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Anomaly detection method for 
power dispatch streaming data 
based on adaptive isolation 
forest and self-supervised 
learning

Tenglong Xie*, Bo Li, Yingkai Zhen, Hao Wei, Kunhuan Xu and 
Jingyin Huang

Information Center of Guangdong Power Grid Co., Ltd., Guangzhou, China

Introduction: To address the issues of concept drift and scarcity of anomaly 
samples in real-time anomaly detection under the massive streaming data 
environment of power dispatching and control systems, this study focuses on 
developing an effective detection method.
Methods: We propose a streaming data anomaly detection method integrating 
adaptive isolation forests and self-supervised learning. First, a business-based 
model is constructed by analyzing inherent relationships between system 
services, processes, and resource usage. An improved isolation forest algorithm 
with a sub-forest progressive update mechanism is designed—selectively 
eliminating sub-detectors with large anomaly rate deviations and dynamically 
adding new ones to overcome performance degradation from traditional 
random updates. Additionally, a GPT-based self-supervised learning framework 
is introduced, incorporating state memory units to encode historical data 
patterns and a distance metric-based sampling strategy to reduce redundancy.
Results: Experiments on a real power dispatching process resource dataset show 
the proposed method significantly outperforms the traditional streaming data 
isolation forest algorithm in key indicators such as AUC value, with the highest 
improvement reaching 39.12%. Ablation experiments verify the effectiveness of 
each module.
Discussion: The proposed method enhances the detection algorithm's 
adaptability to concept drift, overall stability, and ability to perceive hidden 
anomalies, providing reliable technical support for the safe and stable operation 
of the power dispatching system.
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 1 Introduction

As the nerve center of the smart grid, the stable and reliable operation 
of power dispatching and control systems is directly related to the safety and 
economic efficiency of the entire power system. With the continued expansion of
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the power grid, the widespread integration of distributed energy 
resources, and the deepening of demand-side management, the 
complexity of power dispatching and control systems is increasing, 
and the scale and number of functional modules are growing 
exponentially. In this context, system failures caused by software 
process anomalies, resource contention, and data jumps are 
becoming increasingly frequent. These failures are often hidden 
in massive amounts of real-time operational data, making them 
difficult to detect and locate in a timely manner using traditional 
monitoring methods.

Especially in the streaming data environment generated by 
this system, data has core characteristics such as continuous 
high-speed arrival, possible concept drift, and extremely scarce 
anomalous samples. Traditional anomaly detection methods based 
on static thresholds set by expert experience are not only highly 
subjective and poorly adaptable, but also difficult to capture 
the collaborative and competitive relationships between complex 
processes and cannot effectively respond to dynamic changes in data 
distribution [12]. Therefore, the research of an intelligent anomaly 
detection algorithm that can adaptively update and fully exploit 
the internal temporal patterns and semantic features of streaming 
data has crucial theoretical significance and engineering value for 
achieving early warning of power dispatch control system failures 
and improving the reliability of power grid operations.

This paper addresses these challenges and aims to investigate 
novel anomaly detection methods for the streaming data 
environment of power dispatching and control systems. First, we 
analyze the inherent connections between business, processes, and 
resource usage within the system, laying the foundation for anomaly 
detection. Furthermore, the core contributions of this paper lie in 
two aspects: First, we propose an adaptive isolation forest-based 
anomaly detection algorithm for streaming data. This algorithm 
dynamically maintains a collection of detectors through a novel 
sub-forest progressive update mechanism, effectively overcoming 
the model performance degradation caused by random updates 
in traditional methods, while balancing detection efficiency and 
adaptability to concept drift. Second, to further mine the rich 
temporal information contained in streaming data, we introduce a 
self-supervised learning framework based on the GPT architecture, 
constructing state memory units to encode historical data patterns, 
thereby enhancing the model’s understanding of normal behavior 
patterns and improving its ability to identify hidden anomalies.

Experimental validation on a set of real-world power dispatch 
process resource data demonstrates that the proposed method 
significantly outperforms traditional baseline algorithms in terms 
of overall performance (AUC value). Ablation experiments also 
demonstrate the effectiveness of each innovative module. This 
research provides new technical ideas and solutions for the safe and 
stable operation of power dispatch systems. 

2 Related work

Based on their core concepts, anomaly detection technologies 
can be broadly categorized into statistical, distance, density, 
clustering, and learning-based approaches. Adapting these 
technologies to streaming data environments and meeting the high 
real-time and high reliability requirements of power dispatching 

and control systems remains a key focus and challenge in 
current research. 

2.1 Traditional anomaly detection 
algorithms and their streaming adaptations

Early anomaly detection mostly relied on statistical methods 
(such as the 3σ principle and Grubbs test) or threshold methods 
based on expert experience. Although these methods are simple 
and efficient, they cannot capture the complex relationships between 
multidimensional features, and static thresholds are difficult to adapt 
to the dynamically changing environment of streaming data. To 
cope with the continuous arrival of streaming data, researchers have 
proposed many incremental learning algorithms. For example, the 
incremental version of the distance-based algorithm [1] (such as 
K-NN) requires dynamic maintenance of the nearest neighbor set, 
which has huge computational overhead; and the density-based 
algorithm [2] (such as LOF) also faces the high complexity problem 
of recalculating neighbor relationships during incremental updates. 
These methods are difficult to meet the stringent requirements for 
detection efficiency in power dispatch scenarios. 

2.2 Isolation forest algorithm and its 
application to streaming data

The Isolation Forest (iForest) algorithm has significant 
advantages in processing high-dimensional big data due to its 
linear time complexity and the fact that it does not require distance 
calculation. It isolates samples through a random segmentation 
strategy, and outliers have a shorter path length due to their “easy 
to isolate” characteristics. The classic Isolation Forest algorithm 
is designed for offline batch data, and its direct application to 
streaming data will lead to performance degradation due to concept 
drift. To this end, literature [3] proposed a streaming data Isolation 
Forest algorithm that achieves incremental updates of the model by 
randomly replacing isolation trees. However, this random update 
strategy lacks specificity, which may unintentionally discard subtrees 
that perform well, leading to performance fluctuations and a 
decrease in overall detection accuracy. In contrast, the adaptive 
update mechanism proposed in this paper addresses this issue 
by selectively eliminating sub-detectors with the largest anomaly 
rate deviation. This targeted approach ensures that only poorly 
performing sub-detectors are updated, preserving the stability and 
integrity of the remaining forest, and thus maintaining the model’s 
overall performance more intelligently and consistently. 

2.3 Anomaly detection methods based on 
deep learning

In recent years, deep learning techniques have been widely 
used in anomaly detection [4], especially autoencoders and 
generative adversarial networks (GANs), which identify anomalies 
by reconstructing errors. These methods are effective in detecting 
complex patterns in data. However, these methods typically require 
a large amount of data for training and are computationally 
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demanding. More importantly, they mostly focus on learning 
spatial features while ignoring the crucial temporal dependencies in 
streaming data. 

2.4 The rise of self-supervised learning in 
time series anomaly detection

Self-supervised learning [5] provides a new paradigm for solving 
the problem of scarce abnormal samples by designing pre-training 
tasks to learn representations from unlabeled data. In particular, in 
the field of natural language processing (NLP), models such as GPT 
(Generative Pre-trained Transformer) have learned rich language 
representations on large-scale corpora through the pre-training task 
of “predicting the next word.” Inspired by this, researchers began 
to apply similar ideas to time series data, learning the time series 
evolution pattern of normal data by “predicting future data points.” 
Currently, there is no research on combining this framework with 
traditional efficient anomaly detection algorithms (such as isolation 
forests) for power dispatching flow data scenarios. This paper is to 
integrate GPT-style self-supervised learning with adaptive isolation 
forests to innovate, capture the time series rules of historical flow 
data through pre-trained state memory units, and inject the learned 
representations into the forest detection process, thereby achieving 
further improvement in detection performance.

In summary, this paper is based on an in-depth analysis of 
the shortcomings of the isolation forest algorithm for streaming 
data, and innovates from two dimensions: model update strategy 
and time series feature mining. It proposes a solution that is 
both efficient, adaptable, and accurate, filling the gap in existing 
research in the specific application scenario of power dispatching 
and control systems. 

3 System analysis and methods

3.1 Analysis of the relationship between 
business, process, and process resource 
occupancy in the power dispatching 
control system

With the continued expansion of the dispatching network, the 
addition of new functions, the upgrade of the dispatching system, 
and the introduction of demand-side management, the power 
dispatching control system itself has become increasingly complex. 
Software errors in the system have become increasingly prominent, 
and failures caused by software errors have also increased. Based on 
the construction of the knowledge graph of the smart grid control 
system in the previous chapter, we can further explain and analyze 
the relationship between the business, process, and process resource 
usage of the power dispatching control system. For example, when 
periodically collecting and recording process data at a telemetry 
point in a province’s power generation, if the difference in values 
between adjacent moments is greater than a manually set threshold, 
that is, the data information is abnormal, it is considered that a data 
jump failure may have occurred.

As shown in Figure 1, the causes of data jumps can be categorized 
into two main types: one is external factors, such as jumps in the 

actual data transmitted by a remote station; the other is failures in 
the local power dispatching and control system, primarily caused 
by hardware damage and abnormal process operation. Hardware 
damage is relatively easy to troubleshoot, while failures caused 
by abnormally running processes are more difficult to detect in 
a timely manner. Process abnormalities often lead to abnormal 
hardware resource usage by processes. In the operation of power 
dispatching and control systems, services and processes are closely 
intertwined. Figure 2 shows the flow chart of the telemetry table 
refresh service. When the telemetry table refresh service operates 
normally, the corresponding processes must run in an orderly 
and coordinated manner. During this time, the resource usage of 
each process can be collected. Conversely, abnormal operation of 
a related process can impact the overall service flow, hindering 
service operations and even causing failures. Figure 3 illustrates 
the relationship between services, processes, and process resource 
usage. Process resource usage can be used to understand the current 
process operation and, therefore, infer the current service status. 
In power dispatching and control systems, some services are not 
only directly affected by the resource usage of related processes, 
but also indirectly affected by the server’s own total resource usage. 
The reason is that if processes unrelated to the business operation 
consume excessive server resources, it will affect server performance 
and thus hinder the business operation. In fact, the resource usage 
of a process and the total server resource usage are in a total-to-
score relationship, but they emphasize different points: the resource 
usage of a single process mainly reflects the real-time status of the 
process closely related to the business, which is a direct influencing 
factor; while the total server resource usage emphasizes the impact 
of the server’s operating status on the business, which is an indirect 
influencing factor.

Currently, methods for determining the operational status 
of upper-level services based on process resource usage often 
rely on a single threshold setting based on expert experience. 
This approach is highly subjective and fails to fully reflect the 
relationships between processes associated with the service itself, 
nor does it reflect the impact of the runtime of processes 
associated with other services. Online data, however, not only 
reflects the real-time status of each process during service operation 
but also implicitly captures the cooperative and competitive 
relationships between processes. By intelligently analyzing and 
learning historical data on service process resource usage, and 
using different attributes as input, defining boundaries in a high-
dimensional space that encompass the majority of normal data, and 
subsequently analyzing and determining whether the operational 
status of upper-level services is abnormal, this approach is crucial 
for maintaining the safe and stable operation of the power
grid. 

3.2 Anomaly detection algorithm for 
stream data in power dispatching control 
systems based on adaptive isolation forest

The Isolation Forest Algorithm [5, 6] is a recently proposed and 
most influential detection algorithm. Its main idea is to randomly 
select a sample attribute for a data sample space to perform 
spatial segmentation, obtaining two sub-sample spaces. Then, a 
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FIGURE 1
Data jump fault analysis.

FIGURE 2
Telemetry table refresh business process diagram.

sample attribute is randomly selected to split each sub-sample 
space until each sub-sample space contains only one type of data 
point. The partitioning is like building a binary tree, with the root 
representing the entire sample space and the branches and leaves 
at the end representing one type of data point. The algorithm is 
described as follows:

Suppose there is a dataset X and a binary tree T describing the 
data. It has a set of nodes N, and each node is either N ijr  or N ijl, 
where i represents the number of levels in the tree, j represents 
the jth node from left to right in the previous level, and r and l
distinguish right and left nodes on the same level. In particular, 
N0 represents the root node, which contains the data of the entire
dataset X.

X contained in a certain layer, randomly select the sample 
attribute q and its value range space p to divide X(i+1)j∗l and 

X(i+1)(j∗+1)r , corresponding to the node sets N (i+1)j∗l and N (i+1)(j∗+1)r . 
Data less than or equal to p is divided into N (i+1)j∗l, and data greater 
than p is divided into N (i+1)(j∗+1)r , where j

∗
 represents the j

∗
th node 

from left to right in the i+1th layer. For the dataset, there are shown 
in Equations 1, 2:

X(i+1)j
∗l ∪X(i+1)(j

∗+1)r = Xij (1)

X(i+1)j∗l ∩X(i+1)(j∗+1)r = ∅ (2)

When the following situation occurs, a complete binary tree is 
obtained and the partitioning is completed: 

1. The depth of the data tree reaches the set maximum value
2. Node N contains only one data point or the data points it 

contains are the same
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FIGURE 3
Schematic diagram of the relationship between business, process and process resource usage.

The above method is different from existing distance-based and 
density-based anomaly detection methods. This method does not 
require distance or density calculation and can better meet the 
needs of high-efficiency analysis and processing of online anomaly 
detection.

Streaming data from power dispatching and control systems 
is characterized by high volume, rapid, and continuous arrival. To 
detect anomalies in this data, real-time updates of anomaly detectors 
are necessary to ensure stable performance.

Figure 4 provides an overview of the entire streaming anomaly 
detection pipeline. Incoming data are first organized into a sliding 
window of length N, which captures the most recent observations 
required for window-level anomaly analysis. This window is passed 
to the anomaly scoring module, where the feature extractor 
computes the anomaly scores and produces the window-level 
anomaly rate. To handle the non-stationary nature of power system 
streams and to remain resilient to concept drift, the framework 
incorporates an adaptive update mechanism driven by two triggers: 

1. An anomaly-rate threshold, where the averaged anomaly score 
exceeds a predefined value, and

2. A buffer-based triggering strategy, where the update buffer 
becomes full. These triggers ensure that model updates occur 
only when necessary, balancing computational efficiency and 
adaptability.

Integrating the low complexity and high efficiency of the 
isolation forest algorithm, a novel isolation forest anomaly detection 
method based on incremental learning with sub-forest progressive 
updates is proposed for stream data from power dispatching 
and control systems. Multiple sub-forest anomaly detectors are 

constructed using isolation trees trained on historical datasets 
to form a base forest anomaly detector. A sliding window is 
also created to store the streaming data. Whenever new data 
enters the window, the oldest data in the window is cleared, 
implementing a sliding window. A Bernoulli algorithm is then 
used to determine whether the new data needs to be stored in the
buffer.

The base forest anomaly detector determines the anomaly rate 
of the sliding window. If the anomaly-rate trigger is activated or the 
buffer becomes full, the system initiates a detector update following 
the update mechanism described in Figure 4. When the former 
triggers an update, the updated dataset is the union of the data in 
the sliding window and the data in the buffer. The sliding window 
and buffer are cleared, requiring a new sliding window to be rebuilt. 
When the latter triggers an update, the corresponding updated 
dataset is the data in the buffer.

Based on the updated dataset, the absolute deviation of the 
anomaly rate between the sub-forest detector and the base forest 
anomaly detector is calculated, and sub-forest anomaly detectors 
with large deviations are removed. Simultaneously, multiple sub-
forest anomaly detectors are created based on the updated dataset 
and added to the base forest anomaly detector to achieve detector 
update optimization. The process is shown in Figure 5.

This paper proposes an isolation forest-based anomaly detection 
method for stream data in power dispatching and control systems, 
which mainly includes five key steps:

Step 1: Sample the data set of the power dispatching control 
system through a systematic sampling method, construct multiple 
sub-forest anomaly detectors, and combine the multiple sub-forest 
anomaly detectors into a base forest anomaly detector.
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FIGURE 4
Streaming data anomaly detection process.

FIGURE 5
Schematic diagram of the anomaly detection algorithm for stream data in the power dispatching control system based on isolation forest.

Specifically, based on the original power dispatching dataset, 
the isolation forest algorithm is used to construct L isolation 
trees (where L refers to the number of isolation trees), and the 
systematic sampling method is used to divide the isolation trees 
into n groups to construct multiple sub-forest anomaly detectors. 
The method for all sub-forest anomaly detectors to form the base 
forest anomaly detector is as follows: collect N power dispatching 
data samples to form the original power dispatching dataset; 
uniformly sample Ψ data samples from the N original datasets 
as training samples for this isolation tree; in each isolation tree 
sample, two random selections are performed, one is to randomly 
select a feature, and the other is to randomly select a value 
within the range of all values of this randomly selected feature, 
and perform binary partitioning on the sample, dividing samples 

less than the value to the left side of the node, and samples 
greater than or equal to the value to the right side of the node, 
to obtain a split condition and left and right datasets. Then 
repeat the above process on the left and right datasets respectively 
until the termination condition is met. There are two termination
conditions: 

1. The data itself cannot be divided further (it only contains one 
sample, or all samples are the same);

2. The height of the tree reaches log2(: In the above 
method, the isolation trees are divided into groups 
using the systematic sampling method to construct 
sub-forest anomaly detectors, which are recorded 
as iForest(1)∼iForest(n), where the isolation trees 
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that make up iForest(i) are numbered as shown in
Equation 3:

iTree(i+ k ∗ L
n
)k = 0,1,2,…,

(L− n)
n

(3)

The isolation trees in the n sub-forest anomaly detectors together 
constitute the base forest anomaly detector.

The algorithm for building the base forest anomaly detector 
is as follows:

FundamentallForest(Ψ, W,L)
input: Number of training data for each isolation tree, Ψ
number of isolation trees (Tree), L
size of the original sample set L, size of the output set, N
output: Isolation forest (Anomaly detector), IForest 

1: Initialize IForest ← {}
2: h ← ceiling(log2 Ψ)
3: for i ← 1 to L do
4: X ← sampleWithReplacement(Ψ, N)
5: ITree←ITreeTraining(X)
6: IForest←IForest UITree
7: end for
8: return IForest

Step 2: Use the base forest anomaly detector to determine the 
anomalies of the data entering the sliding window.

Specifically, the base forest anomaly detector is applied to the 
streaming data of the sliding window. That is, for each data arriving 
at the sliding window, its abnormal condition is judged by the 
base forest anomaly detector. The input of the base forest anomaly 
detector is the real-time resource occupancy data of the process 
related to the power dispatching system business, such as process 
CPU occupancy, memory occupancy, disk IO, network IO, number 
of threads, number of network connections, etc. (the input features 
are best organized into a table and placed in the front). The output 
is a value in the range of (0, 1). The value range indicating that the 
streaming data is normal is (0, h), and the value range indicating 
that the streaming data is abnormal is (h, l). The h value represents 
the anomaly score obtained by using the initial base forest detector 
obtained by training to calculate the historical data. It can be 
obtained by taking the quantile based on the abnormal proportion 
of the historical data as shown in Equation 4:

h = −QUARTILE(−F(x),100× (1− c)) (4)

Where: y = QUARTILE(a,b) is the quantile function; z = F(x) is 
the detection function of the base forest detector; X is the training 
sample set of the isolation tree; c is the proportion of abnormal 
samples in the training sample set.

Step 3: Sample the stream data entering the sliding window and 
determine with a certain probability whether it is stored in the buffer; 
when the sliding window is full of data, determine the abnormality 
rate of the sliding window data at this time.

Specifically, for data that has just arrived in the sliding window, 
simple random sampling based on the Bernoulli distribution is 
performed to determine whether the data needs to be entered into 
the buffer, thereby filling the buffer. If the sliding window is full, 
the newly arrived data will replace the data that entered the sliding 

window the earliest. At the same time, the data anomaly rate in 
the sliding window at this moment is calculated in real time and 
recorded as u′:

Step 4: When the amount of data in the buffer exceeds the 
threshold, the update model strategy is triggered according to a 
smaller update ratio: When the anomaly rate of the sliding window 
data exceeds the specified threshold, the update model strategy is 
triggered according to a larger update ratio.

Specifically, the anomaly detector is updated when either of the 
following two conditions is met: 

1. The anomaly rate of the current sliding window data is greater 
than the anomaly rate threshold. At this time, the dataset X 
used to update the base forest anomaly detector is the union of 
the data in the sliding window and the data in the buffer;

2. The data in the buffer is full. At this time, the data set X used 
to update the base forest detector is the data in the buffer.

Step 5: Based on the updated dataset, calculate the difference 
between the anomaly rates of each sub-forest anomaly detector and 
the base forest anomaly detector, remove the sub-forest anomaly 
detectors with large differences, and construct multiple sub-forest 
anomaly detectors to supplement them to form a new base forest 
anomaly detector to achieve the update.

Specifically, the base forest detector and the sub-forest detector 
are used respectively to calculate the data anomaly rate of the data set 
X∗, denoted as uall and u(i), and set as rii the anomaly rate deviation 
of the th sub-forest anomaly detector iForest(i).

Arrange the anomaly rate deviations of the n sub-forest anomaly 
detectors in descending order, and take the first k (0 < k < n) as the 
sub-forest anomaly detectors to be updated;

Use the data in the current sliding window to build k sub-forest 
anomaly detectors to replace the sub-forest anomaly detectors to be 
updated. At the same time, update the isolation tree in the base forest 
detector to complete the update of the base forest detector and clear 
the data in the sliding window and buffer.

The algorithm pseudocode for steps 2–5 is as follows:
updatingFundamentallForest(X,X buffer ,u,u,k,n per , IForest)
Input: Current window sample, X′
Buffer sample, Xbuffer
Anomaly rate threshold, u
Abnormality rate of the current window, u′
Number of updated sub-anomaly detectors, k
Number of isolation trees in each group, n per
Current integrated isolation trees (anomaly detectors), with a 

quantity of m, iForest
Output: Updated integrated isolation trees (anomaly 

detectors), iForest' 

1: Initialize IForest ← {},X∗← {},R← {}
2: if X buffer ≥ m then
3: X∗←X buffer
4: end if
5: if u ′ >u then
6: X∗←X ∪ X buffer
7: end if
8: fori←-1 to k do
9: IForest 

∗

i ← ITree(X ∗)
10: IForest ′ ← Forest ′∪ IForest′
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11: end for
12: u all ←getFailureRate(IForest i,X∗)

1. l3: for i ← 1 to m/n per do
14: IForest i ← {ITrⅇ ej|j ∈ [i, i + nper]}}
15: u(i) ←getFailureRate(IForesti,X∗)
16: r ← |u(i)/uall − 1|
17: R←R ∪ r i
18: end for
19: Delete the k sub - anomaly detectors with the largest abnormal 

deviation rate from the IForest in IForest.
20: IForest ′ ←IForest ′ ∪ IForest
21: return IForest ′

3.3 Anomaly detection algorithm for 
stream data in power dispatching and 
control systems based on self-supervised 
learning

The isolation forest-based anomaly detection method for power 
dispatching control system stream data in the previous section has 
the characteristics of fast speed and strong real-time performance, 
but it fails to fully model the serialized information contained in the 
stream data. At the same time, most of the stream data is negative 
sample data (i.e., normal data), and only a small amount is positive 
sample data (abnormal data). Fully mining the knowledge of the 
transition from negative samples to positive samples is conducive 
to enhancing the robustness of the system. This section, based on 
the incremental isolation forest algorithm described in the previous 
section, further introduces serialized information modeling into the 
unsupervised anomaly detection process. Specifically, we design a 
state memory sequence to record the stream data information before 
the current moment, and enhance the detection performance of 
the model based on the historical stream data information stored 
in the state memory unit encoding. At the same time, we use a 
self-supervised learning framework based on GPT (Generative Pre-
trained Transformer) [7] to pre-train the state memory unit and 
fully mine the information of the transition from negative samples 
to positive samples. In addition, in order to reduce the continuous 
similar stream data information, we propose a stream data sampling 
method based on distance metric to support long-distance memory, 
reduce storage overhead, and speed up detection. 

3.3.1 GPT-based streaming data self-supervised 
learning framework

Inspired by the recent rise of self-supervised learning language 
models in the field of natural language processing, we introduce 
the relevant technologies of the generative language model (GPT) 
into the self-supervised learning of streaming data, that is, fitting 
the current streaming data based on historical streaming data [8]. 
Through this data fitting, self-supervised learning can fully explore 
the internal laws of streaming data without introducing manual 
annotation, thereby achieving a good representation of historical 
streaming data information and improving the performance of 
subsequent anomaly detection models.

Specifically, for a given stream data sequence 
[…,x{t−N},…,x{t−2},x{t−1},xt,x{t+1},…], the standard language 

model objective function is used to perform maximum likelihood 
estimation, which is shown in Equation 5.

L(θ) = −
N

∑
t=1

logpθ(xt ∣ x1:t−1) (5)

Where N represents the window size, θ a neural network with 
parameters is used to model the conditional probability P, and the 
optimizer uses the stochastic gradient descent algorithm (SGD). The 
specific implementation is as follows: 

1. The input layer is different from text-based data. Streaming 
data is often considered to be an infinitely long data sequence 
and cannot be directly input into the GPT. Therefore, for 
the time t to be detected, only N+1 sample data containing 
X{t} = [x{t−N},…,x{t−2},x{t−1},x{t}] xt are sequentially input. 
The neural network of the input layer first linearly maps 
the original streaming data vector, and then adds the 
interval information from each time step to the time step 
to be predicted to obtain the output of the input layer 
[v_ { t−N },⋯,v_ { t− 2 },v_ { t− 1 },v_ { t } ].

2. GPT-based stream data feature representation

The stream data vector sequence obtained from the input layer 
Vt is input into the GPT network to obtain the feature vector 
of the time step data to be predicted ht. As shown in Figure 6, 
the GPT network contains L layers of Transformer blocks, and 
the top layer output is used as the GPT output. Specifically, we 
use L = 6 layers and Nh = 8 attention heads. These values were 
chosen based on preliminary experiments to balance the model’s 
capacity for capturing temporal dependencies with computational 
efficiency, that is hi = hL

i ; the network decomposition of each layer 
of Transformer blocks is exactly the same, and the mapping of the 
lth layer can be expressed as Hl = transformerblock(Hl−1,θl), where 
Hl−1 is the output of the l-1th layer, θl represents the parameters 
of the layer, and the specific calculation process is as shown in 
Equations 6–9:

MultiHead(Q,K,V) = Concat(head1,head2,…,headNh
) (6)

headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (7)

Attention(Q,K,V) = softmax(QKT

√dk

+mask)V (8)

trans formerblock(H) = FNN(MultiHead(H,H,H)) (9)

where headi ∈ RN×dh represents the result of calculation of the i-
th head in the multi-head attention module MultiHead; Concat 
concatenates the features of the last dimension of each head, and the 
result satisfies Concat(head1,head2,…,headNh) ∈ RN×dmh , where 
dmh = dh ×Nh; mask is the mask matrix used to calculate the time 
step hl

i, only considering [hl−1
t−N,⋯,h

l−1
i ], that is maskij = 0. When 

i ≥ j, maskij = −∞. 

3. Probability estimation of data to be predicted

Based on the historical stream data feature representation 
obtained by the Transformer decoder, the probability of the stream 
data at the target time is calculated as shown in Equation 10:

P(xi ∣ xi−k,…,xi−1;θ) =∏j=1,...,N
Pn(xij − x′ij) (10)
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FIGURE 6
GPT basic network structure.

After the probability obtained in this way is substituted into the 
language model objective function, the model optimization can be 
achieved according to the objective function. 

3.3.2 Stream data sampling based on distance 
metric

We choose the L2 norm as the distance metric for sampling due 
to its computational efficiency and its ability to effectively capture 
Euclidean distances between data points. The L2 norm is commonly 
employed in anomaly detection tasks because it highlights the 
differences in the feature space, which is essential for distinguishing 
anomalous data in high-dimensional streaming environments.

Actual sampled stream data contains numerous consecutive, 
similar data points, resulting in a significant amount of redundant 
information. Calculating all of these points would slow down 
model detection and introduce unnecessary, irrelevant information, 
hindering the model’s ability to capture useful information. To 
address this issue, we designed a stream data sampling method based 
on distance metrics to reduce redundant information. Specifically, 
given the original stream data [x1,x2,…,xn], we traverse it from 
front to back and sample only those points that meet the following 
requirements Equation 11:

∥ xi − xlatest∥2 > ε (11)

represents xlatest the most recent sampling, ε and the minimum 
distance interval that sampling needs to meet is represented by, thus 
obtaining the sampled flow data [ ̃x1, ̃x2,…, ̃xn]. 

3.3.3 Streaming data anomaly detection method 
based on self-supervised learning

Figure 7 provides an overview of the proposed self-supervised 
learning framework used for pre-training the GPT-based 
representation model.

The core idea is to leverage historical streaming data to learn 
temporal patterns without relying on manual labeling. To this end, 
the method constructs a state memory that stores a representative 
subset of the historical data. This memory is populated using a 
distance-based sampling strategy, ensuring that the stored sequences 
are diverse and preserve long-term temporal variation.

During pre-training, a sequence X = [x1,x2,…,xN] is fed into 
the model, which performs a next-step prediction task following 
the standard autoregressive language modeling objective. The GPT 
network learns to predict each data point conditioned on its 
preceding context, thereby capturing temporal dependencies and 
normal operating patterns of the system. The output of the top-layer 
Transformer block serves as the temporal representation ℎt , which 
is later used as the feature input for anomaly detection.

Once pre-training is completed, the learned parameters are 
frozen and deployed in the online detection pipeline. This separation 
between offline representation learning and online detection ensures 
both efficiency and stability, as shown in Figure 7. The self-
supervised framework enables the model to generalize to unseen 
patterns and forms the foundation for robust anomaly detection in 
the streaming environment. 

3.3.3.1 State memory unit construction
In order to introduce the flow data information before 

the current time step into the anomaly detection algorithm of 
the power dispatching control system based on isolation forest 
proposed in Section 3.2, the self-supervised learning framework 
described in Section 3.3.2 is used to construct a state memory unit 
based on the GPT network ht: F(Xt,θ∗) The specific process is as 
follows: 

1. Data sampling: For each moment, first sample a stream 
data sequence of length N starting from that moment 
[xt−N+1,xt−N+2,⋯,xt], and further sample the input of the 
state memory unit at that moment based on the distance 
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FIGURE 7
Streaming data anomaly detection framework based on self-supervised learning.

metric sampling technology Xt = [xt
1,x

t
2,…,x

t
Nt]; for the pre-

training stage, first collect enough offline historical stream 
data, traverse each moment t, and sample the pre-training data 
set {…,Xt−1,Xt,Xt+1 ,…}

2. Pre-training: Based on the pre-training dataset 
{…,Xt−1,Xt,Xt+1 ,…}, the parameters of the state memory 
unit are trained using the self-supervised learning method 
described in Section 3.4.1 until convergence is reached, and 
the model parameters of the state memory unit are saved θ∗;

3. Time series feature calculation: After training is completed, for 
a given stream data point to be detected xt, the same sampling 
strategy is used to obtain its historical stream data sequence Xt, 
which is input into the state memory unit and the historical 
stream data information vector is output ht.

The parameters of the state memory unit θ∗ are completely 
obtained by pre-training based on self-supervised learning, and 
no parameter updates are performed when training on streaming 
anomaly detection data. 

3.3.3.2 Anomaly detection
Based on the trained state memory unit, the input of the original 

Section 3.2 for anomaly detection of stream data in the power 
dispatching control system based on isolation forest xt is replaced 
by xt ⊕ ht, and the anomaly detection process and the update of the 
base anomaly detector are consistent with Section 3.2. 

4 Experimental results and 
comparative analysis

The dataset used in this study consists of process resource 
usage data collected from a computer running Python and other 
business processes. It includes 18 dimensions, mainly CPU usage 
(%), memory usage (MB), and IO read/write rate (MB/s). For the 
anomaly detection experiments, the dataset is divided into three 
subsets: the training set, the streaming update set, and the testing 
set. The training set contains 1,000 samples without anomaly labels for 
model initialization; the streaming update set contains 3,100 samples 
without anomaly labels to simulate stream data input and model 
updating; the testing set contains 2,472 samples with anomaly labels, 

among which 918 samples are labeled as anomalous. Anomalies are 
defined as Python running data exceeding 2 GB, while idle or non-
computing periods are labeled as normal. This threshold is determined 
based on historical data distribution and empirical observation. The 
receiver operating characteristic curve (ROC) is often used to describe 
the performance of the anomaly detection algorithm [10, 11]. An 
effective anomaly detection method needs to maintain a high recall rate 
and precision rate, and the balance between the two can be described 
by the ROC curve. When evaluating an algorithm, a quantitative 
metric is often needed to measure anomaly detection performance. 
This can be quantified using the area under the receiver operating 
characteristic (ROC) curve (AUC). 

Table 1 summarizes the key statistics of the datasets used in the 
experiments. Each dataset contains 18 feature dimensions, including 
CPU usage, memory usage, and IO read/write rates. The “Sample 
Size” column indicates the total number of samples in each subset, 
and “Anomalous Samples” shows the number of samples labeled 
as anomalous (none in the training and streaming update sets, 
918 in the testing set). The statistical columns (“Mean,” “Std Dev,” 
“Max,” “Min”) represent the average, standard deviation, maximum, 
and minimum values across all dimensions and all samples in the 
respective dataset. All features were normalized to the range [0,1] 
prior to input. This table provides readers with an overview of dataset 
composition, variability, and anomaly distribution.

To ensure consistency for model training and testing, all features 
are normalized to the range of 0–1 before input. The streaming 
data is input in its original temporal order, and sliding windows of 
64 samples are used to generate input features, ensuring the real-
time characteristics of the stream data. The update strategy includes 
updating sub-detectors when the cache is full and adjusting the update 
rate when the estimated anomaly rate of the sliding window exceeds a 
preset threshold, addressing concept drift and clustered anomalies. 

4.1 Selection of sampling size and 
integration scale

The ensemble size and sliding sampling window size affect 
the algorithm’s AUC performance, so it is important to select 
an appropriate combination to ensure optimal model AUC 
performance. The ensemble size range is (20, 40, 60, 80, 100, 120), 
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TABLE 1  Detailed dataset statistics.

Dataset Sample size Anomalous samples Dimensions Mean Std DeV Max Min

Training set 1,000 0 18 0.52 0.15 0.95 0.01

Streaming update set 3,100 0 18 0.50 0.16 0.98 0.02

Testing set 2,472 918 18 0.54 0.18 1.00 0.00

TABLE 2  AUC values under different integration scales and 
window sizes.

Scale Sliding sampling window size

64 128 256 512 1,024

20 0.8058 0.7358 0.6348 0.5180 0.5159

40 0.8096 0.6769 0.6832 0.5216 0.4835

60 0.8465 0.7285 0.6070 0.6175 0.4646

80 0.8416 0.7032 0.6560 0.5358 0.3672

100 0.8092 0.7475 0.5889 0.5540 0.5145

120 0.7779 0.7039 0.6380 0.5791 0.4363

and the sliding sampling window size range is {64, 128.256, 512, 
1,024}. The actual values of these two parameters depend on the test 
data, so when performing this selection experiment, no isolation 
tree updates are performed, meaning there’s no need to set an 
update ratio.

Since no isolation tree updates are performed, the experimental 
results of the algorithm in Ref. [9] are consistent with those of this 
paper, that is, the integration scale and sliding window sampling 
size are the same. The same integration scale and sliding window 
sampling size are selected for subsequent experimental comparisons. 
The purpose is to control variables and then explore the different 
performances of the two algorithms when the update ratio changes, 
and compare them. By inputting the data set in sequence to simulate 
the characteristics of the streaming data, the experimental results 
obtained are shown in Table 2. The results show that for this data set, 
the algorithm has a higher AUC value when the integration scale is 
60 and the sliding sampling window size is 64. Therefore, these two 
parameters are used for subsequent experiments.

4.2 Algorithm comparative analysis

4.2.1 Performance comparison
The selection of the update rate parameter requires 

consideration of specific circumstances. There are two scenarios 
that trigger detector updates: First, an update is triggered by a full 
buffer. In this case, the estimated anomaly rate of the sliding window 
is below a pre-set threshold, so a larger update rate is not required. 
Second, an update is triggered by an estimated anomaly rate of the 

sliding window exceeding a threshold. This scenario can occur in 
two ways: one is that the data sample is normal, but a larger update 
is required due to concept drift; the other is that the anomaly rate is 
high due to clustered anomalies, but the detector is still usable, so 
the update rate should be minimized.

In this paper, the update ratio is set to be less than 0.5, and 
some discrete points are selected for simulation experiments. The 
update ratio set is (0.1, 0.2, 0.3, 0.4). Due to the presence of 
Bernoulli randomness when selecting data, in order to obtain more 
objective evaluation results, as shown in Table 3, in this experiment, 
the method proposed in this paper and the method proposed in 
the literature [9] were respectively repeated 20 times at the same 
update ratio to obtain the corresponding AUC values. The statistics 
were calculated and the average AUC value was recorded as the 
experimental result. This additional information helps to ensure that 
the improvements in performance are statistically significant and 
not influenced by random fluctuations. Since the flow data anomaly 
detection has the requirement of real-time performance, a method 
similar to the above AUC value test was adopted to compare the 
detection speed of each method. The detection speed results are 
shown in Tables 3, 4.

The proposed method outperforms traditional anomaly 
detection algorithms (e.g., Isolation Forest and Autoencoders) in 
several key aspects. First, our adaptive isolation forest mechanism 
addresses the performance degradation caused by concept drift, 
which is a significant issue for static algorithms. As shown in Table 3, 
our method demonstrates a 34.12% improvement in AUC compared 
to the baseline algorithm, especially under conditions of high 
concept drift (update ratio = 0.4). Second, the integration of self-
supervised learning based on GPT allows our method to capture 
the temporal dependencies within the data, which traditional 
methods like Isolation Forest fail to do. This is particularly crucial 
in streaming data environments, where time-series patterns play 
a major role in anomaly detection. Our results show a significant 
increase in the detection performance, with AUC values improving 
by up to 39.12% compared to existing methods. 

4.2.2 Ablation experiments
An ablation study involves removing some improved features 

from a relevant model or algorithm to verify their necessity. This 
paper presents an adaptive isolation forest algorithm and a self-
supervised learning algorithm for anomaly detection in stream data 
of a power dispatching control system. Ablation experiments were 
conducted to verify the effectiveness of the improvements made to 
each submodule. Each set of ablation experiments was conducted at 
different update ratios. The result is as shown in the Table 5.
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TABLE 3  Comparison of AUC values under different methods.

Method comparison Update ratio/AUC value comparison

0.1 0.2 0.3 0.4

Isolation forest method for raw stream data 0.6869 0.7661 0.7636 0.6356

Adaptive isolation forest 0.7110 3.193% 0.7667 0.131% 0.7618 −0.262% 0.8534 34.119%

Based on self-supervised learning 0.7515 8.999% 0.7965 3.916% 0.8454 10.602% 0.8843 38.994%

TABLE 4  Comparison of detection speed under different methods (seconds/1,000 sampling points).

Method comparison Update ratio/AUC value comparison

0.1 0.2 0.3 0.4

Isolation forest method for raw stream data 0.3454 0.3542 0.3771 0.4016

The method proposed in Section 3.3 of this paper (adaptive isolation forest) 0.3612 0.3723 0.3886 0.4126

The method proposed in Section 3.4 of this article (based on self-supervised learning) 0.7341 0.7615 0.7892 0.8214

TABLE 5  Ablation experiment of stream data anomaly detection based on isolation forest.

Method Update ratio/AUC value 
comparison t-test

0.1 0.2 0.3 0.4

Isolation forest method for raw stream data 0.6890 0.7661 0.7636 0.6356

The method proposed in Section 3.3 of this paper (adaptive isolation forest) 0.7110 0.7667 0.7618 0.8534

-Adaptive 0.6145 0.6525 0.6618 0.6123

-Forest 0.5511 0.5631 0.5694 0.5661

Among them, the following ablation is performed on the 
adaptive isolation forest algorithm proposed in Section 3.2 of this 
article: 

1. Adaptive: Instead of using incremental learning, all sub-
anomaly detectors are learned using only the data in the 
current cache. All sub-anomaly detectors are replaced each 
time the model is updated.

2. Forest: Only one sub-anomaly detector is used without 
integrating multiple sub-anomaly detectors;

For the anomaly detection algorithm based on self-supervised 
learning proposed in Section 3.3 of this paper, the following ablation 
is adopted: 

1. Self-supervised learning: Instead of using the self-supervised 
learning state unit to encode the historical stream data 
information into ht, we simply concatenate the sampled 
historical stream data vectors as ht:

2. Distance-based sampling: During pre-training and testing, no 
distance-based sampling is performed to process the input data 
of the state memory unit.

The t-test results indicate that the improvements introduced 
by the ‘Adaptive’ and ‘Self-supervision’ modules are statistically 
significant. This confirms that each module contributes 
meaningfully to the overall performance, and the improvements are 
not due to random variations. The result is as shown in the Table 6.

4.3 Experimental results analysis

Analysis of the experimental results shows that the experimental 
results of the two methods under different update ratios are different. 
Although there are several other methods in the literature for 
anomaly detection, we chose to compare our method with the one 
presented in [9] because it is the most relevant to our approach and 
operates under similar conditions. Methods like autoencoders and 
GANs, while promising, were not included in the comparison for 
this study, but we plan to include them in future work for a more 
comprehensive evaluation. Compared with the method proposed in 
Ref. [9], the AUC value of the method proposed in this paper is 
significantly improved when the update ratio is 0.1 and 0.4, and is 
relatively close when the update ratio is 0.2 and 0.3. In addition, the 
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TABLE 6  Ablation experiment of stream data anomaly detection based 
on self-supervised learning.

Method Update ratio/AUC value 
comparison t-test

0.1 0.2 0.3 0.4

Isolation forest method for raw 
stream data

0.6890 0.7661 0.7636 0.6356

Self-supervised learning methods 0.7515 0.7965 0.8454 0.8843

-Self-supervision 0.7110 0.7867 0.8018 0.7134

-Distance-based sampling 0.7312 0.7893 0.8332 0.8416

AUC values of the two methods proposed in Sections 3.3 and 3.4 of 
this paper at 0.4 are improved by 34.27% and 39.12% respectively 
compared with the method proposed in Ref. [9]. Performance 
comparison experiments show that the power dispatching control 
system flow data anomaly detection algorithm based on self-
supervised learning proposed in this paper has better comprehensive 
performance.

In terms of detection speed, the adaptive isolation forest 
algorithm proposed in Section 3.2 of this paper is comparable 
to the baseline algorithm. However, the self-supervised learning-
based approach proposed in Section 3.3 is relatively slow. This is 
primarily due to the significant computational time required by the 
neural network used in this approach during forward computation. 
Therefore, in practical applications, this approach places higher 
demands on the real-time performance of other system components. 
Considering the actual margin required for real-time performance 
of streaming data in power dispatching and control systems, the 
speed disadvantage of the self-supervised learning-based approach 
remains acceptable.

The ablation experiment results based on the adaptive 
isolation forest algorithm proposed in Section 3.2 of this 
paper show that adaptively updating the model is of great 
significance to the proposed method. Without the proposed 
adaptive update mechanism, the model detection performance 
degrades significantly. At the same time, ensemble learning plays a 
fundamental role in anomaly detection. Compared with the adaptive 
update mechanism, the performance degradation is more obvious 
when the ensemble learning algorithm is not used.

The ablation experiments based on the self-supervised 
learning algorithm presented in Section 3.3 of this paper show 
that the temporal features obtained by self-supervised learning 
not only improve the model’s detection performance but also 
provide more stable performance under different update rates. 
Furthermore, ablation experiments comparing “self-supervised 
learning” with “adaptive isolation forest” demonstrate that temporal 
information is crucial for anomaly detection in streaming data, 
improving detection performance even without self-supervised 
learning. Distance-based sampling also significantly improves the 
modeling of temporal features and patterns in streaming data by 
removing redundant information from the data stream, specifically 
sampling points that have not changed significantly from the 
previous moment. 

5 Conclusion

To address the practical needs of anomaly detection in power 
grid dispatching services, this paper proposes an adaptive isolation 
forest-based anomaly detection algorithm for streaming data in 
power dispatching and control systems. Furthermore, a self-
supervised learning framework is introduced to further improve 
model performance. Taking into account the characteristics of 
streaming data in power dispatching and control systems, a new 
isolation forest anomaly detector update strategy is proposed. 
This strategy discards sub-forest anomaly detectors with large 
anomaly rate deviations and replaces them with new sub-forest 
anomaly detectors. This addresses the issue of overall performance 
degradation of anomaly detectors caused by random updates 
and improves the algorithm’s anomaly detection performance. 
The self-supervised learning framework employs a deep learning 
neural network and training techniques similar to the GPT pre-
trained language model to model the temporal characteristics 
and patterns in streaming data, further improving the model’s 
detection performance. Training and testing on a simulated 
streaming dataset with temporal characteristics demonstrate the 
proposed method’s superiority in comprehensive anomaly detection 
performance, including recall and precision, as well as the 
effectiveness of its key technical features. In view of the current 
situation that there are too few abnormal samples and the types 
of abnormalities are not rich, based on an in-depth analysis 
of the various business-related processes and their topological 
relationships in the power dispatching system, further improving 
the comprehensive performance of the anomaly detection method 
and expanding its applicability through data collection and 
accumulation will be one of the key research points in the
future.
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