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Anomaly detection method for
power dispatch streaming data
based on adaptive isolation
forest and self-supervised
learning

Tenglong Xie*, Bo Li, Yingkai Zhen, Hao Wei, Kunhuan Xu and
Jingyin Huang

Information Center of Guangdong Power Grid Co., Ltd., Guangzhou, China

Introduction: To address the issues of concept drift and scarcity of anomaly
samples in real-time anomaly detection under the massive streaming data
environment of power dispatching and control systems, this study focuses on
developing an effective detection method.

Methods: We propose a streaming data anomaly detection method integrating
adaptive isolation forests and self-supervised learning. First, a business-based
model is constructed by analyzing inherent relationships between system
services, processes, and resource usage. An improved isolation forest algorithm
with a sub-forest progressive update mechanism is designed—selectively
eliminating sub-detectors with large anomaly rate deviations and dynamically
adding new ones to overcome performance degradation from traditional
random updates. Additionally, a GPT-based self-supervised learning framework
is introduced, incorporating state memory units to encode historical data
patterns and a distance metric-based sampling strategy to reduce redundancy.
Results: Experiments on a real power dispatching process resource dataset show
the proposed method significantly outperforms the traditional streaming data
isolation forest algorithm in key indicators such as AUC value, with the highest
improvement reaching 39.12%. Ablation experiments verify the effectiveness of
each module.

Discussion: The proposed method enhances the detection algorithm's
adaptability to concept drift, overall stability, and ability to perceive hidden
anomalies, providing reliable technical support for the safe and stable operation
of the power dispatching system.

adaptive isolation forest, self-supervised learning, power dispatch system, streaming
data, anomaly detection

1 Introduction

As the nerve center of the smart grid, the stable and reliable operation
of power dispatching and control systems is directly related to the safety and
economic efficiency of the entire power system. With the continued expansion of
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the power grid, the widespread integration of distributed energy
resources, and the deepening of demand-side management, the
complexity of power dispatching and control systems is increasing,
and the scale and number of functional modules are growing
exponentially. In this context, system failures caused by software
process anomalies, resource contention, and data jumps are
becoming increasingly frequent. These failures are often hidden
in massive amounts of real-time operational data, making them
difficult to detect and locate in a timely manner using traditional
monitoring methods.

Especially in the streaming data environment generated by
this system, data has core characteristics such as continuous
high-speed arrival, possible concept drift, and extremely scarce
anomalous samples. Traditional anomaly detection methods based
on static thresholds set by expert experience are not only highly
subjective and poorly adaptable, but also difficult to capture
the collaborative and competitive relationships between complex
processes and cannot effectively respond to dynamic changes in data
distribution [12]. Therefore, the research of an intelligent anomaly
detection algorithm that can adaptively update and fully exploit
the internal temporal patterns and semantic features of streaming
data has crucial theoretical significance and engineering value for
achieving early warning of power dispatch control system failures
and improving the reliability of power grid operations.

This paper addresses these challenges and aims to investigate
novel anomaly detection methods for the streaming data
environment of power dispatching and control systems. First, we
analyze the inherent connections between business, processes, and
resource usage within the system, laying the foundation for anomaly
detection. Furthermore, the core contributions of this paper lie in
two aspects: First, we propose an adaptive isolation forest-based
anomaly detection algorithm for streaming data. This algorithm
dynamically maintains a collection of detectors through a novel
sub-forest progressive update mechanism, effectively overcoming
the model performance degradation caused by random updates
in traditional methods, while balancing detection efficiency and
adaptability to concept drift. Second, to further mine the rich
temporal information contained in streaming data, we introduce a
self-supervised learning framework based on the GPT architecture,
constructing state memory units to encode historical data patterns,
thereby enhancing the model’s understanding of normal behavior
patterns and improving its ability to identify hidden anomalies.

Experimental validation on a set of real-world power dispatch
process resource data demonstrates that the proposed method
significantly outperforms traditional baseline algorithms in terms
of overall performance (AUC value). Ablation experiments also
demonstrate the effectiveness of each innovative module. This
research provides new technical ideas and solutions for the safe and
stable operation of power dispatch systems.

2 Related work

Based on their core concepts, anomaly detection technologies
can be broadly categorized into statistical, distance, density,
clustering, and learning-based approaches. Adapting these
technologies to streaming data environments and meeting the high

real-time and high reliability requirements of power dispatching
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and control systems remains a key focus and challenge in
current research.

2.1 Traditional anomaly detection
algorithms and their streaming adaptations

Early anomaly detection mostly relied on statistical methods
(such as the 30 principle and Grubbs test) or threshold methods
based on expert experience. Although these methods are simple
and efficient, they cannot capture the complex relationships between
multidimensional features, and static thresholds are difficult to adapt
to the dynamically changing environment of streaming data. To
cope with the continuous arrival of streaming data, researchers have
proposed many incremental learning algorithms. For example, the
incremental version of the distance-based algorithm [1] (such as
K-NN) requires dynamic maintenance of the nearest neighbor set,
which has huge computational overhead; and the density-based
algorithm [2] (such as LOF) also faces the high complexity problem
of recalculating neighbor relationships during incremental updates.
These methods are difficult to meet the stringent requirements for
detection efficiency in power dispatch scenarios.

2.2 Isolation forest algorithm and its
application to streaming data

The Isolation Forest (iForest) algorithm has significant
advantages in processing high-dimensional big data due to its
linear time complexity and the fact that it does not require distance
calculation. It isolates samples through a random segmentation
strategy, and outliers have a shorter path length due to their “easy
to isolate” characteristics. The classic Isolation Forest algorithm
is designed for offline batch data, and its direct application to
streaming data will lead to performance degradation due to concept
drift. To this end, literature [3] proposed a streaming data Isolation
Forest algorithm that achieves incremental updates of the model by
randomly replacing isolation trees. However, this random update
strategy lacks specificity, which may unintentionally discard subtrees
that perform well, leading to performance fluctuations and a
decrease in overall detection accuracy. In contrast, the adaptive
update mechanism proposed in this paper addresses this issue
by selectively eliminating sub-detectors with the largest anomaly
rate deviation. This targeted approach ensures that only poorly
performing sub-detectors are updated, preserving the stability and
integrity of the remaining forest, and thus maintaining the model’s
overall performance more intelligently and consistently.

2.3 Anomaly detection methods based on
deep learning

In recent years, deep learning techniques have been widely
used in anomaly detection [4], especially autoencoders and
generative adversarial networks (GANSs), which identify anomalies
by reconstructing errors. These methods are effective in detecting
complex patterns in data. However, these methods typically require
a large amount of data for training and are computationally
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demanding. More importantly, they mostly focus on learning
spatial features while ignoring the crucial temporal dependencies in
streaming data.

2.4 The rise of self-supervised learning in
time series anomaly detection

Self-supervised learning [5] provides a new paradigm for solving
the problem of scarce abnormal samples by designing pre-training
tasks to learn representations from unlabeled data. In particular, in
the field of natural language processing (NLP), models such as GPT
(Generative Pre-trained Transformer) have learned rich language
representations on large-scale corpora through the pre-training task
of “predicting the next word” Inspired by this, researchers began
to apply similar ideas to time series data, learning the time series
evolution pattern of normal data by “predicting future data points”
Currently, there is no research on combining this framework with
traditional efficient anomaly detection algorithms (such as isolation
forests) for power dispatching flow data scenarios. This paper is to
integrate GPT-style self-supervised learning with adaptive isolation
forests to innovate, capture the time series rules of historical flow
data through pre-trained state memory units, and inject the learned
representations into the forest detection process, thereby achieving
further improvement in detection performance.

In summary, this paper is based on an in-depth analysis of
the shortcomings of the isolation forest algorithm for streaming
data, and innovates from two dimensions: model update strategy
and time series feature mining. It proposes a solution that is
both efficient, adaptable, and accurate, filling the gap in existing
research in the specific application scenario of power dispatching
and control systems.

3 System analysis and methods

3.1 Analysis of the relationship between
business, process, and process resource
occupancy in the power dispatching
control system

With the continued expansion of the dispatching network, the
addition of new functions, the upgrade of the dispatching system,
and the introduction of demand-side management, the power
dispatching control system itself has become increasingly complex.
Software errors in the system have become increasingly prominent,
and failures caused by software errors have also increased. Based on
the construction of the knowledge graph of the smart grid control
system in the previous chapter, we can further explain and analyze
the relationship between the business, process, and process resource
usage of the power dispatching control system. For example, when
periodically collecting and recording process data at a telemetry
point in a province’s power generation, if the difference in values
between adjacent moments is greater than a manually set threshold,
that is, the data information is abnormal, it is considered that a data
jump failure may have occurred.

Asshown in Figure 1, the causes of data jumps can be categorized
into two main types: one is external factors, such as jumps in the
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actual data transmitted by a remote station; the other is failures in
the local power dispatching and control system, primarily caused
by hardware damage and abnormal process operation. Hardware
damage is relatively easy to troubleshoot, while failures caused
by abnormally running processes are more difficult to detect in
a timely manner. Process abnormalities often lead to abnormal
hardware resource usage by processes. In the operation of power
dispatching and control systems, services and processes are closely
intertwined. Figure 2 shows the flow chart of the telemetry table
refresh service. When the telemetry table refresh service operates
normally, the corresponding processes must run in an orderly
and coordinated manner. During this time, the resource usage of
each process can be collected. Conversely, abnormal operation of
a related process can impact the overall service flow, hindering
service operations and even causing failures. Figure 3 illustrates
the relationship between services, processes, and process resource
usage. Process resource usage can be used to understand the current
process operation and, therefore, infer the current service status.
In power dispatching and control systems, some services are not
only directly affected by the resource usage of related processes,
but also indirectly affected by the server’s own total resource usage.
The reason is that if processes unrelated to the business operation
consume excessive server resources, it will affect server performance
and thus hinder the business operation. In fact, the resource usage
of a process and the total server resource usage are in a total-to-
score relationship, but they emphasize different points: the resource
usage of a single process mainly reflects the real-time status of the
process closely related to the business, which is a direct influencing
factor; while the total server resource usage emphasizes the impact
of the server’s operating status on the business, which is an indirect
influencing factor.

Currently, methods for determining the operational status
of upper-level services based on process resource usage often
rely on a single threshold setting based on expert experience.
This approach is highly subjective and fails to fully reflect the
relationships between processes associated with the service itself,
nor does it reflect the impact of the runtime of processes
associated with other services. Online data, however, not only
reflects the real-time status of each process during service operation
but also implicitly captures the cooperative and competitive
relationships between processes. By intelligently analyzing and
learning historical data on service process resource usage, and
using different attributes as input, defining boundaries in a high-
dimensional space that encompass the majority of normal data, and
subsequently analyzing and determining whether the operational
status of upper-level services is abnormal, this approach is crucial
for maintaining the safe and stable operation of the power
grid.

3.2 Anomaly detection algorithm for
stream data in power dispatching control
systems based on adaptive isolation forest

The Isolation Forest Algorithm [5, 6] is a recently proposed and
most influential detection algorithm. Its main idea is to randomly
select a sample attribute for a data sample space to perform
spatial segmentation, obtaining two sub-sample spaces. Then, a
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sample attribute is randomly selected to split each sub-sample
space until each sub-sample space contains only one type of data
point. The partitioning is like building a binary tree, with the root
representing the entire sample space and the branches and leaves
at the end representing one type of data point. The algorithm is
described as follows:

Suppose there is a dataset X and a binary tree T describing the
data. It has a set of nodes N, and each node is either N, or Ny,
where i represents the number of levels in the tree, j represents
the jth node from left to right in the previous level, and r and [
distinguish right and left nodes on the same level. In particular,
N, represents the root node, which contains the data of the entire
dataset X.

X contained in a certain layer, randomly select the sample
attribute q and its value range space p to divide X, ;) and
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X(i41)(° +1)r corresponding to the node sets N, ;) and N 1) 1),-
Data less than or equal to p is divided into*N @+ and datfl greater
than p is divided into N;,;);+,1),» Where j represents the j th node
from left to right in the i+1th layer. For the dataset, there are shown
in Equations 1, 2:

X(i+1)j*l Ux(i+1)(j‘+l)r — le (1)

X(irn)j1 N Xisngranyr =9 (@)

When the following situation occurs, a complete binary tree is
obtained and the partitioning is completed:

1. The depth of the data tree reaches the set maximum value
2. Node N contains only one data point or the data points it
contains are the same
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The above method is different from existing distance-based and
density-based anomaly detection methods. This method does not
require distance or density calculation and can better meet the
needs of high-efficiency analysis and processing of online anomaly
detection.

Streaming data from power dispatching and control systems
is characterized by high volume, rapid, and continuous arrival. To
detect anomalies in this data, real-time updates of anomaly detectors
are necessary to ensure stable performance.

Figure 4 provides an overview of the entire streaming anomaly
detection pipeline. Incoming data are first organized into a sliding
window of length N, which captures the most recent observations
required for window-level anomaly analysis. This window is passed
to the anomaly scoring module, where the feature extractor
computes the anomaly scores and produces the window-level
anomaly rate. To handle the non-stationary nature of power system
streams and to remain resilient to concept drift, the framework
incorporates an adaptive update mechanism driven by two triggers:

1. Ananomaly-rate threshold, where the averaged anomaly score
exceeds a predefined value, and

A buffer-based triggering strategy, where the update buffer
becomes full. These triggers ensure that model updates occur
only when necessary, balancing computational efficiency and
adaptability.

Integrating the low complexity and high efficiency of the
isolation forest algorithm, a novel isolation forest anomaly detection
method based on incremental learning with sub-forest progressive
updates is proposed for stream data from power dispatching
and control systems. Multiple sub-forest anomaly detectors are
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constructed using isolation trees trained on historical datasets
to form a base forest anomaly detector. A sliding window is
also created to store the streaming data. Whenever new data
enters the window, the oldest data in the window is cleared,
implementing a sliding window. A Bernoulli algorithm is then
used to determine whether the new data needs to be stored in the
buffer.

The base forest anomaly detector determines the anomaly rate
of the sliding window. If the anomaly-rate trigger is activated or the
buffer becomes full, the system initiates a detector update following
the update mechanism described in Figure 4. When the former
triggers an update, the updated dataset is the union of the data in
the sliding window and the data in the buffer. The sliding window
and buffer are cleared, requiring a new sliding window to be rebuilt.
When the latter triggers an update, the corresponding updated
dataset is the data in the buffer.

Based on the updated dataset, the absolute deviation of the
anomaly rate between the sub-forest detector and the base forest
anomaly detector is calculated, and sub-forest anomaly detectors
with large deviations are removed. Simultaneously, multiple sub-
forest anomaly detectors are created based on the updated dataset
and added to the base forest anomaly detector to achieve detector
update optimization. The process is shown in Figure 5.

This paper proposes an isolation forest-based anomaly detection
method for stream data in power dispatching and control systems,
which mainly includes five key steps:

Step 1: Sample the data set of the power dispatching control
system through a systematic sampling method, construct multiple
sub-forest anomaly detectors, and combine the multiple sub-forest
anomaly detectors into a base forest anomaly detector.
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Schematic diagram of the anomaly detection algorithm for stream data in the power dispatching control system based on isolation forest.

Anomaly detector update

Specifically, based on the original power dispatching dataset,
the isolation forest algorithm is used to construct L isolation
trees (where L refers to the number of isolation trees), and the
systematic sampling method is used to divide the isolation trees
into n groups to construct multiple sub-forest anomaly detectors.
The method for all sub-forest anomaly detectors to form the base
forest anomaly detector is as follows: collect N power dispatching
data samples to form the original power dispatching dataset;
uniformly sample ¥ data samples from the N original datasets
as training samples for this isolation tree; in each isolation tree
sample, two random selections are performed, one is to randomly
select a feature, and the other is to randomly select a value
within the range of all values of this randomly selected feature,
and perform binary partitioning on the sample, dividing samples
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less than the value to the left side of the node, and samples
greater than or equal to the value to the right side of the node,
to obtain a split condition and left and right datasets. Then
repeat the above process on the left and right datasets respectively
until the termination condition is met. There are two termination
conditions:

The data itself cannot be divided further (it only contains one
sample, or all samples are the same);

The height of the tree reaches log2(: In the above
method, the isolation trees are divided into groups
using the systematic sampling method to construct
which

the

sub-forest anomaly detectors, are recorded

as iForest(1)~iForest(n), where isolation  trees
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that make up iForest(i) are numbered as shown in
Equation 3:

(L-n)
n

iTree(i+k=x< %)k:o,l,z,..., (3)
The isolation trees in the n sub-forest anomaly detectors together
constitute the base forest anomaly detector.
The algorithm for building the base forest anomaly detector
is as follows:
FundamentallForest('¥, W,L)
input: Number of training data for each isolation tree, ¥
number of isolation trees (Tree), L
size of the original sample set L, size of the output set, N
output: Isolation forest (Anomaly detector), IForest

Initialize IForest < {}

h < ceiling(log2 ')

fori< 1toLdo

X < sampleWithReplacement('¥, N)
ITree<ITreeTraining(X)
IForest<IForest UlTree

end for

return IForest

Step 2: Use the base forest anomaly detector to determine the
anomalies of the data entering the sliding window.

Specifically, the base forest anomaly detector is applied to the
streaming data of the sliding window. That is, for each data arriving
at the sliding window, its abnormal condition is judged by the
base forest anomaly detector. The input of the base forest anomaly
detector is the real-time resource occupancy data of the process
related to the power dispatching system business, such as process
CPU occupancy, memory occupancy, disk 10, network IO, number
of threads, number of network connections, etc. (the input features
are best organized into a table and placed in the front). The output
is a value in the range of (0, 1). The value range indicating that the
streaming data is normal is (0, h), and the value range indicating
that the streaming data is abnormal is (h, 1). The h value represents
the anomaly score obtained by using the initial base forest detector
obtained by training to calculate the historical data. It can be
obtained by taking the quantile based on the abnormal proportion
of the historical data as shown in Equation 4:

h = ~QUARTILE(-F(x),100 x (1 - ¢)) (4)

Where: y = QUARTILE(a, b) is the quantile function; z = F(x) is
the detection function of the base forest detector; X is the training
sample set of the isolation tree; c is the proportion of abnormal
samples in the training sample set.

Step 3: Sample the stream data entering the sliding window and
determine with a certain probability whether it is stored in the buffer;
when the sliding window is full of data, determine the abnormality
rate of the sliding window data at this time.

Specifically, for data that has just arrived in the sliding window,
simple random sampling based on the Bernoulli distribution is
performed to determine whether the data needs to be entered into
the buffer, thereby filling the buffer. If the sliding window is full,
the newly arrived data will replace the data that entered the sliding
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window the earliest. At the same time, the data anomaly rate in
the sliding window at this moment is calculated in real time and
recorded as u':

Step 4: When the amount of data in the buffer exceeds the
threshold, the update model strategy is triggered according to a
smaller update ratio: When the anomaly rate of the sliding window
data exceeds the specified threshold, the update model strategy is
triggered according to a larger update ratio.

Specifically, the anomaly detector is updated when either of the
following two conditions is met:

1. The anomaly rate of the current sliding window data is greater
than the anomaly rate threshold. At this time, the dataset X
used to update the base forest anomaly detector is the union of
the data in the sliding window and the data in the buffer;

2. The data in the buffer is full. At this time, the data set X used
to update the base forest detector is the data in the buffer.

Step 5: Based on the updated dataset, calculate the difference
between the anomaly rates of each sub-forest anomaly detector and
the base forest anomaly detector, remove the sub-forest anomaly
detectors with large differences, and construct multiple sub-forest
anomaly detectors to supplement them to form a new base forest
anomaly detector to achieve the update.

Specifically, the base forest detector and the sub-forest detector
are used respectively to calculate the data anomaly rate of the data set
X*, denoted as u,; and u;, and set as r;i the anomaly rate deviation
of the th sub-forest anomaly detector iForest(i).

Arrange the anomaly rate deviations of the n sub-forest anomaly
detectors in descending order, and take the first k (0 < k < n) as the
sub-forest anomaly detectors to be updated;

Use the data in the current sliding window to build k sub-forest
anomaly detectors to replace the sub-forest anomaly detectors to be
updated. At the same time, update the isolation tree in the base forest
detector to complete the update of the base forest detector and clear
the data in the sliding window and buffer.

The algorithm pseudocode for steps 2-5 is as follows:

updatingFundamentallForest(X,X buﬁ%r,u,u,k,n o IForest)

ers

Input: Current window sample, X’

Buffer sample, Xbuffer

Anomaly rate threshold, u

Abnormality rate of the current window, u’

Number of updated sub-anomaly detectors, k

Number of isolation trees in each group, n
Current integrated isolation trees (anomaly detectors), with a

quantity of m, iForest
Output:  Updated

detectors), iForest'

integrated isolation trees (anomaly

Initialize IForest < {},X* < {},R¢ {}
if Xy uffer = m then

X"«X buffer

end if

ifu’ >u then

X*«XUX buffer

end if

fori¢-1 to k do

IForest *i <« ITree(X ™)

IForest ' « Forest 'U IForest’

R I T e

—
@
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11: end for
12: u , <getFailureRate(IForest ;,X*)
L. 13:fori< 1tom/n ., do
14: TForest; < {ITrceejli € [i,i+ npe,]}}
15: u(i) <getFailureRate(IForesti,X")
16: 1< |u(i)/uy; —1|
17: R¢RUT;
18: end for
19: Delete the k sub - anomaly detectors with the largest abnormal
deviation rate from the IForest in [Forest.
20: IForest ' «IForest ' U IForest
21: return IForest '’

3.3 Anomaly detection algorithm for
stream data in power dispatching and
control systems based on self-supervised
learning

The isolation forest-based anomaly detection method for power
dispatching control system stream data in the previous section has
the characteristics of fast speed and strong real-time performance,
but it fails to fully model the serialized information contained in the
stream data. At the same time, most of the stream data is negative
sample data (i.e., normal data), and only a small amount is positive
sample data (abnormal data). Fully mining the knowledge of the
transition from negative samples to positive samples is conducive
to enhancing the robustness of the system. This section, based on
the incremental isolation forest algorithm described in the previous
section, further introduces serialized information modeling into the
unsupervised anomaly detection process. Specifically, we design a
state memory sequence to record the stream data information before
the current moment, and enhance the detection performance of
the model based on the historical stream data information stored
in the state memory unit encoding. At the same time, we use a
self-supervised learning framework based on GPT (Generative Pre-
trained Transformer) [7] to pre-train the state memory unit and
fully mine the information of the transition from negative samples
to positive samples. In addition, in order to reduce the continuous
similar stream data information, we propose a stream data sampling
method based on distance metric to support long-distance memory,
reduce storage overhead, and speed up detection.

3.3.1 GPT-based streaming data self-supervised
learning framework

Inspired by the recent rise of self-supervised learning language
models in the field of natural language processing, we introduce
the relevant technologies of the generative language model (GPT)
into the self-supervised learning of streaming data, that is, fitting
the current streaming data based on historical streaming data [8].
Through this data fitting, self-supervised learning can fully explore
the internal laws of streaming data without introducing manual
annotation, thereby achieving a good representation of historical
streaming data information and improving the performance of
subsequent anomaly detection models.
data
Y PRV ,x{t,Z},x{t,l},x,,x{m},...], the standard language

Specifically, for a given stream sequence
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model objective function is used to perform maximum likelihood
estimation, which is shown in Equation 5.
N

L(6) = —ZIOgPQ(xr | %0-1) ®)
=1

Where N represents the window size, 0 a neural network with
parameters is used to model the conditional probability P, and the
optimizer uses the stochastic gradient descent algorithm (SGD). The
specific implementation is as follows:

1. The input layer is different from text-based data. Streaming
data is often considered to be an infinitely long data sequence
and cannot be directly input into the GPT. Therefore, for
the time t to be detected, only N+1 sample data containing
Xy = [x{H\,},...,x{t,z},x{t,l},x{t}] xt are sequentially input.
The neural network of the input layer first linearly maps
the original streaming data vector, and then adds the
interval information from each time step to the time step
to be predicted to obtain the output of the input layer
[v_{t—=N}L--v_{t=-2}v_{t-1}Lv_{t}].

2. GPT-based stream data feature representation

The stream data vector sequence obtained from the input layer
V, is input into the GPT network to obtain the feature vector
of the time step data to be predicted h,. As shown in Figure 6,
the GPT network contains L layers of Transformer blocks, and
the top layer output is used as the GPT output. Specifically, we
use L = 6 layers and Nh = 8 attention heads. These values were
chosen based on preliminary experiments to balance the model’s
capacity for capturing temporal dependencies with computational
efficiency, that is ; = h%; the network decomposition of each layer
of Transformer blocks is exactly the same, and the mapping of the
Ith layer can be expressed as H' = transformerblock(Hl’l,91), where
H'"! is the output of the I-1th layer, 8, represents the parameters
of the layer, and the specific calculation process is as shown in
Equations 6-9:

MultiHead(Q,K, V) = Concat(headl,headz, ,heath) (6)
head; = Attention(QWlQ,KWlK, VWIV) (7)

. QK"
Attention(Q, K, V) = softmax| —— + mask |V (8)

e
trans formerblock(H) = FNN(MultiHead(H, H, H)) 9)

where headi € RV represents the result of calculation of the i-
th head in the multi-head attention module MultiHead; Concat
concatenates the features of the last dimension of each head, and the
result satisfies Concat(headl,head2,...,headNh) € RN*dun | where
d,.;, = d, x Nj;; mask is the mask matrix used to calculate the time

-1 ---,hﬁ’l], that is maskij =0. When

step hf, only considering [hz-zw

i > j, mask; = — oo.
3. Probability estimation of data to be predicted

Based on the historical stream data feature representation
obtained by the Transformer decoder, the probability of the stream
data at the target time is calculated as shown in Equation 10:

Pl | i poeeri36) = [ (Pl =) (10)
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FIGURE 6
GPT basic network structure.

After the probability obtained in this way is substituted into the
language model objective function, the model optimization can be
achieved according to the objective function.

3.3.2 Stream data sampling based on distance
metric

We choose the L2 norm as the distance metric for sampling due
to its computational efficiency and its ability to effectively capture
Euclidean distances between data points. The L2 norm is commonly
employed in anomaly detection tasks because it highlights the
differences in the feature space, which is essential for distinguishing
anomalous data in high-dimensional streaming environments.

Actual sampled stream data contains numerous consecutive,
similar data points, resulting in a significant amount of redundant
information. Calculating all of these points would slow down
model detection and introduce unnecessary, irrelevant information,
hindering the model’s ability to capture useful information. To
address this issue, we designed a stream data sampling method based
on distance metrics to reduce redundant information. Specifically,
given the original stream data [x,x,,...,x,], we traverse it from
front to back and sample only those points that meet the following
requirements Equation 11:

" Xi— xlatest"Z > € (11)

represents x,,. the most recent sampling, ¢ and the minimum
distance interval that sampling needs to meet is represented by, thus
obtaining the sampled flow data [%,%,,...,%,,].
3.3.3 Streaming data anomaly detection method
based on self-supervised learning

Figure 7 provides an overview of the proposed self-supervised
learning framework wused for pre-training the GPT-based
representation model.

Frontiers in Physics

The core idea is to leverage historical streaming data to learn
temporal patterns without relying on manual labeling. To this end,
the method constructs a state memory that stores a representative
subset of the historical data. This memory is populated using a
distance-based sampling strategy, ensuring that the stored sequences
are diverse and preserve long-term temporal variation.

During pre-training, a sequence X = [x,X,,...,xy] is fed into
the model, which performs a next-step prediction task following
the standard autoregressive language modeling objective. The GPT
network learns to predict each data point conditioned on its
preceding context, thereby capturing temporal dependencies and
normal operating patterns of the system. The output of the top-layer
Transformer block serves as the temporal representation h,, which
is later used as the feature input for anomaly detection.

Once pre-training is completed, the learned parameters are
frozen and deployed in the online detection pipeline. This separation
between offline representation learning and online detection ensures
both efficiency and stability, as shown in Figure 7. The self-
supervised framework enables the model to generalize to unseen
patterns and forms the foundation for robust anomaly detection in
the streaming environment.

3.3.3.1 State memory unit construction

In order to introduce the flow data information before
the current time step into the anomaly detection algorithm of
the power dispatching control system based on isolation forest
proposed in Section 3.2, the self-supervised learning framework
described in Section 3.3.2 is used to construct a state memory unit
based on the GPT network h,: F(X,,6*) The specific process is as
follows:

1. Data sampling: For each moment, first sample a stream
data sequence of length N starting from that moment
[/ N+1>Xe_Ns2> %) and further sample the input of the
state memory unit at that moment based on the distance

frontiersin.org
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Streaming data anomaly detection framework based on self-supervised learning.

metric sampling technology Xt = [x},x5,...,x},]; for the pre-
training stage, first collect enough offline historical stream
data, traverse each moment t, and sample the pre-training data
set {o.., X n XpXp1s-o0)

Pre-training: Based on the pre-training
{... X1, X X441 5.}, the parameters of the state memory

unit are trained using the self-supervised learning method

dataset

described in Section 3.4.1 until convergence is reached, and
the model parameters of the state memory unit are saved 6%;

3. Time series feature calculation: After training is completed, for
a given stream data point to be detected x,, the same sampling
strategy is used to obtain its historical stream data sequence X,
which is input into the state memory unit and the historical
stream data information vector is output h,.

The parameters of the state memory unit 6% are completely
obtained by pre-training based on self-supervised learning, and
no parameter updates are performed when training on streaming
anomaly detection data.

3.3.3.2 Anomaly detection
Based on the trained state memory unit, the input of the original

Section 3.2 for anomaly detection of stream data in the power
dispatching control system based on isolation forest x, is replaced
by x, @ h,, and the anomaly detection process and the update of the
base anomaly detector are consistent with Section 3.2.

4 Experimental results and
comparative analysis

The dataset used in this study consists of process resource
usage data collected from a computer running Python and other
business processes. It includes 18 dimensions, mainly CPU usage
(%), memory usage (MB), and IO read/write rate (MB/s). For the
anomaly detection experiments, the dataset is divided into three
subsets: the training set, the streaming update set, and the testing
set. The training set contains 1,000 samples without anomaly labels for
model initialization; the streaming update set contains 3,100 samples
without anomaly labels to simulate stream data input and model
updating; the testing set contains 2,472 samples with anomaly labels,
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among which 918 samples are labeled as anomalous. Anomalies are
defined as Python running data exceeding 2 GB, while idle or non-
computing periods are labeled as normal. This threshold is determined
based on historical data distribution and empirical observation. The
receiver operating characteristic curve (ROC) is often used to describe
the performance of the anomaly detection algorithm [10, 11]. An
effectiveanomaly detection method needs to maintain a high recall rate
and precision rate, and the balance between the two can be described
by the ROC curve. When evaluating an algorithm, a quantitative
metric is often needed to measure anomaly detection performance.
This can be quantified using the area under the receiver operating
characteristic (ROC) curve (AUC).

Table 1 summarizes the key statistics of the datasets used in the
experiments. Each dataset contains 18 feature dimensions, including
CPU usage, memory usage, and IO read/write rates. The “Sample
Size” column indicates the total number of samples in each subset,
and “Anomalous Samples” shows the number of samples labeled
as anomalous (none in the training and streaming update sets,
918 in the testing set). The statistical columns (“Mean,” “Std Dev;’
“Max,” “Min”) represent the average, standard deviation, maximum,
and minimum values across all dimensions and all samples in the
respective dataset. All features were normalized to the range [0,1]
prior to input. This table provides readers with an overview of dataset
composition, variability, and anomaly distribution.

To ensure consistency for model training and testing, all features
are normalized to the range of 0-1 before input. The streaming
data is input in its original temporal order, and sliding windows of
64 samples are used to generate input features, ensuring the real-
time characteristics of the stream data. The update strategy includes
updating sub-detectors when the cache is full and adjusting the update
rate when the estimated anomaly rate of the sliding window exceeds a
preset threshold, addressing concept drift and clustered anomalies.

4.1 Selection of sampling size and
integration scale

The ensemble size and sliding sampling window size affect
the algorithm’s AUC performance, so it is important to select
an appropriate combination to ensure optimal model AUC
performance. The ensemble size range is (20, 40, 60, 80, 100, 120),
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TABLE 1 Detailed dataset statistics.

10.3389/fphy.2025.1704495

Dataset Sample size Anomalous samples Dimensions Mean Std DeV Max

Training set 1,000 0 18 0.52 0.15 0.95 0.01
Streaming update set 3,100 0 18 0.50 0.16 0.98 0.02
Testing set 2,472 918 18 0.54 0.18 1.00 0.00

TABLE 2 AUC values under different integration scales and
window sizes.

Scale Sliding sampling window size
64 128 256 512

20 0.8058 0.7358 0.6348 05180 05159
40 0.8096 0.6769 0.6832 0.5216 0.4835
60 0.8465 0.7285 0.6070 0.6175 0.4646
80 0.8416 0.7032 0.6560 05358 03672
100 0.8092 0.7475 0.5889 0.5540 0.5145
120 0.7779 0.7039 0.6380 0.5791 0.4363

and the sliding sampling window size range is {64, 128.256, 512,
1,024}. The actual values of these two parameters depend on the test
data, so when performing this selection experiment, no isolation
tree updates are performed, meaning there’s no need to set an
update ratio.

Since no isolation tree updates are performed, the experimental
results of the algorithm in Ref. [9] are consistent with those of this
paper, that is, the integration scale and sliding window sampling
size are the same. The same integration scale and sliding window
sampling size are selected for subsequent experimental comparisons.
The purpose is to control variables and then explore the different
performances of the two algorithms when the update ratio changes,
and compare them. By inputting the data set in sequence to simulate
the characteristics of the streaming data, the experimental results
obtained are shown in Table 2. The results show that for this data set,
the algorithm has a higher AUC value when the integration scale is
60 and the sliding sampling window size is 64. Therefore, these two
parameters are used for subsequent experiments.

4.2 Algorithm comparative analysis
4.2.1 Performance comparison

The
consideration of specific circumstances. There are two scenarios

selection of the update rate parameter requires
that trigger detector updates: First, an update is triggered by a full
buffer. In this case, the estimated anomaly rate of the sliding window
is below a pre-set threshold, so a larger update rate is not required.

Second, an update is triggered by an estimated anomaly rate of the
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sliding window exceeding a threshold. This scenario can occur in
two ways: one is that the data sample is normal, but a larger update
is required due to concept drift; the other is that the anomaly rate is
high due to clustered anomalies, but the detector is still usable, so
the update rate should be minimized.

In this paper, the update ratio is set to be less than 0.5, and
some discrete points are selected for simulation experiments. The
update ratio set is (0.1, 0.2, 0.3, 0.4). Due to the presence of
Bernoulli randomness when selecting data, in order to obtain more
objective evaluation results, as shown in Table 3, in this experiment,
the method proposed in this paper and the method proposed in
the literature [9] were respectively repeated 20 times at the same
update ratio to obtain the corresponding AUC values. The statistics
were calculated and the average AUC value was recorded as the
experimental result. This additional information helps to ensure that
the improvements in performance are statistically significant and
not influenced by random fluctuations. Since the flow data anomaly
detection has the requirement of real-time performance, a method
similar to the above AUC value test was adopted to compare the
detection speed of each method. The detection speed results are
shown in Tables 3, 4.

The proposed method outperforms traditional anomaly
detection algorithms (e.g., Isolation Forest and Autoencoders) in
several key aspects. First, our adaptive isolation forest mechanism
addresses the performance degradation caused by concept drift,
which is a significant issue for static algorithms. As shown in Table 3,
our method demonstrates a 34.12% improvement in AUC compared
to the baseline algorithm, especially under conditions of high
concept drift (update ratio = 0.4). Second, the integration of self-
supervised learning based on GPT allows our method to capture
the temporal dependencies within the data, which traditional
methods like Isolation Forest fail to do. This is particularly crucial
in streaming data environments, where time-series patterns play
a major role in anomaly detection. Our results show a significant
increase in the detection performance, with AUC values improving
by up to 39.12% compared to existing methods.

4.2.2 Ablation experiments

An ablation study involves removing some improved features
from a relevant model or algorithm to verify their necessity. This
paper presents an adaptive isolation forest algorithm and a self-
supervised learning algorithm for anomaly detection in stream data
of a power dispatching control system. Ablation experiments were
conducted to verify the effectiveness of the improvements made to
each submodule. Each set of ablation experiments was conducted at
different update ratios. The result is as shown in the Table 5.
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TABLE 3 Comparison of AUC values under different methods.

Method comparison

10.3389/fphy.2025.1704495

Update ratio/AUC value comparison

0.1 0.2
Isolation forest method for raw stream data 0.6869 0.7661 0.7636 0.6356
Adaptive isolation forest 0.7110 3.193% 0.7667 0.131% 0.7618 -0.262% 0.8534 34.119%
Based on self-supervised learning 0.7515 8.999% 0.7965 3.916% 0.8454 10.602% 0.8843 38.994%

TABLE 4 Comparison of detection speed under different methods (seconds/1,000 sampling points).

Method comparison

Update ratio/AUC value comparison

0.1 0.2 0.3
Isolation forest method for raw stream data 0.3454 0.3542 0.3771 0.4016
The method proposed in Section 3.3 of this paper (adaptive isolation forest) 0.3612 0.3723 0.3886 0.4126
The method proposed in Section 3.4 of this article (based on self-supervised learning) 0.7341 0.7615 0.7892 0.8214

TABLE 5 Ablation experiment of stream data anomaly detection based on isolation forest.

Method Update ratio/AUC value
comparison t-test
0.1 0.2 0.3
Isolation forest method for raw stream data 0.6890 0.7661 0.7636 0.6356
The method proposed in Section 3.3 of this paper (adaptive isolation forest) 0.7110 0.7667 0.7618 0.8534
-Adaptive 0.6145 0.6525 0.6618 0.6123
-Forest 0.5511 0.5631 0.5694 0.5661

Among them, the following ablation is performed on the
adaptive isolation forest algorithm proposed in Section 3.2 of this
article:

1. Adaptive: Instead of using incremental learning, all sub-
anomaly detectors are learned using only the data in the
current cache. All sub-anomaly detectors are replaced each
time the model is updated.

2. Forest: Only one sub-anomaly detector is used without
integrating multiple sub-anomaly detectors;

For the anomaly detection algorithm based on self-supervised
learning proposed in Section 3.3 of this paper, the following ablation
is adopted:

1. Self-supervised learning: Instead of using the self-supervised
learning state unit to encode the historical stream data
information into ht, we simply concatenate the sampled
historical stream data vectors as ht:

2. Distance-based sampling: During pre-training and testing, no
distance-based sampling is performed to process the input data
of the state memory unit.
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The t-test results indicate that the improvements introduced
by the ‘Adaptive’ and ‘Self-supervision’ modules are statistically
significant.  This that contributes
meaningfully to the overall performance, and the improvements are
not due to random variations. The result is as shown in the Table 6.

confirms each module

4.3 Experimental results analysis

Analysis of the experimental results shows that the experimental
results of the two methods under different update ratios are different.
Although there are several other methods in the literature for
anomaly detection, we chose to compare our method with the one
presented in [9] because it is the most relevant to our approach and
operates under similar conditions. Methods like autoencoders and
GANSs, while promising, were not included in the comparison for
this study, but we plan to include them in future work for a more
comprehensive evaluation. Compared with the method proposed in
Ref. [9], the AUC value of the method proposed in this paper is
significantly improved when the update ratio is 0.1 and 0.4, and is
relatively close when the update ratio is 0.2 and 0.3. In addition, the
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TABLE 6 Ablation experiment of stream data anomaly detection based
on self-supervised learning.

Update ratio/AUC value
comparison t-test
0.1 0.2 0.3 04
Isolation forest method for raw 0.6890 | 0.7661 | 0.7636 | 0.6356
stream data
Self-supervised learning methods 0.7515 | 0.7965 | 0.8454 | 0.8843
-Self-supervision 0.7110 | 0.7867 | 0.8018 | 0.7134
-Distance-based sampling 0.7312 | 0.7893 | 0.8332 | 0.8416

AUC values of the two methods proposed in Sections 3.3 and 3.4 of
this paper at 0.4 are improved by 34.27% and 39.12% respectively
compared with the method proposed in Ref. [9]. Performance
comparison experiments show that the power dispatching control
system flow data anomaly detection algorithm based on self-
supervised learning proposed in this paper has better comprehensive
performance.

In terms of detection speed, the adaptive isolation forest
algorithm proposed in Section 3.2 of this paper is comparable
to the baseline algorithm. However, the self-supervised learning-
based approach proposed in Section 3.3 is relatively slow. This is
primarily due to the significant computational time required by the
neural network used in this approach during forward computation.
Therefore, in practical applications, this approach places higher
demands on the real-time performance of other system components.
Considering the actual margin required for real-time performance
of streaming data in power dispatching and control systems, the
speed disadvantage of the self-supervised learning-based approach
remains acceptable.

The ablation experiment results based on the adaptive
isolation forest algorithm proposed in Section3.2 of this
paper show that adaptively updating the model is of great
significance to the proposed method. Without the proposed
adaptive update mechanism, the model detection performance
degrades significantly. At the same time, ensemble learning plays a
fundamental role in anomaly detection. Compared with the adaptive
update mechanism, the performance degradation is more obvious
when the ensemble learning algorithm is not used.

The ablation experiments based on the self-supervised
learning algorithm presented in Section 3.3 of this paper show
that the temporal features obtained by self-supervised learning
not only improve the model’s detection performance but also
provide more stable performance under different update rates.
Furthermore, ablation experiments comparing “self-supervised
learning” with “adaptive isolation forest” demonstrate that temporal
information is crucial for anomaly detection in streaming data,
improving detection performance even without self-supervised
learning. Distance-based sampling also significantly improves the
modeling of temporal features and patterns in streaming data by
removing redundant information from the data stream, specifically
sampling points that have not changed significantly from the
previous moment.
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5 Conclusion

To address the practical needs of anomaly detection in power
grid dispatching services, this paper proposes an adaptive isolation
forest-based anomaly detection algorithm for streaming data in
power dispatching and control systems. Furthermore, a self-
supervised learning framework is introduced to further improve
model performance. Taking into account the characteristics of
streaming data in power dispatching and control systems, a new
isolation forest anomaly detector update strategy is proposed.
This strategy discards sub-forest anomaly detectors with large
anomaly rate deviations and replaces them with new sub-forest
anomaly detectors. This addresses the issue of overall performance
degradation of anomaly detectors caused by random updates
and improves the algorithms anomaly detection performance.
The self-supervised learning framework employs a deep learning
neural network and training techniques similar to the GPT pre-
trained language model to model the temporal characteristics
and patterns in streaming data, further improving the model’s
detection performance. Training and testing on a simulated
streaming dataset with temporal characteristics demonstrate the
proposed method’s superiority in comprehensive anomaly detection
performance, including recall and precision, as well as the
effectiveness of its key technical features. In view of the current
situation that there are too few abnormal samples and the types
of abnormalities are not rich, based on an in-depth analysis
of the various business-related processes and their topological
relationships in the power dispatching system, further improving
the comprehensive performance of the anomaly detection method
and expanding its applicability through data collection and
accumulation will be one of the key research points in the
future.
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