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Editorial on the Research Topic

Understanding geomaterial instability: physics and mechanics of 
landslides and seismic events

s

Geomaterial instability, manifesting as catastrophic events like landslides and seismic 
activities, induces profound socioeconomic disruptions through the destruction of critical 
infrastructure and loss of human life. Understanding the underlying physics and mechanics 
of these failure processes is therefore essential for advancing predictive capabilities and 
developing effective risk mitigation strategies in vulnerable regions.

Previous studies have substantially advanced the understanding of geomaterial 
instability across multiple fronts. Notably, Hu Wei’s team [1] identified a metastable 
state preceding seismic shear failure, uncovering mechanisms of co-seismic weakening 
and post-seismic healing that refined the classical Newmark sliding-block model [2, 3]. 
Research under extreme thermo-hydro-mechanical-chemical (THMC) coupled conditions 
has improved predictions of deformation and failure in deep geological environments, 
directly supporting the safety assessment of energy reservoirs and subsurface storage 
projects [4, 5]. Meanwhile, satellite-based InSAR monitoring has been operationalized for 
large-scale slope stability assessment, providing millimeter-resolution deformation data 
essential for regional early warning systems [6, 7]. Further contributions include innovative 
slope stabilization methods using lightweight geofoam [8] and models quantifying freeze-
thaw damage in cold regions [9], forming a multifaceted foundation for hazard mitigation. 
Nevertheless, further research is essential to advance the fundamental understanding of the 
mechanisms governing geomaterial instability under multi-physical coupling conditions.

This Research Topic seeks to advance our understanding of the fundamental physics and 
mechanics underlying geomaterial instability, with the goal of clarifying its implications for 
geohazard mitigation and its significance within broader physical research. The Research 
Topic currently features 16 papers spanning the fields of geology, physics, mechanics, and
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engineering, reflecting the key emerging themes and 
interdisciplinary nature of research in geomaterial instability.

The dynamic responses of foundations and slopes were 
examined. It was found by Tao and Gao through numerical 
simulation that the displacements of suction-bucket foundations in 
saturated sand peak synchronously with peak ground acceleration, 
and that liquefaction leads to marked settlement and loss of bearing 
capacity. Likewise, it was shown by Wang and Wen via shaking-
table tests that rocky slopes subjected to seismic loading undergo a 
three-stage failure sequence characterized by crack opening, sliding, 
and shear failure. Chen et al. demonstrated by limit-equilibrium 
analysis that non-uniform geosynthetic (anchor) pullout strength 
reduces the seismic stability margin of slopes, suggesting that the 
common assumption of uniform strength may overestimate seismic 
performance.

Several papers investigated novel soil-improvement techniques. 
For instance, Yan et al. reported that expansive soil stabilized with 
industrial by-products (CKD+CCS) at a 10% CKD + 9% CCS ratio 
exhibits substantially increased strength and suppressed swelling. 
Additionally, an electrochemical stabilization method combining a 
movable anode with CaCl2 injection was proposed by Han et al. 
Sang et al. showed that the addition of a low-concentration PVA 
solution together with plant fibers to sandy soils markedly enhances 
strength and ductility; and Tao and Gao found that increasing 
polymer content in polyurethane-reinforced granular materials 
reduces porosity and permeability, for which a pore-constriction 
model was advanced to explain the observed effect.

Advances in reinforced structures and embankment systems 
were also reported. Hu et al. introduced a non-foamed 
polyurethane-bonded gravel pile material that, relative to ordinary 
gravel, exhibits higher strength and stiffness while retaining high 
permeability, making it suitable for rapid construction. Zhao 
and Zheng found from field data that a well-compacted geogrid-
reinforced soil platform beneath pile-supported embankments 
can significantly reduce lateral displacement of the embankment, 
with geogrid stiffness and interface friction identified as key 
controlling factors.

Moreover, seismic-wave propagation and crustal imaging were 
addressed. Qiu and Zhang developed a model for the reflection and 
transmission of obliquely incident P-waves at an elastic–saturated-
porous interface, and showed that incidence angle, frequency 
and related parameters substantially influence wave propagation. 
Hu et al. applied double-difference tomography in the Huoshan 
region and found that mid-strong earthquake epicenters coincide 
with gradients in seismic velocity and Poisson’s ratio. Huang 
et al. used Rayleigh-wave tomography to reveal fault-geometry-
controlled differential subsidence and noted that the previously 
active Sankeshu pull-apart basin is approaching dormancy.

Several studies developed predictive models for fracture and 
failure processes in geomaterials. Lei et al., using an elastic 
wellbore model, showed that drilling-induced fractures can evolve 
into “J”-shaped cracks, providing a basis for their identification; 
Deng et al. proposed a nonlinear Mohr–Coulomb criterion to 
describe unloading-induced failure in frozen weakly cemented 
sandstone; Gu et al. observed that pervasive micro-fissures in deep 

columnar-jointed basalts lead to rapid post-unloading relaxation 
and reductions in acoustic velocity; and Liu et al., employing SPH 
simulations of high-pressure jet grouting, found that tensile failure 
predominates in the soil under jet action.

We sincerely thank all contributing authors, the anonymous 
reviewers for their rigorous evaluations, and the editorial 
staff for their invaluable efforts. It is hoped that this 
Research Topic will inform and inspire future research and 
engineering practice in advancing the analysis of geomaterial
instability.
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