree centrality and high 
betweenness centrality act as intermediaries in the network, 
connecting the transitions between states. Paying close 
attention to these nodes is conducive to accurately predicting 
the fluctuations in copper futures prices.

4. From the perspective of node uncertainty indicators, generally 
speaking, nodes with high frequency have higher out-of-link 
entropy, which means that their uncertainty is high. From 
the relationship between out-of-link entropy and centrality,
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we can clearly see that for degree centrality, the higher the 
out-of-link entropy of nodes with high degree centrality, 
the higher the uncertainty of these states changing to other 
states. Nodes with low degree centrality show a polarized 
status, with some having high out-of-link entropy and others 
having low out-of-link entropy, which means that when these 
states change to other states, some have high uncertainty and 
others have low uncertainty. For betweenness centrality, nodes 
with low betweenness centrality have relatively small out-
of-link entropy, which means that the uncertainty of these 
states changing to other states is relatively small. When price 
fluctuations appear in this state, the accuracy of network 
prediction is relatively high. Nodes with relatively high 
betweenness centrality have relatively high out-of-link entropy, 
which means that the uncertainty of these states changing to 
other states is relatively high.

5. This network has a significant community structure, and there 
is a relatively obvious “rich club” effect. When the degree of a 
node reaches 4, the “rich club”effect begins to appear. When the 
degree of a node is 5, the “rich club” effect is very obvious.
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