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In this work, we show that the completeness relation for the eigenvectors, 
which is an essential assumption of quantum mechanics, remains true if the 
Hamiltonian, having a discrete spectrum, is modified by a delta potential (to be 
made precise by a renormalization scheme) supported at a point in two- and 
three-dimensional compact manifolds or Euclidean spaces. The formulation can 
be easily extended to an N center case and the case where delta interaction 
is supported on curves in the plane or space. We finally give an interesting 
application for the sudden perturbation of the support of the delta potential.
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 1 Introduction

In quantum mechanics, the energy eigenfunctions—corresponding to both discrete 
and continuous spectra—constitute a generalized orthonormal basis for the Hilbert 
space H. This allows any arbitrary state (wave function) to be expanded in terms of 
these generalized eigenfunctions, a fundamental property known as the completeness 
relation (or Parseval’s identity for eigenfunctions) [1–3]. There are only a few standard 
explicit examples in which the completeness relation has been verified. One of the 
reasons for this is the lack of exactly solvable potentials in quantum mechanics, and 
the integrals or sums involving eigenfunctions are quite difficult to evaluate analytically. 
The momentum operator and the Hamiltonian for a single particle in a box are the 
most well-known textbook examples [4, 5]. The completeness relation for systems having 
both bound states and continuum states, such as the Dirac delta potential in one 
dimension [6–8], the Coulomb potential in three dimensions [9], and the reflectionless 
potential [10], has also been demonstrated by appropriately normalizing the eigenfunctions. 
The purpose of this article is to show that the completeness relation still holds even for 
a rather singular system, involving delta function potentials, where the renormalization 
is required. For this, we consider a Hamiltonian having only a discrete spectrum and 
assume (justifiably for a self-adjoint Hamiltonian) that the completeness relation holds. 
Then, we prove that the completeness relation is still true even if we modify this 
Hamiltonian by a delta potential (point interactions in two and three dimensions in a 
Euclidean space, as well as point interactions in two- and three-dimensional compact 
manifolds), where a renormalization is required to render the Hamiltonian well-defined.
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The resolvent of the modified Hamiltonian by singular delta 
potentials supported by a point a in two or three dimensions has 
been studied extensively in the literature and is given by Krein’s 
formula [11, 12].

R (E) = R0 (E) + (Φ (E))−1⟨G0 (⋅,a|E), ⋅⟩G0 (⋅,a|E) , (1.1)

where R0(E) = (H0 −E)−1 is the resolvent of the Hamiltonian H0
at E ∉ ℝ, G0(x,y|E) is the integral kernel of the resolvent R0(E) or 
Green’s function, and Φ is some function to be determined for each 
particular class of singular potential. This function is also denoted 
by Γ in the mathematics literature. The meaning of the second term 
should be understood as follows:

(R (E)ψ) (x) = (R0 (E)ψ) (x) + (Φ (E))−1⟨G0 (y,a|E),ψ (y)⟩G0 (x,a|E) ,

where ⟨G0(y,a|E),ψ(y)⟩ = ∫G0(y,a|E)ψ(y)dμ(y). Equation 1.1 can 
be seen more naturally in Dirac’s bracket notation,

R (E) = R0 (E) + (Φ (E))−1R0 (E) |a〉〈a|R0 (E) .

Looking at the resulting wave functions, some of our colleagues 
have expressed doubts about the explicit verification of the 
completeness relations, even though it was clear from the fact that 
the resulting Hamiltonians are self-adjoint in a precise mathematical 
sense. Even if the result is expected, we think it is a valuable exercise 
to demonstrate the orthonormality and completeness by an explicit 
calculation. To make the presentation self-contained, we will briefly 
summarize how the pole structure of the full Green’s function 
G(x,y|E) = ⟨x|R0(E)|y⟩ is rearranged to form new poles and how the 
poles of G0(x,y|E), which explicitly appears as an additive factor 
in G(x,y|E), are removed in general. This has been proved in our 
previous work [13] for the more general case, when the Hamiltonian 
has a discrete as well as a continuous spectrum.

The resulting wave functions are typically given by the original 
Green’s functions G0 evaluated at the new energy eigenvalues, so they 
are actually (mildly) singular at the location of the delta function. 
These are interesting objects by themselves and could be useful in 
some practical problems as well, as they are now (explicitly) shown 
to form a new orthonormal basis. In the present work, we prefer to 
emphasize the essential ideas while writing out our proofs, and we 
are not aiming for a fully rigorous mathematical approach. In this 
way, we hope that the article becomes accessible to a wider audience. 

2 Discrete spectrum modified by a δ
interaction

To set the stage, we introduce the notation and summarize the 
main results about how the spectrum of an initial Hamiltonian H0
having a purely discrete spectrum changes under the influence of 
a (formally defined) delta interaction, which was discussed in our 
previous works, particularly in [13].

We consider the case in which H0 is formally modified by a single 
δ function supported at x = a,

H =H0 − αδa, (2.1)

where α is to be replaced by a renormalized coupling once we 
actually state the Green’s function for this problem. Various methods 

exist in the literature to make sense of the above formal expression 
of the Hamiltonian H. One possible way is to define the δ interaction 
as a self-adjoint extension of H0, and they are, in general, called 
point interactions or contact interactions. A modern introduction to 
this subject is given in the recent book by Gallone and Michelangeli 
[14], and the classic reference elaborating this point of view is the 
monograph by Albeverio et. al [11].

Here and subsequently, as emphasized in the introduction, we 
assume that the initial Hamiltonian H0 satisfies some conditions:

• H0 is self-adjoint on some dense domain D(H0) ⊂ L2(M), 
where M is two- or three-dimensional Euclidean space or 
Riemannian compact manifold without boundary (connected 
and orientable additionally). Often, it is essential (to put some 
estimates on the Green’s functions) to assume some regularity 
on the geometry; experience has shown that a lower bound 
on the Ricci curvature, which controls the volume growth of 
geodesic balls, satisfies most of the technical requirements. 
Consequently, we impose the following condition,

Ricg (⋅, ⋅) ≥ (D− 1)κg (⋅, ⋅) . (2.2)

• For two-dimensional compact manifolds, this does not impose 
any restriction, as Ricci curvature is exactly given by Ricg(⋅, ⋅) =
R
2

g(⋅, ⋅), where R is the scalar curvature, and R has a minimum 
(and a maximum) value on a compact manifold. For three-
dimensional manifolds, this puts some restrictions on the 
possible geometric structures one admits. If κ > 0, one has 
much better control for various bounds on heat kernels (or 
Green’s functions); see the book by Li [15] for an exposition 
of these ideas.

• Spectrum of H0 is discrete σd(H0) (set of eigenvalues),
• The discrete spectrum has no accumulation point, except 

possibly at infinity.
• For stability, we assume H0 has a spectrum bounded below.

These conditions on the spectrum put some restrictions on the 
potential V (listed in the classical work of Reed and Simon [16]) 
if we assume

H0 = −
ℏ2

2m
Δ+V,

on D = 2,3-dimensional Euclidean space, and they are true when 
we consider

H0 = −
ℏ2

2m
Δg,

on a compact Riemannian manifold (again of dimension 2 or 3) 
with a metric gij, where Δg is the Laplace–Beltrami operator or 
Laplacian given by

(Δgψ)(x) = 1

√detg

D

∑
i,j=1

∂
∂xi (√detggij ∂ψ (x)

∂xj ),

in some local coordinates, with gij being the components of inverse 
of the metric g. Precisely speaking, it is well known [17, 18] that there 
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exists a complete orthonormal system of C∞ eigenfunctions {ϕn}
∞
n=0

in L2(M) and the spectrum σ(H0) = {En} = {0 = E0 ≤ E1 ≤ E2 ≤…}, 
with En tending to infinity as n→∞, and each eigenvalue has 
finite multiplicity. Some eigenvalues are repeated according to their 
multiplicity. The multiplicity of the first eigenvalue E0 = 0 is one, 
and the corresponding eigenfunction is constant. From now on, we 
assume that there is no degeneracy in the spectrum of the Laplacian for 
simplicity. The analysis about how the spectrum changes under the 
modification of δ potentials in the presence of degeneracy has been 
given in Appendix D of our previous work [13].

Remark 2.1: Note that the complete nondegeneracy assumption of 
the spectrum is not an exceptional case. If we introduce a proper 
distance in the space of all smooth metrics on the manifold, then 
the set of metrics with completely non-degenerate spectra is actually 
dense in this metric space. Incidentally, the space of all smooth 
metrics becomes what is called a Frechet space under this particular 
choice of the distance function [19]. 

Remark 2.2: There are upper bounds on the eigenvalues of the 
Laplacian given in terms of the geometric data, and these give 
some valuable information about the way the spectrum behaves (for 
example, see Corollary 4.15 of [19]).

The integral kernel of the resolvent R0(E) for H0 or simply 
Green’s function is given by

(R0 (E)ψ) (x) = ((H0 −E)−1ψ)(x) = ∫
M

G0 (x,y|E)ψ (y)dμ (y) ,

where dμ(y) is the volume element in M (on a manifold, expressed 
in local coordinates, it has the usual √detg factor in it), and it can be 
expressed by the following expression away from the diagonal x = y,

G0 (x,y|E) =
∞

∑
n=0

ϕn (x)ϕn (y)
En −E

, (2.3)

where {ϕn} is the complete set of eigenfunctions of H0. The Green’s 
function G0(x,y|E) is a square-integrable function of x for almost all 
values of y and vice versa [20].

When the co-dimension (dimension of space minus dimension 
of the support of the δ interaction) is greater than one, the δ
interaction must be defined by a renormalization procedure. The 
main reason for this is based on the singular structure of the 
Green’s function for initial Hamiltonians H0 in two and three 
dimensions. The history of this subject is quite rich, and there 
has been a vast amount of material in the physics literature; see, 
for example, [21–30]. An eigenfunction expansion, analogous to 
Equation 2.3, also exists for the Green’s function G(x,y|E) of the 
modified (formal) Hamiltonian H (a two- or three-dimensional 
delta potential added to the free case located at the origin) in 
[28]. It is possible to express this Green’s function G(x,y|E) in 
terms of the Green’s functions of the initial Hamiltonian H0. The 
standard route in the literature is to construct this Green’s function 
and establish that the Hamiltonian defined by this expression is 
indeed self-adjoint. Hence, by the spectral theorem, there is a 
complete set of eigenfunctions. In this article, we prove directly 
by means of the explicit expression of the constructed Green’s 
function that the corresponding Hamiltonian still has a complete 
set of eigenfunctions. For this, we use the completeness property 
of the eigenfunctions of the initial Hamiltonian H0, having only 

a discrete spectrum, and an interlacing theorem for the poles 
of the new Green’s function, proved in a previous publication 
[13]. As a result, we thus establish the self-adjointness of the 
resulting Hamiltonian in a novel way (Remark 4.3). Moreover, 
we have an explicit integral operator for the Hamiltonian, which 
allows one to apply various approximation methods. There is 
also great pedagogical value in establishing the existence of an 
orthonormal basis for a given Hamiltonian as it demonstrates 
clearly the validity of one of the fundamental postulates of
quantum mechanics.

It is useful to express Green’s function G0 in terms of the heat 
kernel Kt(x,y) associated with the operator H0 under the above 
assumptions. It is given by

G0 (x,y|E) = ∫
∞

0
Kt (x,y)etEdt,

where Re(E) < 0 and H0Kt(x,y) =
∂
∂t

Kt(x,y) (and can be defined 
for other values of E in the complex E plane through analytical 
continuation). We note that the first term in the short time 
asymptotic expansion of the diagonal heat kernel for any self-adjoint 
elliptic second-order differential operator [31] in D dimensions 
is given by

Kt (x,x) ∼ t−D/2.

This leads to the divergence around t = 0 in the diagonal part of 
Green’s function G0(x,x|E):

∫
∞

0

e−t|E|

tD/2
dt,

for D = 2,3. In order to make sense of such singular interactions, one 
must first regularize the Hamiltonian by introducing a cut-off ϵ > 0. 
A natural way, in particular for compact manifolds, is to replace the 
δ function by the heat kernel Kϵ/2(x,a), which converges to δ(x− a)
as ϵ→ 0 (in the distributional sense). It turns out that the regularized 
Green’s function is given by

Gϵ (x,y|E) = Gϵ
0 (x,y|E) +

Gϵ
0 (x,a|E)G

ϵ
0 (a,y|E)

1
α
−Gϵ

0 (a,a|E)
,

where Gϵ
0(x,y|E) = ∫

∞
ϵ

Kt(x,y)etEdt with Re(E) < 0. Then, we make 
the coupling constant α dependent on the cut-off ϵ in such a way 
that the regularized Green’s function has a non-trivial limit as we 
remove the cut-off. A natural choice for absorbing the divergent part 
in a redefinition of the coupling constant is given by

1
α (ϵ)
= 1

αR (M)
+∫
∞

ϵ
Kt (a,a)etMdt,

where M is the renormalization scale and could be eliminated 
in favor of a physical parameter by imposing a renormalization 
condition. Taking the formal limit as ϵ→ 0, we obtain the Krein’s 
type of formula for the integral kernel of the resolvent or 
Green’s function

G (x,y|E) = G0 (x,y|E) +
G0 (x,a|E)G0 (a,y|E)

Φ (E)
, (2.4)

where Φ(E) = 1
αR(M)
+∫∞0 Kt(a,a)(etM − etE) dt. Because the 

bound state energy of the system can be found from the poles of 
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the Green’s function, or equivalently zeros of the function Φ, there 
must be a relation among M, αR(M), and the bound state energy 
of the particle (due to the presence of δ potential), say −μ2. Note 
that αR varies with respect to M in a precise way to keep the physics 
(e.g., the bound state energy) independent of this arbitrary choice 
[32, 33]. We set the renormalization scale at M = − μ2 (thinking of 
a bound state below E0) for simplicity. Then,

Φ (E) = 1
αR
+∫
∞

0
Kt (a,a)(e−tμ

2
− etE) dt

= 1
αR
+
∞

∑
n=0
(
|ϕn (a) |

2

(En + μ2)
−
|ϕn (a) |

2

(En −E)
)

= 1
αR
−
∞

∑
n=0

|ϕn (a) |
2 (E+ μ2)

(En −E)(En + μ2)
.

(2.5)

Here, we employ the eigenfunction expansion of the heat 
kernel Kt(x,y) = ∑nϕn(x)ϕn(y)e

−tEn  of the Laplacian. The (uniform) 
convergence of this sum can be shown by using the upper bounds of 
the heat kernel, and this technical part has been given in Appendix 
A of our previous work [13].

Note that we could have chosen a sharp cut-off as well, as is 
often done in physics literature, for the above calculations. The 
momentum (in this case energy eigenvalue of the Laplacian) is 
limited by a finite large number Λ to render infinite sums to 
finite expressions. We then employ our subtraction to finally take 
a limit Λ→∞ to remove this arbitrary cut-off in the physical 
result. It has been shown in [34] that the connection between 
observable quantities for such point delta interactions in two and 
three dimensions does not depend on the renormalization scheme 
that is used.

Moreover, we have shown in [35] that there exists a unique 
densely defined closed operator, say H, associated with the resolvent 
whose integral kernel is given by Equation 2.4.

Because the truncation of the above sum (Equation 2.5) has 
no zeros on the upper and lower complex E plane, the uniform 
convergence of this sum on compact subsets of the complex 
plane, in conjunction with the Hurwitz theorem [36], implies 
that all the zeros of Φ are located on the real E axis. Then, the 
spectrum of the full Hamiltonian (Equation 2.1) is given by the 
following proposition, which is a particular case of our previous
result [13]: 

Proposition 2.3: Let ϕk(x) be the eigenfunction of H0 associated 
with the eigenvalue Ek. Then, the (new) energy eigenvalue E∗k  of H is 
found from the unique solution of the equation

Φ (E) = 1
αR
−
∞

∑
n=0

|ϕn (a) |
2 (E+ μ2)

(En −E)(En + μ2)
= 0,

which lies in between Ek−1 and Ek, if ϕk(a) ≠ 0 for this particular k. If 
for this particular choice of k, we have ϕk(a) = 0, the corresponding 
energy eigenvalue does not change, that is, E∗k = Ek. For the ground 
state (k = 0), we always have E∗0 < E0.

Proof. We first split the term in the eigenfunction expansion 
of the Green’s functions G0 and the function Φ in Equation 2.4 
associated with the isolated simple eigenvalue Ek of H0:

G (x,y|E) = ∑
n≠k

ϕn (x)ϕn (y)
En −E

+
ϕk (x)ϕk (y)

Ek −E

+
(∑

n≠k
ϕn(x)ϕn(a)

En−E
)(∑

n≠k
ϕn(a)ϕn(y)

En−E
)

1
αR
−∑

n≠k
|ϕn(a)|

2(E+μ2)
(En−E)(En+μ2)

− |ϕk(a)|
2(E+μ2)

(Ek−E)(Ek+μ2)

+
(∑

n≠k
ϕn(x)ϕn(a)

En−E
)( ϕk(a)ϕk(y)

Ek−E
)

1
αR
−∑

n≠k
|ϕn(a)|

2(E+μ2)
(En−E)(En+μ2)

− |ϕk(a)|
2(E+μ2)

(Ek−E)(Ek+μ2)

+
( ϕk(x)ϕk(a)

Ek−E
)(∑

n≠k
ϕn(a)ϕn(y)

En−E
)

1
αR
−∑

n≠k
|ϕn(a)|

2(E+μ2)
(En−E)(En+μ2)

− |ϕk(a)|
2(E+μ2)

(Ek−E)(Ek+μ2)

+
( ϕk(x)ϕk(a)

Ek−E
)( ϕk(a)ϕk(y)

Ek−E
)

1
αR
−∑

n≠k
|ϕn(a)|

2(E+μ2)
(En−E)(En+μ2)

− |ϕk(a)|
2(E+μ2)

(Ek−E)(Ek+μ2)

.

If we combine the second and the last terms in the above 
expression, we obtain

G (x,y|E) =
ϕk (x)ϕk (y)

Ek −E
(1−(1−

(Ek −E)

|ϕk (a) |
2 (

1
αR
− ∑

n≠k

|ϕn (a) |
2 (E+ μ2)

(En −E)(En + μ2)
+
|ϕk (a) |

2

Ek + μ2 ))
−1

)

+ ∑
n≠k

ϕn (x)ϕn (y)
En −E

+ (Ek −E)
(∑n≠k

ϕn(x)ϕn(a)
En−E
)(∑n≠k

ϕn(a)ϕn(y)
En−E
)

(Ek −E)( 1
αR
−∑n≠k

|ϕn(a)|
2(E+μ2)

(En−E)(En+μ2)
)−
|ϕk(a)|

2(E+μ2)

(Ek+μ2)

+
(∑n≠k

ϕn(x)ϕn(a)
En−E
)(ϕk (a)ϕk (y))

(Ek −E)( 1
αR
−∑n≠k

|ϕn(a)|
2(E+μ2)

(En−E)(En+μ2)
)−
|ϕk(a)|

2(E+μ2)

(Ek−E)(Ek+μ2)

+
(ϕk (x)ϕk (a))(∑n≠k

ϕn(a)ϕn(y)
En−E
)

(Ek −E)( 1
αR
−∑n≠k

|ϕn(a)|
2(E+μ2)

(En−E)(En+μ2)
)−
|ϕk(a)|

2(E+μ2)

(Ek+μ2)

.

Except for the first term, it is easy to see that all terms are regular 
near E = Ek. For the first term, if we choose E sufficiently close to Ek, 
that is, if |Ek−E|

|ϕk(a)|2
| 1

αR
−∑n≠k

|ϕn(a)|
2(E+μ2)

(En−E)(En+μ2)
+ |ϕk(a)|

2

Ek+μ2 | < 1, the first term in 
the above equation becomes

−
ϕk (x)ϕk (y)
|ϕk (a) |

2 (
1

αR
−∑

n≠k

|ϕn (a) |
2 (E+ μ2)

(En −E)(En + μ2)
+
|ϕk (a) |

2

Ek + μ2 )+O(|Ek −E|2)

 so that G(x,y|E) is regular near E = Ek as long as ϕk(a) ≠ 0. The 
uniqueness of the solution can be proved by showing that the sum 
is an increasing function of E and goes to −∞ as E→−∞. See 
Appendix C in [13] for the technical details.

Similar results for a particular class of potentials have been 
examined in [37] in the context of path integrals (in two and three 
dimensions). However, there is no explicit derivation showing that 
the poles of the free resolvent are canceled in the final expression for 
the Green’s function. 

Remark 2.4: Note that these results can be interpreted as a 
generalization of the well-known Sturm comparison theorems to the 
singular δ interactions. Remarkably, even the renormalized case has 
this property. 

Here on and subsequently we mainly focus on manifold case.
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Remark 2.5: One would wonder how the separation between 
consecutive eigenvalues grows as we increase the index. 
There are some estimates if one knows how the manifold is 
isometrically embedded into a Euclidean space; see, for example, 
Theorem 5.6 in [19]. 

3 Orthogonality relation

Using a contour integral of the resolvent R(E) = (H−E)−1

around each simple eigenvalue E∗k , we can find the projection 
operator onto the eigenspace associated with the eigenvalue E∗k ,

ℙk = −
1

2πi
∮

Γk

R (E) dE,

where Γk is the counterclockwise oriented closed contour around 
each simple pole E∗k , or equivalently,

ψk (x)ψk (y) = −
1

2πi
∮

Γk

G (x,y|E) dE. (3.1)

From the explicit expression of the Green’s function (Equation 2.4) 
and the residue theorem, we obtain

ψk (x) =
G0 (x,a|E∗k)

(− dΦ(E)
dE
|
E=E∗k
)

1/2
. (3.2)

Note that the differentiation under the summation yields

dΦ (E)
dE
|E∗k = −

∞

∑
n=0

|ϕn (a) |
2

(En −E∗k)
2 . (3.3)

If ϕk(a) = 0, this term is skipped in the sum, ensuring the 
expression is well-defined in all these cases. Moreover, in these 
special cases, the corresponding eigenfunction becomes

ψk (x) = ϕk (x) .

Proposition 3.1: Let ϕn be orthonormal set of eigenfunctions of 
H0, that is,

H0ϕn =  Enϕn

∫
M

ϕn (x)ϕm (x) dμ (x) =  δnm.

Then, the eigenfunctions ψn of H, which is formally H0 modified 
by a delta interaction supported at x = a are orthonormal, that is,

∫
M

ψn (x)ψm (x) dμ (x) = δnm,

where D = 1,2,3.
Proof. We first prove for D = 2,3, where the renormalization is 

needed to define point delta interactions properly.
Using bilinear expansion (Equation 2.3) of the Green’s function 

of H0 and the eigenfunction (Equation 3.2), we obtain

∫
M

ψn (x)ψm (x) dμ (x) = ∫
M

G0 (x,a|E∗n)

(− dΦ(E)
dE
|E=E∗n)

1/2

G0 (x,a|E∗m)

(− dΦ(E)
dE
|E=E∗m)

1/2
dμ (x)

= 1

(− dΦ(E)
dE
|E=E∗n)

1/2(− dΦ(E)
dE
|E=E∗m)

1/2

×  ∫
M
∑

k

ϕk (a)ϕk (x)
Ek −E∗n

∑
l

ϕl (x)ϕl (a)
El −E∗m

dμ (x) .

Interchanging the order of summation and integration and using 
the fact that ϕks are orthonormal functions, we have

∫
M

ψn (x)ψm (x) dμ (x) = 1

(− dΦ(E)
dE
|
E=E∗n
)

1/2
(− dΦ(E)

dE
|
E=E∗m
)

1/2

∑
k

|ϕk (a) |
2

(Ek −E∗n)(Ek −E∗m)
. (3.4)

If n =m in Equation 3.4, then it is easy to show that the new 
eigenfunctions ψns are automatically normalized, thanks to the 
identity in Equation 3.3:

∫
M
|ψn (x) |

2dμ (x) = − 1
dΦ(E)

dE
|E=E∗n

∞

∑
k=0

|ϕk (a) |
2

(Ek −E∗n)
2 = 1.

For the case n ≠m, we first formally decompose the expression 
in the summation with a cut-off N as a sum of two partial fractions

N

∑
k=0

|ϕk (a) |
2

(Ek −E∗n)(Ek −E∗m)
=

N

∑
k=0

|ϕk (a) |
2

(E∗n −E∗m)
( 1

Ek −E∗n
− 1

Ek −E∗m
).

As explained in the renormalization procedure, each term 
∑N

k=0
|ϕk(a)|

2

Ek−E∗n
 is divergent as N→∞. Motivated by this, we add and 

subtract 1
αR
+∑N

k=0
|ϕk(a)|

2

Ek+μ2  to the above expression and obtain in the 
limit N→∞

∫
M

ψn (x)ψm (x) dμ (x) = 1
(E∗n −E∗m)

(Φ(E∗n) −Φ(E∗m))

(− dΦ(E)
dE |E=E∗n

)
1/2
(− dΦ(E)

dE |E=E∗m
)

1/2
.

Because the zeros of the function Φ are the bound state 
of the modified system, that is, Φ(E∗n) = 0 and Φ(E∗m) = 0
for all n,m (when n ≠m), this completes our proof of the 
orthogonality of eigenfunctions for the modified Hamiltonian 
having discrete spectrum.

The case for D = 1 can easily be proved by following the 
same steps introduced above, except that there is no need for 
renormalization. 

Remark 3.2: If it so happens that for some k, ϕk(a) = 0, then 
the corresponding eigenvalue does not change; moreover, the 
eigenfunction remains the same as ϕk(x). In this case, we see that 
the orthogonality among all the eigenfunctions continues to hold as 
well, thanks to ϕk(a) = 0 again. 

4 Completeness relation

Proposition 4.1: Let ϕn be a complete set of eigenfunctions of 
H0, that is,

H0ϕn = Enϕn
∞

∑
n=0

ϕn (x)ϕn (y) = δ (x− y) .

Then, the eigenfunctions ψn of H, which is formally H0 modified 
by a delta interaction supported at x = a, form a complete set, that is,

∞

∑
n=0

ψn (x)ψn (y) = δ (x− y) .
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Proof. Let Γn be the counterclockwise-oriented closed 
contours around each simple pole E∗n  and Γn ∩ Γm = ∅ for n ≠m, 
as shown in Figure 1.

Then, the projection onto the associated eigenspace is given by 
Equation 3.1, and thanks to Krein’s formula for the Green’s function 
of the modified Hamiltonian (Equation 2.4), we have

∞

∑
n=0

ψn (x)ψn (y) =
1

2πi

∞

∑
n=0
∮

Γn⊃E∗n
(G0 (x,y|E) +

G0 (x,a|E)G0 (a,y|E)
Φ (E)

) dE.

Note that the total expression in the Krein’s formula has only 
poles at E∗ns. When we think of it as the sum of two separate 
expressions, we have the original eigenvalues, En, reappearing 
as poles again. Here, the contribution coming from the Green’s 
function of the initial Hamiltonian H0, which is the first term of 
Krein’s formula, for the above contour integral vanishes because 
the poles En of G0 are all located outside at each Γn (Note that 
in the special case of coincidence of one E∗k  with Ek, ϕk(a) = 0, 
so that the contribution of the other term is zero. We pick the 
original wavefunctions ϕk(x), so in such cases we exclude these terms 
from the summation and write them separately.). For simplicity, 
we assume that all E∗k ≠ Ek from now on. Note that thanks to the 
denominators, we can elongate the contours to ellipses that extend 
to infinity along the imaginary direction (on the complex E-plane). 
We now continuously deform this contour to the following extended 
contour Γsnake, as shown in Figure 2. Note that we have no poles 
of the Green’s function on the left part of the line E∗0 + iℝ nor any 
zeros of Φ(E). The product of two Green’s functions decays rapidly 
as |E| →∞ along the negative real direction as well as along the 
imaginary directions; hence, we have no contributions from the 
contours at infinity for these deformations. This observation allows 
us to change the contour as described below.

Using the interlacing theorem stated in Proposition 2.3, we 
can, so to speak, flip the contour while preserving the value 
of the integration and then deform the contour to the one 
Γdual that consists of isolated closed contours Γn

dual around each 
isolated eigenvalue En of the initial Hamiltonian H0 with opposite 
orientation, as shown in Figure 3.

Hence, we have
∞

∑
n=0

ψn (x)ψn (y) =
1

2πi

∞

∑
n=0
∮

Γn
dual⊃En

G0 (x,a|E)G0 (a,y|E)
Φ (E)

dE.

We then assume that all isolated closed contours Γn
dual are 

sufficiently small. To be more precise, one must consider the 
truncated sum. For the sake of clarity, we ignore this subtlety for now. 
Then, the above expression can be written as

1
2πi

∞

∑
n=0
∮

Γn
dual⊃En

G0 (x,a|E)G0 (a,y|E)
1

αR
+∑∞

l=0
|ϕl(a)|

2

El+μ2 −
|ϕn(a)|

2

En−E
−∑∞

l≠n
|ϕl(a)|

2

El−E

dE.

As we know from the proof of cancellation of poles (in our 
previous work), we split the above expression in the following way

1
2πi

∞

∑
n=0
∮

Γn
dual⊃En
(gn (x,a|E) +

ϕn (a)ϕn (x)
En −E

)

×(
(En −E)

Dn (αR,E) (En −E) − |ϕn (a) |
2)(gn (a,y|E) +

ϕn (y)ϕn (a)
En −E

) dE,

where the functions gn and Dn are regular/holomorphic inside for 
each one of Γn

dual, which are defined near E = En for a given n as

gn (x,y|E) ≔ ∑
k≠n

ϕk (x)ϕk (y)
Ek −E

,

Dn (α,E) ≔
1
α
−∑

k≠n

|ϕk (a) |
2

Ek −E
.

Then, the above integral must have the following form:

1
2πi

∞

∑
n=0
∮

Γn
dual⊃En

(holomorphicpart+
|ϕn (a) |

2ϕn (y)ϕn (x)
En −E

)

( 1
D (αR,E) (En −E) − |ϕn (a) |

2) dE.

Applying the residue theorem, we obtain

∞

∑
n=0

ψn (x)ψn (y) =
1

2πi

∞

∑
n=0

ϕn (x)ϕn (y)

−|ϕn (a) |
2 (−2πi|ϕn (a) |

2) ,

where the minus sign is due to the opposite orientation of the 
contour Γdual. Finally (which should be done more rigorously by 
taking a limit of truncated expressions), we prove

∞

∑
n=0

ψn (x)ψn (y) =
∞

∑
n=0

ϕn (x)ϕn (y) = δ (x− y) .

Remark 4.2: As explained above, for a particular value k, ϕk(a) =
0, our proof can be modified by separating this eigenfunction in 
the Green function and then deforming the contours accordingly. 
In our previous work [13], possible degeneracy (corresponding to 
a d-dimensional eigensubspace) is also discussed for a singular 
interaction. When all the degenerate eigenvectors are zero at a, 
there is no effect of the singular interaction; hence, we can separate 
this projection and repeat our proof. If that is not the case, 
then the singular interaction lifts the degeneracy in a particular 
direction, as explained precisely in [13]. The eigenvector in this 
particular direction changes to G0(x,a|E

∗), where E∗ refers to 
the new eigenvalue appearing in the spectrum, and the other 
orthogonal directions, forming a d− 1-dimensional subspace, are 
left intact. Therefore, our proof goes through in this case as 
well by separating the unaffected projection and repeating our
proof accordingly. 

Remark 4.3: Interestingly, these observations lead to an explicit 
construction of the resulting renormalized Hamiltonian. Suppose 
that there is a set of ϕk(x) for which we have ϕk(a) = 0. Call this set of 
indices as N , nodal indices, and then the renormalized Hamiltonian 
becomes (as an integral operator)

⟨x|H|y⟩ =
∞

∑
k∉N

E∗k(
dΦ (E)

dE
|E∗k)
−1

G0 (x,a|E∗k)G0 (a,y|E∗k) + ∑
k∈N

Ekϕk (x)ϕk (y) .

Remark 4.4: Incidentally, the above integral kernel can be utilized 
to show that the operator H, defined through this kernel, is 
essentially self-adjoint thanks to Example 9.25 given in [38] and 
stated (somewhat more intuitively) below for convenience.
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FIGURE 1
The contours Γn along each simple pole E∗n with a counterclockwise orientation.

FIGURE 2
The contour Γsnake

FIGURE 3
The contours Γn

dual along each simple pole En with clockwise orientation.

Suppose we have a symmetric (what physicists typically call 
Hermitian) operator A which has a complete set of eigenvectors, 
then the closure of operator A, that is if we define A on a slightly 
larger set, by adding all vectors for which A acts continuously to 

its domain, becomes a self-adjoint operator; see, for example, [39] 
for a pedagogical discussion of this. Note that the above expression 
does not manifest H as a perturbation or modification of H0. It may 
be possible to reexpress this kernel as ⟨x|H0|y⟩ + δR(x,y), for some 
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function δR which is not in the domain of H0. Alternatively, we can 
rewrite the Hamiltonian as an abstract operator,

H =
∞

∑
k∉N

E∗k (H0 −E∗k)
−1|a〉(

dΦ (E)
dE
|E∗k)
−1
〈a|(H0 −E∗k)

−1 + ∑
k∈N

Ek|ϕk〉〈ϕk|.

It is clear that the resulting (renormalized) operator cannot be 
expressed as a differential operator, but only as an integral operator.

Remark 4.5: Using the development in our previous work [13], the 
present discussion can be easily extended to the N center case, the 
case where delta interaction is supported on curves in the plane or 
space, etc. In principle, all these extensions are possible and left as an 
exercise for an enthusiastic reader to become involved with singular 
interactions. 

Proposition 4.6: The set of functions G0(x,a|E∗k ) −G0(x,a|E∗l ) are 
in the domain of the initial Hamiltonian H0. 

Proof. The difference in the Green’s functions can be written 
explicitly as follows:

ξ (x) = G0 (x,a|E∗k) −G0 (x,a|E∗l ) = (E
∗
k −E∗l )

∞

∑
n=0

ϕn (x)ϕn (a)

(En −E∗k)(En −E∗l )
.

Suppose E∗k > E∗l  and because En→∞ as n→∞, 
monotonously, we choose N∗ such that En > 3E∗k  for n ≥ N∗. This 
implies that En −E∗k >

1
2
(En +E∗k ). Let us compute formally ‖H0ξ‖2:

∫
M

dμ (x) | (H0ξ) (x) |2 = (E∗k −E∗l )
2
∞

∑
n=0

E2
n|ϕn (a) |

2

(En −E∗k)
2(En −El)

2
.

We split the sum into two parts:

‖H0ξ‖2 = (E∗k −E∗l )
2(

N∗
∑
n=0

E2
n|ϕn (a) |

2

(En −E∗k)
2(En −E∗l )

2 +
∞

∑
n=N∗

E2
n|ϕ (a) |

2

(En −E∗k)
2(En −E∗l )

2)

< (E∗k −E∗l )
2(

N∗
∑
n=0

E2
n|ϕn (a) |

2

(En −E∗k)
2(En −E∗l )

2 +
∞

∑
n=N∗

E2
n|ϕn (a) |

2

(En −E∗k)
4 )

< (E∗k −E∗l )
2(

N∗
∑
n=0

E2
n|ϕn (a) |

2

(En −E∗k)
2(En −E∗l )

2 + 2
∞

∑
n=N∗

E2
n|ϕn (a) |

2

(En +E∗k)
4 ).

(4.1)

Now use E2
n = (En +E∗k )

2 − 2(En +E∗k )E
∗
k + (E
∗
k )

2 to reexpress the 
last part as

∞

∑
n=N∗

E2
n|ϕn (a) |

2

(En +E∗k)
4 =
∞

∑
n=N∗

|ϕn (a) |
2

(En +E∗k)
2 − 2E∗k

∞

∑
n=N∗

|ϕn (a) |
2

(En +E∗k)
3 + (E

∗
k)

2
∞

∑
n=N∗

|ϕn (a) |
2

(En +E∗k)
4 .

Removing the negative term (as all its summands are positive, 
it gives an upper bound to our expression) and adding the missing 
terms in the sums so as to turn them into the sum over from n = 0
to n =∞, we find an upper bound for the last term in Equation 4.1:

∞

∑
n=N∗

E2
n|ϕn (a) |

2

(En +E∗k)
4 <
∞

∑
n=0

|ϕn (a) |
2

(En +E∗k)
2 + (E

∗
k)

2
∞

∑
0

|ϕn (a) |
2

(En +E∗k)
4

< ∫
∞

0
t Kt (a,a)e

−E∗k t dt+E∗k
2∫
∞

0
t3 Kt (a,a)e

−E∗k t dt,

(4.2)

 where we have used 1
(En+E∗k )

k = ∫
∞
0 tk−1e−t(En+E∗k ) dt and 

the eigenfunction expansion of the heat kernel Kt(x,y) =
∑∞n=0ϕn(x)ϕn(y)e

−tEn . Using the upper bound for the diagonal heat 
kernel on compact Riemannian manifolds Kt(a,a) ≤

1
V(M) +Ct−D/2, 

where V(M) is the volume of the manifold and C is a positive 
constant depending on the geometry of the manifold such as the 
bounds on Ricci curvature given by Equation 2.2, it is easy to see 
that all the integrals above are finite. The same bound has also 
been used for showing the lower bound for the ground state energy 
of a particle interacting with finitely many delta interactions on a 
compact manifold [33]. Moreover, because the first term of the sum 
being over a finite number of indices in Equation 4.1 is finite, we 
show that ‖H0ξ‖ is finite. In other words, ξ is in the domain of H0.

Remark 4.7: The explicit realization above provides insights 
into the self-adjoint extension perspective as well. Note 
that the G0(x,a|E∗k ) functions are not in the domain of 
the initial Hamiltonian H0; nevertheless, we have shown 
that their differences G0(x,a|E∗k ) −G0(x,a|E∗l ) are in the
domain of H0. Hence, we need only one of them to be added to the 
initial
domain D(H0). 

Remark 4.8: It is possible to provide the upper and lower bounds 
for these new eigenfunctions on manifolds, which characterize 
the singular behavior as x→ a. Considering manifolds with Ricci 
bounded from below by the metric, for d = 3, we have,

−C0 +
C1

dg (x,a)
≤ G0 (x,a|E∗k) ≤

C2

dg (x,a)
.

When d = 2, for compact manifolds, Ricci boundedness is 
automatically true, and we get a logarithmic bound,

−C0 +C1 ln(dg (x,a)) ≤ G0 (x,a|E
∗
k) ≤ C0 +C2 ln(dg (x,a)) .

For both estimates, the constants C0,C1,C2 depend only on the 
dimension and geometric data such as the volume, diameter, and the 
value of the lower bound constant on the Ricci curvature (however, 
in a physical problem, there are also ℏ2 and m multiplicative factors 
appearing in these bounds). 

5 Application: sudden approximation 
in the case of a time-dependent 
center

We note that the above explicit expression for the wave 
functions can be used for an interesting application. Suppose that 
we initially have our delta-modification at point a and very rapidly 
we move this modification to another point b. We can use the 
usual sudden perturbation approach to this problem just as in the 
conventional case.

We briefly elaborate on this idea. Let us suppose that initially the 
system is prepared in the eigenstate G0(x,a|E∗k (a)), E

∗
k (a) referring 

to the energy for this case. A sudden perturbation means that the 
system has no time to readjust itself, so the wave function remains 
as it is but should be decomposed in terms of the new eigenbasis 
G0(x,b|E∗m(b))s to calculate the probability of finding the system in 
the new energy eigenstate E∗m(b). This means that the conditional
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probability of finding the system in E∗m(b), given that it was in E∗k (a)
initially, is

p (m,b|k,a) = [
dΦ (E|a)

dE
|E∗k

dΦ (E|b)
dE
|
E∗m
]
−1
|∫

M
dμ (x)G0 (x,b|E

∗
m (b))G0 (x,a|E

∗
k (a)) |

2

= [
dΦ (E|a)

dE
|E∗k

dΦ (E|b)
dE
|
E∗m
]
−1
|

|

G0 (a,b|E
∗
m (b)) −G0 (a,b|E

∗
k (a))

E∗m (b) −E∗k (a)
|

|

2

,

 where the energy eigenstates E∗m(b) are found from the solutions of

Φ (E|b) = 1
αR
−∑

k

|ϕk (b) |
2 (E+ μ2)

(Ek + μ2)(Ek −E)
= 0,

whereas E∗k (a) refers to the zeros of Φ(E|a). Incidentally, it is possible 
to conceive a sudden change of a and μa to b and μb, without 
any difficulty. As pointed out before, one can easily generalize this 
idea to sudden changes of curves in three dimensions, or sudden 
rearrangements of multiple centers, etc. The sudden approximation 
is typically valid if the time scale, defined by the initial energy 
eigenstate E∗k (a), is much larger than the time scale of the change 
we consider.

Remark 5.1: The above results are independent of the chosen 
renormalization scheme, as shown in [34] for the point delta 
interactions in two and three dimensions. The main idea of the 
proof for the completeness of the eigenfunctions of the Hamiltonian 
involving singular delta potentials here is based on the eigenfunction 
expansion of Green’s function G0 and the contour deformation 
described above. 
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