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As the economy and society continue to develop, the range of underwater
vehicles is expanding and technology is constantly being upgraded.
Consequently, it is becoming increasingly difficult to classify and identify them,
and the traditional classification method based on signal characteristics can
no longer meet the urgent need for the accurate identification of underwater
targets. This paper therefore proposes multiple convolutional neural network
recognition methods based on enhanced Gramian Angular Field (GAF) images.
Firstly, the radiated noise signals of underwater targets are converted into
enhanced images using the GAF method. Then, the converted image dataset
is used as input for the convolutional neural network. The input dataset
is modified accordingly for each convolutional neural network. Finally, the
significant advantages of convolutional neural networks in image processing
are leveraged to achieve precise classification of underwater target radiated
noise. In order to propose a convolutional neural network method that matches
the enhanced image method, this paper compares the calculation results of
multiple convolutional neural network models. The experimental results show
that the VGG-16 model achieves greater classification accuracy and efficiency,
reaching 80.67%.

underwater targets, radiated noise, enhanced images, convolutional neural network,
Gramian angular field

1 Introduction

As the economy and society continue to develop, the variety of underwater targets
is constantly increasing and technology is continuously improving. Furthermore, the
non-stationary, nonlinear and non-Gaussian characteristics of radiated noise signals
from underwater targets, coupled with multiple interacting factors, are making it
increasingly difficult to classify these signals. Traditional methods of recognizing these
signals mainly involve collecting them via sonar and processing them through time-
series analysis before conducting classification and recognition through feature extraction.
However, these methods are severely affected by environmental reverberation and the
electrical noise inherent in the equipment, meaning they can no longer meet the
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growing demand for data. Therefore, there is an urgent need
for an advanced method that is less affected by environmental
reverberation and equipment noise and offers improved
classification accuracy and efliciency. The method described in
this paper uses enhanced images based on Gramian Angular Field
(GAF) and a convolutional neural network to classify underwater
target radiated noise signals. No noise removal is performed in this
process to ensure that no effective information in the signal is lost.
The method is also less sensitive to environmental reverberation and
equipment noise, thus improving the classification and recognition
of underwater target radiated noise signals.

Extensive research has been conducted by scholars on traditional
feature extraction methods for underwater target radiated noise
signals. Li etal. [1] proposed a new nonlinear feature extraction
method for ship radiated noise. This method reconstructs the phase
space of the noise, maps time-domain data from low-dimensional
phase space to high-dimensional phase space and inputs the
extracted nonlinear features into a probabilistic neural network
(PNN) classifier. The classification performance is quantified and
the recognition rate is calculated. Compared with traditional feature
extraction methods, the proposed nonlinear feature extraction
method shows better separability and a higher recognition rate
for different types of ship radiated noise. Du L et al. [2] proposed
a joint feature extraction method for ship target recognition that
combines energy features extracted by wavelet decomposition with
frequency domain features extracted by a Mel filter. The recognition
accuracy of joint features is significantly higher than that of single
Mel frequency domain features, providing a useful reference for
hydroacoustic target recognition. Wang etal. [3] proposed an
improved finite rate of innovation (FRI) method for estimating
the low-frequency line spectra of hydroacoustic passive target
radiated noise under conditions of limited sampling points. This
method can realise the high-precision extraction of line spectral
information of vessel noise. Duan etal. [4-7] proposed a graph
embedding method for time-domain ship radiated noise signals,
as well as a fully parameterised prototype learning framework
that can perform open-set identification of ship radiated noise
signals end-to-end. Jin et al. [8, 9] introduced a multi-target feature
extraction method based on endowment mode decomposition
and statistical parameterised inverted surface coefficients. This
method significantly increased the number of classifiable ship
targets. Li GH etal. [10-13] proposed a quadratic decomposition
and hybrid feature extraction method for hydroacoustic signals.
The simulation results for measured ship radiated noise show
that the proposed method achieves a recognition rate of 98.43%.
However, traditional methods of extracting the radiated noise
of underwater targets still face many challenges, such as heavy
reliance on the operator’s experience, low recognition accuracy
and high computational costs, which severely hinder their
development.

Scholars have conducted extensive research on machine learning
for the detection of radiated noise from underwater targets. Ji
etal. [14, 15] proposed a method combining image processing
and deep self-coding networks to improve the low-frequency,
weak line spectra of underwater targets in environments with a
very low signal-to-noise ratio, achieving a line spectral density
more than twice that extractable in the 10-300 Hz band. Gao
etal. [16-18] proposed a two-stream deep learning network
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with frequency characteristic transformation for line spectrum
estimation to enhance the ability to learn target signal features.
Xu etal. [19] proposed a new deep neural network model for
underwater target recognition which integrates three-dimensional
Meier frequency cepstral coefficients and three-dimensional Meier
signs from ship audio signals as inputs. The method achieved an
average recognition rate of 87.52% on the DeepShip dataset and
97.32% on the ShipsEar dataset, demonstrating strong classification
performance. Ashok etal. [20-22] presented an innovative DNN
called the Audio Perspective Region-based Convolutional Neural
Network (APRCNN), which is now better able to identify, classify,
and localise sounds in aquatic acoustic settings, as well as dealing
with the unique problems of underwater signal processing. Yan
CH etal. [23, 24] introduced a lightweight network based on
a multi-scale asymmetric convolutional neural network (CNN)
with an attention mechanism for ship radiated noise classification.
Experiments on the DeepShip dataset showed that the recognition
accuracy was 98.2%, with significantly fewer parameters. In recent
years, machine learning-based methods for extracting underwater
target radiated noise features have made great progress, and the
extensive use of deep learning and graph methods has dramatically
improved the accuracy and computational efficiency of underwater
target radiated noise recognition, leading to the rapid development
of these methods.

This paper proposes a method of classifying and recognizing
underwater target radiated noise signals based on Gramian
Angular Field (GAF)-enhanced images, utilizing convolutional
neural networks. The original underwater target radiated noise
signals are directly processed into GAF-based enhanced images, and
the processed images are used as the input dataset for neural network
training, and the great advantage of convolutional neural network in
image processing is utilized to realize the high accuracy classification
of underwater target radiated noise signals. In this paper, the optimal
convolutional neural network model will be obtained by comparing
multiple convolutional neural network methods to match the GAF
enhanced image method.

This paper is structured as follows: Section 2 outlines the
overall architecture and computational flow of GAF-based enhanced
image and convolutional neural network methods. Section 3
details the mathematical foundations of different deep learning
neural network classification methods. Section 4 presents the
experimental data, methodology and results. Section 5 discusses
and concludes.

2 Background
In this section, we provide a description of the relevant

theoretical background, including the enhanced image conversion
method and the CNN model.

2.1 GAF-based enhanced image
conversion method

The steps to convert an underwater target radiated noise A =x(t),
(t=1,2,...... , N) into an enhanced image are as follows:

frontiersin.org


https://doi.org/10.3389/fphy.2025.1693938
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Muye et al.

Step 1: Let the underwater target radiated noise signal X = x,
Xy,...xy be normalized to the interval [-1,+1]. The

normalization process is as follows:

(x(#) — min(x))
)= —~2 7%
x () (max(x) — min(x))

Step 2: The normalized underwater target radiated noise signal is
converted into the Angle value in the polar coordinate
system. For each X’ to an Angle. The calculation process

is as follows:
0(t) = 2nx' (1)

Step 3. Constructa n x n matrix, which is calculated from the cosine
of the Angle difference between all time points. For each pair
of time points i and j in the time series, the element G(i,j) of

the G matrix is calculated as follows.

G(i,5) = cos (0(i) - 6(j))

Step 4: Map the elements of G from [-1, 1] to the range [0, 1], and
the final matrix G after mapping is goes as follows:
cos (¢y;) cos(py,) K cos(g,)
_ | cos (¢21) cos(p,,) K cos(g,)
K K K K
cos (¢,,) cos(p,,) K cos(p,,)

Step 5: Each element G(i,j) of the G matrix is converted into
the corresponding gray value, and finally a gray image is

obtained. The mapping formula is as follows:
G(i,j) +1
Gray(i,j) = (%) X 255

The matrix G captures the overall characteristics of the time
series by converting time series information into angle information,
and uses the Gramian matrix form to depict the global correlation
between different time points in 2D space, thereby encoding the
dynamic characteristics of one-dimensional signals into images. This
approach not only uncovers the dynamic variations and evolving
patterns across different time series but also captures the inherent
structural characteristics within individual time series. To a certain
extent, it clarifies the geometric connections and spatial configurations
amonglocal sequence segments, offering abundant feature expressions
that empower models to more effectively grasp the underlying patterns
within the sequences and enhance their learning performance. As a
result, it functions as a valuable technique for extracting features from
time series data, which will significantly contribute to our work.

The process of converting 1D time series into 2D images using the
Gramian Angular Field (GAF) method is depicted in Figure 1. Figure 2
showcases the 2D images generated from five distinct underwater
target radiated noise signals via the GAF method. From the distinct
2D images in Figure 2, it is evident that they possess unique visual
features. These features encompass variations in texture, color, and
local shapes, which highlight the specific attributes of each image.
Texture differences may mirror the origin of the signal, while color
variations can indicate the intensity or frequency of the signals.
Furthermore, the local shapes present in these images can provide
insights into the specific types of underwater target radiated noise
signals, thereby further emphasizing the importance of analyzing these
visual cues for effective classification tasks.
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2.2 CNN

CNN is a powerful deep learning architecture that is widely
used for image classification tasks. Its primary components include
convolutional layers, pooling layers and fully connected layers.
Convolution kernels are used in the convolutional layers to extract
features from the input data. These layers are usually followed
by pooling layers, which perform secondary feature extraction
and reduce the dimensionality of the parameters to enhance
computational efficiency. Following a series of convolution and
pooling operations, the resulting feature maps are fed into the fully
connected layers to facilitate the integration of all the neurons’
outputs. The final classification is achieved using a Softmax layer.
Successive convolution and pooling enable the CNN to progressively
capture both low-level and high-level features from the input
images, significantly reducing model training time and boosting
computational performance.

Convolutional Layer: As a fundamental component of
Convolutional Neural Networks (CNNs), this layer deploys
multiple convolution kernels onto the input image. It extracts
features by calculating the sum of element-wise multiplications
between each kernel and local image regions, producing a
2D feature map. Each element in this map corresponds to
the convolution kernel’s response to the image at that specific
location.

Activation Function: A nonlinear activation function is
integrated to empower the network to learn and represent complex
features, enabling it to model intricate patterns within the data.

Pooling Layer: This layer serves to reduce the spatial size
of feature maps. A widely used technique is max-pooling: it
partitions the feature map into non-overlapping subregions and
selects the maximum value from each subregion as the pooled
result, effectively downsizing the data while preserving critical
information.

Fully Connected Layer: Following the convolutional and pooling
layers, feature maps are flattened into a one-dimensional vector,
which is then input into fully connected layers. In these layers,
every neuron connects to all neurons in the preceding layer, learning
weight parameters to map the extracted features onto different
classes or target values.

Output Layer: For classification tasks, the output layer typically
employs the softmax function to transform the output of the
fully connected layer into a probability distribution across all
classes. For regression tasks, it may consist of a linear layer or
utilize alternative activation functions tailored to the regression
objective.

Figure 3 shows the structure of CNN.

3 Proposed method

In this section, we present a classification framework that
combines an enhanced image conversion method (GAF) with
convolutional neural network for classifying original underwater
target radiated noise signals.

The 1D time series is first converted into 2D images using the
GAF method. Next, multiple convolution operations in the CNN
can capture local features of the 2D images while preserving spatial
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FIGURE 1
The conversion process of 1D time series into a 2D image using the GAF method.
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FIGURE 2

2D images generated from five different underwater target radiated noise signals using the GAF method.
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structure information, and the pooling operations can lower the
information volume while retaining important features. Features are
fed into a fully connected network for feature recognition to achieve
the final identification results.

Through comparing data of identification results, we can get
the most suitable CNN to classify underwater target radiated
noise signals.

The proposed framework consists of the following steps:

Step 1: Raw underwater target radiated noise

enhanced

signals are

transformed  into image representations
through GAEF, without applying environmental noise

suppression.

Frontiers in Physics

Step 2: The VGG-16 network is employed to extract discriminative
features from the generated images and to perform
classification. To ensure reliable model selection, a hold-out
validation strategy is adopted, where 70% of the converted
images were used to train the model, while the remaining
30% were used to validate it.

Step 3: During training, regularization techniques such as dropout
are introduced to mitigate overfitting and enhance the
generalization ability of the model.

Step 4: The classification outcomes are analyzed based on the
independent test set to evaluate recognition performance
and to validate the effectiveness and generalizability of
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the proposed VGG-16-based framework for underwater
acoustic signal processing.

The overall architecture of the proposed method is

illustrated in Figure 4.

4 Experimental results and analysis
4.1 Experiments

In this study, the computing environment is a computer with
a Windows 10 operating system and a single GPU. The GPU is an
NVIDIA GeForce RTX 4070 SUPER.

To evaluate the effectiveness of proposed method, various CNN
architectures are incorporated into the proposed framework, and
their classification accuracies are compared. To further examine
whether matching the proposed method with the most suitable CNN
yields superior performance compared to traditional approaches,
additional baseline models including LSTM and 1DCNN are also
evaluated. The CNN architectures considered in this study include
DarkNet-53, GoogLeNet, Inception-ResNet-v2, ResNet-18, ResNet-
50, ResNet-101, ShuffleNet, SqueezeNet, VGG-19, and Xception.
This comparative analysis aims to assess the effectiveness of different
models in recognizing underwater acoustic signals. Experimental
results demonstrate that the VGG-16 model outperforms all other
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tested architectures, thereby confirming its suitability as the optimal
backbone for the proposed framework.

4.2 Data introduction

The particularity of ship signal makes it difficult to obtain actual
data, and the actual data has many interferences. The research goal
is to verify the superiority of the algorithm rather than deal with
complex interference noise, so we adopt analog signals. In this paper,
the sampling time of the radiated noise signal from the underwater
target adopted is 1 s, with a sampling frequency of 50 kHz.

In this study, different operating conditions were considered
with variations in propeller blade number and displacement: Jiang4
represents a 4-blade propeller at 15 knots with a blade speed of 25 r/s
and a displacement 0f 4,000 t; Jiang5 represents a 5-blade propeller at
15 knots with a blade speed of 25 r/s and a displacement of 2,000 t;
and Jiang6 represents a 6-blade propeller at 15 knots with a blade
speed of 25 r/s and a displacement of 2,000 t. In addition, to analyze
the effect of ship speed under identical conditions, two cases were
defined as speed10 and speed20, both with a 4-blade propeller, a
blade speed of 25 /s, and a displacement of 2,000 t, corresponding
to ship speeds of 10 knots and 20 knots, respectively. The data
parameters are shown in Table 1 and an example of the underwater
target radiated noise signal is shown in Figure 5.
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FIGURE 4

Overall architecture of underwater target radiated noise recognition based on enhanced images and different convolutional neural networks.
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TABLE 1 The parameters of underwater target radiated noise signal simulation.

CNN architectures, thereby ensuring consistency across all
models during training and evaluation. The image size
generated by the enhanced image conversion method is
[224, 224, 3]. To maintain compatibility with different
network architectures, the input size is adjusted accordingly

Frontiers in Physics
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Types Number of paddles Speed (kn) Paddle speed(r/s) Sampling time(s)
jiang4 4 15 25 1
Jiang5 5 15 25 1
Jiang6 6 15 25 1
speed10 4 10 25 1
speed20 4 20 25 1
5 20
[
E ill i
£ of |
=
5 20 I I | | | | \
0 0.5 2 2.5 3 3.5 4 4.5 5
Point/n x10*
FIGURE 5
The simulated underwater target radiated noise signal.
4.3 Determination of network parameters without reducing the original resolution. This strategy helps
retain the complete information of the input image, avoiding
This section outlines the determination of network parameters key feature loss caused by image cropping or resizing, and
for the convolutional neural network (CNN). thereby facilitating more effective feature extraction and
Step 1: The input 2D images were resized and standardized to classification.
conform to the dimensional requirements of the employed ~ Step 2: Define the structural components of the network,

including the type and number of convolutional layers,
activation functions, pooling layers, fully connected
layers, and the output layer. Alternatively, pre-trained
CNN architectures can be adopted and adapted to the
specific task.

frontiersin.org
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TABLE 2 Convolutional neural network structure parameters.

Optimiser MaxEpochs LearnRate Mini batch size Validation frequency

sgdm 50 0.0001 15 10

Step 3: Configure and fine-tune the key network parameters, such 4.5 Analysis of different convolutional
as the number of filters, kernel size, stride, padding, neural networks
activation function type, dropout rate, learning rate, and
batch size. As demonstrated in Figure 6 and Table 3, the classification
accuracy of VGG-16 is markedly higher than that of other

In the training of convolutional neural networks, the selection . . .
& convolutional neural network architectures. The rationale for

of hyperparameters plays a crucial role in determining both the selecting VGG-16 as the baseline model lies in its architectural

convergence behavior and the generalization performance of the simplicity and effectiveness. Its design strategy of stacking multiple

model. Factors such as. t.he optlrr?lzer, learnmg raltte, MAXIMUM 35 3 convolutional layers allows the network to achieve substantial
number of epochs, mini-batch size, and validation frequency depth, thereby enhancing its capacity to learn complex and

not only influence training efficiency but also directly affect the 1o cyical feature representations while maintaining a manageable

models accuracy on unseen data. In this study, the stochastic  ,,; 4per of parameters. Moreover, the modular and uniform nature

of the VGG-16 design makes it highly adaptable and transferable
across a broad range of image classification tasks, which further

gradient descent with momentum (SGDM) optimizer is employed,
as it has been widely demonstrated in image recognition tasks

to strike a favorable balance between convergence speed and justifies its selection for this study.

generalization capability. Compared with adaptive optimization Several architectural features contribute directly to the superior

methods (e.g., Adam), SGDM often yields superior test accuracy. performance of VGG-16. First, the convolutional layers are

The maximum number of epochs (MaxEpochs = 50) is set to  each followed by ReLU activation functions, which introduce
ensure that the model undergoes sufficient training to capture nonlinearity and enable the network to model complex patterns.
discriminative features, while avoiding excessive computational cost I the absence of such activation functions, stacking multiple
and the risk of overfitting. To maintain stable parameter updates,a  convolutional layers would reduce to a linear transformation,
relatively small learning rate (LearnRate = 0.0001) is adopted, which  severely limiting the representational capacity of the model. Second,
enables the network to gradually approach the optimal solution  the inclusion of three fully connected layers provides multiple levels
in a complex loss landscape without oscillation or divergence.  of abstraction, with deeper layers capturing increasingly complex
Furthermore, a mini-batch size of 15 is chosen to achieve a balance  and higher-order features. This design enables the integration
between gradient variance and computational efficiency; smaller  of information from multiple dimensions, thereby improving
batches introduce beneficial stochasticity in gradient estimation,  classification performance. Third, the consistent use of 3 x 3
which facilitates escaping local minima and enhances generalization.  convolution kernels increases the effective receptive field while
Finally, the validation frequency (Validation Frequency = 10)  preserving fine-grained details and contextual information, which
is set to monitor model performance at appropriate intervals  enriches feature representations and enhances the expressive power
during training, allowing timely adjustments to suppress potential ~ of the model. Finally, the application of 2 x 2 max pooling layers with
overfitting. Based on these considerations, the hyperparameter  a stride of 2 ensures that the most salient local features are retained,
configuration summarized below is adopted in the subsequent  strengthening the discriminative ability of the extracted features.

experiments. When compared to alternative architectures, the superiority
The detailed configuration used in this study is of VGG-16 becomes more evident. DarkNet-53, while powerful
presented in Table 2. for large-scale object detection, is considerably deeper and prone

to overfitting when trained on relatively small datasets such

as underwater acoustic signals. GoogLeNet adopts an Inception

module structure, which increases architectural complexity but may

4.4 Result dilute local feature extraction, thereby reducing its effectiveness in
scenarios requiring fine-grained classification. Inception-ResNet-

In this study, 70% of the converted images were used to train v integrates residual connections with Inception modules, but
the model, while the remaining 30% were used to validate it. The  jts depth and parameter complexity can hinder convergence and
computing environment is a computer witha Windows 10 operating  generalization under limited data conditions. ResNet-18/50/101
system and a single GPU. The GPU is an NVIDIA GeForce RTX  benefit from residual learning, yet their skip connections may lead
4070 SUPER. to an overemphasis on global features at the expense of local detail,
The results of the experiments demonstrate that the VGG-  which is critical in underwater target noise classification. ShuffleNet

16 model achieves the best performance of all the models tested,  and SqueezeNet prioritize computational efficiency and lightweight
indicating its suitability as the optimal model structure for the  design, but their reduced parameterization limits representational
proposed framework and better than sequential models. Figure 6  capacity, resulting in lower accuracy. VGG-19, though structurally
shows the classification results. Table 3 showcase the data directly. similar to VGG-16, introduces additional convolutional layers,
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FIGURE 6
Experimental accuracy results of different convolutional neural networks.

Models

TABLE 3 Image classification results transformed by multiple convolutional neural networks.

Xception VGG-16 Inception-ResNet-v2 GoogleNet
0.62 0.7267 0.8067 0.5733 0.6267
SqueezeNet ShuffleNet ResNet-50 ResNet-101 LSTM
0.6933 0.6667 0.62 0.65 0.78
1DCNN ResNet-18 DarkNet-53
0.71 0.61 0.6267

which increase computational cost without yielding significant
performance gains in this task. Finally, Xception employs depthwise
separable convolutions, which are effective in large-scale image
recognition but tend to underperform on domain-specific datasets
where local and low-level features dominate.

Beyond CNN variants, VGG-16 also demonstrates clear
advantages over sequential models such as LSTM and shallow
architectures such as 1D-CNN. LSTM networks, while effective
for capturing long-term temporal dependencies, are less adept
at extracting local spatial correlations when one-dimensional
signals are transformed into 2D representations. This limits
their ability to fully exploit fine-grained structural patterns
inherent in acoustic spectrograms. Similarly, 1D-CNN models,
although computationally efficient, operate on raw one-dimensional
sequences and thus fail to capture the rich 2D feature hierarchies
available in time-frequency representations. In contrast, VGG-16
leverages its hierarchical convolutional structure to capture both

Frontiers in Physics

local and global feature dependencies within spectrograms, enabling
superior discrimination of subtle acoustic variations.

In summary, VGG-16 achieves an optimal balance between
architectural depth, feature representation capacity, and training
stability. By virtue of its simple yet powerful design, it demonstrates
superior capability in local feature extraction, stronger nonlinear
modeling capacity, and more stable convergence. Experimental
results further confirm the robustness and adaptability of VGG-
16 in classifying underwater target radiated noise signals, clearly
outperforming more complex or lightweight alternatives, as well as
sequential architectures such as LSTM and 1D-CNN.

As shown in Table4, although models such as ResNet
and Inception-ResNet-v2 are powerful for large-scale datasets,
their excessive depth and architectural complexity often lead
to overfitting and unstable convergence when applied to
relatively small and domain-specific datasets such as underwater
acoustic signals. Conversely, lightweight networks such as

08 frontiersin.org
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TABLE 4 Advantages and disadvantages of different CNNs.

CNN architecture Key characteristics

10.3389/fphy.2025.1693938

Limitations in this
study

Advantages

layers)

VGG-16 16 layers; stacked 3 x 3 conv Strong local feature extraction; Slightly higher computational
kernels; 3 FC layers balanced depth; stable cost than lightweight models,

convergence but acceptable
VGG-19 Deeper variant of VGG-16 (19 Similar feature representation Higher computational burden

as VGG-16 without notable accuracy gain

ResNet-18/50/101 Residual skip connections

Alleviates vanishing gradient; May overemphasize global
features, weaker local detail

extraction for acoustic signals

effective for very deep networks

GoogLeNet Inception modules with

multi-scale filters

Efficient parameter usage; Complexity may dilute
fine-grained local features; less

effective for small datasets

multi-scale representation

Inception-ResNet-v2 Inception modules + residuals;

Strong representation power in Overly complex; prone to

parameter count

very deep large-scale tasks overfitting on limited acoustic
data
DarkNet-53 Deep network (53 layers); High performance in object Excessive depth; requires
backbone for YOLOv3 detection large-scale data, less stable on
small datasets
Xception Depthwise separable Computational efficiency; good Less effective in capturing
convolutions for large-scale images domain-specific local features
ShuffleNet Channel shuffle for lightweight Very fast; low resource Limited representational
design consumption capacity; accuracy loss on
complex tasks
SqueezeNet Fire modules; very small Extremely lightweight Sacrifices accuracy for

compactness; weak
performance in feature-rich
tasks

ShuffleNet and SqueezeNet computationally efficient

but lack sufficient representational power to capture subtle

are

acoustic features. In contrast, VGG-16 achieves an optimal
trade-off between depth, feature extraction capacity, and
training stability, making it particularly well-suited for this

classification task.

5 Experimental results and analysis

This study introduces a novel approach for time-series data
representation by employing the Gramian Angular Field (GAF)
method to transform 1D underwater acoustic signals into 2D
images. Building upon this representation, the proposed framework
leverages convolutional neural networks (CNNs) for feature
extraction and classification of underwater target radiated noise
signals. Among the tested architectures, the integration of VGG-
16 into the proposed model yields the highest classification
accuracy, reaching 80.67%, thereby demonstrating its superiority
over alternative CNNs, as well as traditional sequence modeling
approaches such as LSTM and 1D-CNN. The strong performance of
VGG-16 highlights its effectiveness in capturing local, fine-grained
features that are critical for distinguishing subtle acoustic patterns
in underwater environments.

Frontiers in Physics

09

Although the method proposed in this paper achieves good
results in the classification of underwater target radiated noise
signals, it inevitably has certain limitations. First, the proposed
method involves numerous hyperparameters, including the number
of hidden layer nodes, the L2 regularization coefficient, and the
initial learning rate. During model training, it is necessary to
precisely determine the optimal values of these hyperparameters
simultaneously. Additionally, the proposed model has significant
complexity, which inevitably increases the computational cost
during model training. This not only imposes higher demands on
hardware infrastructure but may also limit the model’s scalability
and deployment in practical applications. Therefore, reducing model
complexity while maintaining accuracy has become an important
research direction. To address these limitations, we offer several
suggestions. For hyperparameter tuning, we can utilize effective
global optimization techniques to simultaneously optimize all
model hyperparameters with fewer experimental trials, thereby
improving training efficiency and overall model performance. In
addressing model complexity, pruning and lightweight techniques
can be explored to reduce model parameter size and optimize
model structure. By implementing these methods, we can more
effectively address challenges related to hyperparameter tuning and
model complexity, thereby promoting the continued advancement
of this research.
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From a holistic perspective, another limitation lies in the
fact that the particularity of ship signals makes it difficult to
obtain actual data. Therefore, in the experimental part of this
paper, simulated data was used. However, in the real marine
environment, more complex interferences and environmental noises
are often encountered, such as multipath propagation, non-Gaussian
background noise, and multi-target interference, etc. These factors
may affect the performance of the proposed method. Thus, in
subsequent research, we will conduct experiments and validations
in real marine scenarios to comprehensively evaluate the practicality
and robustness of the method.
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