
 

TYPE Original Research
PUBLISHED 08 January 2026
DOI 10.3389/fphy.2025.1697903

OPEN ACCESS

EDITED BY

Xing Lu,
University of California, San Diego, 
United States

REVIEWED BY

Yuening Zhang,
University of Oklahoma University College, 
United States
Yixiong Zhou,
Shanghai Jiao Tong University, China

*CORRESPONDENCE

Daniel T. Ginat,
dtg1@uchicago.edu,
ginatd01@gmail.com

RECEIVED 02 September 2025
REVISED 01 December 2025
ACCEPTED 15 December 2025
PUBLISHED 08 January 2026

CITATION

Shetty A, Babu Jai Shanker RR, Illimoottil M, 
Chohdry Q, Kadkol S, Illimoottil S, Holliman M 
and Ginat DT (2026) Automated segmentation 
of the lacrimal gland on non-contrast versus 
post-contrast T1-weighted MRI sequences.
Front. Phys. 13:1697903.
doi: 10.3389/fphy.2025.1697903

COPYRIGHT

© 2026 Shetty, Babu Jai Shanker, Illimoottil, 
Chohdry, Kadkol, Illimoottil, Holliman and 
Ginat. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

Automated segmentation of the 
lacrimal gland on non-contrast 
versus post-contrast 
T1-weighted MRI sequences

Amogh Shetty1, Ramkumar Rajabathar Babu Jai Shanker2, 
Mathew Illimoottil3, Qasim Chohdry3, Shrinidhi Kadkol4, 
Sarah Illimoottil3, Matthew Holliman2 and Daniel T. Ginat5*
1Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, United States, 2Biological Sciences 
Division, University of Chicago, Chicago, IL, United States, 3University of Missouri-Kansas City School 
of Medicine, Kansas City, MO, United States, 4University of Illinois at Chicago College of Medicine, 
Chicago, IL, United States, 5Department of Radiology, Section of Neuroradiology, University of 
Chicago, Chicago, IL, United States

Purpose: The lacrimal glands are small orbital exocrine structures responsible 
for tear production. Segmentation on MRI is challenging due to their small size, 
low contrast with adjacent tissues, and partial representation across slices. This 
study evaluates U-Net based models for automated lacrimal gland segmentation 
on non-contrast T1-weighted (AX-T1) and contrast-enhanced fat-suppressed 
(POST-AX-T1-FS) MRI.
Methods: Eighty-six patients with high-resolution orbital MRI were 
retrospectively analyzed. Manual gland annotations were created in 3D Slicer. A 
U-Net architecture was trained with 4-fold cross-validation on an 80:20 train-
test split. Performance was assessed on a hold-out set using Dice Similarity 
Coefficient (DSC), Intersection over Union (IoU), and Hausdorff Distance.
Results: POST-AX-T1-FS achieved the highest performance (mean DSC 
0.79 ± 0.19, IoU 0.68 ± 0.19), outperforming AX-T1. Volume correlation 
with ground truth was 0.81 for POST-AX-T1-FS and 0.71 for AX-T1. Most 
errors were false negatives in abnormal gland morphology. Qualitative 
review showed anatomically consistent segmentations, especially with region-
prioritized sampling.
Conclusion: CNN-based models show ability to segment lacrimal glands from 
orbital MRI, though performance is moderate with Dice scores around 0.79. 
Non-contrast sequences may provide reasonably accurate segmentations, 
but further refinement and broader validation are required. With continued 
optimization and larger, more diverse datasets, these models may eventually 
support more consistent gland delineation in research and early exploratory 
clinical use.
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1 Introduction

The lacrimal gland is an exocrine gland located in the upper 
outer portion of each eye socket, within the lacrimal fossa of the 
frontal bone. Its main role is to produce the aqueous layer of the 
tear film, which is essential for lubricating the eye, maintaining 
clear vision, and protecting the ocular surface [1, 2]. The gland 
receives sensory innervation from the lacrimal nerve (CN V1) 
and parasympathetic input from the facial nerve (CN VII), which 
regulates tear production in response to stimuli like irritation 
or emotion [3]. Accurate segmentation of the lacrimal gland in 
medical imaging holds diagnostic and research value. In cases of 
autoimmune diseases, such as Sjorgen syndrome, or orbital tumors, 
identifying subtle morphological changes in the gland can aid 
early detection and monitoring [4–6]. In particular, measuring 
the volume of the lacrimal gland provides a valuable biomarker 
for detecting inflammation, atrophy, or abnormal growth. Gland 
enlargement may indicate infection, sarcoidosis, or neoplasia, while 
atrophy is often seen in chronic autoimmune conditions or after 
radiation exposure [7]. Automated segmentation enables volumetric 
assessment and structural analysis, which can be used to track 
disease progression or response to therapy over time.

Gadolinium-based contrast agents (GBCAs) are commonly used 
in MRI to enhance the visibility of certain tissues by shortening 
T1 relaxation times in tissues that are in the vicinity of GBCAs, 
thereby increasing signal intensity on T1-weighted images [8]. 
While effective, their use is associated with potential risks, including 
nephrogenic systemic fibrosis, allergic reactions, and accumulation 
of gadolinium in neural tissues [9–11]. As a result, there is growing 
interest in non-contrast imaging techniques. However, the accuracy 
of these non-contrast methods for lacrimal gland segmentation 
remains unclear.

Fat suppression is a category of magnetic resonance imaging 
(MRI) techniques used to reduce or eliminate the signal from 
adipose tissue, allowing for clearer visualization of surrounding 
structures [12]. This is particularly important in regions like the 
orbit, where the lacrimal gland is surrounded by a significant 
amount of orbital fat. Without fat suppression, the high signal 
intensity of fat on T1-weighted images can obscure or mask subtle 
pathological changes in the lacrimal gland, such as inflammation, 
atrophy, or neoplastic lesions [13]. Fat suppression is especially 
useful in post-contrast imaging, where it helps highlight areas 
of pathological enhancement that might otherwise blend in with 
the bright signal of surrounding fat [14]. However, the extent 
to which fat suppression helps with lacrimal gland segmentation 
remains unclear.

Artificial intelligence, particularly Convolutional Neural 
Networks (CNNs), has proven effective in medical imaging tasks 
such as tumor detection, segmentation, and characterization [15]. 
The U-Net architecture, a CNN designed for semantic segmentation, 
is widely used in medical imaging [16]. It features an encoder-
decoder structure with skip connections that preserve spatial detail 
by linking corresponding layers. U-Net performs well even with 
limited labeled data and has inspired variants like 3D U-Net and 
Attention U-Net [17, 18]. For instance, it has been used to segment 
extraocular muscles on CT, demonstrating its utility in delineating 
fine anatomical structures in orbital imaging [19].

Several studies have attempted automated segmentation of the 
lacrimal gland from MRI or CT scans. One study trained models 
ranging from standard U-Nets to nnU-Net across a variety of 
head and neck organs, including the lacrimal gland [20]. Using the 
Dice Similarity Coefficient (DSC), it reported mean DSC values 
between 0.396 and 0.663 for lacrimal gland segmentation in T1-
weighted MR images, and identified the lacrimal gland as one of 
the most difficult structures to segment because of its small size, 
variable shape, and limited contrast. Another multi-institutional 
study further advanced head and neck segmentation by training an 
nnU-Net pipeline on paired CT and T1-weighted MRI from 296 
patients, combining data from the HaN-Seg Challenge and TCIA 
datasets. MRI was rigidly registered to CT, and both modalities were 
stacked during training, with modality dropout used to enable both 
single- and dual-modality input. The pipeline achieved state-of-the-
art performance on 30 organs-at-risk with a mean DSC of 78.12% 
and a mean Hausdorff distance of 3.42 mm, suggesting that similar 
multi-modal strategies could help with lacrimal gland segmentation 
even though lacrimal performance was not separately reported [21].

Beyond healthy lacrimal glands, closely related peri-orbital tasks 
have demonstrated that deep learning can perform segmentation 
and volumetric measurement of ocular adnexal lymphoma (OAL), 
using T1-weighted, T2-weighted, and contrast-enhanced sequences 
with and without fat suppression [22]. The network achieved 
excellent agreement with expert annotations and particularly 
strong performance on fat-suppressed T2-weighted images, 
enabling reliable volumetric tumor burden assessment in a 
multi-center setting. This work shows that nnU-Net can handle 
subtle, heterogeneous soft-tissue lesions in the crowded orbital 
region, which is encouraging for lacrimal and peri-lacrimal target 
structures.

Other studies have focused on anatomically adjacent 
components of the lacrimal drainage system. One study proposed 
a fully automated pipeline for 3D reconstruction of the bony 
nasolacrimal canal (NLC) from CT, using intensity-based 
preprocessing and rule-based region growing, and demonstrated 
accurate canal extraction relative to expert annotations [23]. More 
recently, Haylaz et al. applied nnU-Net v2 to segment the NLC on 
cone-beam CT (CBCT) images from 100 patients, reporting strong 
performance metrics (Dice coefficient ∼0.8465) [24]. These results 
indicate that self-configuring encoder-decoder architectures can 
reliably segment thin, tubular structures within the orbit, despite 
variable canal morphology and limited contrast, and reinforce the 
suitability of nnU-Net-style pipelines for lacrimal-system tasks.

Functional imaging work in prostate-specific membrane antigen 
(PSMA) PET/CT has also shown that glands with high physiologic 
tracer uptake, including the lacrimal glands, can be incorporated 
into multi-organ deep-learning segmentation frameworks. Notably, 
the use of PSMA results in high contrast within lacrimal 
gland tissues, making them especially suitable for deep-learning 
segmentation. One group used a combination of self-supervised 
pre-training on 526 unlabeled scans and supervised fine-tuning 
on 100 labelled cases, achieving high DSC and sensitivity across 
organs with intense tracer uptake, including lacrimal glands [25]. 
More recently, Yazdani et al. proposed a Swin UNETR-based model 
for lesion and organ-at-risk segmentation on [68Ga]Ga-PSMA-11 
PET/CT images using self-supervised pre-training followed by fine-
tuning on 100 annotated patients [26]. Their framework segmented 
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10 organs-at-risk, explicitly including bilateral lacrimal glands as a 
small-volume class that was delineated on PET-only slices because 
of their small size and intense PSMA avidity. These PSMA PET/CT 
studies demonstrate that transformer-based architectures such as 
Swin-UNETR can successfully learn small gland classes embedded 
in a whole-body context, and they provide further evidence that 
lacrimal gland segmentation can be integrated into multi-organ 
pipelines.

Lacrimal gland segmentation from CT scans has also been 
explored, especially in patients with Graves’ orbitopathy. Using 
orbital CT from 701 patients, they trained a specialised encoder-
decoder architecture and compared it to several conventional 
networks (Attention U-Net, DeepLabV3+, SegNet, HarDNet-
MSEG) for segmenting the eyeball, extra-ocular muscles, optic 
nerve, and lacrimal gland [27]. On selected axial and coronal 
slices, their proposed network achieved high Dice coefficients (>0.9 
for several orbital tissues) and substantially improved qualitative 
boundary delineation compared to baseline models. For the lacrimal 
gland, they reported DSC values on the order of 0.87 and 0.79 
in axial and coronal views, respectively, highlighting both the 
feasibility and the residual difficulty of lacrimal segmentation in 
routine CT. Taken together, these MRI, CT, CBCT, meibography, 
and PSMA PET/CT studies indicate that small, anatomically 
variable peri-orbital structures, tumor and non-tumor, can be 
segmented reliably using modern CNN and transformer-based 
architectures, and they motivate the development of specialized 
lacrimal gland segmentation models that leverage both structural 
and functional imaging.

To our knowledge, no prior study has demonstrated automated 
segmentation of the healthy lacrimal gland from contrast-enhanced 
and fat suppressed MRI. This study aims to compare U-Net 
performance on both contrast-enhanced and non-contrast MRI 
sequences for lacrimal gland segmentation. 

2 Materials and methods

2.1 Dataset

We analyzed 86 sets of pretreatment baseline MRI scans of the 
head and neck region collected between January and September 
of 2018. The MRI scans were selected based on whether they had 
non-contrast axial T1-weighted (AX-T1) and contrast-enhanced 
T1-weighted fat-suppressed (POST-AX-T1-FS). Scans with artifacts 
were excluded. We ultimately had 74 POST-AX-T1-FS scans and 80 
AX-T1 scans from 81 patients’ cases, comprising 55 females (68%), 
26 males (32%), and five patients of unreported gender (6%). The 
median age of the patients was 54.5 years (17–90 years). 

2.2 Manual segmentation of lacrimal 
glands

All images were conducted with 1.5 and 3.0 T with a slice 
thickness of 3–4 mm. Scans had axial resolutions of 512 × 512 or 
256 × 256 voxels, with voxel sizes from 0.3 to 0.7 mm. The imaging 
protocol included 2D T1-weighted axial fast spin-echo sequence 
(AX-T1) and 2D T1-weighted axial sequence after contrast injection 

with fat suppression (POST-AX-T1-FS). The gadolinium-based 
contrast agent DOTAREM was used to enhance tissue contrast.

The segmentation of the lacrimal glands was performed on 
POST-AX-T1-FS and AX-T1 images by a group of students and 
confirmed by a senior radiologist. Manual segmentations were 
performed using 3D Slicer (version 5.6.2, https://www.slicer.org/)
(Figure 1). Each MRI scan included the region of the head extending 
from the upper chin to the mid-scalp. Segmentations on POST-
AX-T1-FS and AX-T1 images were independently performed. 
All original segmentations were manually corrected according to 
suitability and lacrimal gland margins.

2.3 Data preprocessing and augmentation

Both contrast-enhanced and non-contrast sequences were 
subjected to pre-processing transformations like intensity 
normalization (maximum-minimum rescaling) and isometric 
resampling (ensuring the pixels of different scan matrices have 
standardized scales) to obtain 512 by 512 pixel width scan slices. 
Data preprocessing helps the segmentation algorithm during the 
learning process by standardizing a certain set of features without 
removing scan specific information.

Data augmentation and pre-processing were used to improve 
generalizability. Both contrast-enhanced and non-contrast 
sequences underwent spatial transformations such as flipping, 
scaling, Gaussian noise addition, and limited-angle rotations. 
Uniform 2D patches were extracted from each scan and used for 
training to increase sample size and reduce computational load. 
Since the lacrimal glands occupy only ∼2% of the scan and are absent 
from many slices, three oversampling methods were used to increase 
foreground patch frequency: (i) random sampling (control), (ii) 
sampling weighted toward foreground segmentations, and (iii) 
sampling weighted toward the expected lacrimal region regardless 
of gland presence (Figure 2). Method (iii) was ultimately used to 
reduce false positives by exposing the model to more samples from 
the orbital region.

2.4 Architecture

A standard 2D U-Net was used for lacrimal gland segmentation 
due to its strong performance on small datasets and low 
computational demands. The 2D design enables efficient, slice-
wise segmentation of axial MRI scans, balancing spatial feature 
capture with processing efficiency. To reduce false positives, post-
processing retained only the largest contiguous segmented region 
per prediction. 

2.5 Loss functions

Loss functions guided the model by quantifying differences 
between predicted and true segmentations. Region-based metrics, 
including Dice and Jaccard (IoU) losses, were evaluated for overlap 
quality. Weighted cross-entropy was also considered to address class 
imbalance. Dice loss was ultimately chosen for its effectiveness in 
reducing false positives by emphasizing overlap with ground truth. 
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FIGURE 1
Illustration of lacrimal gland boundaries (shown as highlighted regions with green, yellow and brown) annotated using a 3D slicer of a sample patient 
(IRB18-1247:53892786) with AX-T1 (top) and POST-AX-T1-FS (bottom), respectively.

FIGURE 2
Visual demonstration of the weighted regions, shown in red in each of the patch sampling methods. Method 2: Patch selection was equally weighted 
between the foreground and background. Method 3: Patch selection was equally weighted between the background and a region composed by 
summing together the foreground segmentation across the superior-inferior axis. Segmentations and corresponding scans are from a sample patient 
(IRB18-1247:10547064).

2.6 Training and experimental design

The dataset included eighty-one patients: seventy-four contrast-
enhanced POST-AX-T1-FS and eighty non-contrast AX-T1 scans, 
with seventy-three patients having both modalities. Fourteen 
patients with both scan types were randomly selected as a hold-
out test set, following an 80:20 train-test split. From the remaining 
patients, individual axial slices were resampled and randomly 
assigned to the training and validation sets, yielding 1,307 AX-
T1 and 1,139 POST-AX-T1-FS slices for training (Figure 3). A 
2D U-Net was trained on individual slices using four-fold cross-
validation over 200 epochs, chosen empirically. In each fold, one 
of four subsets served as validation while the rest were used for 
training; final predictions were averaged across folds (Figure 4). To 
maintain consistency, models were trained and evaluated separately 
on each modality, enabling a direct comparison of segmentation 
performance between contrast-enhanced and non-contrast scans.

2.7 Evaluation methodology

Segmentation performance was quantitatively evaluated using 
region-based metrics, primarily the Dice score and Intersection over 
Union (IoU), with Dice serving as the main measure for volumetric 
accuracy. Hausdorff Distance (HD) was also evaluated to capture the 
maximum contour deviation. 

2.8 Saliency maps

Saliency maps help provide insight into an AI algorithm’s 
decision-making process by visually representing parts of the input 
that are most important in a model’s prediction. These visual 
explanations are generated from the gradients, which help train the 
model by adjusting the model parameters. In the context of multi-
layer CNNs, activations are the output of a particular layer after the 
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FIGURE 3
Visual demonstration of dataset train/test split and training loop.

FIGURE 4
Visual demonstration of data pipeline and pre/post-processing steps. Sample of 81 MRI studies were used for training with cross validation and 14 
studies were used for testing.

convolution/up-sampling operation is carried out, and gradients are 
the derivatives of the loss function that are propagated back to the 
layer under consideration. So, while activations can be thought of as 
the “state” of a layer, gradients are the “direction and magnitude” of 
updates that need to be made to the convolutional layer’s weights.

Gradient-weighted Class Activation Mapping (Grad-CAM), as 
the name indicates, uses the gradients to weight the activations 
within a particular layer to create a visual heat map that highlights 
the regions of the image that are important to that layer [28]. 
By strategically selecting one representative layer at each level of 

depth of the UNet model, valuable insights can be derived on 
how the model processes information and makes segmentation 
decisions at different stages of feature extraction and reconstruction. 
In this study, the Gradient-weighted Class Activation Mapping 
(Grad-CAM) methodology proposed by Selvaraju et al. is 
used to generate saliency maps. The visualizations are derived 
using the PyTorch 2.6.0 implementation of the GradCAM 
(version 1.5.5) methodology. The codes used for this section are 
publicly available and can be found in the supplemental data
section.
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3 Results

3.1 Patient characteristics

The baseline characteristics of patients in training and test set are 
included in Tables 1, 2. Statistical tests were carried out using Python 
Scipy library (version 1.15.2). No significant differences were found 
between the training and testing set for age and sex.

3.2 Quantitative evaluation and model 
performance

The model was trained using 4-folds of the training set to predict 
segmentations on the hold-out test set. Full-image predictions 
were reconstructed by stitching together individual patches using 
a sliding window approach with 25% overlap between adjacent 
patches. The performances of segmentations are assessed using 
several different metrics with the mean and interquartile ranges of 
the metrics demonstrated in Table 3. Shapiro test confirmed non-
normal distribution (p < 0.001 for all). The scatter plots of LGV from 
ground truth and predicted segmentations are presented in Figure 5, 
where a clearer correlation is seen between predicted and ground 
truth volumes for POST-AX-T1-FS (p < 0.001) compared to the 
AX-T1 (p = 0.004).

TABLE 1  Baseline characteristics of patients having AX-T1 scans; 
p-values calculated using two-tailed, unpaired t-test (age), and 
chi-squared test (sex).

Variables Train Test p-value

Age in years (mean ± sd) 54.9 ± 20.7 48.4 ± 17.6 0.29

Sex 0.63

M 19 (29%) 4 (29%)

F 43 (65%) 10 (71%)

Unreported 4 (6%) 0 (0%)

TABLE 2  Baseline characteristics of patients having POST-AX-T1-FS 
scans; p-values calculated using two-tailed, unpaired t-test (age), and 
chi-squared test (sex).

Variables Train Test p-value

Age in years (mean ± sd) 56.6 ± 19.8 48.4 ± 17.6 0.17

Sex 0.48

M 17 (28%) 4 (29%)

F 38 (63%) 10 (71%)

Unreported 5 (8%) 0 (0%)

3.3 Saliency maps

The Grad-CAM visualizations are illustrated in Figure 7. In 
layers (1) and (2) of the encoder pathway, the gradient-weighted 
activations are diffuse and widespread. This shows that the earlier 
layers of the trained U-net capture general contextual information 
and basic features from the input image. In layers (3) and (4), the 
activations get more concentrated around certain specific regions. 
The brighter spots indicate regions of higher gradient-weighted 
activations, which coincide with the location of lacrimal glands, 
orbital area, and skull boundary. The bottleneck layer (5) represents 
the deepest part of the network and the highest level of abstraction 
extracted by the network. In this layer, the bilateral activation pattern 
suggests that the model identifies the paired nature of the lacrimal 
glands, even though the model is trained and evaluated on individual 
patches that may not contain both lacrimal glands in the same patch. 
The activations also seem more focused on the precise location of the 
lacrimal glands than those from the previous layers. Still, they also 
have not precisely delineated the boundaries in this stage. In layers 
(6) and (7) of the decoder pathway, the activations become more 
anatomically precise as the network starts the image reconstruction 
process. In layers (8) and (9), the spatial features from the previous 
layers in the encoder pathway are used to further refine the lacrimal 
gland boundaries. The saliency maps demonstrate that the model 
focuses on anatomically correct regions relevant to the precise 
segmentation of the lacrimal gland.

4 Discussion

4.1 Comparison between POST-AX-T1-FS 
and AX-T1 MRI performance

Our study evaluated the performance of deep learning models 
in segmenting the lacrimal gland using both contrast-enhanced-
fat-suppressed and non-contrast T1-weighted MRI sequences. A 
2D UNet model was trained and evaluated on POST-AX-T1-
FS sequences, demonstrating superior segmentation performance, 
achieving a mean Dice Similarity Coefficient (DSC) of [0.79 ± 
0.19; 0.77 ± 0.23] and a mean Intersection over Union (IoU) of 
[0.68 ± 0.19; 0.67 ± 0.23]. In comparison, models trained on AX-
T1 sequences achieved lower performance, with a mean Dice of 
[0.67 ± 0.17; 0.61 ± 0.23] and IoU of [0.52 ± 0.18; 0.47 ± 0.21]. 
This disparity can be attributed to the enhanced contrast between 
the lacrimal gland and surrounding orbital fat in POST-AX-T1-FS, 
which aids in more accurate boundary delineation. AX-T1 scans, 
lacking both contrast agent and fat suppression, frequently produced 
segmentations with boundary leakage or underrepresentation of 
gland volume (Figure 6).

Additionally, models trained on POST-AX-T1-FS demonstrated 
greater robustness in volume estimation, with a correlation 
coefficient of 0.82 compared to 0.71 for AX-T1. These findings 
suggest that fat-suppressed, contrast-enhanced imaging not only 
improves average segmentation accuracy but also yields more 
reliable predictions across patients. While AX-T1 sequences offer 
a gadolinium-free alternative, their reduced performance indicates 
that they may not yet serve as a full substitute for contrast-
enhanced imaging in tasks requiring high segmentation precision. 
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TABLE 3  Evaluation metrics.

Organ
Scan type

Dice score (mean ± sd)
(25%–75% IQR)

IOU score (mean ± sd)
(IQR)

HD95 (in mm)
(mean ± sd)
(IQR)

Right lacrimal gland
POST-AX-T1-FS

0.79 ± 0.19
0.78 to 0.89

0.68 ± 0.19
0.63 to 0.80

2.21 ± 1.80
1.05 to 2.84

Left lacrimal gland
POST-AX-T1-FS

0.77 ± 0.23
0.79 to 0.90

0.67 ± 0.23
0.65 to 0.82

4.31 ± 13.14
0.84 to 3.11

Right lacrimal gland
AX-T1

0.67 ± 0.17
0.58 to 0.79

0.52 ± 0.18
0.41 to 0.66

3.73 ± 2.43
1.79 to 4.68

Left lacrimal gland
AX-T1

0.61 ± 0.23
0.47 to 0.76

0.47 ± 0.21
0.31 to 0.62

4.84 ± 7.50
2.17 to 4.73

FIGURE 5
Scatter plot visualizing the comparison of volumes, as measured from ground truth and predicted segmentations of the lacrimal glands. The bottom 
image demonstrates a case of the POST-AX-T1-FS where the model output underestimates the volume due to a bulging of the lacrimal gland.

These results highlight a trade-off between diagnostic clarity and 
material cost. 

4.2 Clinical significance

Our findings highlight the potential value of accurate lacrimal 
gland segmentation in clinical imaging, particularly for tracking 
gland volume in diagnostic or treatment contexts. Automated 
segmentation provides a reliable means for volumetric analysis, 
which could help identify gland enlargement or atrophy, key 
features in conditions like Sjögren’s Syndrome, sarcoidosis, and 
orbital tumors. While DSC scores indicate room for improvement, 
particularly for non-contrast scans, the ability to quantitatively 
track volumetric changes over time could still facilitate treatment 
monitoring, such as assessing response to radiotherapy or detecting 
disease recurrence.

While U-Net has shown some promise in lacrimal gland 
segmentation, further exploration of alternative deep learning 

models is crucial for improving accuracy, particularly for 
challenging cases or different imaging modalities. Models like 
DeepLabV3+ and Attention U-Net, with multi-scale context and 
attention mechanisms, have been successfully used for segmenting 
complex structures in similar contexts [24]. Additionally, 
architectures such as FCN and hybrid models combining 
convolutional and transformer-based approaches, as seen in 
studies like Yazdani et al.'s work on lesion and organ-at-risk 
segmentation using a SwinUNETR-based model [26], could 
improve segmentation, especially for non-contrast MRI scans. 
Generative adversarial networks (GANs), which have been 
applied in other segmentation tasks, may also help refine the 
delineation of poorly defined gland borders. Furthermore, nnU-
Net has been effectively applied in other segmentation problems, 
such as segmenting the NLC on cone-beam CT images [24]. 
Additionally, a study using orbital CT from 701 patients trained 
a specialized encoder-decoder architecture and compared it to 
several conventional networks (Attention U-Net, DeepLabV3+, 
SegNet, HarDNet-MSEG) for segmenting the eyeball, extraocular 
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FIGURE 6
Visualization showing three representative slices containing the ground truth segmentations (top) and predicted segmentations (bottom) of the 
lacrimal glands for patient IRB-1247:38041148.

muscles, optic nerve, and lacrimal gland [28]. Integrating these 
models into the pipeline could enhance segmentation accuracy and 
adaptability, supporting broader clinical applications across diverse 
patient populations and imaging conditions.

From a workflow perspective, integrating automated lacrimal 
gland segmentation into radiology platforms can significantly 
streamline clinical evaluations, reducing the time needed for manual 
contouring and allowing radiologists to focus on higher-level 
decision-making. Importantly, the use of deep learning models 
also contributes to reduced interobserver variability, a common 
challenge in segmenting small or poorly defined structures such as 
the lacrimal gland, especially in non-contrast scans. 

4.3 Limitations and future directions

The small dataset size presents a significant constraint; the 
limited number of annotated MRIs may hinder the model’s ability 
to generalize across diverse patient populations, scanner types, and 
imaging protocols. In addition, all MRIs were acquired from a 
single institution using a consistent scanner and protocol, which 
introduces the possibility of site-specific bias and limits external 
validity. To address these limitations, future work should prioritize 
the expansion of the dataset to include multi-institutional MRIs with 
varied demographics and lacrimal gland morphologies. This would 

enable more robust model training and evaluation across diverse 
clinical settings.

Another question left unanswered is whether the improved 
segmentation performance observed in fat-suppressed contrast-
enhanced scans is driven primarily by fat suppression or by the 
presence of the gadolinium-based contrast agent itself. Contrast-
enhanced, fat-suppressed sequences simultaneously reduce 
background adipose signal and increase the relative conspicuity 
of the lacrimal gland, making it unclear which factor contributes 
more strongly to the model’s success. To disentangle these effects, 
future studies should include a dedicated analysis of fat-suppressed, 
non-contrast MRI sequences. Such an investigation would clarify 
whether fat suppression alone provides sufficient gland-to-
background contrast to support accurate segmentation, or whether 
contrast uptake is necessary to achieve the observed performance 
gains. This distinction will be essential for determining the optimal 
imaging protocol for both model training and eventual clinical 
deployment, particularly in cases where contrast administration 
may be contraindicated.

Additional model refinement is also warranted. Incorporating 
attention mechanisms, boundary-aware loss functions, or even 
transformer-based segmentation networks could improve the 
delineation of gland margins. Finally, future studies should 
include prospective clinical trials to assess the integration of 
these segmentation tools into the diagnostic workflow. Key 

Frontiers in Physics 08 frontiersin.org

https://doi.org/10.3389/fphy.2025.1697903
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Shetty et al. 10.3389/fphy.2025.1697903

FIGURE 7
Visualization of the Grad-CAM heatmaps for each layer in the U-net architecture for an axial slice from a representative case IRB14-0749:22543636.

outcomes would include not only segmentation accuracy but 
also diagnostic impact, workflow efficiency, and physician 
satisfaction, providing a comprehensive evaluation of real-world
clinical utility. 

5 Conclusion

This study demonstrates that auto-segmentation algorithms 
perform better on contrast-enhanced (POST-AX-T1-FS) MR 
sequences compared to non-contrast (AX-T1) scans, achieving 
lower Hausdorff distances and higher Dice and IoU scores. However, 
despite this performance gap favoring contrast-enhanced imaging, 
neither model reached a level of accuracy that would be considered 
clinically optimal, especially for non-contrast scans. This result 
suggests that the current segmentation methods are not yet 
robust enough for reliable clinical use, particularly in cases where 
contrast agents are unavailable or contraindicated. This retrospective 
single-institution study carries a Level 4 grade of evidence [29].

Due to the modest performance observed in both settings, there 
is a clear need to explore alternative deep learning architectures 
that may better capture the lacrimal gland’s small size and variable 
appearance. Models like Attention U-Net, DeepLabV3+, SegNet, 
and HarDNet-MSEG have been successfully applied to similar 
segmentation challenges and may offer improvements over the 
baseline models.

Accurate lacrimal gland segmentation has potential value for 
volumetric analysis in clinical imaging, especially for tracking gland 
changes associated with conditions such as Sjögren’s syndrome, 
sarcoidosis, and orbital tumors. Although combining contrast and 
non-contrast sequences led to slight performance improvements, 
significant advancement is still necessary before automated 
segmentation can be fully integrated into routine clinical workflows. 
Future efforts should focus on expanding model comparisons, 
validating findings in multi-center datasets, and assessing how 
segmentation tools could help support clinical decision-making 
and reduce interobserver variability.
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