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Reliable forecasting of air cargo demand is crucial for optimizing logistics
operations, scheduling air freight capacity, and reducing operational costs
in a dynamic global supply chain environment. This study proposes a
novel interpretable forecasting framework that integrates Bayesian-optimized
Random Forests (BO-RF) with game-theoretic SHAP (SHapley Additive
exPlanations) analysis to enhance both prediction accuracy and model
transparency. The proposed BO-RF model leverages Bayesian Optimization
to fine-tune hyperparameters efficiently, thus improving the generalization
performance of Random Forests on small-sample air cargo datasets. To
address the interpretability challenge of machine learning models, SHAP
values are introduced, providing theoretically grounded, fair attribution of
each input feature’'s marginal contribution based on cooperative game theory.
Experiments based on real-world monthly air cargo data demonstrate that
the proposed method outperforms traditional machine learning benchmarks in
both accuracy and interpretability. By combining Bayesian-optimized ensemble
learning with SHAP-based interpretability, the study contributes to the growing
literature on explainable, data-driven forecasting in transportation and provides
actionable insights for demand management and capacity planning in the air
freight industry.

air cargo demand forecasting, Bayesian optimization, random forest, SHAP values, game
theory, explainable machine learning

1 Introduction
1.1 Background and motivation

Accurate forecasting of air cargo demand is essential for optimizing strategic planning,
resource allocation, and operational efficiency in the global aviation logistics sector Ilgiin
Ayhan and Alptekin [1]. However, the sector faces significant challenges due to the
volatile and stochastic nature of cargo volumes, driven by factors such as fluctuating trade
flows, multi-modal transport disruptions, and abrupt policy changes Nguyen [2]. This
volatility poses risks to stakeholders, including airlines, freight forwarders, and regulators,
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who need reliable forecasts for long-term planning. In addition to
supporting tactical decisions such as flight scheduling and cargo
space allocation, accurate forecasts are crucial for shaping policy
decisions and infrastructure investments, which must anticipate
future demand trends and ensure the sustainability of the logistics
ecosystem Rodriguez and Olariaga [3].

1.2 Limitations of traditional approaches

Traditional time-series and econometric models, including
ARIMA and exponential smoothing, have long served as the
foundation of air cargo demand forecasting Garg etal. [4]. Yet
their effectiveness diminishes when the system exhibits nonlinear
dynamics driven by macroeconomic fluctuations, the competition
of alternative transport modes such as maritime or rail freight, and
pronounced seasonal variability Kosasih et al. [5]. These limitations
have motivated a growing shift toward machine learning (ML)
methods—Random Forests (RF), Support Vector Regression (SVR),
and neural networks—whose flexibility enables them to capture
intricate dependencies and manage noisy, high-dimensional data
environments more effectively Sahoo et al. [6].

Although models such as RF have shown considerable
promise, their practical application in air cargo forecasting remains
constrained. One obstacle lies in the sensitivity of predictive
accuracy to hyperparameter settings, including tree depth, ensemble
size, and split thresholds Wu et al. [7]. In many empirical studies,
these values are chosen manually or by grid search, a strategy that
is not only computationally costly but also prone to missing well-
performing regions of the parameter space Raiaan et al. [8]. A model
tuned in this way may overfit short-term noise or underfit structural
demand patterns, particularly in small or imbalanced datasets that
often characterize logistics operations Nasseri et al. [9]. This raises a
critical methodological question: how can hyperparameter selection
be automated in a way that is both efficient and adaptive to the data
environment?

Another limitation concerns the interpretability of RF
predictions. Despite their strong performance, RF models often
operate as opaque “black boxes,” offering limited insight into how
input variables drive outcomes. In practice, stakeholders in air cargo
logistics—ranging from airlines to regulatory authorities—require
not only reliable forecasts but also transparent models that
reveal underlying causal mechanisms Abdulrashid etal. [10].
Conventional feature importance measures, such as Gini-based
scores, are frequently criticized for their lack of theoretical rigor and
inability to capture interaction effects across features Thakur and
Biswas [11]. This gap becomes particularly pressing in high-stakes
contexts where trust, accountability, and compliance are as vital as
predictive precision Abdulrashid et al. [10].

1.3 Novelty of the proposed framework

To overcome these challenges, the present study introduces
two complementary innovations. The first is the integration of
Bayesian Optimization (BO) with RE, which provides a principled
and probabilistic framework for hyperparameter search Joy et al.
[12]. By leveraging surrogate models and acquisition functions, BO
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intelligently navigates the parameter landscape, achieving improved
accuracy and robustness with far fewer evaluations than exhaustive
methods Raiaan etal. [8]. The second is the incorporation of
SHAP values, a game-theoretic interpretability technique grounded
in Shapley values, to decompose model outputs into additive
feature contributions Yang et al. [13]. This approach not only yields
transparent, context-aware explanations of predictive outcomes but
also supports the validation of model logic against domain expertise.

This paper introduces a novel hybrid framework that integrates
Bayesian Optimization (BO) with Random Forests (RF) and SHAP-
based interpretability, creating a more robust and interpretable
approach for air cargo demand forecasting. Our approach stands
out by coupling Bayesian Optimization with RF for hyperparameter
tuning, ensuring that the model parameters are selected based on
probabilistic reasoning, which improves accuracy and efficiency
compared to traditional trial-and-error methods. Moreover, the
integration of SHAP provides transparent, game-theoretic feature
attribution, enabling both local and global interpretability of model
predictions. This allows stakeholders to not only trust the forecasts
but also understand the key drivers of demand, which is critical for
informed decision-making in dynamic, complex environments like
logistics and transportation.

1.4 Organization of the paper

The remainder of this paper is organized as follows:

Section 2 reviews related work in air cargo forecasting, Bayesian
optimization, and explainable machine learning.

Section 3 presents the proposed BO-RF-SHAP framework and
its theoretical foundations.

Section 4 introduces the dataset and variable design.

Section 5 reports the experimental results and SHAP analysis.

Section 6 concludes the paper and suggests directions for
future research.

2 Literature review

The accurate forecasting of air cargo volume has become
increasingly vital due to growing volatility in global supply
chains and the strategic importance of air freight in high-
value logistics. This section reviews the current state of research
from five key dimensions: (1) Forecasting methods for air cargo
volume, (2) Bayesian Optimization for hyperparameter tuning,
(3) SHAP and game-theoretic explainability, (4) applications of
interpretable models in transportation decisions, and (5) Research
gaps motivating this study.

2.1 Forecasting methods for air cargo
volume

Early research on forecasting air cargo volumes predominantly

employed statistical and time-series techniques, including

exponential smoothing and seasonal decomposition Fatima and
Rahimi [14]. While these models are valued for their transparency
and straightforward implementation, they frequently fall short in
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capturing the nonlinear dependencies that arise from interactions
between macroeconomic fluctuations, operational constraints,
and external shocks Kontopoulou et al. [15]. This raises a critical
methodological issue: can such traditional models adapt to the
increasingly complex dynamics of modern aviation logistics?

The proliferation of big data in aviation, together with
advances in machine learning (ML), has prompted a shift toward
more sophisticated forecasting approaches. Among them, Random
Forests (RF) have emerged as a widely used tool, largely due
to their ensemble structure, robustness against overfitting, and
capacity to manage high-dimensional, noisy datasets Sahoo et al. [6].
Studies applying RF extend across diverse domains of transportation
research, ranging from passenger demand forecasting to freight
flow estimation and mode choice modeling. At the same time,
gradient boosting methods such as XGBoost and LightGBM have
demonstrated strong predictive capabilities, particularly in large-
scale or time-sensitive applications where rapid model training and
high accuracy are essential Ileri [16].

A persistent concern lies in the reliance of these models on
carefully tuned hyperparameters, without which their performance
may deteriorate significantly Raiaan et al. [8]. Compounding this
challenge is the interpretability issue: most tree-based ensembles
function as opaque “black boxes,” leaving practitioners uncertain
about the drivers of forecasted outcomes Abdulrashid et al. [10]. In
high-stakes contexts such as cargo capacity allocation or regulatory
policy design, such opacity can reduce stakeholder confidence and
hinder adoption. The question, therefore, is not merely whether
these models can predict accurately, but whether they can do so in
ways that are transparent and actionable for decision-makers.

2.2 Bayesian Optimization for
hyperparameter tuning

The selection of hyperparameters often determines the success or
failure of a machine learning model, as even small adjustments can
lead to substantial differences in predictive accuracy Kontopoulou
etal. [15]. In practice, traditional approaches such as grid search and
random search are still widely used; however, their exhaustive or purely
stochastic nature requires heavy computational resources, which
makes them impractical when facing high-dimensional parameter
spaces or limited training samples Yu and Zhu [17]. Against
this backdrop, Bayesian Optimization (BO) has emerged as a
particularly compelling alternative. By combining surrogate models
such as Gaussian Processes with acquisition functions like Expected
Improvement, BO intelligently balances exploration and exploitation,
searching for promising configurations with remarkable sample
efficiency. This methodological design is especially advantageous
in domains such as logistics and transportation analytics, where
evaluating each model configuration can be computationally costly
and time-sensitive decision-making amplifies the need for efficient
optimization Pravin et al. [18].

Recent studies have taken this a step further by integrating
BO with Random Forests, producing BO-RF frameworks that
consistently outperform standard tuning procedures. Applications
in energy forecasting, demand prediction, and financial risk
modeling illustrate the versatility of this approach and its ability to
deliver both robustness and accuracy in complex environments. Yet,
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despite these encouraging results, the air cargo forecasting domain
has only begun to explore this methodology. The lack of research
on combining BO-RF with interpretability tools such as SHAP
raises a critical question: how might the fusion of optimization and
explainability reshape forecasting into a decision-support tool that
is both powerful and transparent?

2.3 SHAP and game-theoretic
interpretability

In recent years, the rapid adoption of machine learning
models in forecasting and decision-making has underscored the
importance of interpretability Rudin [19]. While ensemble methods
such as Random Forests or gradient boosting provide strong
predictive performance, their “black-box” nature often limits
practical applicability, particularly in domains like transportation
and logistics where decision-makers require transparency to justify
policy interventions Abdulrashid etal. [10]. To address this
limitation, Shapley Additive Explanations (SHAP) have emerged
as a robust interpretability framework grounded in cooperative
game theory Hassija etal. [20]. SHAP assigns each feature a
contribution score by considering all possible coalitions of features,
thereby ensuring consistency and local accuracy in attribution
Nguyen [2]. Unlike traditional importance measures that often yield
unstable or biased results, SHAP values provide a theoretically
sound decomposition of model predictions into feature-level effects
Kosasih etal. [5]. This property makes SHAP especially useful
in revealing nonlinear patterns, threshold effects, and interaction
mechanisms that are otherwise obscured in complex models Ponce-
Bobadilla et al. [21].

The SHAP framework builds upon the foundational work in
cooperative game theory by attributing predictive outcomes to
feature-level contributions through Shapley values Hassija et al.
[20]. While Lundberg and Lee’s seminal introduction of SHAP
remains influential, recent research has extended its theoretical
underpinnings and broadened its applicability across domains
Lundberg etal. [22]. For instance, Idrissi etal. [23] critically re-
examine the axiomatic constraints of Shapley-based explanations
and propose generalized allocation schemes, such as Weber and
Harsanyi sets, that offer more flexible and interpretively robust
alternatives. Additionally, Xu etal. [24] introduce the concept of
Pairwise Shapley Values, a novel framework aimed at improving
interpretability through intuitive comparisons between similar
instances—particularly valuable in regression tasks where scenarios
like real estate valuation or material property prediction demand
explainability and computational efficiency. Furthermore, for
models employing kernel-based methods, Mohammadi et al. [25]
present PKeX-Shapley, an algorithm that enables exact polynomial-
time computation of Shapley values by exploiting product-
kernel structures, thereby reducing computational overhead while
preserving exactness in feature attributions.

Applications of SHAP have been expanding across domains such
as finance, healthcare, and energy demand forecasting, where both
accuracy and interpretability are essential Rozemberczki et al. [26].
In the transportation field, SHAP has been employed to explain
traffic flow predictions, ride-hailing demand estimation, and freight
logistics modeling, highlighting its versatility in uncovering hidden
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behavioral and structural drivers. However, its use in air cargo
demand forecasting remains limited, despite the clear potential
to illuminate the interplay between macroeconomic indicators,
multimodal transport activities, and seasonal variations Li et al. [27].

By integrating SHAP into this study, the objective is not
only to provide accurate forecasts but also to deliver interpretable
insights into the relative influence and interaction of explanatory
variables. Such insights can bridge the gap between technical model
outputs and actionable strategies for aviation logistics stakeholders
Ahmed et al. [28].

2.4 Interpretable forecasting in
transportation decision-making

In the field of transportation, interpretable models are crucial
for enabling actionable insights, policy compliance, and stakeholder
trust Abdulrashid etal. [10]. Recent studies have incorporated
SHAP-based analysis into various transportation applications,
including traffic congestion prediction, shared mobility patterns,
and urban demand management.

In logistics, SHAP has been applied to understand demand
sensitivities to pricing, economic indicators, and seasonality, helping
practitioners adjust strategies in real time Zhang et al. [29]. However,
most studies focus on interpretability as a post hoc diagnostic
tool, rather than integrating it into the forecasting architecture
or decision-making process Biatek et al. [30]. Moreover, few have
used SHAP to build game-theoretic models where agents (e.g.,
carriers and shippers) act on interpretable signals Garg et al. [4],
Kahalimoghadam et al. [31].

2.5 Research gap and study contribution

To date, there is limited research that integrates Bayesian
and SHAP-based
interpretability into a cohesive, interpretable forecasting system

Optimization, Random Forest modeling,
for air cargo prediction. While each component has shown merit
in isolation, their combined application remains rare, especially
in aviation logistics where nonlinear demand dynamics, strategic
decision-making, and data limitations coexist.

This study addresses this gap by: Proposing a BO-RF hybrid
model that improves predictive performance through efficient
hyperparameter tuning; Embedding SHAP explanations to uncover
and quantify key drivers of air cargo demand;

This integrative approach offers a novel solution for both accurate
forecasting and interpretable decision support under uncertainty,
contributing to the growing literature at the intersection of machine
learning, game theory, and transportation systems analysis.

3 Methodology
3.1 Model architecture
The proposed framework adopts a multi-layered architecture

that integrates predictive accuracy with interpretability, as
depicted in Figure 1. The design consists of three functional
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layers—Input Layer, Forecasting Layer, and Interpretability
Layer—each of which plays a complementary role in ensuring

robustness and practical applicability.

3.1.1 Input layer

The first layer incorporates multisource explanatory variables
obtained from the National Bureau of Statistics (NBS). To
ensure data quality and consistency, categorical fields are
transformed into numerical representations, and missing values are
imputed using median replacement. Multicollinearity is addressed
through Pearson’s correlation thresholding |r| > 0.9, allowing the
retention of a low-redundancy subset of driving factors. These
preprocessing steps establish a robust foundation for subsequent
modeling, ensuring that the feature set is both comprehensive and
statistically reliable.

3.1.2 Forecasting layer

The second layer constitutes the predictive core of the
framework. Within a five-fold cross-validation setting, the
generalization performance of Random Forests (RF), Support
Vector Regression (SVR), XGBoost, and GBDT is systematically
compared to identify the most suitable baseline model. RF
consistently demonstrates superior accuracy and robustness,
motivating its selection as the primary predictive engine. To further
enhance its performance, Bayesian Optimization (BO) is employed
for automated hyperparameter tuning. By providing a principled
global search strategy, BO efficiently determines the optimal
hyperparameter configuration, denoted as 0, thereby overcoming
the inefficiency and suboptimality of manual trial-and-error
approaches. The optimized model, referred to as BO-RE, generates
air cargo demand forecasts with improved accuracy and stability.
Formally, the predictive function can be expressed as Equation 1:

7= feo-re(x: 107), (1)

Where , denotes the predicted air cargo volume at time ¢, and x, =
{x1 %55, } represents the feature vector of explanatory
variables.

3.1.3 Interpretability layer

The third layer addresses the critical challenge of model
transparency by grounding interpretability in cooperative game
theory. Post-training, the BO-RF model is coupled with SHAP
(SHapley Additive exPlanations), which adapts the Shapley value to
feature attribution in predictive models. In this setting, each input
variable is treated as a “player;” and its contribution to a given forecast
is defined as the average marginal effect it produces when added to
all possible coalitions of the remaining variables.
SHAP yields
attributions for an individual forecast) and global explanations

Operationally, local explanations (feature
(aggregated patterns across all forecasts). Aggregating SHAP values
across time reveals stable drivers and context-dependent effects,
while SHAP interaction and dependence plots make nonlinear
thresholds and cross-elasticities explicit. In this way, the SHAP layer
not only quantifies which factors matter but also clarifies how they
shape forecasts under different market conditions, thereby turning
an accurate ensemble predictor into a transparent decision aid for

logistics planning and transport policy.
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FIGURE 1
Methodological Framework for BO-RF-SHAP model.

Collectively, this three-tier design ensures that the proposed
system is not only capable of generating accurate and robust
forecasts, but also of producing theoretically grounded, decision-
relevant explanations that enhance stakeholder confidence and
support strategic decision-making in dynamic aviation markets.

3.2 Random forests: A nonlinear approach

Random Forest (RF) is an ensemble learning algorithm that
constructs a multitude of decision trees and aggregates their
outputs to achieve robust predictions. Each tree is trained on a
bootstrap sample of the dataset, while random feature selection
at each split introduces further diversity, reducing the risk of
overfitting Liu and Mazumder [32]. This dual-randomization
strategy enables RF to model complex, nonlinear dependencies
between explanatory variables and the target. Unlike traditional
linear models, which assume simple relationships between features,
RF is capable of capturing intricate, nonlinear interactions due
to its tree-based structure, where each decision tree splits the
data recursively based on different feature combinations. This
flexibility allows RF to detect patterns that may be missed by linear
models, especially when features interact in complex, non-linear
ways, as is often the case in transportation demand forecasting
Barrenada et al. [33].
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In regression tasks, the final prediction is obtained by averaging
the outputs of all individual trees, which stabilizes forecasts and
mitigates the variance inherent in single decision trees Probst and
Boulesteix [34]. The model’s flexibility in handling high-dimensional
data and heterogeneous predictors makes it particularly well-
suited for forecasting tasks where multiple variables interact in
complex ways. Moreover, RF offers a natural framework for feature
importance analysis, which is further enhanced in this study through
the use of game-theoretic SHAP values. SHAP values enable us
to interpret the contributions of individual features in a nonlinear
context, enhancing the transparency of the model and providing
valuable insights for decision-making in aviation logistics.

3.3 Bayesian optimization for
hyperparameter tuning

Bayesian Optimization (BO) offers a probabilistic and
sample-efficient framework for global optimization, particularly
suited to scenarios where the objective function is non-convex,
computationally expensive, and analytically intractable Mustafa
etal. [35]. In the context of air cargo volume forecasting,
the objective is to identify the set of hyperparameters that
minimize predictive error metrics such as the Root Mean
Squared Error (RMSE) Garrido-Merchan [36]. Traditional tuning
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strategies, including grid search or random search, often require
an excessive number of evaluations and risk converging to
suboptimal configurations, especially when the feature space is
high-dimensional and model training is computationally intensive.
BO alleviates these limitations by leveraging uncertainty-aware
modeling to systematically explore the hyperparameter space.
Formally, let the objective function be defined as Equation 2:

f(6):0 > R @)

Where 6 € ® denotes the hyperparameter configuration of the
Random Forest (RF) model, and f(6)corresponds to the validation
error (negative RMSE) derived from air cargo demand prediction.
Because training and validating an RF on large-scale multisource
datasets is computationally expensive, BO introduces a surrogate
model—commonly a Gaussian Process (GP)—to approximate. f(6)

The GP
D, = {(6; f(6,))}._,> provides a posterior distribution Equation 3:

surrogate,  given  historical  evaluations

fO) 1D, ~GP (u,(6), k,(6,0")) (3)

where u,(6) is the posterior mean (expected predictive
performance), and k, (6,6") is the posterior covariance (epistemic
uncertainty). By quantifying both the estimated outcome and
the associated uncertainty, BO effectively identifies promising
hyperparameter regions without resorting to exhaustive search.

The choice of the acquisition function plays a central role in
guiding the optimization, including:

Expected Improvement (EI) Equation 4:

ag(6) = E [max (0, f. — f6)) D] (4)

which favors regions with high potential to surpass the best

observed performance, particularly important when marginal gains

in forecasting accuracy can significantly affect logistics planning.
Upper Confidence Bound (UCB) Equation 5:

aycp (0) = u, (6) + o, (6), (5)

Where 0,(0) reflects uncertainty. In volatile contexts—such
as cargo demand fluctuations driven by macroeconomic
shocks—this formulation balances the exploitation of known
effective hyperparameter regions with the exploration of under-
sampled ones.

In the implementation of Bayesian Optimization within this
study, the Expected Improvement (EI) acquisition function was
selected as the primary strategy for guiding the search process.
This choice is particularly appropriate given that the optimization
objective is to minimize predictive errors, such as the Root
Mean Squared Error (RMSE), in air cargo demand forecasting.
By quantifying the expected gain over the current best solution,
EI effectively aligns with the task of reducing forecast error while
maintaining computational efficiency.

The iterative BO process is then defined as Equation 6:

0,41 = argmax a(6;D,), (6)

with each new evaluation updating the GP posterior until
convergence toward an optimal configuration 6.

By systematically reducing the reliance on manual trial-and-
error, BO enables the RF model to achieve superior configurations
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in fewer iterations. In practice, this efficiency is crucial for air cargo
forecasting, where models must accommodate complex, nonlinear
interactions among explanatory variables such as retail sales, trade
volumes, and transport turnover. Moreover, the capacity to identify
near-optimal solutions under computational constraints enhances
both the robustness and the operational applicability of predictive
systems in the aviation logistics sector.

3.4 SHAP explainability: a game-theoretic
perspective

The interpretability of the proposed framework is grounded
in the Shapley value, a concept originating from cooperative
game theory. Formally, the Shapley value for a given feature i is
expressed as Equation 7:

ISt (n—1S] -1

6= st - A9) @)

SENV{i} !

where N denotes the set of all features, S is any subset excluding
feature i, and f(-) represents the predictive function of the model.
The term f(SU{i}) — f(S) quantifies the marginal contribution of
feature i when added to subset S, while the combinatorial coefficient
ensures that the contributions are fairly averaged across all possible
orderings of features. This formulation mirrors the principle of
payoft allocation in cooperative games, where each player’s reward
is determined by their average contribution across all coalitions.
Translated into a machine learning context, features act as players
and the model prediction serves as the collective payoff, thereby
allowing the Shapley value to allocate the prediction outcome among
features in a manner that is both rigorous and equitable.

Such an interpretation is particularly valuable in the case
of air cargo demand forecasting, as it not only reveals which
variables—such as waterborne freight, highway freight, or passenger
traffic—drive model predictions, but also quantifies their relative
importance in a game-theoretic sense. Consequently, the Shapley
value provides a theoretically justified mechanism to bridge
predictive accuracy with interpretability, ensuring that the
model’s outputs can inform policy and operational decisions with
transparency.

3.5 Evaluation metrics

To comprehensively assess the predictive performance of the
models, several evaluation indicators are employed, including the
coefficient of determination (R?), Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE) Wang et al. [37]. The R? value
measures the proportion of variance in the dependent variable
that is predictable from the independent variables, with higher
values indicating stronger explanatory power of the model. RMSE
quantifies the square root of the average squared differences
between predicted and observed values, placing greater weight
on larger deviations and thus highlighting prediction robustness.
MAE, in contrast, provides the average magnitude of errors without
considering their direction, offering a straightforward measure of
predictive accuracy Qiu etal. [38]. In general, models with lower
MAE and RMSE values and higher R* scores are considered to

frontiersin.org


https://doi.org/10.3389/fphy.2025.1705687
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Zhang and Jiang

achieve superior predictive performance. The definitions of these
statistical metrics are summarized as follows:
Root Mean Squared Error (RMSE) Equation 8:

®)
Mean Absolute Error (MAE) Equation 9:
1 n
MaE=L3 5 ) ©
i=1
Coefficient of Determination (R?) Equation 10:
nore 2
L 0i=7)
R = 1——2’*1 S (10)

) 2?:1()/1' -7y

4 Data description
4.1 Data source

The empirical analysis in this study utilizes real-world monthly
air cargo volume data from China Air Cargo Statistics, Civil Aviation
Administration of China (CAAC) CAAC [39], covering the period
from March 2006 to April 2025. This dataset contains aggregated
freight throughput for major domestic and international routes,
recorded in 10° tons. To capture the multifactorial drivers of air
cargo demand, additional explanatory variables were collected from
authoritative sources, including National Bureau of Statistics of
China (NBS) NBS [40] and General Administration of Customs
of China GACC [41]. The final compiled dataset consists of 202
monthly observations (T = 202), with one target predictor (Air
Cargo Volume) and 16 predictor variables aligned in the same time
frequency as shown in Table 1.

4.2 Data preprocessing

The preprocessing stage was designed to ensure data quality
and statistical validity before model training. To mitigate the
adverse influence of multicollinearity on model stability and
predictive accuracy, this study first computed the Pearson
correlation coefficient matrix for all candidate explanatory variables.
The correlation matrix, as presented in Figure 2, provides a
straightforward visualization of the linear interdependencies
among transportation and macroeconomic indicators. To avoid
redundancy caused by information overlap, the upper triangular
portion of the matrix was systematically examined. Whenever a
pair of variables exhibited a correlation coefficient with an absolute
value exceeding the threshold of |r| >0.9, only the variable with
the stronger association with the target variable (air cargo volume)
was retained.

The choice of a 0.9 threshold is consistent with established
practices in empirical econometrics and machine learning, where
correlation values above this level are generally considered to
indicate near-collinearity, leading to unstable parameter estimation
and inflated variance in predictive models. While lower thresholds
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(e.g, 0.7 or 0.8) are sometimes adopted, a stricter cut-off
was selected in this study to minimize the risk of discarding
potentially informative predictors, thereby striking a balance
between dimensionality reduction and information preservation.

Through this filtering process, highly homogeneous indicators
were removed. Representative examples include:

o Highway freight volume and highway freight turnover r = 0.98;

o Waterway freight volume and waterway freight turnover r =
0.98;

o Total imports and exports versus exports/imports separately
r> 0.98;

o Total passenger volume and highway passenger traffic r = 0.99.

As a result of this procedure, a parsimonious yet informative set
of predictors was preserved. The retained features encompass both
structural indicators, such as key freight, selected passenger turnover
measures and temporal variables such as month, which capture
seasonality, as presented in Figure 3. This refined set of variables not
only reduces strong linear dependence among predictors but also
enhances the interpretability of causal structures embedded in the
data. Ultimately, this step improves the generalization capacity of
the subsequent modeling framework by ensuring that the predictors
contribute complementary, non-redundant information.

5 Experiments and results
5.1 Model prediction comparison

To rigorously evaluate the predictive performance of different
machine learning models, this study conducted a five-fold cross-
validation (n splits = 5, shuffle True, random state 42)
experiment on four representative algorithms: Random Forest

(RF), Support Vector Regression (SVR), Extreme Gradient Boosting
(XGBoost), and Gradient Boosted Decision Trees (GBDT). These
models were selected due to their complementary methodological
characteristics. RF is robust to noise and capable of capturing
complex nonlinear relationships and high-order interactions;
SVR serves as a classical kernel-based baseline with strong
XGBoost
introduces advanced regularization and sparsity-aware mechanisms

generalization in small-to-medium-sized datasets;
that enhance efficiency and predictive accuracy; GBDT represents
the traditional gradient boosting framework widely adopted in
regression tasks. The evaluation was performed using three standard
metrics: Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE), and the coefficient of determination R>. RMSE and MAE
provide complementary perspectives on error magnitude, while R*
assesses the proportion of variance in air cargo volume explained
by the model.

The plots in Figure 4 demonstrate that the RF model achieves
significantly better prediction performance compared to SVR,
XGBoost and GBDT. Figure 4a highlights that the MAE for
RF is the lowest at 3.54, compared to 5.22 for SVR, 4.17 for
XGBoost and 4.01 for GBDT, indicating that RF predictions are
much closer to the actual values. Similarly, Figure 4b shows that
the RMSE for RF is 4.62, outperforming SVR (6.94), XGBoost
(5.4) and GBDT (5.03), further affirming its superior predictive
accuracy. The R? values in Figure 4c also reflect this trend, with
RF achieving 0.8797, a notable improvement over SVR (0.7269),
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TABLE 1 Description of predictor variables in the dataset.
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Dimension Indicator Explanation Type
Railway freight Volume of Railway transport freight (unit:10°tons) Numerical
Highway freight Volume of road transport freight (unit:10°tons) Numerical
Water freight Volume of water transport freight (unit:10°tons) Numerical
Railway passenger Number of Railway Passenger (unit:10°people) Numerical
Highway passenger Number of passengers transported by road (unit:10°people) Numerical
Transport
Water passenger Number of passengers transported by ship (unit:10°people) Numerical
Aviation passenger Number of aviation passengers (unit:10°people) Numerical
Railway turnover Volume of railway transport freight turnover (unit:100 million ton-kilometers) Numerical
Highway turnover Volume of Highway transport freight turnover (unit:100 million ton-kilometers) Numerical
Water turnover Volume of water transport freight turnover (unit:100 million ton-kilometers) Numerical
Total retail sales of consumer goods Total Retail Sales of Consumer Goods, measured monthly in billion RMB Numerical
Total import and export value Total Import and Export Value, measured monthly in thousand US dollars Numerical
Economic
Total import value Total Import Value, measured monthly in thousand US dollars Numerical
Total export value Total Export Value, measured monthly in thousand US dollars Numerical
Year variables for years to capture temporality Numerical
Calendar
Month variables for months to capture temporality Numerical

XGBoost (0.8351) and GBDT (0.8573), indicating RF’s higher ability
to explain the variance in the data.

Based on these findings, RF was selected as the benchmark
model for subsequent Bayesian optimization due to its superior
balance of accuracy, robustness, and interpretability.

5.2 Bayesian optimization of random forest

Building on the superior baseline performance of the Random
Forest (RF) model, Bayesian Optimization was employed to
further enhance its predictive capability. The optimization process
explored a hyperparameter search space defined as follows:
number of estimators n estimators € [10,300], maximum tree depth
maxdepth € [3,15], minimum samples required for node splitting
minsamplessplit € [2,10], and minimum samples per leaf node
minsamplesleaf € [1,10]. The optimization objective was set to the
negative Root Mean Squared Error (-RMSE), and a five-fold cross-
validation (n splits = 5, shuffle = True, random state = 42) was used
to ensure robust performance assessment.

The prediction performance of the proposed model was
evaluated after determining the optimal hyperparameters. The
prediction results are presented in Figure 5, with the X and Y-axes
representing the True and Predicted air cargo freight (10° tons)
respectively. The black dashed line indicates perfect prediction.
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The optimized RF model achieved notable improvements in
predictive accuracy. As shown in Figure 5, the cross-validation
results indicate that the optimized RF attained an R® of
approximately 0.905, an RMSE of 4.130, and an MAE of 3.178.
The majority of predicted points are tightly clustered around the
ideal fitting line, with residuals color levels concentrated in the lower
range. This compact distribution indicates not only improved model
fit but also enhanced robustness across varying sample ranges.
Such stability is particularly critical in air cargo forecasting, where
demand fluctuations and nonlinear relationships often challenge
conventional predictive approaches.

The that
significantly strengthens RF’s predictive performance, yielding

results demonstrate Bayesian ~ Optimization
a model that is both accurate and reliable. Consequently, the
optimized RF serves as the core forecasting framework for

subsequent interpretability analyses based on SHAP.

5.3 Feature importance analysis with SHAP

5.3.1 Feature importance and directional effects
The SHAP summary plot provides a detailed interpretation of
the relative importance and directional impact of the explanatory
variables on air cargo freight prediction. As illustrated in Figure 6,
Water transport freight and Highway freight emerge as the two
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FIGURE 2
Pearson correlation plot.

most influential factors, with red points concentrated on the right-
hand side of the x-axis and blue points on the left. This pattern
indicates that higher volumes of waterborne and highway freight
exert a strong positive contribution to air cargo, effectively driving
the predicted values upward.

Civil aviation passenger volume also demonstrates a clear and
consistent positive effect, reflecting that larger passenger flows are
typically associated with higher air cargo demand. This result is
consistent with the synergistic effect of bellyhold cargo capacity and
enhanced route network density in civil aviation operations.

In contrast, Highway passenger turnover exhibits a more
dispersed and symmetric distribution of SHAP values across both
positive and negative regions, suggesting potential nonlinear or
threshold effects (as further evidenced in Figure 7). The variable
month shows a moderate level of influence, with red and blue
points distributed closely around zero. This pattern reflects seasonal
dynamics in air cargo demand, where peak travel periods boost
freight volumes while off-peak months suppress them.

Passenger turnover contributes positively overall, albeit with
relatively smaller magnitude compared to freight-related indicators.
Conversely, Water transport passenger volume and its associated
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turnover predominantly display negative SHAP values, indicating
that higher levels of passenger water transport tend to reduce
predicted air cargo volumes. This negative relationship is plausibly
attributed to modal substitution or structural redistribution effects
across transportation systems.

5.3.2 Univariate dependence analysis

To further probe into the nonlinear effects and threshold
behaviors of individual predictors, SHAP dependence plots were
constructed for the key explanatory variables in Figure 7. In
each subplot, the x-axis represents the original feature value,
while the y-axis denotes its corresponding SHAP value, reflecting
the marginal contribution of the variable to the predicted
air cargo volume. The smoothed orange curve highlights the
overall trend, whereas the gray dashed line marks the zero
baseline and critical turning points. The main findings are
summarized as follows.

Highway passenger turnover exhibits an evident inverted U-
shaped relationship. The SHAP value peaks positively around
900-1000, after which further increases in turnover reverse into
negative contributions. This pattern suggests diminishing returns
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Performance comparison of RF, SVR, XGBoost and GBDT models: (a) MAE, (b) RMSE, (c) R.2.

and possible congestion effects when highway passenger flows
become excessive.

Water transport passenger turnover demonstrates a monotonic
decline in SHAP values as turnover increases, crossing the zero
threshold at approximately 5.5-6. This indicates that, at larger scales
of waterway passenger activity, substitution effects emerge that
suppress the demand for air freight.

Passenger turnover (total) also follows an inverted U-shaped
curve, with an optimal positive contribution around 2000. Beyond
this point, marginal effects turn negative, implying that overly
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intensive overall passenger movements reduce the incremental
demand for air cargo.

Civil aviation passenger volume shows an approximately linear
positive trend. The “zero impact point” occurs near 3600, beyond
which larger passenger scales consistently elevate air freight volume.

Water transport passenger volume contributes monotonically
negatively, crossing the zero axis around 1900-2000. This suggests
that as waterway passenger flows grow, the stimulative effect
on air freight weakens, consistent with substitution across

transport modes.
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Month reflects clear seasonal patterns. The SHAP curve turns
positive after August, capturing the high-demand peak season that
significantly raises air freight predictions, while earlier months
mostly exert a suppressive effect.

Water transport freight exhibits a strong positive association,
transitioning from negative to positive contributions around 4.6 x
10%. Higher levels of waterborne freight consistently amplify
air cargo volume, highlighting complementarities in multimodal

freight dynamics.
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Highway freight displays an almost linear positive effect. Around
2.4 x 10, the SHAP value approaches zero, and subsequent increases
steadily lift predicted air cargo volume, underscoring its role as a

major driver.

5.3.3 Bivariate dependence and interaction

effects
To further explore the synergistic or substitutive relationships
among explanatory variables, this study employed colored SHAP
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dependence plots that highlight the role of secondary features
as shown in Figure8. In each subplot, the x-axis denotes
the raw value of the primary feature, the y-axis represents
the corresponding SHAP value, while the color gradient of
the scatter points reflects the magnitude of the secondary
feature. A black smoothed line is fitted to reveal the overall
interaction trend. This visualization enables the identification of
interaction amplifications (synergy) and attenuation mechanisms
(substitution), thereby enriching the interpretability of the
prediction model.

Water transport freight x Highway freight (top-left): When
both water transport freight and highway freight are simultaneously
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high (red dots), the SHAP values rise sharply, suggesting a strong
supply-side resonance and synergistic amplification rather than
simple substitution.

Highway freight x Civil aviation passenger: The slope of
highway freight’s positive contribution becomes steeper as civil
aviation passenger volume increases (red), indicating a reinforced
human-cargo coupling effect.

Civil aviation passenger x Highway passenger turnover: Civil
aviation passenger consistently pushes predictions upward, but
when highway passenger turnover is high (red), the slope steepens
further, reflecting that active passenger flows amplify the positive
impact of civil aviation passenger volumes.
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Highway passenger turnover x Month: At low-month phases
(blue), highway passenger turnover shifts rapidly from negative to
positive contributions; however, during peak-season months (red),
excessive turnover levels turn negative, implying that seasonality
modulates the threshold effect.

Month x Passenger turnover: In high-season months (red),
passenger turnover strongly boosts the SHAP contribution of
month, revealing a multiplicative effect of seasonal demand and
travel intensity.

Passenger turnover x Water transport passenger: When water
transport passenger levels are high (red), the positive contribution
of passenger turnover diminishes, with its peak appearing earlier
and at a lower magnitude, suggesting enhanced substitution effects
between air and water passenger flows.

Water transport passenger X Water transport passenger
turnover: When both features are high (red), the SHAP curve
consistently trends downward, indicating a reinforced substitution
mechanism within the water transport dimension, which suppresses
air cargo demand.

Collectively, these bivariate dependence plots uncover nuanced
interaction mechanisms: freight-related indicators exhibit strong
synergy when co-elevated, while passenger-related indicators
demonstrate both seasonal modulation and modal substitution.
Such findings underscore the importance of capturing second-
order interactions when designing predictive models for air
cargo volume.

6 Conclusion and policy implications
6.1 Conclusion

This study advances the literature on air cargo forecasting
by proposing an interpretable hybrid framework that combines
Bayesian Optimization (BO), Random Forests (RF), and SHAP-
based feature attribution derived from cooperative game theory.
Drawing on a comprehensive dataset that integrates China’s air cargo
statistics with macroeconomic indicators and multimodal transport
variables, the model yields several key findings.

The empirical results underscore the superior predictive
capability of the BO-RF framework. By consistently outperforming
benchmark models such as SVM, XGBoost, and GBDT across
RMSE, MAE, and R? metrics, the study demonstrates the value
of BO in enhancing the robustness and accuracy of machine
learning-based forecasting Xi etal. [42]. Beyond predictive
performance, the integration of SHAP offers high interpretability,
revealing that waterborne freight, highway freight, and civil aviation
passenger volume emerge as the most influential predictors of
cargo demand. These insights not only expose underlying demand
dynamics but also form a practical foundation for aligning transport
infrastructure investment and planning. Taken together, the
combination of predictive accuracy and interpretability positions
the proposed framework as a relevant tool for both short-term
operational decision-making and longer-term strategic policy
development in aviation logistics.
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6.2 Policy implications

Enhance intermodal coordination and capacity alignment. The
dominant SHAP contributions from highway and waterborne
freight indicate that links (e.g.,
port—airport-highway corridors) can raise transfer efficiency

reinforcing multimodal

and stabilize air cargo throughput. Policymakers can use model
outputs to prioritize corridor upgrades, cross-docking facilities, and
time-window synchronization across modes.

Embed explainable Al in logistics governance. Regulators and
logistics firms can adopt interpretable models such as BO-RF +
SHAP to guide slot allocation, pricing adjustments, and compliance
monitoring Tong etal. [43]. The transparency of SHAP values
ensures that predictions are not only accurate but also trustworthy,
supporting evidence-based policy implementation.

Guide long-horizon policy under uncertainty. By quantifying
the influence of macroeconomic and transport variables, the
framework equips policymakers and industry leaders with insights
for resilient planning. It supports strategic initiatives such as capacity
expansion, carbon reduction policies, and trade resilience strategies,
ensuring aviation logistics adapts effectively to both structural
changes and short-term shocks.

6.3 Future research directions

While the proposed framework provides both methodological
innovation and practical value, its scope can be expanded in several
promising directions. One avenue is the integration of real-time data
sources, such as live shipping records, highway traffic flows, and
customs clearance processes, to improve short-term responsiveness
and forecasting accuracy. Another promising path involves
hybrid deep learning extensions, in which BO-tuned Random
Forests are combined with temporal architectures like LSTM or
Transformer models to capture complex sequential dependencies
Nunekpeku et al. [44]. Finally, game-theoretic simulation offers a
fruitful opportunity, as SHAP-derived feature contributions could
serve as inputs to model competitive and cooperative interactions
among logistics stakeholders, enabling richer analyses of market
dynamics and policy interventions.
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