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Purpose: The lacrimal glands are small orbital exocrine structures responsible
for tear production. Segmentation on MRl is challenging due to their small size,
low contrast with adjacent tissues, and partial representation across slices. This
study evaluates U-Net based models for automated lacrimal gland segmentation
on non-contrast T1-weighted (AX-T1) and contrast-enhanced fat-suppressed
(POST-AX-T1-FS) MRI.

Methods: Eighty-six patients with high-resolution orbital MRI were
retrospectively analyzed. Manual gland annotations were created in 3D Slicer. A
U-Net architecture was trained with 4-fold cross-validation on an 80:20 train-
test split. Performance was assessed on a hold-out set using Dice Similarity
Coefficient (DSC), Intersection over Union (loU), and Hausdorff Distance.
Results: POST-AX-T1-FS achieved the highest performance (mean DSC
0.79 + 019, lIoU 0.68 + 0.19), outperforming AX-T1. Volume correlation
with ground truth was 0.81 for POST-AX-T1-FS and 0.71 for AX-T1. Most
errors were false negatives in abnormal gland morphology. Qualitative
review showed anatomically consistent segmentations, especially with region-
prioritized sampling.

Conclusion: CNN-based models show ability to segment lacrimal glands from
orbital MRI, though performance is moderate with Dice scores around 0.79.
Non-contrast sequences may provide reasonably accurate segmentations,
but further refinement and broader validation are required. With continued
optimization and larger, more diverse datasets, these models may eventually
support more consistent gland delineation in research and early exploratory
clinical use.
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1 Introduction

The lacrimal gland is an exocrine gland located in the upper
outer portion of each eye socket, within the lacrimal fossa of the
frontal bone. Its main role is to produce the aqueous layer of the
tear film, which is essential for lubricating the eye, maintaining
clear vision, and protecting the ocular surface [1, 2]. The gland
receives sensory innervation from the lacrimal nerve (CN V1)
and parasympathetic input from the facial nerve (CN VII), which
regulates tear production in response to stimuli like irritation
or emotion [3]. Accurate segmentation of the lacrimal gland in
medical imaging holds diagnostic and research value. In cases of
autoimmune diseases, such as Sjorgen syndrome, or orbital tumors,
identifying subtle morphological changes in the gland can aid
early detection and monitoring [4-6]. In particular, measuring
the volume of the lacrimal gland provides a valuable biomarker
for detecting inflammation, atrophy, or abnormal growth. Gland
enlargement may indicate infection, sarcoidosis, or neoplasia, while
atrophy is often seen in chronic autoimmune conditions or after
radiation exposure [7]. Automated segmentation enables volumetric
assessment and structural analysis, which can be used to track
disease progression or response to therapy over time.

Gadolinium-based contrast agents (GBCAs) are commonly used
in MRI to enhance the visibility of certain tissues by shortening
T1 relaxation times in tissues that are in the vicinity of GBCAs,
thereby increasing signal intensity on T1-weighted images [8].
While effective, their use is associated with potential risks, including
nephrogenic systemic fibrosis, allergic reactions, and accumulation
of gadolinium in neural tissues [9-11]. As a result, there is growing
interest in non-contrast imaging techniques. However, the accuracy
of these non-contrast methods for lacrimal gland segmentation
remains unclear.

Fat suppression is a category of magnetic resonance imaging
(MRI) techniques used to reduce or eliminate the signal from
adipose tissue, allowing for clearer visualization of surrounding
structures [12]. This is particularly important in regions like the
orbit, where the lacrimal gland is surrounded by a significant
amount of orbital fat. Without fat suppression, the high signal
intensity of fat on T1-weighted images can obscure or mask subtle
pathological changes in the lacrimal gland, such as inflammation,
atrophy, or neoplastic lesions [13]. Fat suppression is especially
useful in post-contrast imaging, where it helps highlight areas
of pathological enhancement that might otherwise blend in with
the bright signal of surrounding fat [14]. However, the extent
to which fat suppression helps with lacrimal gland segmentation
remains unclear.

Artificial  intelligence, particularly Convolutional Neural
Networks (CNNs), has proven effective in medical imaging tasks
such as tumor detection, segmentation, and characterization [15].
The U-Net architecture, a CNN designed for semantic segmentation,
is widely used in medical imaging [16]. It features an encoder-
decoder structure with skip connections that preserve spatial detail
by linking corresponding layers. U-Net performs well even with
limited labeled data and has inspired variants like 3D U-Net and
Attention U-Net [17, 18]. For instance, it has been used to segment
extraocular muscles on CT, demonstrating its utility in delineating
fine anatomical structures in orbital imaging [19].
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Several studies have attempted automated segmentation of the
lacrimal gland from MRI or CT scans. One study trained models
ranging from standard U-Nets to nnU-Net across a variety of
head and neck organs, including the lacrimal gland [20]. Using the
Dice Similarity Coefficient (DSC), it reported mean DSC values
between 0.396 and 0.663 for lacrimal gland segmentation in T1-
weighted MR images, and identified the lacrimal gland as one of
the most difficult structures to segment because of its small size,
variable shape, and limited contrast. Another multi-institutional
study further advanced head and neck segmentation by training an
nnU-Net pipeline on paired CT and T1-weighted MRI from 296
patients, combining data from the HaN-Seg Challenge and TCIA
datasets. MRI was rigidly registered to CT, and both modalities were
stacked during training, with modality dropout used to enable both
single- and dual-modality input. The pipeline achieved state-of-the-
art performance on 30 organs-at-risk with a mean DSC of 78.12%
and a mean Hausdorft distance of 3.42 mm, suggesting that similar
multi-modal strategies could help with lacrimal gland segmentation
even though lacrimal performance was not separately reported [21].

Beyond healthy lacrimal glands, closely related peri-orbital tasks
have demonstrated that deep learning can perform segmentation
and volumetric measurement of ocular adnexal lymphoma (OAL),
using T1-weighted, T2-weighted, and contrast-enhanced sequences
with and without fat suppression [22]. The network achieved
excellent agreement with expert annotations and particularly
strong performance on fat-suppressed T2-weighted images,
enabling reliable volumetric tumor burden assessment in a
multi-center setting. This work shows that nnU-Net can handle
subtle, heterogeneous soft-tissue lesions in the crowded orbital
region, which is encouraging for lacrimal and peri-lacrimal target
structures.

Other
components of the lacrimal drainage system. One study proposed

studies have focused on anatomically adjacent

a fully automated pipeline for 3D reconstruction of the bony
nasolacrimal canal (NLC) from CT, using intensity-based
preprocessing and rule-based region growing, and demonstrated
accurate canal extraction relative to expert annotations [23]. More
recently, Haylaz et al. applied nnU-Net v2 to segment the NLC on
cone-beam CT (CBCT) images from 100 patients, reporting strong
performance metrics (Dice coefficient ~0.8465) [24]. These results
indicate that self-configuring encoder-decoder architectures can
reliably segment thin, tubular structures within the orbit, despite
variable canal morphology and limited contrast, and reinforce the
suitability of nnU-Net-style pipelines for lacrimal-system tasks.
Functional imaging work in prostate-specific membrane antigen
(PSMA) PET/CT has also shown that glands with high physiologic
tracer uptake, including the lacrimal glands, can be incorporated
into multi-organ deep-learning segmentation frameworks. Notably,
the use of PSMA results in high contrast within lacrimal
gland tissues, making them especially suitable for deep-learning
segmentation. One group used a combination of self-supervised
pre-training on 526 unlabeled scans and supervised fine-tuning
on 100 labelled cases, achieving high DSC and sensitivity across
organs with intense tracer uptake, including lacrimal glands [25].
More recently, Yazdani et al. proposed a Swin UNETR-based model
for lesion and organ-at-risk segmentation on [*®*Ga]Ga-PSMA-11
PET/CT images using self-supervised pre-training followed by fine-
tuning on 100 annotated patients [26]. Their framework segmented
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10 organs-at-risk, explicitly including bilateral lacrimal glands as a
small-volume class that was delineated on PET-only slices because
of their small size and intense PSMA avidity. These PSMA PET/CT
studies demonstrate that transformer-based architectures such as
Swin-UNETR can successfully learn small gland classes embedded
in a whole-body context, and they provide further evidence that
lacrimal gland segmentation can be integrated into multi-organ
pipelines.

Lacrimal gland segmentation from CT scans has also been
explored, especially in patients with Graves orbitopathy. Using
orbital CT from 701 patients, they trained a specialised encoder-
decoder architecture and compared it to several conventional
networks (Attention U-Net, DeepLabV3+, SegNet, HarDNet-
MSEG) for segmenting the eyeball, extra-ocular muscles, optic
nerve, and lacrimal gland [27]. On selected axial and coronal
slices, their proposed network achieved high Dice coefficients (>0.9
for several orbital tissues) and substantially improved qualitative
boundary delineation compared to baseline models. For the lacrimal
gland, they reported DSC values on the order of 0.87 and 0.79
in axial and coronal views, respectively, highlighting both the
feasibility and the residual difficulty of lacrimal segmentation in
routine CT. Taken together, these MRI, CT, CBCT, meibography,
and PSMA PET/CT studies indicate that small, anatomically
variable peri-orbital structures, tumor and non-tumor, can be
segmented reliably using modern CNN and transformer-based
architectures, and they motivate the development of specialized
lacrimal gland segmentation models that leverage both structural
and functional imaging.

To our knowledge, no prior study has demonstrated automated
segmentation of the healthy lacrimal gland from contrast-enhanced
and fat suppressed MRI. This study aims to compare U-Net
performance on both contrast-enhanced and non-contrast MRI
sequences for lacrimal gland segmentation.

2 Materials and methods

2.1 Dataset

We analyzed 86 sets of pretreatment baseline MRI scans of the
head and neck region collected between January and September
of 2018. The MRI scans were selected based on whether they had
non-contrast axial T1-weighted (AX-T1) and contrast-enhanced
T1-weighted fat-suppressed (POST-AX-T1-FS). Scans with artifacts
were excluded. We ultimately had 74 POST-AX-T1-FS scans and 80
AX-T1 scans from 81 patients’ cases, comprising 55 females (68%),
26 males (32%), and five patients of unreported gender (6%). The
median age of the patients was 54.5 years (17-90 years).

2.2 Manual segmentation of lacrimal
glands

All images were conducted with 1.5 and 3.0 T with a slice
thickness of 3-4 mm. Scans had axial resolutions of 512 x 512 or
256 x 256 voxels, with voxel sizes from 0.3 to 0.7 mm. The imaging
protocol included 2D T1-weighted axial fast spin-echo sequence
(AX-T1) and 2D T1-weighted axial sequence after contrast injection
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with fat suppression (POST-AX-T1-FS). The gadolinium-based
contrast agent DOTAREM was used to enhance tissue contrast.

The segmentation of the lacrimal glands was performed on
POST-AX-T1-FS and AX-T1 images by a group of students and
confirmed by a senior radiologist. Manual segmentations were
performed using 3D Slicer (version 5.6.2, https://www.slicer.org/)
(Figure 1). Each MRI scan included the region of the head extending
from the upper chin to the mid-scalp. Segmentations on POST-
AX-TI1-FS and AX-T1 images were independently performed.
All original segmentations were manually corrected according to
suitability and lacrimal gland margins.

2.3 Data preprocessing and augmentation

Both contrast-enhanced and non-contrast sequences were
like
normalization (maximum-minimum rescaling) and isometric

subjected to pre-processing transformations intensity
resampling (ensuring the pixels of different scan matrices have
standardized scales) to obtain 512 by 512 pixel width scan slices.
Data preprocessing helps the segmentation algorithm during the
learning process by standardizing a certain set of features without
removing scan specific information.

Data augmentation and pre-processing were used to improve
generalizability. Both contrast-enhanced and non-contrast
sequences underwent spatial transformations such as flipping,
scaling, Gaussian noise addition, and limited-angle rotations.
Uniform 2D patches were extracted from each scan and used for
training to increase sample size and reduce computational load.
Since the lacrimal glands occupy only ~2% of the scan and are absent
from many slices, three oversampling methods were used to increase
foreground patch frequency: (i) random sampling (control), (ii)
sampling weighted toward foreground segmentations, and (iii)
sampling weighted toward the expected lacrimal region regardless
of gland presence (Figure 2). Method (iii) was ultimately used to
reduce false positives by exposing the model to more samples from

the orbital region.

2.4 Architecture

A standard 2D U-Net was used for lacrimal gland segmentation
due to its strong performance on small datasets and low
computational demands. The 2D design enables efficient, slice-
wise segmentation of axial MRI scans, balancing spatial feature
capture with processing efficiency. To reduce false positives, post-
processing retained only the largest contiguous segmented region
per prediction.

2.5 Loss functions

Loss functions guided the model by quantifying differences
between predicted and true segmentations. Region-based metrics,
including Dice and Jaccard (IoU) losses, were evaluated for overlap
quality. Weighted cross-entropy was also considered to address class
imbalance. Dice loss was ultimately chosen for its effectiveness in
reducing false positives by emphasizing overlap with ground truth.
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Axial view
(acquisition plane)

T1

Post contrast
Tlw FS

FIGURE 1

Coronal view

Illustration of lacrimal gland boundaries (shown as highlighted regions with green, yellow and brown) annotated using a 3D slicer of a sample patient
(IRB18-1247:53892786) with AX-T1 (top) and POST-AX-T1-FS (bottom), respectively.

Sagittal view

Scan patches

Mask patches
(Method 2)

Mask patches
(Method 3)

15
=

FIGURE 2

(IRB18-1247:10547064).

Visual demonstration of the weighted regions, shown in red in each of the patch sampling methods. Method 2: Patch selection was equally weighted
between the foreground and background. Method 3: Patch selection was equally weighted between the background and a region composed by
summing together the foreground segmentation across the superior-inferior axis. Segmentations and corresponding scans are from a sample patient

2.6 Training and experimental design

The dataset included eighty-one patients: seventy-four contrast-
enhanced POST-AX-T1-FS and eighty non-contrast AX-T1 scans,
with seventy-three patients having both modalities. Fourteen
patients with both scan types were randomly selected as a hold-
out test set, following an 80:20 train-test split. From the remaining
patients, individual axial slices were resampled and randomly
assigned to the training and validation sets, yielding 1,307 AX-
T1 and 1,139 POST-AX-T1-FS slices for training (Figure 3). A
2D U-Net was trained on individual slices using four-fold cross-
validation over 200 epochs, chosen empirically. In each fold, one
of four subsets served as validation while the rest were used for
training; final predictions were averaged across folds (Figure 4). To
maintain consistency, models were trained and evaluated separately
on each modality, enabling a direct comparison of segmentation
performance between contrast-enhanced and non-contrast scans.

Frontiers in Physics

2.7 Evaluation methodology

Segmentation performance was quantitatively evaluated using
region-based metrics, primarily the Dice score and Intersection over
Union (IoU), with Dice serving as the main measure for volumetric
accuracy. Hausdorff Distance (HD) was also evaluated to capture the
maximum contour deviation.

2.8 Saliency maps

Saliency maps help provide insight into an AI algorithm’s
decision-making process by visually representing parts of the input
that are most important in a model’s prediction. These visual
explanations are generated from the gradients, which help train the
model by adjusting the model parameters. In the context of multi-
layer CNNG, activations are the output of a particular layer after the
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FIGURE 3
Visual demonstration of dataset train/test split and training loop.
Data
. . Network Output
Input MRI slices preprocessing . Inference :
: Architecture Segmentations
and augmentation
AX-T1
Model training
Spatial * Ensemble
transformations: model * Assemble
POST-AX-TI-FS * Scaling * Sliding- slices to
* Rotations window form
* Patch Extraction predictions and complete
Data Reconstruction segmentation
Augmentation: 4'f°k.j Cr_oss-
* Gaussian Noise validation
* Intensity Scaling
FIGURE 4
Visual demonstration of data pipeline and pre/post-processing steps. Sample of 81 MRI studies were used for training with cross validation and 14
studies were used for testing.

convolution/up-sampling operation is carried out, and gradients are
the derivatives of the loss function that are propagated back to the
layer under consideration. So, while activations can be thought of as
the “state” of a layer, gradients are the “direction and magnitude” of
updates that need to be made to the convolutional layer’s weights.
Gradient-weighted Class Activation Mapping (Grad-CAM), as
the name indicates, uses the gradients to weight the activations
within a particular layer to create a visual heat map that highlights
the regions of the image that are important to that layer [28].
By strategically selecting one representative layer at each level of

Frontiers in Physics

depth of the UNet model, valuable insights can be derived on
how the model processes information and makes segmentation
decisions at different stages of feature extraction and reconstruction.
In this study, the Gradient-weighted Class Activation Mapping
(Grad-CAM)
used to generate saliency maps. The visualizations are derived
using the PyTorch 2.6.0 implementation of the GradCAM
(version 1.5.5) methodology. The codes used for this section are
publicly available and can be found in the supplemental data
section.

methodology proposed by Selvaraju etal. is
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3 Results
3.1 Patient characteristics

The baseline characteristics of patients in training and test set are
included in Tables 1, 2. Statistical tests were carried out using Python
Scipy library (version 1.15.2). No significant differences were found
between the training and testing set for age and sex.

3.2 Quantitative evaluation and model
performance

The model was trained using 4-folds of the training set to predict
segmentations on the hold-out test set. Full-image predictions
were reconstructed by stitching together individual patches using
a sliding window approach with 25% overlap between adjacent
patches. The performances of segmentations are assessed using
several different metrics with the mean and interquartile ranges of
the metrics demonstrated in Table 3. Shapiro test confirmed non-
normal distribution (p < 0.001 for all). The scatter plots of LGV from
ground truth and predicted segmentations are presented in Figure 5,
where a clearer correlation is seen between predicted and ground
truth volumes for POST-AX-T1-FS (p < 0.001) compared to the
AX-T1 (p = 0.004).

TABLE 1 Baseline characteristics of patients having AX-T1 scans;
p-values calculated using two-tailed, unpaired t-test (age), and
chi-squared test (sex).

Variables Train Test p-value
Age in years (mean + sd) 54.9 +20.7 48.4+17.6 0.29

Sex 0.63

M 19 (29%) 4(29%)

F 43 (65%) 10 (71%)

Unreported 4 (6%) 0 (0%)

TABLE 2 Baseline characteristics of patients having POST-AX-T1-FS
scans; p-values calculated using two-tailed, unpaired t-test (age), and
chi-squared test (sex).

Variables Train Test p-value
Age in years (mean =+ sd) 56.6 +19.8 484 +17.6 0.17

Sex 0.48

M 17 (28%) 4(29%)

F 38 (63%) 10 (71%)

Unreported 5(8%) 0 (0%)
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3.3 Saliency maps

The Grad-CAM visualizations are illustrated in Figure 7. In
layers (1) and (2) of the encoder pathway, the gradient-weighted
activations are diffuse and widespread. This shows that the earlier
layers of the trained U-net capture general contextual information
and basic features from the input image. In layers (3) and (4), the
activations get more concentrated around certain specific regions.
The brighter spots indicate regions of higher gradient-weighted
activations, which coincide with the location of lacrimal glands,
orbital area, and skull boundary. The bottleneck layer (5) represents
the deepest part of the network and the highest level of abstraction
extracted by the network. In this layer, the bilateral activation pattern
suggests that the model identifies the paired nature of the lacrimal
glands, even though the model is trained and evaluated on individual
patches that may not contain both lacrimal glands in the same patch.
The activations also seem more focused on the precise location of the
lacrimal glands than those from the previous layers. Still, they also
have not precisely delineated the boundaries in this stage. In layers
(6) and (7) of the decoder pathway, the activations become more
anatomically precise as the network starts the image reconstruction
process. In layers (8) and (9), the spatial features from the previous
layers in the encoder pathway are used to further refine the lacrimal
gland boundaries. The saliency maps demonstrate that the model
focuses on anatomically correct regions relevant to the precise
segmentation of the lacrimal gland.

4 Discussion

4.1 Comparison between POST-AX-T1-FS
and AX-T1 MRI performance

Our study evaluated the performance of deep learning models
in segmenting the lacrimal gland using both contrast-enhanced-
fat-suppressed and non-contrast T1-weighted MRI sequences. A
2D UNet model was trained and evaluated on POST-AX-TI1-
FS sequences, demonstrating superior segmentation performance,
achieving a mean Dice Similarity Coeflicient (DSC) of [0.79 +
0.19; 0.77 = 0.23] and a mean Intersection over Union (IoU) of
[0.68 £ 0.19; 0.67 £ 0.23]. In comparison, models trained on AX-
T1 sequences achieved lower performance, with a mean Dice of
[0.67 + 0.17; 0.61 + 0.23] and ToU of [0.52 + 0.18; 0.47 £ 0.21].
This disparity can be attributed to the enhanced contrast between
the lacrimal gland and surrounding orbital fat in POST-AX-T1-FS,
which aids in more accurate boundary delineation. AX-T1 scans,
lacking both contrast agent and fat suppression, frequently produced
segmentations with boundary leakage or underrepresentation of
gland volume (Figure 6).

Additionally, models trained on POST-AX-T1-FS demonstrated
greater robustness in volume estimation, with a correlation
coeflicient of 0.82 compared to 0.71 for AX-T1. These findings
suggest that fat-suppressed, contrast-enhanced imaging not only
improves average segmentation accuracy but also yields more
reliable predictions across patients. While AX-T1 sequences offer
a gadolinium-free alternative, their reduced performance indicates
that they may not yet serve as a full substitute for contrast-
enhanced imaging in tasks requiring high segmentation precision.
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TABLE 3 Evaluation metrics.

10.3389/fphy.2025.1697903

Organ Dice score (mean + sd) IOU score (mean + sd) HDgs5 (in mm)

Scan type (25%-75% IQR) (([e]) (mean + sd)
([e]3]

Right lacrimal gland 0.79 £0.19 0.68 +0.19 221+1.80

POST-AX-T1-FS 0.78 0 0.89 0.63 t0 0.80 1.05 to 2.84

Left lacrimal gland 0.77 £0.23 0.67 +0.23 431+13.14

POST-AX-T1-FS 0.79 t0 0.90 0.65 to 0.82 0.841t03.11

Right lacrimal gland 0.67 £0.17 0.52+0.18 3731243

AX-T1 0.58 t0 0.79 0.41 to 0.66 1.79 to 4.68

Left lacrimal gland 0.61 +0.23 0.47 +0.21 4.84+7.50

AX-T1 0.47 t0 0.76 0.31t0 0.62 217t04.73

Ground Truth vs. Predicted GTV

Ground Truth vs. Predicted GTV

POST-AX-T1-FS; IRB-1247:95553395
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FIGURE 5

Scatter plot visualizing the comparison of volumes, as measured from ground truth and predicted segmentations of the lacrimal glands. The bottom
image demonstrates a case of the POST-AX-T1-FS where the model output underestimates the volume due to a bulging of the lacrimal gland.

These results highlight a trade-off between diagnostic clarity and
material cost.

4.2 Clinical significance

Our findings highlight the potential value of accurate lacrimal
gland segmentation in clinical imaging, particularly for tracking
gland volume in diagnostic or treatment contexts. Automated
segmentation provides a reliable means for volumetric analysis,
which could help identify gland enlargement or atrophy, key
features in conditions like Sjogren’s Syndrome, sarcoidosis, and
orbital tumors. While DSC scores indicate room for improvement,
particularly for non-contrast scans, the ability to quantitatively
track volumetric changes over time could still facilitate treatment
monitoring, such as assessing response to radiotherapy or detecting
disease recurrence.

While U-Net has shown some promise in lacrimal gland
segmentation, further exploration of alternative deep learning
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models is crucial for improving accuracy, particularly for
challenging cases or different imaging modalities. Models like
DeepLabV3+ and Attention U-Net, with multi-scale context and
attention mechanisms, have been successfully used for segmenting
complex structures in similar contexts [24]. Additionally,
architectures such as FCN and hybrid models combining
convolutional and transformer-based approaches, as seen in
studies like Yazdani etal's work on lesion and organ-at-risk
segmentation using a SwinUNETR-based model [26], could
improve segmentation, especially for non-contrast MRI scans.
Generative adversarial networks (GANs), which have been
applied in other segmentation tasks, may also help refine the
delineation of poorly defined gland borders. Furthermore, nnU-
Net has been effectively applied in other segmentation problems,
such as segmenting the NLC on cone-beam CT images [24].
Additionally, a study using orbital CT from 701 patients trained
a specialized encoder-decoder architecture and compared it to
several conventional networks (Attention U-Net, DeepLabV3+,
SegNet, HarDNet-MSEG) for segmenting the eyeball, extraocular
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FIGURE 6
Visualization showing three representative slices containing the ground truth segmentations (top) and predicted segmentations (bottom) of the
lacrimal glands for patient IRB-1247:38041148.

muscles, optic nerve, and lacrimal gland [28]. Integrating these
models into the pipeline could enhance segmentation accuracy and
adaptability, supporting broader clinical applications across diverse
patient populations and imaging conditions.

From a workflow perspective, integrating automated lacrimal
gland segmentation into radiology platforms can significantly
streamline clinical evaluations, reducing the time needed for manual
contouring and allowing radiologists to focus on higher-level
decision-making. Importantly, the use of deep learning models
also contributes to reduced interobserver variability, a common
challenge in segmenting small or poorly defined structures such as
the lacrimal gland, especially in non-contrast scans.

4.3 Limitations and future directions

The small dataset size presents a significant constraint; the
limited number of annotated MRIs may hinder the model’s ability
to generalize across diverse patient populations, scanner types, and
imaging protocols. In addition, all MRIs were acquired from a
single institution using a consistent scanner and protocol, which
introduces the possibility of site-specific bias and limits external
validity. To address these limitations, future work should prioritize
the expansion of the dataset to include multi-institutional MRIs with
varied demographics and lacrimal gland morphologies. This would
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enable more robust model training and evaluation across diverse
clinical settings.

Another question left unanswered is whether the improved
segmentation performance observed in fat-suppressed contrast-
enhanced scans is driven primarily by fat suppression or by the
presence of the gadolinium-based contrast agent itself. Contrast-
enhanced, fat-suppressed sequences simultaneously reduce
background adipose signal and increase the relative conspicuity
of the lacrimal gland, making it unclear which factor contributes
more strongly to the model’s success. To disentangle these effects,
future studies should include a dedicated analysis of fat-suppressed,
non-contrast MRI sequences. Such an investigation would clarify
whether fat suppression alone provides sufficient gland-to-
background contrast to support accurate segmentation, or whether
contrast uptake is necessary to achieve the observed performance
gains. This distinction will be essential for determining the optimal
imaging protocol for both model training and eventual clinical
deployment, particularly in cases where contrast administration
may be contraindicated.

Additional model refinement is also warranted. Incorporating
attention mechanisms, boundary-aware loss functions, or even
transformer-based segmentation networks could improve the
delineation of gland margins. Finally, future studies should
include prospective clinical trials to assess the integration of

these segmentation tools into the diagnostic workflow. Key
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FIGURE 7

Visualization of the Grad-CAM heatmaps for each layer in the U-net architecture for an axial slice from a representative case IRB14-0749:22543636.

outcomes would include not only segmentation accuracy but
also diagnostic impact, workflow efficiency, and physician
satisfaction, providing a comprehensive evaluation of real-world
clinical utility.

5 Conclusion

This study demonstrates that auto-segmentation algorithms
perform better on contrast-enhanced (POST-AX-T1-FS) MR
sequences compared to non-contrast (AX-T1) scans, achieving
lower Hausdorff distances and higher Dice and IoU scores. However,
despite this performance gap favoring contrast-enhanced imaging,
neither model reached a level of accuracy that would be considered
clinically optimal, especially for non-contrast scans. This result
suggests that the current segmentation methods are not yet
robust enough for reliable clinical use, particularly in cases where
contrast agents are unavailable or contraindicated. This retrospective
single-institution study carries a Level 4 grade of evidence [29].

Due to the modest performance observed in both settings, there
is a clear need to explore alternative deep learning architectures
that may better capture the lacrimal gland’s small size and variable
appearance. Models like Attention U-Net, DeepLabV3+, SegNet,
and HarDNet-MSEG have been successfully applied to similar
segmentation challenges and may offer improvements over the
baseline models.
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Accurate lacrimal gland segmentation has potential value for
volumetric analysis in clinical imaging, especially for tracking gland
changes associated with conditions such as Sjégrens syndrome,
sarcoidosis, and orbital tumors. Although combining contrast and
non-contrast sequences led to slight performance improvements,
significant advancement is still necessary before automated
segmentation can be fully integrated into routine clinical workflows.
Future efforts should focus on expanding model comparisons,
validating findings in multi-center datasets, and assessing how
segmentation tools could help support clinical decision-making
and reduce interobserver variability.
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