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Reliable forecasting of air cargo demand is crucial for optimizing logistics 
operations, scheduling air freight capacity, and reducing operational costs 
in a dynamic global supply chain environment. This study proposes a 
novel interpretable forecasting framework that integrates Bayesian-optimized 
Random Forests (BO-RF) with game-theoretic SHAP (SHapley Additive 
exPlanations) analysis to enhance both prediction accuracy and model 
transparency. The proposed BO-RF model leverages Bayesian Optimization 
to fine-tune hyperparameters efficiently, thus improving the generalization 
performance of Random Forests on small-sample air cargo datasets. To 
address the interpretability challenge of machine learning models, SHAP 
values are introduced, providing theoretically grounded, fair attribution of 
each input feature’s marginal contribution based on cooperative game theory. 
Experiments based on real-world monthly air cargo data demonstrate that 
the proposed method outperforms traditional machine learning benchmarks in 
both accuracy and interpretability. By combining Bayesian-optimized ensemble 
learning with SHAP-based interpretability, the study contributes to the growing 
literature on explainable, data-driven forecasting in transportation and provides 
actionable insights for demand management and capacity planning in the air 
freight industry.
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 1 Introduction

 1.1 Background and motivation

Accurate forecasting of air cargo demand is essential for optimizing strategic planning, 
resource allocation, and operational efficiency in the global aviation logistics sector İlgün 
Ayhan and Alptekin [1]. However, the sector faces significant challenges due to the 
volatile and stochastic nature of cargo volumes, driven by factors such as fluctuating trade 
flows, multi-modal transport disruptions, and abrupt policy changes Nguyen [2]. This 
volatility poses risks to stakeholders, including airlines, freight forwarders, and regulators,
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who need reliable forecasts for long-term planning. In addition to 
supporting tactical decisions such as flight scheduling and cargo 
space allocation, accurate forecasts are crucial for shaping policy 
decisions and infrastructure investments, which must anticipate 
future demand trends and ensure the sustainability of the logistics 
ecosystem Rodríguez and Olariaga [3]. 

1.2 Limitations of traditional approaches

Traditional time-series and econometric models, including 
ARIMA and exponential smoothing, have long served as the 
foundation of air cargo demand forecasting Garg et al. [4]. Yet 
their effectiveness diminishes when the system exhibits nonlinear 
dynamics driven by macroeconomic fluctuations, the competition 
of alternative transport modes such as maritime or rail freight, and 
pronounced seasonal variability Kosasih et al. [5]. These limitations 
have motivated a growing shift toward machine learning (ML) 
methods—Random Forests (RF), Support Vector Regression (SVR), 
and neural networks—whose flexibility enables them to capture 
intricate dependencies and manage noisy, high-dimensional data 
environments more effectively Sahoo et al. [6].

Although models such as RF have shown considerable 
promise, their practical application in air cargo forecasting remains 
constrained. One obstacle lies in the sensitivity of predictive 
accuracy to hyperparameter settings, including tree depth, ensemble 
size, and split thresholds Wu et al. [7]. In many empirical studies, 
these values are chosen manually or by grid search, a strategy that 
is not only computationally costly but also prone to missing well-
performing regions of the parameter space Raiaan et al. [8]. A model 
tuned in this way may overfit short-term noise or underfit structural 
demand patterns, particularly in small or imbalanced datasets that 
often characterize logistics operations Nasseri et al. [9]. This raises a 
critical methodological question: how can hyperparameter selection 
be automated in a way that is both efficient and adaptive to the data 
environment?

Another limitation concerns the interpretability of RF 
predictions. Despite their strong performance, RF models often 
operate as opaque “black boxes,” offering limited insight into how 
input variables drive outcomes. In practice, stakeholders in air cargo 
logistics—ranging from airlines to regulatory authorities—require 
not only reliable forecasts but also transparent models that 
reveal underlying causal mechanisms Abdulrashid et al. [10]. 
Conventional feature importance measures, such as Gini-based 
scores, are frequently criticized for their lack of theoretical rigor and 
inability to capture interaction effects across features Thakur and 
Biswas [11]. This gap becomes particularly pressing in high-stakes 
contexts where trust, accountability, and compliance are as vital as 
predictive precision Abdulrashid et al. [10]. 

1.3 Novelty of the proposed framework

To overcome these challenges, the present study introduces 
two complementary innovations. The first is the integration of 
Bayesian Optimization (BO) with RF, which provides a principled 
and probabilistic framework for hyperparameter search Joy et al. 
[12]. By leveraging surrogate models and acquisition functions, BO 

intelligently navigates the parameter landscape, achieving improved 
accuracy and robustness with far fewer evaluations than exhaustive 
methods Raiaan et al. [8]. The second is the incorporation of 
SHAP values, a game-theoretic interpretability technique grounded 
in Shapley values, to decompose model outputs into additive 
feature contributions Yang et al. [13]. This approach not only yields 
transparent, context-aware explanations of predictive outcomes but 
also supports the validation of model logic against domain expertise.

This paper introduces a novel hybrid framework that integrates 
Bayesian Optimization (BO) with Random Forests (RF) and SHAP-
based interpretability, creating a more robust and interpretable 
approach for air cargo demand forecasting. Our approach stands 
out by coupling Bayesian Optimization with RF for hyperparameter 
tuning, ensuring that the model parameters are selected based on 
probabilistic reasoning, which improves accuracy and efficiency 
compared to traditional trial-and-error methods. Moreover, the 
integration of SHAP provides transparent, game-theoretic feature 
attribution, enabling both local and global interpretability of model 
predictions. This allows stakeholders to not only trust the forecasts 
but also understand the key drivers of demand, which is critical for 
informed decision-making in dynamic, complex environments like 
logistics and transportation. 

1.4 Organization of the paper

The remainder of this paper is organized as follows:
Section 2 reviews related work in air cargo forecasting, Bayesian 

optimization, and explainable machine learning.
Section 3 presents the proposed BO-RF-SHAP framework and 

its theoretical foundations.
Section 4 introduces the dataset and variable design.
Section 5 reports the experimental results and SHAP analysis.
Section 6 concludes the paper and suggests directions for 

future research. 

2 Literature review

The accurate forecasting of air cargo volume has become 
increasingly vital due to growing volatility in global supply 
chains and the strategic importance of air freight in high-
value logistics. This section reviews the current state of research 
from five key dimensions: (1) Forecasting methods for air cargo 
volume, (2) Bayesian Optimization for hyperparameter tuning, 
(3) SHAP and game-theoretic explainability, (4) applications of 
interpretable models in transportation decisions, and (5) Research 
gaps motivating this study. 

2.1 Forecasting methods for air cargo 
volume

Early research on forecasting air cargo volumes predominantly 
employed statistical and time-series techniques, including 
exponential smoothing and seasonal decomposition Fatima and 
Rahimi [14]. While these models are valued for their transparency 
and straightforward implementation, they frequently fall short in 
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capturing the nonlinear dependencies that arise from interactions 
between macroeconomic fluctuations, operational constraints, 
and external shocks Kontopoulou et al. [15]. This raises a critical 
methodological issue: can such traditional models adapt to the 
increasingly complex dynamics of modern aviation logistics?

The proliferation of big data in aviation, together with 
advances in machine learning (ML), has prompted a shift toward 
more sophisticated forecasting approaches. Among them, Random 
Forests (RF) have emerged as a widely used tool, largely due 
to their ensemble structure, robustness against overfitting, and 
capacity to manage high-dimensional, noisy datasets Sahoo et al. [6]. 
Studies applying RF extend across diverse domains of transportation 
research, ranging from passenger demand forecasting to freight 
flow estimation and mode choice modeling. At the same time, 
gradient boosting methods such as XGBoost and LightGBM have 
demonstrated strong predictive capabilities, particularly in large-
scale or time-sensitive applications where rapid model training and 
high accuracy are essential Ileri [16].

A persistent concern lies in the reliance of these models on 
carefully tuned hyperparameters, without which their performance 
may deteriorate significantly Raiaan et al. [8]. Compounding this 
challenge is the interpretability issue: most tree-based ensembles 
function as opaque “black boxes,” leaving practitioners uncertain 
about the drivers of forecasted outcomes Abdulrashid et al. [10]. In 
high-stakes contexts such as cargo capacity allocation or regulatory 
policy design, such opacity can reduce stakeholder confidence and 
hinder adoption. The question, therefore, is not merely whether 
these models can predict accurately, but whether they can do so in 
ways that are transparent and actionable for decision-makers. 

2.2 Bayesian Optimization for 
hyperparameter tuning

The selection of hyperparameters often determines the success or 
failure of a machine learning model, as even small adjustments can 
lead to substantial differences in predictive accuracy Kontopoulou 
et al. [15]. In practice, traditional approaches such as grid search and 
random search are still widely used; however, their exhaustive or purely 
stochastic nature requires heavy computational resources, which 
makes them impractical when facing high-dimensional parameter 
spaces or limited training samples Yu and Zhu [17]. Against 
this backdrop, Bayesian Optimization (BO) has emerged as a 
particularly compelling alternative. By combining surrogate models 
such as Gaussian Processes with acquisition functions like Expected 
Improvement, BO intelligently balances exploration and exploitation, 
searching for promising configurations with remarkable sample 
efficiency. This methodological design is especially advantageous 
in domains such as logistics and transportation analytics, where 
evaluating each model configuration can be computationally costly 
and time-sensitive decision-making amplifies the need for efficient 
optimization Pravin et al. [18]. 

Recent studies have taken this a step further by integrating 
BO with Random Forests, producing BO-RF frameworks that 
consistently outperform standard tuning procedures. Applications 
in energy forecasting, demand prediction, and financial risk 
modeling illustrate the versatility of this approach and its ability to 
deliver both robustness and accuracy in complex environments. Yet, 

despite these encouraging results, the air cargo forecasting domain 
has only begun to explore this methodology. The lack of research 
on combining BO-RF with interpretability tools such as SHAP 
raises a critical question: how might the fusion of optimization and 
explainability reshape forecasting into a decision-support tool that 
is both powerful and transparent? 

2.3 SHAP and game-theoretic 
interpretability

In recent years, the rapid adoption of machine learning 
models in forecasting and decision-making has underscored the 
importance of interpretability Rudin [19]. While ensemble methods 
such as Random Forests or gradient boosting provide strong 
predictive performance, their “black-box” nature often limits 
practical applicability, particularly in domains like transportation 
and logistics where decision-makers require transparency to justify 
policy interventions Abdulrashid et al. [10]. To address this 
limitation, Shapley Additive Explanations (SHAP) have emerged 
as a robust interpretability framework grounded in cooperative 
game theory Hassija et al. [20]. SHAP assigns each feature a 
contribution score by considering all possible coalitions of features, 
thereby ensuring consistency and local accuracy in attribution 
Nguyen [2]. Unlike traditional importance measures that often yield 
unstable or biased results, SHAP values provide a theoretically 
sound decomposition of model predictions into feature-level effects 
Kosasih et al. [5]. This property makes SHAP especially useful 
in revealing nonlinear patterns, threshold effects, and interaction 
mechanisms that are otherwise obscured in complex models Ponce-
Bobadilla et al. [21].

The SHAP framework builds upon the foundational work in 
cooperative game theory by attributing predictive outcomes to 
feature-level contributions through Shapley values Hassija et al. 
[20]. While Lundberg and Lee’s seminal introduction of SHAP 
remains influential, recent research has extended its theoretical 
underpinnings and broadened its applicability across domains 
Lundberg et al. [22]. For instance, Idrissi et al. [23] critically re-
examine the axiomatic constraints of Shapley-based explanations 
and propose generalized allocation schemes, such as Weber and 
Harsanyi sets, that offer more flexible and interpretively robust 
alternatives. Additionally, Xu et al. [24] introduce the concept of 
Pairwise Shapley Values, a novel framework aimed at improving 
interpretability through intuitive comparisons between similar 
instances—particularly valuable in regression tasks where scenarios 
like real estate valuation or material property prediction demand 
explainability and computational efficiency. Furthermore, for 
models employing kernel-based methods, Mohammadi et al. [25] 
present PKeX-Shapley, an algorithm that enables exact polynomial-
time computation of Shapley values by exploiting product-
kernel structures, thereby reducing computational overhead while 
preserving exactness in feature attributions.

Applications of SHAP have been expanding across domains such 
as finance, healthcare, and energy demand forecasting, where both 
accuracy and interpretability are essential Rozemberczki et al. [26]. 
In the transportation field, SHAP has been employed to explain 
traffic flow predictions, ride-hailing demand estimation, and freight 
logistics modeling, highlighting its versatility in uncovering hidden 
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behavioral and structural drivers. However, its use in air cargo 
demand forecasting remains limited, despite the clear potential 
to illuminate the interplay between macroeconomic indicators, 
multimodal transport activities, and seasonal variations Li et al. [27].

By integrating SHAP into this study, the objective is not 
only to provide accurate forecasts but also to deliver interpretable 
insights into the relative influence and interaction of explanatory 
variables. Such insights can bridge the gap between technical model 
outputs and actionable strategies for aviation logistics stakeholders 
Ahmed et al. [28]. 

2.4 Interpretable forecasting in 
transportation decision-making

In the field of transportation, interpretable models are crucial 
for enabling actionable insights, policy compliance, and stakeholder 
trust Abdulrashid et al. [10]. Recent studies have incorporated 
SHAP-based analysis into various transportation applications, 
including traffic congestion prediction, shared mobility patterns, 
and urban demand management.

In logistics, SHAP has been applied to understand demand 
sensitivities to pricing, economic indicators, and seasonality, helping 
practitioners adjust strategies in real time Zhang et al. [29]. However, 
most studies focus on interpretability as a post hoc diagnostic 
tool, rather than integrating it into the forecasting architecture 
or decision-making process Białek et al. [30]. Moreover, few have 
used SHAP to build game-theoretic models where agents (e.g., 
carriers and shippers) act on interpretable signals Garg et al. [4], 
Kahalimoghadam et al. [31]. 

2.5 Research gap and study contribution

To date, there is limited research that integrates Bayesian 
Optimization, Random Forest modeling, and SHAP-based 
interpretability into a cohesive, interpretable forecasting system 
for air cargo prediction. While each component has shown merit 
in isolation, their combined application remains rare, especially 
in aviation logistics where nonlinear demand dynamics, strategic 
decision-making, and data limitations coexist.

This study addresses this gap by: Proposing a BO-RF hybrid 
model that improves predictive performance through efficient 
hyperparameter tuning; Embedding SHAP explanations to uncover 
and quantify key drivers of air cargo demand;

This integrative approach offers a novel solution for both accurate 
forecasting and interpretable decision support under uncertainty, 
contributing to the growing literature at the intersection of machine 
learning, game theory, and transportation systems analysis. 

3 Methodology

3.1 Model architecture

The proposed framework adopts a multi-layered architecture 
that integrates predictive accuracy with interpretability, as 
depicted in Figure 1. The design consists of three functional 

layers—Input Layer, Forecasting Layer, and Interpretability 
Layer—each of which plays a complementary role in ensuring 
robustness and practical applicability.

3.1.1 Input layer
The first layer incorporates multisource explanatory variables 

obtained from the National Bureau of Statistics (NBS). To 
ensure data quality and consistency, categorical fields are 
transformed into numerical representations, and missing values are 
imputed using median replacement. Multicollinearity is addressed 
through Pearson’s correlation thresholding |r| > 0.9, allowing the 
retention of a low-redundancy subset of driving factors. These 
preprocessing steps establish a robust foundation for subsequent 
modeling, ensuring that the feature set is both comprehensive and 
statistically reliable. 

3.1.2 Forecasting layer
The second layer constitutes the predictive core of the 

framework. Within a five-fold cross-validation setting, the 
generalization performance of Random Forests (RF), Support 
Vector Regression (SVR), XGBoost, and GBDT is systematically 
compared to identify the most suitable baseline model. RF 
consistently demonstrates superior accuracy and robustness, 
motivating its selection as the primary predictive engine. To further 
enhance its performance, Bayesian Optimization (BO) is employed 
for automated hyperparameter tuning. By providing a principled 
global search strategy, BO efficiently determines the optimal 
hyperparameter configuration, denoted as θ

∗
, thereby overcoming 

the inefficiency and suboptimality of manual trial-and-error 
approaches. The optimized model, referred to as BO-RF, generates 
air cargo demand forecasts with improved accuracy and stability. 
Formally, the predictive function can be expressed as Equation 1:

ŷt = fBO−RF(xt ∣ θ
∗) , (1)

Where ŷt denotes the predicted air cargo volume at time t, and xt =
{x1,t,x2,t…,xn,t} represents the feature vector of explanatory 
variables. 

3.1.3 Interpretability layer
The third layer addresses the critical challenge of model 

transparency by grounding interpretability in cooperative game 
theory. Post-training, the BO-RF model is coupled with SHAP 
(SHapley Additive exPlanations), which adapts the Shapley value to 
feature attribution in predictive models. In this setting, each input 
variable is treated as a “player,” and its contribution to a given forecast 
is defined as the average marginal effect it produces when added to 
all possible coalitions of the remaining variables.

Operationally, SHAP yields local explanations (feature 
attributions for an individual forecast) and global explanations 
(aggregated patterns across all forecasts). Aggregating SHAP values 
across time reveals stable drivers and context-dependent effects, 
while SHAP interaction and dependence plots make nonlinear 
thresholds and cross-elasticities explicit. In this way, the SHAP layer 
not only quantifies which factors matter but also clarifies how they 
shape forecasts under different market conditions, thereby turning 
an accurate ensemble predictor into a transparent decision aid for 
logistics planning and transport policy.
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FIGURE 1
Methodological Framework for BO-RF-SHAP model.

Collectively, this three-tier design ensures that the proposed 
system is not only capable of generating accurate and robust 
forecasts, but also of producing theoretically grounded, decision-
relevant explanations that enhance stakeholder confidence and 
support strategic decision-making in dynamic aviation markets. 

3.2 Random forests: A nonlinear approach

Random Forest (RF) is an ensemble learning algorithm that 
constructs a multitude of decision trees and aggregates their 
outputs to achieve robust predictions. Each tree is trained on a 
bootstrap sample of the dataset, while random feature selection 
at each split introduces further diversity, reducing the risk of 
overfitting Liu and Mazumder [32]. This dual-randomization 
strategy enables RF to model complex, nonlinear dependencies 
between explanatory variables and the target. Unlike traditional 
linear models, which assume simple relationships between features, 
RF is capable of capturing intricate, nonlinear interactions due 
to its tree-based structure, where each decision tree splits the 
data recursively based on different feature combinations. This 
flexibility allows RF to detect patterns that may be missed by linear 
models, especially when features interact in complex, non-linear 
ways, as is often the case in transportation demand forecasting
Barreñada et al. [33].

In regression tasks, the final prediction is obtained by averaging 
the outputs of all individual trees, which stabilizes forecasts and 
mitigates the variance inherent in single decision trees Probst and 
Boulesteix [34]. The model’s flexibility in handling high-dimensional 
data and heterogeneous predictors makes it particularly well-
suited for forecasting tasks where multiple variables interact in 
complex ways. Moreover, RF offers a natural framework for feature 
importance analysis, which is further enhanced in this study through 
the use of game-theoretic SHAP values. SHAP values enable us 
to interpret the contributions of individual features in a nonlinear 
context, enhancing the transparency of the model and providing 
valuable insights for decision-making in aviation logistics. 

3.3 Bayesian optimization for 
hyperparameter tuning

Bayesian Optimization (BO) offers a probabilistic and 
sample-efficient framework for global optimization, particularly 
suited to scenarios where the objective function is non-convex, 
computationally expensive, and analytically intractable Mustafa 
et al. [35]. In the context of air cargo volume forecasting, 
the objective is to identify the set of hyperparameters that 
minimize predictive error metrics such as the Root Mean 
Squared Error (RMSE) Garrido-Merchán [36]. Traditional tuning 
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strategies, including grid search or random search, often require 
an excessive number of evaluations and risk converging to 
suboptimal configurations, especially when the feature space is 
high-dimensional and model training is computationally intensive. 
BO alleviates these limitations by leveraging uncertainty-aware 
modeling to systematically explore the hyperparameter space.

Formally, let the objective function be defined as Equation 2:

f(θ): Θ→ℝ (2)

Where θ ∈ Θ denotes the hyperparameter configuration of the 
Random Forest (RF) model, and f (θ)corresponds to the validation 
error (negative RMSE) derived from air cargo demand prediction. 
Because training and validating an RF on large-scale multisource 
datasets is computationally expensive, BO introduces a surrogate 
model—commonly a Gaussian Process (GP)—to approximate. f (θ)

The GP surrogate, given historical evaluations 
Dt = {(θi, f (θi))}

t
i=1, provides a posterior distribution Equation 3:

f(θ) ∣Dt ∼ GP (μt(θ),  kt(θ,θ′)) (3)

where ut (θ) is the posterior mean (expected predictive 
performance), and kt (θ,θ′) is the posterior covariance (epistemic 
uncertainty). By quantifying both the estimated outcome and 
the associated uncertainty, BO effectively identifies promising 
hyperparameter regions without resorting to exhaustive search.

The choice of the acquisition function plays a central role in 
guiding the optimization, including:

Expected Improvement (EI) Equation 4:

αEI(θ) = 𝔼[max(0, fbest − f(θ)) Dt] (4)

which favors regions with high potential to surpass the best 
observed performance, particularly important when marginal gains 
in forecasting accuracy can significantly affect logistics planning.

Upper Confidence Bound (UCB) Equation 5:

αUCB (θ) = μt (θ) + κσt (θ) , (5)

Where σt (θ) reflects uncertainty. In volatile contexts—such 
as cargo demand fluctuations driven by macroeconomic 
shocks—this formulation balances the exploitation of known 
effective hyperparameter regions with the exploration of under-
sampled ones.

In the implementation of Bayesian Optimization within this 
study, the Expected Improvement (EI) acquisition function was 
selected as the primary strategy for guiding the search process. 
This choice is particularly appropriate given that the optimization 
objective is to minimize predictive errors, such as the Root 
Mean Squared Error (RMSE), in air cargo demand forecasting. 
By quantifying the expected gain over the current best solution, 
EI effectively aligns with the task of reducing forecast error while 
maintaining computational efficiency.

The iterative BO process is then defined as Equation 6:

θt+1 = argmax
θ∈Θ
 α(θ;Dt), (6)

with each new evaluation updating the GP posterior until 
convergence toward an optimal configuration θ

∗
.

By systematically reducing the reliance on manual trial-and-
error, BO enables the RF model to achieve superior configurations 

in fewer iterations. In practice, this efficiency is crucial for air cargo 
forecasting, where models must accommodate complex, nonlinear 
interactions among explanatory variables such as retail sales, trade 
volumes, and transport turnover. Moreover, the capacity to identify 
near-optimal solutions under computational constraints enhances 
both the robustness and the operational applicability of predictive 
systems in the aviation logistics sector. 

3.4 SHAP explainability: a game-theoretic 
perspective

The interpretability of the proposed framework is grounded 
in the Shapley value, a concept originating from cooperative 
game theory. Formally, the Shapley value for a given feature i is 
expressed as Equation 7:

ϕi = ∑
S⊆N\{i}

|S|! (n− |S| − 1)!
n!

[ f(S∪ {i}) − f(S)] (7)

where N denotes the set of all features, S is any subset excluding 
feature i, and f(⋅) represents the predictive function of the model. 
The term f (S∪ {i}) − f (S) quantifies the marginal contribution of 
feature i when added to subset S, while the combinatorial coefficient 
ensures that the contributions are fairly averaged across all possible 
orderings of features. This formulation mirrors the principle of 
payoff allocation in cooperative games, where each player’s reward 
is determined by their average contribution across all coalitions. 
Translated into a machine learning context, features act as players 
and the model prediction serves as the collective payoff, thereby 
allowing the Shapley value to allocate the prediction outcome among 
features in a manner that is both rigorous and equitable.

Such an interpretation is particularly valuable in the case 
of air cargo demand forecasting, as it not only reveals which 
variables—such as waterborne freight, highway freight, or passenger 
traffic—drive model predictions, but also quantifies their relative 
importance in a game-theoretic sense. Consequently, the Shapley 
value provides a theoretically justified mechanism to bridge 
predictive accuracy with interpretability, ensuring that the 
model’s outputs can inform policy and operational decisions with 
transparency. 

3.5 Evaluation metrics

To comprehensively assess the predictive performance of the 
models, several evaluation indicators are employed, including the 
coefficient of determination (R2), Mean Absolute Error (MAE), 
Root Mean Squared Error (RMSE) Wang et al. [37]. The R2 value 
measures the proportion of variance in the dependent variable 
that is predictable from the independent variables, with higher 
values indicating stronger explanatory power of the model. RMSE 
quantifies the square root of the average squared differences 
between predicted and observed values, placing greater weight 
on larger deviations and thus highlighting prediction robustness. 
MAE, in contrast, provides the average magnitude of errors without 
considering their direction, offering a straightforward measure of 
predictive accuracy Qiu et al. [38]. In general, models with lower 
MAE and RMSE values and higher R2 scores are considered to 
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achieve superior predictive performance. The definitions of these 
statistical metrics are summarized as follows:

Root Mean Squared Error (RMSE) Equation 8:

RMSE = √ 1
n

n

∑
i=1
(ŷi − yi)

2 (8)

Mean Absolute Error (MAE) Equation 9:

MAE = 1
n

n

∑
i=1
|ŷi − yi| (9)

Coefficient of Determination (R2) Equation 10:

R2 = 1−
∑n

i=1
(ŷi − yi)

2

∑n
i=1
(yi − ̄y)

2
(10)

 

4 Data description

4.1 Data source

The empirical analysis in this study utilizes real-world monthly 
air cargo volume data from China Air Cargo Statistics, Civil Aviation 
Administration of China (CAAC) CAAC [39], covering the period 
from March 2006 to April 2025. This dataset contains aggregated 
freight throughput for major domestic and international routes, 
recorded in 105 tons. To capture the multifactorial drivers of air 
cargo demand, additional explanatory variables were collected from 
authoritative sources, including National Bureau of Statistics of 
China (NBS) NBS [40] and General Administration of Customs 
of China GACC [41]. The final compiled dataset consists of 202 
monthly observations (T = 202), with one target predictor (Air 
Cargo Volume) and 16 predictor variables aligned in the same time 
frequency as shown in Table 1.

4.2 Data preprocessing

The preprocessing stage was designed to ensure data quality 
and statistical validity before model training. To mitigate the 
adverse influence of multicollinearity on model stability and 
predictive accuracy, this study first computed the Pearson 
correlation coefficient matrix for all candidate explanatory variables. 
The correlation matrix, as presented in Figure 2, provides a 
straightforward visualization of the linear interdependencies 
among transportation and macroeconomic indicators. To avoid 
redundancy caused by information overlap, the upper triangular 
portion of the matrix was systematically examined. Whenever a 
pair of variables exhibited a correlation coefficient with an absolute 
value exceeding the threshold of |r| > 0.9, only the variable with 
the stronger association with the target variable (air cargo volume) 
was retained.

The choice of a 0.9 threshold is consistent with established 
practices in empirical econometrics and machine learning, where 
correlation values above this level are generally considered to 
indicate near-collinearity, leading to unstable parameter estimation 
and inflated variance in predictive models. While lower thresholds 

(e.g., 0.7 or 0.8) are sometimes adopted, a stricter cut-off 
was selected in this study to minimize the risk of discarding 
potentially informative predictors, thereby striking a balance 
between dimensionality reduction and information preservation.

Through this filtering process, highly homogeneous indicators 
were removed. Representative examples include:
• Highway freight volume and highway freight turnover r ≈ 0.98;
• Waterway freight volume and waterway freight turnover r ≈

0.98;
• Total imports and exports versus exports/imports separately 

r > 0.98;
• Total passenger volume and highway passenger traffic r ≈ 0.99.
As a result of this procedure, a parsimonious yet informative set 

of predictors was preserved. The retained features encompass both 
structural indicators, such as key freight, selected passenger turnover 
measures and temporal variables such as month, which capture 
seasonality, as presented in Figure 3. This refined set of variables not 
only reduces strong linear dependence among predictors but also 
enhances the interpretability of causal structures embedded in the 
data. Ultimately, this step improves the generalization capacity of 
the subsequent modeling framework by ensuring that the predictors 
contribute complementary, non-redundant information.

5 Experiments and results

5.1 Model prediction comparison

To rigorously evaluate the predictive performance of different 
machine learning models, this study conducted a five-fold cross-
validation (n splits = 5, shuffle = True, random state = 42) 
experiment on four representative algorithms: Random Forest 
(RF), Support Vector Regression (SVR), Extreme Gradient Boosting 
(XGBoost), and Gradient Boosted Decision Trees (GBDT). These 
models were selected due to their complementary methodological 
characteristics. RF is robust to noise and capable of capturing 
complex nonlinear relationships and high-order interactions; 
SVR serves as a classical kernel-based baseline with strong 
generalization in small-to-medium-sized datasets; XGBoost 
introduces advanced regularization and sparsity-aware mechanisms 
that enhance efficiency and predictive accuracy; GBDT represents 
the traditional gradient boosting framework widely adopted in 
regression tasks. The evaluation was performed using three standard 
metrics: Root Mean Squared Error (RMSE), Mean Absolute Error 
(MAE), and the coefficient of determination R2. RMSE and MAE 
provide complementary perspectives on error magnitude, while R2

assesses the proportion of variance in air cargo volume explained 
by the model.

The plots in Figure 4 demonstrate that the RF model achieves 
significantly better prediction performance compared to SVR, 
XGBoost and GBDT. Figure 4a highlights that the MAE for 
RF is the lowest at 3.54, compared to 5.22 for SVR, 4.17 for 
XGBoost and 4.01 for GBDT, indicating that RF predictions are 
much closer to the actual values. Similarly, Figure 4b shows that 
the RMSE for RF is 4.62, outperforming SVR (6.94), XGBoost 
(5.4) and GBDT (5.03), further affirming its superior predictive 
accuracy. The R2 values in Figure 4c also reflect this trend, with 
RF achieving 0.8797, a notable improvement over SVR (0.7269), 
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TABLE 1  Description of predictor variables in the dataset.

Dimension Indicator Explanation Type

Transport

Railway freight Volume of Railway transport freight (unit:105tons) Numerical

Highway freight Volume of road transport freight (unit:105tons) Numerical

Water freight Volume of water transport freight (unit:105tons) Numerical

Railway passenger Number of Railway Passenger (unit:105people) Numerical

Highway passenger Number of passengers transported by road (unit:105people) Numerical

Water passenger Number of passengers transported by ship (unit:105people) Numerical

Aviation passenger Number of aviation passengers (unit:105people) Numerical

Railway turnover Volume of railway transport freight turnover (unit:100 million ton-kilometers) Numerical

Highway turnover Volume of Highway transport freight turnover (unit:100 million ton-kilometers) Numerical

Water turnover Volume of water transport freight turnover (unit:100 million ton-kilometers) Numerical

Economic

Total retail sales of consumer goods Total Retail Sales of Consumer Goods, measured monthly in billion RMB Numerical

Total import and export value Total Import and Export Value, measured monthly in thousand US dollars Numerical

Total import value Total Import Value, measured monthly in thousand US dollars Numerical

Total export value Total Export Value, measured monthly in thousand US dollars Numerical

Calendar
Year variables for years to capture temporality Numerical

Month variables for months to capture temporality Numerical

XGBoost (0.8351) and GBDT (0.8573), indicating RF’s higher ability 
to explain the variance in the data.

Based on these findings, RF was selected as the benchmark 
model for subsequent Bayesian optimization due to its superior 
balance of accuracy, robustness, and interpretability. 

5.2 Bayesian optimization of random forest

Building on the superior baseline performance of the Random 
Forest (RF) model, Bayesian Optimization was employed to 
further enhance its predictive capability. The optimization process 
explored a hyperparameter search space defined as follows: 
number of estimators nestimators ∈ [10,300], maximum tree depth 
maxdepth ∈ [3,15], minimum samples required for node splitting 
minsamples split ∈ [2,10], and minimum samples per leaf node 
minsamples lea f ∈ [1,10]. The optimization objective was set to the 
negative Root Mean Squared Error (–RMSE), and a five-fold cross-
validation (n splits = 5, shuffle = True, random state = 42) was used 
to ensure robust performance assessment.

The prediction performance of the proposed model was 
evaluated after determining the optimal hyperparameters. The 
prediction results are presented in Figure 5, with the X and Y-axes 
representing the True and Predicted air cargo freight (105 tons) 
respectively. The black dashed line indicates perfect prediction.

The optimized RF model achieved notable improvements in 
predictive accuracy. As shown in Figure 5, the cross-validation 
results indicate that the optimized RF attained an R2 of 
approximately 0.905, an RMSE of 4.130, and an MAE of 3.178. 
The majority of predicted points are tightly clustered around the 
ideal fitting line, with residuals color levels concentrated in the lower 
range. This compact distribution indicates not only improved model 
fit but also enhanced robustness across varying sample ranges. 
Such stability is particularly critical in air cargo forecasting, where 
demand fluctuations and nonlinear relationships often challenge 
conventional predictive approaches.

The results demonstrate that Bayesian Optimization 
significantly strengthens RF’s predictive performance, yielding 
a model that is both accurate and reliable. Consequently, the 
optimized RF serves as the core forecasting framework for 
subsequent interpretability analyses based on SHAP. 

5.3 Feature importance analysis with SHAP

5.3.1 Feature importance and directional effects
The SHAP summary plot provides a detailed interpretation of 

the relative importance and directional impact of the explanatory 
variables on air cargo freight prediction. As illustrated in Figure 6, 
Water transport freight and Highway freight emerge as the two 
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FIGURE 2
Pearson correlation plot.

most influential factors, with red points concentrated on the right-
hand side of the x-axis and blue points on the left. This pattern 
indicates that higher volumes of waterborne and highway freight 
exert a strong positive contribution to air cargo, effectively driving 
the predicted values upward.

Civil aviation passenger volume also demonstrates a clear and 
consistent positive effect, reflecting that larger passenger flows are 
typically associated with higher air cargo demand. This result is 
consistent with the synergistic effect of bellyhold cargo capacity and 
enhanced route network density in civil aviation operations.

In contrast, Highway passenger turnover exhibits a more 
dispersed and symmetric distribution of SHAP values across both 
positive and negative regions, suggesting potential nonlinear or 
threshold effects (as further evidenced in Figure 7). The variable 
month shows a moderate level of influence, with red and blue 
points distributed closely around zero. This pattern reflects seasonal 
dynamics in air cargo demand, where peak travel periods boost 
freight volumes while off-peak months suppress them.

Passenger turnover contributes positively overall, albeit with 
relatively smaller magnitude compared to freight-related indicators. 
Conversely, Water transport passenger volume and its associated 

turnover predominantly display negative SHAP values, indicating 
that higher levels of passenger water transport tend to reduce 
predicted air cargo volumes. This negative relationship is plausibly 
attributed to modal substitution or structural redistribution effects 
across transportation systems. 

5.3.2 Univariate dependence analysis
To further probe into the nonlinear effects and threshold 

behaviors of individual predictors, SHAP dependence plots were 
constructed for the key explanatory variables in Figure 7. In 
each subplot, the x-axis represents the original feature value, 
while the y-axis denotes its corresponding SHAP value, reflecting 
the marginal contribution of the variable to the predicted 
air cargo volume. The smoothed orange curve highlights the 
overall trend, whereas the gray dashed line marks the zero 
baseline and critical turning points. The main findings are
summarized as follows.

Highway passenger turnover exhibits an evident inverted U-
shaped relationship. The SHAP value peaks positively around 
900–1000, after which further increases in turnover reverse into 
negative contributions. This pattern suggests diminishing returns 
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FIGURE 3
Correlation network plot.

FIGURE 4
Performance comparison of RF, SVR, XGBoost and GBDT models: (a) MAE, (b) RMSE, (c) R.2.

and possible congestion effects when highway passenger flows 
become excessive.

Water transport passenger turnover demonstrates a monotonic 
decline in SHAP values as turnover increases, crossing the zero 
threshold at approximately 5.5–6. This indicates that, at larger scales 
of waterway passenger activity, substitution effects emerge that 
suppress the demand for air freight.

Passenger turnover (total) also follows an inverted U-shaped 
curve, with an optimal positive contribution around 2000. Beyond 
this point, marginal effects turn negative, implying that overly 

intensive overall passenger movements reduce the incremental 
demand for air cargo.

Civil aviation passenger volume shows an approximately linear 
positive trend. The “zero impact point” occurs near 3600, beyond 
which larger passenger scales consistently elevate air freight volume.

Water transport passenger volume contributes monotonically 
negatively, crossing the zero axis around 1900–2000. This suggests 
that as waterway passenger flows grow, the stimulative effect 
on air freight weakens, consistent with substitution across 
transport modes.
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FIGURE 5
True values vs. predicted values of air cargo freight.

FIGURE 6
SHAP global explanation on RF model.

Month reflects clear seasonal patterns. The SHAP curve turns 
positive after August, capturing the high-demand peak season that 
significantly raises air freight predictions, while earlier months 
mostly exert a suppressive effect.

Water transport freight exhibits a strong positive association, 
transitioning from negative to positive contributions around 4.6×
104. Higher levels of waterborne freight consistently amplify 
air cargo volume, highlighting complementarities in multimodal 
freight dynamics.

Highway freight displays an almost linear positive effect. Around 
2.4× 105, the SHAP value approaches zero, and subsequent increases 
steadily lift predicted air cargo volume, underscoring its role as a 
major driver. 

5.3.3 Bivariate dependence and interaction 
effects

To further explore the synergistic or substitutive relationships 
among explanatory variables, this study employed colored SHAP 
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FIGURE 7
Univariate SHAP dependence plots illustrating trend and threshold.

FIGURE 8
Bivariate SHAP dependence plots illustrating feature interactions.

dependence plots that highlight the role of secondary features 
as shown in Figure 8. In each subplot, the x-axis denotes 
the raw value of the primary feature, the y-axis represents 
the corresponding SHAP value, while the color gradient of 
the scatter points reflects the magnitude of the secondary 
feature. A black smoothed line is fitted to reveal the overall 
interaction trend. This visualization enables the identification of 
interaction amplifications (synergy) and attenuation mechanisms 
(substitution), thereby enriching the interpretability of the
prediction model.

Water transport freight ×  Highway freight (top-left): When 
both water transport freight and highway freight are simultaneously 

high (red dots), the SHAP values rise sharply, suggesting a strong 
supply-side resonance and synergistic amplification rather than 
simple substitution.

Highway freight ×  Civil aviation passenger: The slope of 
highway freight’s positive contribution becomes steeper as civil 
aviation passenger volume increases (red), indicating a reinforced 
human–cargo coupling effect.

Civil aviation passenger ×  Highway passenger turnover: Civil 
aviation passenger consistently pushes predictions upward, but 
when highway passenger turnover is high (red), the slope steepens 
further, reflecting that active passenger flows amplify the positive 
impact of civil aviation passenger volumes.
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Highway passenger turnover ×  Month: At low-month phases 
(blue), highway passenger turnover shifts rapidly from negative to 
positive contributions; however, during peak-season months (red), 
excessive turnover levels turn negative, implying that seasonality 
modulates the threshold effect.

Month ×  Passenger turnover: In high-season months (red), 
passenger turnover strongly boosts the SHAP contribution of 
month, revealing a multiplicative effect of seasonal demand and 
travel intensity.

Passenger turnover ×  Water transport passenger: When water 
transport passenger levels are high (red), the positive contribution 
of passenger turnover diminishes, with its peak appearing earlier 
and at a lower magnitude, suggesting enhanced substitution effects 
between air and water passenger flows.

Water transport passenger ×  Water transport passenger 
turnover: When both features are high (red), the SHAP curve 
consistently trends downward, indicating a reinforced substitution 
mechanism within the water transport dimension, which suppresses 
air cargo demand.

Collectively, these bivariate dependence plots uncover nuanced 
interaction mechanisms: freight-related indicators exhibit strong 
synergy when co-elevated, while passenger-related indicators 
demonstrate both seasonal modulation and modal substitution. 
Such findings underscore the importance of capturing second-
order interactions when designing predictive models for air
cargo volume. 

6 Conclusion and policy implications

6.1 Conclusion

This study advances the literature on air cargo forecasting 
by proposing an interpretable hybrid framework that combines 
Bayesian Optimization (BO), Random Forests (RF), and SHAP-
based feature attribution derived from cooperative game theory. 
Drawing on a comprehensive dataset that integrates China’s air cargo 
statistics with macroeconomic indicators and multimodal transport 
variables, the model yields several key findings.

The empirical results underscore the superior predictive 
capability of the BO-RF framework. By consistently outperforming 
benchmark models such as SVM, XGBoost, and GBDT across 
RMSE, MAE, and R2 metrics, the study demonstrates the value 
of BO in enhancing the robustness and accuracy of machine 
learning–based forecasting Xi et al. [42]. Beyond predictive 
performance, the integration of SHAP offers high interpretability, 
revealing that waterborne freight, highway freight, and civil aviation 
passenger volume emerge as the most influential predictors of 
cargo demand. These insights not only expose underlying demand 
dynamics but also form a practical foundation for aligning transport 
infrastructure investment and planning. Taken together, the 
combination of predictive accuracy and interpretability positions 
the proposed framework as a relevant tool for both short-term 
operational decision-making and longer-term strategic policy 
development in aviation logistics.

6.2 Policy implications

Enhance intermodal coordination and capacity alignment. The 
dominant SHAP contributions from highway and waterborne 
freight indicate that reinforcing multimodal links (e.g., 
port–airport–highway corridors) can raise transfer efficiency 
and stabilize air cargo throughput. Policymakers can use model 
outputs to prioritize corridor upgrades, cross-docking facilities, and 
time-window synchronization across modes.

Embed explainable AI in logistics governance. Regulators and 
logistics firms can adopt interpretable models such as BO–RF + 
SHAP to guide slot allocation, pricing adjustments, and compliance 
monitoring Tong et al. [43]. The transparency of SHAP values 
ensures that predictions are not only accurate but also trustworthy, 
supporting evidence-based policy implementation.

Guide long-horizon policy under uncertainty. By quantifying 
the influence of macroeconomic and transport variables, the 
framework equips policymakers and industry leaders with insights 
for resilient planning. It supports strategic initiatives such as capacity 
expansion, carbon reduction policies, and trade resilience strategies, 
ensuring aviation logistics adapts effectively to both structural 
changes and short-term shocks. 

6.3 Future research directions

While the proposed framework provides both methodological 
innovation and practical value, its scope can be expanded in several 
promising directions. One avenue is the integration of real-time data 
sources, such as live shipping records, highway traffic flows, and 
customs clearance processes, to improve short-term responsiveness 
and forecasting accuracy. Another promising path involves 
hybrid deep learning extensions, in which BO-tuned Random 
Forests are combined with temporal architectures like LSTM or 
Transformer models to capture complex sequential dependencies 
Nunekpeku et al. [44]. Finally, game-theoretic simulation offers a 
fruitful opportunity, as SHAP-derived feature contributions could 
serve as inputs to model competitive and cooperative interactions 
among logistics stakeholders, enabling richer analyses of market 
dynamics and policy interventions.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material, further inquiries can be directed 
to the corresponding author.

Author contributions

LZ: Conceptualization, Funding acquisition, Project 
administration, Validation, Visualization, Writing – original draft, 
Writing – review and editing. LJ: Data curation, Investigation, 
Methodology, Resources, Validation, Writing – review and editing.

Frontiers in Physics 13 frontiersin.org

https://doi.org/10.3389/fphy.2025.1705687
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Zhang and Jiang 10.3389/fphy.2025.1705687

Funding

The author(s) declare that financial support was received for 
the research and/or publication of this article. This research was 
funded by Jiangsu Provincial Higher Education Philosophy and 
Social Sciences Research Project grant number 2023SJYB2240 
and supported by 2024 Jiangsu Province Higher Vocational 
Colleges Young Faculty Enterprise Practice Program fund
NO.2024QYSJ122.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

The reviewer D. H declared a shared affiliation with the author(s) 
to the handling editor at the time of review.

Generative AI statement

The author(s) declare that no Generative AI was used in the 
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in 
this article has been generated by Frontiers with the support of 
artificial intelligence and reasonable efforts have been made to 
ensure accuracy, including review by the authors wherever possible. 
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher. 

References

1. İlgün Ayhan D, Alptekin SE. An integrated capacity allocation and dynamic 
pricing model designed for air cargo transportation. Appl Sci (2025) 15:5344. 
doi:10.3390/app15105344

2. Nguyen QH. Modeling the volatility of international air freight: a case study 
of Singapore using the sarimax-egarch model. J Air Transport Management (2024) 
117:102593. doi:10.1016/j.jairtraman.2024.102593

3. Rodríguez Y, Olariaga OD. Air traffic demand forecasting with a bayesian 
structural time series approach. Periodica Polytechnica Transportation Eng (2024) 
52:75–85. doi:10.3311/PPtr.20973

4. Garg A, Shukla N, Wormer M (2024). Time series forecasting with high stakes: a 
field study of the air cargo industry. arXiv preprint arXiv:2407.

5. Kosasih EE, Papadakis E, Baryannis G, Brintrup A. A review of explainable 
artificial intelligence in supply chain management using neurosymbolic approaches. Int 
J Prod Res (2024) 62:1510–40. doi:10.1080/00207543.2023.2281663

6. Sahoo R, Pasayat AK, Bhowmick B, Fernandes K, Tiwari MK. A hybrid ensemble 
learning-based prediction model to minimise delay in air cargo transport using 
bagging and stacking. Int J Prod Res (2022) 60:644–60. doi:10.1080/00207543.2021.
2013563

7. Wu J, Chen X-Y, Zhang H, Xiong L-D, Lei H, Deng S-H. Hyperparameter 
optimization for machine learning models based on bayesian optimization. J Electron 
Sci Technology (2019) 17:26–40.

8. Raiaan MAK, Sakib S, Fahad NM, Al Mamun A, Rahman MA, Shatabda S, 
et al. A systematic review of hyperparameter optimization techniques in convolutional 
neural networks. Decis Analytics J (2024) 11:100470. doi:10.1016/j.dajour.2024.
100470

9. Nasseri M, Falatouri T, Brandtner P, Darbanian F. Applying machine learning in 
retail demand prediction—a comparison of tree-based ensembles and long short-term 
memory-based deep learning. Appl Sci (2023) 13:11112. doi:10.3390/app131911112

10. Abdulrashid I, Farahani RZ, Mammadov S, Khalafalla M, Chiang W-C. 
Explainable artificial intelligence in transport logistics: risk analysis for road 
accidents. Transportation Res E: Logistics Transportation Rev (2024) 186:103563. 
doi:10.1016/j.tre.2024.103563

11. Thakur D, Biswas S. Permutation importance based modified guided regularized 
random forest in human activity recognition with smartphone. Eng Appl Artif 
Intelligence (2024) 129:107681. doi:10.1016/j.engappai.2023.107681

12. Joy TT, Rana S, Gupta S, Venkatesh S. Fast hyperparameter tuning using bayesian 
optimization with directional derivatives. Knowledge-Based Syst (2020) 205:106247. 
doi:10.1016/j.knosys.2020.106247

13. Yang C, Guan X, Xu Q, Xing W, Chen X, Chen J, et al. How can 
shap (shapley additive explanations) interpretations improve deep learning based 
urban cellular automata model? Comput Environ Urban Syst (2024) 111:102133. 
doi:10.1016/j.compenvurbsys.2024.102133

14. Fatima SSW, Rahimi A. A review of time-series forecasting 
algorithms for industrial manufacturing systems. Machines (2024) 12:380. 
doi:10.3390/machines12060380

15. Kontopoulou VI, Panagopoulos AD, Kakkos I, Matsopoulos GK. A review of 
arima vs. machine learning approaches for time series forecasting in data driven 
networks. Future Internet (2023) 15:255. doi:10.3390/fi15080255

16. Ileri K. Comparative analysis of catboost, lightgbm, xgboost, rf, and dt methods 
optimised with pso to estimate the number of k-barriers for intrusion detection 
in wireless sensor networks. Int J Machine Learn Cybernetics (2025) 16:6937–56. 
doi:10.1007/s13042-025-02654-5

17. Yu T, Zhu H (2020). Hyper-parameter optimization: a review of algorithms and 
applications. arXiv preprint arXiv:2003.05689.

18. Pravin P, Tan JZM, Yap KS, Wu Z. Hyperparameter optimization 
strategies for machine learning-based stochastic energy efficient scheduling 
in cyber-physical production systems. Digital Chem Eng (2022) 4:100047. 
doi:10.1016/j.dche.2022.100047

19. Rudin C. Stop explaining black box machine learning models for high stakes 
decisions and use interpretable models instead. Nat machine intelligence (2019) 
1:206–15. doi:10.1038/s42256-019-0048-x

20. Hassija V, Chamola V, Mahapatra A, Singal A, Goel D, Huang K, et al. Interpreting 
black-box models: a review on explainable artificial intelligence. Cogn Comput (2024) 
16:45–74. doi:10.1007/s12559-023-10179-8

21. Ponce-Bobadilla AV, Schmitt V, Maier CS, Mensing S, Stodtmann S. Practical 
guide to shap analysis: explaining supervised machine learning model predictions in 
drug development. Clin translational Sci (2024) 17:e70056. doi:10.1111/cts.70056

22. Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, et al. From 
local explanations to global understanding with explainable ai for trees. Nat machine 
intelligence (2020) 2:56–67. doi:10.1038/s42256-019-0138-9

23. Idrissi MI, Machado AF, Charpentier A (2025). Beyond shapley values: 
cooperative games for the interpretation of machine learning models. arXiv preprint 
arXiv:2506.

24. Xu J, Chau H, Burden A (2025). From abstract to actionable: pairwise shapley 
values for explainable ai. arXiv preprint arXiv:2502.12525.

25. Mohammadi M, Chau SL, Muandet K (2025). Computing exact shapley values in 
polynomial time for product-kernel methods. arXiv preprint arXiv:2505.

26. Rozemberczki B, Watson L, Bayer P, Yang H-T, Kiss O, Nilsson S, et al. The 
shapley value in machine learning. In: The 31st international joint conference on artificial 
intelligence and the 25th European conference on artificial intelligence (2022). p. 5572–9.

27. Li M, Sun H, Huang Y, Chen H. Shapley value: from cooperative 
game to explainable artificial intelligence. Autonomous Intell Syst (2024) 4:2. 
doi:10.1007/s43684-023-00060-8

28. Ahmed KR, Ansari ME, Ahsan MN, Rohan A, Uddin MB, Rivin MAH, et al. Deep 
learning framework for interpretable supply chain forecasting using som ann and shap. 
Scientific Rep (2025) 15:26355. doi:10.1038/s41598-025-11510-z

29. Zhang R, Mao J, Wang H, Li B, Cheng X, Yang L. A survey on federated learning 
in intelligent transportation systems. IEEE Trans Intell Vehicles (2024) 10:3043–59. 
doi:10.1109/tiv.2024.3446319

Frontiers in Physics 14 frontiersin.org

https://doi.org/10.3389/fphy.2025.1705687
https://doi.org/10.3390/app15105344
https://doi.org/10.1016/j.jairtraman.2024.102593
https://doi.org/10.3311/PPtr.20973
https://doi.org/10.1080/00207543.2023.2281663
https://doi.org/10.1080/00207543.2021.2013563
https://doi.org/10.1080/00207543.2021.2013563
https://doi.org/10.1016/j.dajour.2024.100470
https://doi.org/10.1016/j.dajour.2024.100470
https://doi.org/10.3390/app131911112
https://doi.org/10.1016/j.tre.2024.103563
https://doi.org/10.1016/j.engappai.2023.107681
https://doi.org/10.1016/j.knosys.2020.106247
https://doi.org/10.1016/j.compenvurbsys.2024.102133
https://doi.org/10.3390/machines12060380
https://doi.org/10.3390/fi15080255
https://doi.org/10.1007/s13042-025-02654-5
https://doi.org/10.1016/j.dche.2022.100047
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1007/s12559-023-10179-8
https://doi.org/10.1111/cts.70056
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1007/s43684-023-00060-8
https://doi.org/10.1038/s41598-025-11510-z
https://doi.org/10.1109/tiv.2024.3446319
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Zhang and Jiang 10.3389/fphy.2025.1705687

30. Białek J, Bujalski W, Wojdan K, Guzek M, Kurek T. Dataset level 
explanation of heat demand forecasting ann with shap. Energy (2022) 261:125075. 
doi:10.1016/j.energy.2022.125075

31. Kahalimoghadam M, Thompson RG, Rajabifard A. An intelligent multi-agent 
system for last-mile logistics. Transportation Res Part E: Logistics Transportation Rev
(2025) 200:104191. doi:10.1016/j.tre.2025.104191

32. Liu B, Mazumder R. Randomization can reduce both bias and variance: 
a case study in random forests. J Machine Learn Res (2025) 26:1–49. 
doi:10.48550/arXiv.2402.12668

33. Barreñada L, Dhiman P, Timmerman D, Boulesteix A-L, Van Calster B. 
Understanding overfitting in random forest for probability estimation: a visualization 
and simulation study. Diagn Prognostic Res (2024) 8:14. doi:10.1186/s41512-024-
00177-1

34. Probst P, Boulesteix A-L. To tune or not to tune the number of trees in random 
forest. J Machine Learn Res (2018) 18:1–18. doi:10.48550/arXiv.1705.05654

35. Mustafa A, Khattak KS, Khan ZH. Predicting short-term traffic with random 
forest: a granular data approach. In: International Conference on Energy, Power, 
Environment, Control and Computing (ICEPECC 2025); 19-20 February 2025; Hybrid 
Conference, Gujrat, Pakistan. Gujrat, Pakistan: IET (2025). 222–8.

36. Garrido-Merchán EC (2025). Information-theoretic bayesian optimization: 
survey and tutorial. arXiv preprint arXiv:2502.06789.

37. Wang H, Gu J, Wang M. A review on the application of computer vision and 
machine learning in the tea industry. Front Sustainable Food Syst (2023) 7:1172543. 
doi:10.3389/fsufs.2023.1172543

38. Qiu D, Guo T, Yu S, Liu W, Li L, Sun Z, et al. Classification of apple color 
and deformity using machine vision combined with cnn. Agriculture (2024) 14:978. 
doi:10.3390/agriculture14070978

39. CAAC (2025). Monthly transportation production statistics.

40. NBS (2025). Monthly data statistics

41. GACC (2025). Online customs statistics query platform.

42. Xi Q, Chen Q, Ahmad W, Pan J, Zhao S, Xia Y, et al. Quantitative analysis 
and visualization of chemical compositions during shrimp flesh deterioration using 
hyperspectral imaging: a comparative study of machine learning and deep learning 
models. Food Chem (2025) 481:143997. doi:10.1016/j.foodchem.2025.143997

43. Tong Z, Zhang S, Yu J, Zhang X, Wang B, Zheng W. A hybrid prediction model 
for catboost tomato transpiration rate based on feature extraction. Agronomy (2023) 
13:2371. doi:10.3390/agronomy13092371

44. Nunekpeku X, Zhang W, Gao J, Adade SY-SS, Li H, Chen Q. Gel strength 
prediction in ultrasonicated chicken mince: fusing near-infrared and raman 
spectroscopy coupled with deep learning lstm algorithm. Food Control (2025) 
168:110916. doi:10.1016/j.foodcont.2024.110916

Frontiers in Physics 15 frontiersin.org

https://doi.org/10.3389/fphy.2025.1705687
https://doi.org/10.1016/j.energy.2022.125075
https://doi.org/10.1016/j.tre.2025.104191
https://doi.org/10.48550/arXiv.2402.12668
https://doi.org/10.1186/s41512-024-00177-1
https://doi.org/10.1186/s41512-024-00177-1
https://doi.org/10.48550/arXiv.1705.05654
https://doi.org/10.3389/fsufs.2023.1172543
https://doi.org/10.3390/agriculture14070978
https://doi.org/10.1016/j.foodchem.2025.143997
https://doi.org/10.3390/agronomy13092371
https://doi.org/10.1016/j.foodcont.2024.110916
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

	1 Introduction
	1.1 Background and motivation
	1.2 Limitations of traditional approaches
	1.3 Novelty of the proposed framework
	1.4 Organization of the paper

	2 Literature review
	2.1 Forecasting methods for air cargo volume
	2.2 Bayesian Optimization for hyperparameter tuning
	2.3 SHAP and game-theoretic interpretability
	2.4 Interpretable forecasting in transportation decision-making
	2.5 Research gap and study contribution

	3 Methodology
	3.1 Model architecture
	3.1.1 Input layer
	3.1.2 Forecasting layer
	3.1.3 Interpretability layer

	3.2 Random forests: A nonlinear approach
	3.3 Bayesian optimization for hyperparameter tuning
	3.4 SHAP explainability: a game-theoretic perspective
	3.5 Evaluation metrics

	4 Data description
	4.1 Data source
	4.2 Data preprocessing

	5 Experiments and results
	5.1 Model prediction comparison
	5.2 Bayesian optimization of random forest
	5.3 Feature importance analysis with SHAP
	5.3.1 Feature importance and directional effects
	5.3.2 Univariate dependence analysis
	5.3.3 Bivariate dependence and interaction effects


	6 Conclusion and policy implications
	6.1 Conclusion
	6.2 Policy implications
	6.3 Future research directions

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

