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Completeness relation in
renormalized quantum systems

Fatih Erman'* and O. Teoman Turgut?®

!Department of Mathematics, izmir Institute of Technology, izmir, Turkiye, 2Department of Physics,
Bogazici University, istanbul, Turkiye, *Department of Physics, Carnegie Mellon University, Pittsburgh,
PA, United States

In this work, we show that the completeness relation for the eigenvectors,
which is an essential assumption of quantum mechanics, remains true if the
Hamiltonian, having a discrete spectrum, is modified by a delta potential (to be
made precise by a renormalization scheme) supported at a point in two- and
three-dimensional compact manifolds or Euclidean spaces. The formulation can
be easily extended to an N center case and the case where delta interaction
is supported on curves in the plane or space. We finally give an interesting
application for the sudden perturbation of the support of the delta potential.

KEYWORDS

completeness relation, Dirac § interactions, point interactions, Green's function,
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1 Introduction

In quantum mechanics, the energy eigenfunctions—corresponding to both discrete
and continuous spectra—constitute a generalized orthonormal basis for the Hilbert
space H. This allows any arbitrary state (wave function) to be expanded in terms of
these generalized eigenfunctions, a fundamental property known as the completeness
relation (or Parseval’s identity for eigenfunctions) [1-3]. There are only a few standard
explicit examples in which the completeness relation has been verified. One of the
reasons for this is the lack of exactly solvable potentials in quantum mechanics, and
the integrals or sums involving eigenfunctions are quite difficult to evaluate analytically.
The momentum operator and the Hamiltonian for a single particle in a box are the
most well-known textbook examples [4, 5]. The completeness relation for systems having
both bound states and continuum states, such as the Dirac delta potential in one
dimension [6-8], the Coulomb potential in three dimensions [9], and the reflectionless
potential [10], has also been demonstrated by appropriately normalizing the eigenfunctions.
The purpose of this article is to show that the completeness relation still holds even for
a rather singular system, involving delta function potentials, where the renormalization
is required. For this, we consider a Hamiltonian having only a discrete spectrum and
assume (justifiably for a self-adjoint Hamiltonian) that the completeness relation holds.
Then, we prove that the completeness relation is still true even if we modify this
Hamiltonian by a delta potential (point interactions in two and three dimensions in a
Euclidean space, as well as point interactions in two- and three-dimensional compact
manifolds), where a renormalization is required to render the Hamiltonian well-defined.

01 frontiersin.org


https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2025.1695365
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2025.1695365&domain=pdf&date_stamp=
2025-11-13
mailto:fatih.erman@gmail.com
mailto:fatih.erman@gmail.com
https://doi.org/10.3389/fphy.2025.1695365
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphy.2025.1695365/full
https://www.frontiersin.org/articles/10.3389/fphy.2025.1695365/full
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Erman and Turgut

The resolvent of the modified Hamiltonian by singular delta
potentials supported by a point a in two or three dimensions has
been studied extensively in the literature and is given by Krein’s
formula [11, 12].

R(E) = Ry (E) + (@ (E))(Gy (alE), ) Gy (alE),  (L.1)

where R,(E) = (H, —E)7! is the resolvent of the Hamiltonian H,
at E ¢ R, Gy(x,y|E) is the integral kernel of the resolvent R,(E) or
Green’s function, and @ is some function to be determined for each
particular class of singular potential. This function is also denoted
by I in the mathematics literature. The meaning of the second term
should be understood as follows:

(RE)Y) (x) = (Ro (B)y) (x) + (P (E) (G (1,4l E), y () Gy (%, alE),

where (Gy(y,alE), y(y)) = J Go(y,alE)y(y)du(y). Equation 1.1 can
be seen more naturally in Dirac’s bracket notation,

R(E) = Ry (E) + (® (E))"'Ry (E) |ay<alR, (E).

Looking at the resulting wave functions, some of our colleagues
have expressed doubts about the explicit verification of the
completeness relations, even though it was clear from the fact that
the resulting Hamiltonians are self-adjoint in a precise mathematical
sense. Even if the result is expected, we think it is a valuable exercise
to demonstrate the orthonormality and completeness by an explicit
calculation. To make the presentation self-contained, we will briefly
summarize how the pole structure of the full Green’s function
G(x,y|E) = (x|Ry(E)|y) is rearranged to form new poles and how the
poles of G,(x,y|E), which explicitly appears as an additive factor
in G(x,y|E), are removed in general. This has been proved in our
previous work [13] for the more general case, when the Hamiltonian
has a discrete as well as a continuous spectrum.

The resulting wave functions are typically given by the original
Green’s functions G, evaluated at the new energy eigenvalues, so they
are actually (mildly) singular at the location of the delta function.
These are interesting objects by themselves and could be useful in
some practical problems as well, as they are now (explicitly) shown
to form a new orthonormal basis. In the present work, we prefer to
emphasize the essential ideas while writing out our proofs, and we
are not aiming for a fully rigorous mathematical approach. In this
way, we hope that the article becomes accessible to a wider audience.

2 Discrete spectrum modified by a §
interaction

To set the stage, we introduce the notation and summarize the
main results about how the spectrum of an initial Hamiltonian H,
having a purely discrete spectrum changes under the influence of
a (formally defined) delta interaction, which was discussed in our
previous works, particularly in [13].

We consider the case in which H,, is formally modified by a single
& function supported at x = a,

H=H,-ad,, (2.1)

where « is to be replaced by a renormalized coupling once we
actually state the Green’s function for this problem. Various methods
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exist in the literature to make sense of the above formal expression
of the Hamiltonian H. One possible way is to define the § interaction
as a self-adjoint extension of H, and they are, in general, called
point interactions or contact interactions. A modern introduction to
this subject is given in the recent book by Gallone and Michelangeli
[14], and the classic reference elaborating this point of view is the
monograph by Albeverio et. al [11].

Here and subsequently, as emphasized in the introduction, we
assume that the initial Hamiltonian H,, satisfies some conditions:

o H, is self-adjoint on some dense domain D(H,) c L2 (M),
where M is two- or three-dimensional Euclidean space or
Riemannian compact manifold without boundary (connected
and orientable additionally). Often, it is essential (to put some
estimates on the Green’s functions) to assume some regularity
on the geometry; experience has shown that a lower bound
on the Ricci curvature, which controls the volume growth of
geodesic balls, satisfies most of the technical requirements.
Consequently, we impose the following condition,

Ric, () 2 (D= 1)xg (). (2.2)

« For two-dimensional compact manifolds, this does not impose
any restriction, as Ricci curvature is exactly given by Ric,(-,-) =
g g(-,+), where R is the scalar curvature, and R has a minimum
(and a maximum) value on a compact manifold. For three-
dimensional manifolds, this puts some restrictions on the
possible geometric structures one admits. If x >0, one has
much better control for various bounds on heat kernels (or
Green’s functions); see the book by Li [15] for an exposition
of these ideas.

Spectrum of H, is discrete ,(H,) (set of eigenvalues),

o The discrete spectrum has no accumulation point, except
possibly at infinity.

« For stability, we assume H,, has a spectrum bounded below.

These conditions on the spectrum put some restrictions on the
potential V (listed in the classical work of Reed and Simon [16])
if we assume

2

Hy=——A+YV,
2m

on D = 2,3-dimensional Euclidean space, and they are true when
we consider

on a compact Riemannian manifold (again of dimension 2 or 3)
with a metric g, where A, is the Laplace-Beltrami operator or

Laplacian given by
D
1 0 iy (%)
() () = yZ (\/detgg’fw—. )
detg =1 0x 0¥

in some local coordinates, with ¢/ being the components of inverse
of the metric g. Precisely speaking, it is well known [17, 18] that there
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exists a complete orthonormal system of C* eigenfunctions {¢,}"2
in L2(M) and the spectrum o(Hy) ={E,} ={0=E,<E,<E,<...},
with E, tending to infinity as n — oo, and each eigenvalue has
finite multiplicity. Some eigenvalues are repeated according to their
multiplicity. The multiplicity of the first eigenvalue E, =0 is one,
and the corresponding eigenfunction is constant. From now on, we
assume that there is no degeneracy in the spectrum of the Laplacian for
simplicity. The analysis about how the spectrum changes under the
modification of § potentials in the presence of degeneracy has been
given in Appendix D of our previous work [13].

Remark 2.1: Note that the complete nondegeneracy assumption of
the spectrum is not an exceptional case. If we introduce a proper
distance in the space of all smooth metrics on the manifold, then
the set of metrics with completely non-degenerate spectra is actually
dense in this metric space. Incidentally, the space of all smooth
metrics becomes what is called a Frechet space under this particular
choice of the distance function [19].

Remark 2.2: There are upper bounds on the eigenvalues of the
Laplacian given in terms of the geometric data, and these give
some valuable information about the way the spectrum behaves (for
example, see Corollary 4.15 of [19]).

The integral kernel of the resolvent Ry(E) for H, or simply
Green’s function is given by

(Ro®) 0= ((Ho=E) 0) 9= | GoeylD Iy duty),

where du(y) is the volume element in M (on a manifold, expressed
in local coordinates, it has the usual y/detg factor in it), and it can be

expressed by the following expression away from the diagonal x = y,

Goyip) = Y, 28,
n=0 n

(2.3)
where {¢,} is the complete set of eigenfunctions of H,. The Green’s
function G, (x, y|E) is a square-integrable function of x for almost all
values of y and vice versa [20].

When the co-dimension (dimension of space minus dimension
of the support of the ¢§ interaction) is greater than one, the §
interaction must be defined by a renormalization procedure. The
main reason for this is based on the singular structure of the
Green’s function for initial Hamiltonians H, in two and three
dimensions. The history of this subject is quite rich, and there
has been a vast amount of material in the physics literature; see,
for example, [21-30]. An eigenfunction expansion, analogous to
Equation 2.3, also exists for the Green’s function G(x,y|E) of the
modified (formal) Hamiltonian H (a two- or three-dimensional
delta potential added to the free case located at the origin) in
[28]. Tt is possible to express this Greens function G(x,y|E) in
terms of the Green’s functions of the initial Hamiltonian H,,. The
standard route in the literature is to construct this Green’s function
and establish that the Hamiltonian defined by this expression is
indeed self-adjoint. Hence, by the spectral theorem, there is a
complete set of eigenfunctions. In this article, we prove directly
by means of the explicit expression of the constructed Green’s
function that the corresponding Hamiltonian still has a complete
set of eigenfunctions. For this, we use the completeness property
of the eigenfunctions of the initial Hamiltonian H,, having only
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a discrete spectrum, and an interlacing theorem for the poles
of the new Green’s function, proved in a previous publication
[13]. As a result, we thus establish the self-adjointness of the
resulting Hamiltonian in a novel way (Remark 4.3). Moreover,
we have an explicit integral operator for the Hamiltonian, which
allows one to apply various approximation methods. There is
also great pedagogical value in establishing the existence of an
orthonormal basis for a given Hamiltonian as it demonstrates
clearly the validity of one of the fundamental postulates of
quantum mechanics.

It is useful to express Green’s function G, in terms of the heat
kernel K,(x,y) associated with the operator H, under the above
assumptions. It is given by

Gy (x,yIE) = JwKt (x,y)edt,
0

where Re(E) <0 and HyK,(x,y) = %Kt(x, y) (and can be defined
for other values of E in the complex E plane through analytical
continuation). We note that the first term in the short time
asymptotic expansion of the diagonal heat kernel for any self-adjoint
elliptic second-order differential operator [31] in D dimensions
is given by

K, (x,x) ~ P,

This leads to the divergence around ¢ = 0 in the diagonal part of
Green’s function G (x,x|E):

[eS} B_tlEl
— 4,
J o P12
for D = 2,3. In order to make sense of such singular interactions, one
must first regularize the Hamiltonian by introducing a cut-off ¢ > 0.
A natural way, in particular for compact manifolds, is to replace the
d function by the heat kernel K, ,(x, a), which converges to (x - a)

as ¢ — 0 (in the distributional sense). It turns out that the regularized
Green’s function is given by

G (x,alE) Gj (a, y|E)
i -Gy (a,alE)

G (x,y|E) = Gj, (x,y|E) +

where G{(x,y|E) = .[:X)Kt(x, y)etEdt with Re(E) < 0. Then, we make
the coupling constant « dependent on the cut-off ¢ in such a way
that the regularized Green’s function has a non-trivial limit as we
remove the cut-off. A natural choice for absorbing the divergent part
in a redefinition of the coupling constant is given by

1 1

a(@)  ag(M)

o0
+ j K, (a,a) e™Mdt,
€

where M is the renormalization scale and could be eliminated
in favor of a physical parameter by imposing a renormalization
condition. Taking the formal limit as ¢ — 0, we obtain the Krein’s
type of formula for the integral kernel of the resolvent or
Green’s function

Gy (x,alE) G, (a,y|E)

GO yIB) = Gy () 1B) + ==

, (24)

where O(E) = m + IgoKt(ﬂ, a) (etM - etE) dt. Because the

bound state energy of the system can be found from the poles of
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the Green’s function, or equivalently zeros of the function @, there
must be a relation among M, ay(M), and the bound state energy
of the particle (due to the presence of § potential), say —u?. Note
that ap varies with respect to M in a precise way to keep the physics
(e.g., the bound state energy) independent of this arbitrary choice
[32, 33]. We set the renormalization scale at M = —y? (thinking of
a bound state below E,)) for simplicity. Then,

D(E) = Oci + jooKt(a,a)(e*fyz - etE) dt
R 0
1. - ( 9, (@) * ~ |¢n(a)|2>
n=0 (En+.l’42) (En_E)

1§ @PE)
AR 720 (En _E) (En +nu2).

o 25)

Here, we employ the eigenfunction expansion of the heat
kernel K,(x,y) = anbn(x)(pn(y)e"tE" of the Laplacian. The (uniform)
convergence of this sum can be shown by using the upper bounds of

the heat kernel, and this technical part has been given in Appendix
A of our previous work [13].

Note that we could have chosen a sharp cut-off as well, as is
often done in physics literature, for the above calculations. The
momentum (in this case energy eigenvalue of the Laplacian) is
limited by a finite large number A to render infinite sums to
finite expressions. We then employ our subtraction to finally take
a limit A — 0o to remove this arbitrary cut-off in the physical
result. It has been shown in [34] that the connection between
observable quantities for such point delta interactions in two and
three dimensions does not depend on the renormalization scheme
that is used.

Moreover, we have shown in [35] that there exists a unique
densely defined closed operator, say H, associated with the resolvent
whose integral kernel is given by Equation 2.4.

Because the truncation of the above sum (Equation 2.5) has
no zeros on the upper and lower complex E plane, the uniform
convergence of this sum on compact subsets of the complex
plane, in conjunction with the Hurwitz theorem [36], implies
that all the zeros of ® are located on the real E axis. Then, the
spectrum of the full Hamiltonian (Equation 2.1) is given by the
following proposition, which is a particular case of our previous
result [13]:

Proposition 2.3: Let ¢,(x) be the eigenfunction of H, associated
with the eigenvalue E;. Then, the (new) energy eigenvalue E, of H is
found from the unique solution of the equation

(o] 2 2
oo LS B@PE)

AR 40 (En _E) (En +.”l2)

which lies in between E;_, and E, if ¢, (a) # 0 for this particular k. If
for this particular choice of k, we have ¢, (a) = 0, the corresponding
energy eigenvalue does not change, that is, E; = E;. For the ground
state (k = 0), we always have E; < E,,.

Proof. We first split the term in the eigenfunction expansion
of the Greens functions G, and the function ® in Equation 2.4
associated with the isolated simple eigenvalue E;. of H:
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b, (%) ¢, ) + o (%) [0 )
E,-E E,-E

Y $,(09,(@) Y $,@9,0)
ntk E,-E ntk E,E

1 _Z 9, (P (E+?) _ 19y(a)l*(E+u?)
ag n#k (E,~E)E,+p?)  (E—E)(E+p?)

Z 6,99,(@) \ [ $@,)
ntk  E,~E E~E

1 _Z 19, (@P(E+?)  1d@P(E+)
n#k (E,~E)(E,+2)  (E—E)(Ex+p?)

W@ ) (§ 8085
E—E ntk  E,-E
1y 9, @P(ER2) _ 19 @P(EH?)
ap  Lantk (B, E)E ) (EE)(Ege)

$:06,@) \ [ $@$ )
E-E E.-E

GxylE)=)

n#k

+

+

1 Z 9, @P(E+i?) I @P(Ew)
n#k (E,~E)(E,+4?)  (Ex—E)(Extp?)

aR

expression, we obtain

GlxeylE) =

If we combine the second and the last terms in the above
G0 (| (e (1 g 8@PE) g@r )T
E-E 19p @1 \ @R 5% (B, —E) (B, +4?)  Ex+ys?
$n()dy(@) $n(@9u()
(Zn#k Ey-E ><Zn#k E,,*Ey>

. pn@P(En?) | Igp@?(E?)
(=) ( g Lok EnB)Eni?) |~ (Beni2)

(3¢ 222500 ) (4, 013,07

1 Wa@R2(E2) \  Iog@(Ee)
(Ek—E)<@ S G B Enri) )~ BB ()

(640 7e@) (3,4 20528002 )

] a@P(Er?) \ ol ()
(Ex-E) < w2k D) ) ()

0 () ¢, ()
+Z ¢ EX,E}’ +(Ex—E)
n#k n

Except for the first term, it is easy to see that all terms are regular

near E = E,. For the first term, if we choose E sufficiently close to Ej,
that is, if 2L | 1 I8, @PE) 8P

6 @P |og < 1, the first term in

ap  EMHREBEn2) T Byl
the above equation becomes

¢y (@) ”
B+

_%wmm<L_ I, (@) (E-+ %)
|¢k (a)lz Rk (EniE) (En+/42)

so that G(x,y|E) is regular near E = E; as long as ¢,(a) # 0. The

)+ O(|E, - EI*)

uniqueness of the solution can be proved by showing that the sum
is an increasing function of E and goes to —co as E — —0o. See
Appendix C in [13] for the technical details.

Similar results for a particular class of potentials have been
examined in [37] in the context of path integrals (in two and three
dimensions). However, there is no explicit derivation showing that
the poles of the free resolvent are canceled in the final expression for
the Green’s function.

Remark 2.4: Note that these results can be interpreted as a
generalization of the well-known Sturm comparison theorems to the
singular § interactions. Remarkably, even the renormalized case has
this property.

Here on and subsequently we mainly focus on manifold case.
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Remark 2.5: One would wonder how the separation between
consecutive eigenvalues grows as we increase the index.
There are some estimates if one knows how the manifold is
isometrically embedded into a Euclidean space; see, for example,
Theorem 5.6 in [19].

3 Orthogonality relation

Using a contour integral of the resolvent R(E)=(H -E)™!
around each simple eigenvalue E;, we can find the projection
operator onto the eigenspace associated with the eigenvalue E;,

1

= R(E) dF,
K o rk()

where I'; is the counterclockwise oriented closed contour around
each simple pole E;, or equivalently,

G(x,y|E) dE.

Ty

Y @)y () = (3.1)

From the explicit expression of the Green’s function (Equation 2.4)
and the residue theorem, we obtain

Gy (x,alE;
Y (%) = M. (3.2)

( _ do(E) )1/2
dE E=E;

Note that the differentiation under the summation yields

doE),  Q 14,@F
dE |E1:_ ;;)(En—E;)Z.

If ¢,(a) =0, this term is skipped in the sum, ensuring the

(3.3)

expression is well-defined in all these cases. Moreover, in these
special cases, the corresponding eigenfunction becomes

¥y (%) = ¢ ().

Proposition 3.1: Let ¢, be orthonormal set of eigenfunctions of
H,, that is,
H0¢n = En¢n
| 5000 duw= s,
M

Then, the eigenfunctions y, of H, which is formally H, modified
by a delta interaction supported at x = a are orthonormal, that is,

| 0Gw,@ diw-e,,
M

where D =1,2,3.

Proof. We first prove for D = 2,3, where the renormalization is
needed to define point delta interactions properly.

Using bilinear expansion (Equation 2.3) of the Green’s function
of H, and the eigenfunction (Equation 3.2), we obtain

Gy (x,alE;) G, (x,alE},)
j Mwn(x)wm(x) dﬂ(x):j M [ dDE) 1727 o) 7 du(x)
(-5 er) T (-5 )
_ 1
(- 252 py) (- 25 2)
j Z¢k a)¢k Zgbléxiglzfa) .
k Ey - 1 1 m
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Interchanging the order of summation and integration and using
the fact that ¢, s are orthonormal functions, we have

1
dD(E) 120 4a(E) 1/2
(_ dE E=E;) (_ dE E=E;;>
¢y (@) I*
r (Ex—E,) (Ex—Ey,)

If n=m in Equation 3.4, then it is easy to show that the new

| v, @ dueo-
M

(3.4)

eigenfunctions v,s are automatically normalized, thanks to the
identity in Equation 3.3:

L § m@F

dO(E 2
%'&E; k=0 (Ek - E;)

j v, () Py () = -
M

For the case n # m, we first formally decompose the expression
in the summation with a cut-off N as a sum of two partial fractions

§__h@r g n@r ( L )
= (Ex—E,)(Ex-E;) & (E-E,)\E-E, E-E,
As explained in the renormalization procedure, each term

N 19 (a)l
Zk:o E-E;

subtract ai +Y
R
limit N — oo

is divergent as N — co. Motivated by this, we add and

N |¢k(a)|
k=0 E+

to the above expression and obtain in the

(@ (E)) - @(Ep))

AD(E )| )1/2<7d®(E) )1/2-
dE |E=E;, dE |E=E},

Because the zeros of the function ® are the bound state
of the modified system, that is, ®(E;)=0 and ®O(E;)=0
for all n,m (when n#m), this completes our proof of the
orthogonality of eigenfunctions for the modified Hamiltonian

—_— 1
jMw)wm(x) W)= E)(

having discrete spectrum.

The case for D=1 can easily be proved by following the
same steps introduced above, except that there is no need for
renormalization.

Remark 3.2: If it so happens that for some k, ¢,(a)=0, then
the corresponding eigenvalue does not change; moreover, the
eigenfunction remains the same as ¢, (x). In this case, we see that
the orthogonality among all the eigenfunctions continues to hold as

well, thanks to ¢, (a) = 0 again.

4 Completeness relation

Proposition 4.1: Let ¢, be a complete set of eigenfunctions of
H,, that is,

0¢n:En¢n
Z ®)¢, () = 8(x-).

Then, the eigenfunctions v, of H, which is formally H; modified
by a delta interaction supported at x = g, form a complete set, that is,

Z v, (x

=8(x~-y).
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Proof. Let I, be the counterclockwise-oriented closed
contours around each simple pole E;, and I',NT,, =@ for n+m,
as shown in Figure 1.

Then, the projection onto the associated eigenspace is given by
Equation 3.1, and thanks to Krein’s formula for the Green’s function

of the modified Hamiltonian (Equation 2.4), we have

Gy (x,a|E) G, (a,y|E)

Zw@%@ o0

,'Z;j; (Go (% yIE) +

)i

Note that the total expression in the Krein’s formula has only
poles at Ejs. When we think of it as the sum of two separate
expressions, we have the original eigenvalues, E,, reappearing
as poles again. Here, the contribution coming from the Green’s
function of the initial Hamiltonian H;, which is the first term of
Krein's formula, for the above contour integral vanishes because
the poles E, of G, are all located outside at each T, (Note that
in the special case of coincidence of one E, with E;, ¢,(a) =0,
so that the contribution of the other term is zero. We pick the
original wavefunctions ¢, (x), so in such cases we exclude these terms
from the summation and write them separately.). For simplicity,
we assume that all E; # E; from now on. Note that thanks to the
denominators, we can elongate the contours to ellipses that extend
to infinity along the imaginary direction (on the complex E-plane).
We now continuously deform this contour to the following extended

contour T as shown in Figure 2. Note that we have no poles

snake>
of the Green’s function on the left part of the line Ej + iR nor any
zeros of ®(E). The product of two Green’s functions decays rapidly
as |E| — oo along the negative real direction as well as along the
imaginary directions; hence, we have no contributions from the
contours at infinity for these deformations. This observation allows
us to change the contour as described below.

Using the interlacing theorem stated in Proposition 2.3, we
can, so to speak, flip the contour while preserving the value
of the integration and then deform the contour to the one

T4, that consists of isolated closed contours I”; = around each

dual
isolated eigenvalue E, of the initial Hamiltonian H;, with opposite

orientation, as shown in Figure 3.
Hence, we have

1 [ee)
z Wﬂ 2mi nzz;‘) #F;WPE

We then assume that all isolated closed contours I

G, (x,alE) Gy (a,y|E) JE
@ (E)

vy, () =

are
dual
sufficiently small. To be more precise, one must consider the
truncated sum. For the sake of clarity, we ignore this subtlety for now.

Then, the above expression can be written as

L(’ZO:{) Gy (x,a|E) G, (a,y|E)
2mi = I SE, 1 Zoo @ g, (@) oo |¢(@)?
= dual”tn — 4 - -

ap =0 Eq+u? E,-E l#n E~E

As we know from the proof of cancellation of poles (in our
previous work), we split the above expression in the following way

d

[ee]

1 ¢, (a)¢, (x)
) 09, (@)

> <g,, (a.y|E) +

D, (ag.E) (E, ~E) ~1¢, (a)
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where the functions g, and D,, are regular/holomorphic inside for
each one of T, which are defined near E = E,, for a given n as

¢k(x)W
VIE) = ) ————,
8, (%.yIE) ,; EF
) 9 @P
D, (@B) = a_,; E,-E

Then, the above integral must have the following form:

(o]

1 Z(JS
2mi 1=0 ¥ TiuaEn

( ! >dE
D(ag,E)(E, - E) - ¢, (a) |’

Applying the residue theorem, we obtain

19, (@) 16, (1, (x)

hol hi t
( olomorphicpart + E-F

)

S 6,09,0)
2 mi 1, (@)

where the minus signis due to the opposite orientation of the

Z%m%w L (<2rilg, (@) %),

contour Iy, ;. Finally (which should be done more rigorously by
taking a limit of truncated expressions), we prove

Z%(")%(}’) = z(pn(x)(pn(y) :8(96—)/)
n=0 n=0

Remark 4.2: As explained above, for a particular value k, ¢,(a) =
0, our proof can be modified by separating this eigenfunction in
the Green function and then deforming the contours accordingly.
In our previous work [13], possible degeneracy (corresponding to
a d-dimensional eigensubspace) is also discussed for a singular
interaction. When all the degenerate eigenvectors are zero at a,
there is no effect of the singular interaction; hence, we can separate
this projection and repeat our proof. If that is not the case,
then the singular interaction lifts the degeneracy in a particular
direction, as explained precisely in [13]. The eigenvector in this
particular direction changes to Gy(x,alE*), where E* refers to
the new eigenvalue appearing in the spectrum, and the other
orthogonal directions, forming a d — 1-dimensional subspace, are
left intact. Therefore, our proof goes through in this case as
well by separating the unaffected projection and repeating our
proof accordingly.

Remark 4.3: Interestingly, these observations lead to an explicit
construction of the resulting renormalized Hamiltonian. Suppose
that there is a set of ¢, (x) for which we have ¢, (a) = 0. Call this set of
indices as AV, nodal indices, and then the renormalized Hamiltonian
becomes (as an integral operator)

00

ity - 3 E(
ke N

4o (E)

, -
T IR) GolealE)Go(aiE) + 3 BTN

Remark 4.4: Incidentally, the above integral kernel can be utilized
to show that the operator H, defined through this kernel, is
essentially self-adjoint thanks to Example 9.25 given in [38] and
stated (somewhat more intuitively) below for convenience.
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Im(FE)

EE; E() ET El E; E2 En—l E:L RG(E)
FIGURE 1
The contours T, along each simple pole E;, with a counterclockwise orientation.
Jm(E)
g JE\ B JE\ B JE En_w Re(E)
FIGURE 2
The contour T, e
Am(E)
E())k EO Eik El E; E2 / Enfl E:; RG(E)

FIGURE 3

The contours I”;

qua Along each simple pole £, with clockwise orientation.

Suppose we have a symmetric (what physicists typically call
Hermitian) operator A which has a complete set of eigenvectors,
then the closure of operator A, that is if we define A on a slightly
larger set, by adding all vectors for which A acts continuously to

Frontiers in Physics 0

its domain, becomes a self-adjoint operator; see, for example, [39]
for a pedagogical discussion of this. Note that the above expression
does not manifest H as a perturbation or modification of H,. It may
be possible to reexpress this kernel as (x|Hy|y) + 0,(x,y), for some
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function 8 which is not in the domain of H,,. Alternatively, we can
rewrite the Hamiltonian as an abstract operator,

00
H= Y E;(Hy-E;) 'la)

ke N

+ Z Ek|¢k><¢k|

( do (E)
ke N

-1
-1
ARG
It is clear that the resulting (renormalized) operator cannot be
expressed as a differential operator, but only as an integral operator.

Remark 4.5: Using the development in our previous work [13], the
present discussion can be easily extended to the N center case, the
case where delta interaction is supported on curves in the plane or
space, etc. In principle, all these extensions are possible and left as an
exercise for an enthusiastic reader to become involved with singular
interactions.

Proposition 4.6: The set of functions G, (x,alE}) - Gy(x,alE]’) are
in the domain of the initial Hamiltonian H,,.

Proof. The difference in the Green’s functions can be written
explicitly as follows:

9, (99, (@
(B~ E) (B~ E})

£ = o (alE) - o als) = (5, - £7) 3

n=0
Suppose E; >E and because
monotonously, we choose N, such that E, > 3E; for n>N,. This
implies that E, — E; > %(En +E;). Let us compute formally ||H0€||2:

E,— o0 as n-— oo,

Erlg, (@)
(En - E; )Z(En - El)2

j QN HE) P = (B -E)' Y

n=0

We split the sum into two parts:

< Elg,@P Ejl¢(a)?
1P = (E; - E;)’ -
o= (=) <;12(:)(E e V(E-EY & (EE)(EE)
LBp@F 2 El4,@P
E*_E* 2 n'¥n
<(5i-5) (ZO(E -EY(E,-E) & (E,-E)
Elg, (@) S Elg, @

)

2(E, + EQ)E] + (EZ)2 to reexpress the

+2
(E-E)'(E-E) o

~. (E,+E})

(4.1)
Now use E2 (E,+ E")2
last part as

0

=2

< Eilo, @F
X (E,+E)

¢, (a)*
(E +E* )

I$, (@)
(E +E)

19, @
(BB

c(g) Y 2L

n=N,

5y 2ol

n=N,

Removing the negative term (as all its summands are positive,
it gives an upper bound to our expression) and adding the missing
terms in the sums so as to turn them into the sum over from n =0
to n = 00, we find an upper bound for the last term in Equation 4.1:

< EX¢, (a) ¢, ()2 o g, @
+(Ek)zz

[e6]
<2 —
X (B, +E) (B, +E) 7 (E,+E)
o * o *
< jo t K(a,a)e ! dt+EZZJO £ K,(aa)e !
(4.2)
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where we have used m = Jootk e ErE) gt and
the eigenfunction expansion of the heat kernel K () =

0 8,(x)$,,(y)eFr. Using the upper bound for the diagonal heat
kernel on compact Riemannian manifolds K,(a,a) < V(l ) +Ct b2,

where V(M) is the volume of the manifold and C is a positive

constant depending on the geometry of the manifold such as the
bounds on Ricci curvature given by Equation 2.2, it is easy to see
that all the integrals above are finite. The same bound has also
been used for showing the lower bound for the ground state energy
of a particle interacting with finitely many delta interactions on a
compact manifold [33]. Moreover, because the first term of the sum
being over a finite number of indices in Equation 4.1 is finite, we
show that ||H&| is finite. In other words, & is in the domain of H,,.

Remark 4.7: The explicit realization above provides insights
into the Note
that the Ggy(x,alE;) functions are not in the domain of

self-adjoint extension perspective as well.

the initial Hamiltonian H,; nevertheless, we have shown
that their Gy(x,alE}) = Go(x,alE]') the
domain of H,. Hence, we need only one of them to be added to the

differences are in
initial

domain D(H,).

Remark 4.8: It is possible to provide the upper and lower bounds
for these new eigenfunctions on manifolds, which characterize

the singular behavior as x — a. Considering manifolds with Ricci
bounded from below by the metric, for d = 3, we have,

<G, (x,alE ) G

C,
o+

dy(x,a) d, (x,a)

When d=2, for compact manifolds, Ricci boundedness is
automatically true, and we get a logarithmic bound,

~Cy+C,y In(d,(x,a)) < Gy (x,alE; ) < Cy+ C, In(d, (x,a)).

For both estimates, the constants C,, C,,C, depend only on the
dimension and geometric data such as the volume, diameter, and the
value of the lower bound constant on the Ricci curvature (however,
in a physical problem, there are also #* and m multiplicative factors
appearing in these bounds).

ﬁplication: sudden approximation
|nt e case of a time-dependent
center

We note that the above explicit expression for the wave
functions can be used for an interesting application. Suppose that
we initially have our delta-modification at point a and very rapidly
we move this modification to another point b. We can use the
usual sudden perturbation approach to this problem just as in the
conventional case.

We briefly elaborate on this idea. Let us suppose that initially the
system is prepared in the eigenstate Gy(x,alE; (a)), E[(a) referring
to the energy for this case. A sudden perturbation means that the
system has no time to readjust itself, so the wave function remains
as it is but should be decomposed in terms of the new eigenbasis
@Iot(x, b|E;,,(b))s to calculate the probability of finding the system in
the new energy eigenstate E,,(b). This means that the conditional
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probability of finding the system in E;, (b), given that it was in E; (a)
initially, is

d(D(Ela)l 4o (E|b)
dE B dE

-1
pmbika) = ] 1 0 G GRBIER 06, (sl (@)
B, M

Gy (@, bIE;, (1) - Gy (a, bIE; @) |
E,(b)-E. (@) ’

7[d<1>(EIa) do (ElD), ]*1
"l dE B dE g,

where the energy eigenstates E;, (b) are found from the solutions of

2 2
O (E|b) = L_Zw =0,
ar G (Eg+ ) (B —E)

whereas E] (a) refers to the zeros of ®(E|a). Incidentally, it is possible
to conceive a sudden change of a and u, to b and u,, without
any difficulty. As pointed out before, one can easily generalize this
idea to sudden changes of curves in three dimensions, or sudden
rearrangements of multiple centers, etc. The sudden approximation
is typically valid if the time scale, defined by the initial energy
eigenstate E;(a), is much larger than the time scale of the change
we consider.

Remark 5.1: The above results are independent of the chosen
renormalization scheme, as shown in [34] for the point delta
interactions in two and three dimensions. The main idea of the
proof for the completeness of the eigenfunctions of the Hamiltonian
involving singular delta potentials here is based on the eigenfunction
expansion of Green’s function G, and the contour deformation
described above.
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