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As the economy and society continue to develop, the range of underwater 
vehicles is expanding and technology is constantly being upgraded. 
Consequently, it is becoming increasingly difficult to classify and identify them, 
and the traditional classification method based on signal characteristics can 
no longer meet the urgent need for the accurate identification of underwater 
targets. This paper therefore proposes multiple convolutional neural network 
recognition methods based on enhanced Gramian Angular Field (GAF) images. 
Firstly, the radiated noise signals of underwater targets are converted into 
enhanced images using the GAF method. Then, the converted image dataset 
is used as input for the convolutional neural network. The input dataset 
is modified accordingly for each convolutional neural network. Finally, the 
significant advantages of convolutional neural networks in image processing 
are leveraged to achieve precise classification of underwater target radiated 
noise. In order to propose a convolutional neural network method that matches 
the enhanced image method, this paper compares the calculation results of 
multiple convolutional neural network models. The experimental results show 
that the VGG-16 model achieves greater classification accuracy and efficiency, 
reaching 80.67%.
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 1 Introduction

As the economy and society continue to develop, the variety of underwater targets 
is constantly increasing and technology is continuously improving. Furthermore, the 
non-stationary, nonlinear and non-Gaussian characteristics of radiated noise signals 
from underwater targets, coupled with multiple interacting factors, are making it 
increasingly difficult to classify these signals. Traditional methods of recognizing these 
signals mainly involve collecting them via sonar and processing them through time-
series analysis before conducting classification and recognition through feature extraction. 
However, these methods are severely affected by environmental reverberation and the 
electrical noise inherent in the equipment, meaning they can no longer meet the
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growing demand for data. Therefore, there is an urgent need 
for an advanced method that is less affected by environmental 
reverberation and equipment noise and offers improved 
classification accuracy and efficiency. The method described in 
this paper uses enhanced images based on Gramian Angular Field 
(GAF) and a convolutional neural network to classify underwater 
target radiated noise signals. No noise removal is performed in this 
process to ensure that no effective information in the signal is lost. 
The method is also less sensitive to environmental reverberation and 
equipment noise, thus improving the classification and recognition 
of underwater target radiated noise signals.

Extensive research has been conducted by scholars on traditional 
feature extraction methods for underwater target radiated noise 
signals. Li et al. [1] proposed a new nonlinear feature extraction 
method for ship radiated noise. This method reconstructs the phase 
space of the noise, maps time-domain data from low-dimensional 
phase space to high-dimensional phase space and inputs the 
extracted nonlinear features into a probabilistic neural network 
(PNN) classifier. The classification performance is quantified and 
the recognition rate is calculated. Compared with traditional feature 
extraction methods, the proposed nonlinear feature extraction 
method shows better separability and a higher recognition rate 
for different types of ship radiated noise. Du L et al. [2] proposed 
a joint feature extraction method for ship target recognition that 
combines energy features extracted by wavelet decomposition with 
frequency domain features extracted by a Mel filter. The recognition 
accuracy of joint features is significantly higher than that of single 
Mel frequency domain features, providing a useful reference for 
hydroacoustic target recognition. Wang et al. [3] proposed an 
improved finite rate of innovation (FRI) method for estimating 
the low-frequency line spectra of hydroacoustic passive target 
radiated noise under conditions of limited sampling points. This 
method can realise the high-precision extraction of line spectral 
information of vessel noise. Duan et al. [4–7] proposed a graph 
embedding method for time-domain ship radiated noise signals, 
as well as a fully parameterised prototype learning framework 
that can perform open-set identification of ship radiated noise 
signals end-to-end. Jin et al. [8, 9] introduced a multi-target feature 
extraction method based on endowment mode decomposition 
and statistical parameterised inverted surface coefficients. This 
method significantly increased the number of classifiable ship 
targets. Li GH et al. [10–13] proposed a quadratic decomposition 
and hybrid feature extraction method for hydroacoustic signals. 
The simulation results for measured ship radiated noise show 
that the proposed method achieves a recognition rate of 98.43%. 
However, traditional methods of extracting the radiated noise 
of underwater targets still face many challenges, such as heavy 
reliance on the operator’s experience, low recognition accuracy 
and high computational costs, which severely hinder their
development.

Scholars have conducted extensive research on machine learning 
for the detection of radiated noise from underwater targets. Ji 
et al. [14, 15] proposed a method combining image processing 
and deep self-coding networks to improve the low-frequency, 
weak line spectra of underwater targets in environments with a 
very low signal-to-noise ratio, achieving a line spectral density 
more than twice that extractable in the 10–300 Hz band. Gao 
et al. [16–18] proposed a two-stream deep learning network 

with frequency characteristic transformation for line spectrum 
estimation to enhance the ability to learn target signal features. 
Xu et al. [19] proposed a new deep neural network model for 
underwater target recognition which integrates three-dimensional 
Meier frequency cepstral coefficients and three-dimensional Meier 
signs from ship audio signals as inputs. The method achieved an 
average recognition rate of 87.52% on the DeepShip dataset and 
97.32% on the ShipsEar dataset, demonstrating strong classification 
performance. Ashok et al. [20–22] presented an innovative DNN 
called the Audio Perspective Region-based Convolutional Neural 
Network (APRCNN), which is now better able to identify, classify, 
and localise sounds in aquatic acoustic settings, as well as dealing 
with the unique problems of underwater signal processing. Yan 
CH et al. [23, 24] introduced a lightweight network based on 
a multi-scale asymmetric convolutional neural network (CNN) 
with an attention mechanism for ship radiated noise classification. 
Experiments on the DeepShip dataset showed that the recognition 
accuracy was 98.2%, with significantly fewer parameters. In recent 
years, machine learning-based methods for extracting underwater 
target radiated noise features have made great progress, and the 
extensive use of deep learning and graph methods has dramatically 
improved the accuracy and computational efficiency of underwater 
target radiated noise recognition, leading to the rapid development 
of these methods.

This paper proposes a method of classifying and recognizing 
underwater target radiated noise signals based on Gramian 
Angular Field (GAF)-enhanced images, utilizing convolutional 
neural networks. The original underwater target radiated noise 
signals are directly processed into GAF-based enhanced images, and 
the processed images are used as the input dataset for neural network 
training, and the great advantage of convolutional neural network in 
image processing is utilized to realize the high accuracy classification 
of underwater target radiated noise signals. In this paper, the optimal 
convolutional neural network model will be obtained by comparing 
multiple convolutional neural network methods to match the GAF 
enhanced image method.

This paper is structured as follows: Section 2 outlines the 
overall architecture and computational flow of GAF-based enhanced 
image and convolutional neural network methods. Section 3 
details the mathematical foundations of different deep learning 
neural network classification methods. Section 4 presents the 
experimental data, methodology and results. Section 5 discusses
and concludes. 

2 Background

In this section, we provide a description of the relevant 
theoretical background, including the enhanced image conversion 
method and the CNN model. 

2.1 GAF-based enhanced image 
conversion method

The steps to convert an underwater target radiated noise A = x(t), 
(t = 1,2, ……, N) into an enhanced image are as follows: 
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Step 1: Let the underwater target radiated noise signal X = x1,
x2,…xN  be normalized to the interval [−1,+1]. The 
normalization process is as follows:

x′(t) =
(x(t) −min(x))
(max(x) −min(x))

Step 2: The normalized underwater target radiated noise signal is 
converted into the Angle value in the polar coordinate 
system. For each x’ to an Angle. The calculation process 
is as follows:

θ(t) = 2πx′(t)

Step 3. Construct a n × n matrix, which is calculated from the cosine 
of the Angle difference between all time points. For each pair 
of time points i and j in the time series, the element G(i,j) of 
the G matrix is calculated as follows.

G(i, j) = cos (θ(i) − θ(j))

Step 4: Map the elements of G from [−1, 1] to the range [0, 1], and 
the final matrix G after mapping is goes as follows:

G =

[[[[[[[

[

cos (φ11) cos (φ1.2) K cos (φ1.n)

cos (φ2.1) cos (φ2.2) K cos (φ1.n)

K K K K

cos (φn.1) cos (φn.2) K cos (φn.n)

]]]]]]]

]

Step 5: Each element G(i,j) of the G matrix is converted into 
the corresponding gray value, and finally a gray image is 
obtained. The mapping formula is as follows:

Gray(i, j) = (
G(i, j) + 1

2
)× 255

The matrix G captures the overall characteristics of the time 
series by converting time series information into angle information, 
and uses the Gramian matrix form to depict the global correlation 
between different time points in 2D space, thereby encoding the 
dynamic characteristics of one-dimensional signals into images. This 
approach not only uncovers the dynamic variations and evolving 
patterns across different time series but also captures the inherent 
structural characteristics within individual time series. To a certain 
extent, it clarifies the geometric connections and spatial configurations 
among local sequence segments, offering abundant feature expressions 
that empower models to more effectively grasp the underlying patterns 
within the sequences and enhance their learning performance. As a 
result, it functions as a valuable technique for extracting features from 
time series data, which will significantly contribute to our work. 

The process of converting 1D time series into 2D images using the 
Gramian Angular Field (GAF) method is depicted in Figure 1. Figure 2 
showcases the 2D images generated from five distinct underwater 
target radiated noise signals via the GAF method. From the distinct 
2D images in Figure 2, it is evident that they possess unique visual 
features. These features encompass variations in texture, color, and 
local shapes, which highlight the specific attributes of each image. 
Texture differences may mirror the origin of the signal, while color 
variations can indicate the intensity or frequency of the signals. 
Furthermore, the local shapes present in these images can provide 
insights into the specific types of underwater target radiated noise 
signals, thereby further emphasizing the importance of analyzing these 
visual cues for effective classification tasks. 

2.2 CNN

CNN is a powerful deep learning architecture that is widely 
used for image classification tasks. Its primary components include 
convolutional layers, pooling layers and fully connected layers. 
Convolution kernels are used in the convolutional layers to extract 
features from the input data. These layers are usually followed 
by pooling layers, which perform secondary feature extraction 
and reduce the dimensionality of the parameters to enhance 
computational efficiency. Following a series of convolution and 
pooling operations, the resulting feature maps are fed into the fully 
connected layers to facilitate the integration of all the neurons’ 
outputs. The final classification is achieved using a Softmax layer. 
Successive convolution and pooling enable the CNN to progressively 
capture both low-level and high-level features from the input 
images, significantly reducing model training time and boosting 
computational performance.

Convolutional Layer: As a fundamental component of 
Convolutional Neural Networks (CNNs), this layer deploys 
multiple convolution kernels onto the input image. It extracts 
features by calculating the sum of element-wise multiplications 
between each kernel and local image regions, producing a 
2D feature map. Each element in this map corresponds to 
the convolution kernel’s response to the image at that specific
location.

Activation Function: A nonlinear activation function is 
integrated to empower the network to learn and represent complex 
features, enabling it to model intricate patterns within the data.

Pooling Layer: This layer serves to reduce the spatial size 
of feature maps. A widely used technique is max-pooling: it 
partitions the feature map into non-overlapping subregions and 
selects the maximum value from each subregion as the pooled 
result, effectively downsizing the data while preserving critical
information.

Fully Connected Layer: Following the convolutional and pooling 
layers, feature maps are flattened into a one-dimensional vector, 
which is then input into fully connected layers. In these layers, 
every neuron connects to all neurons in the preceding layer, learning 
weight parameters to map the extracted features onto different 
classes or target values.

Output Layer: For classification tasks, the output layer typically 
employs the softmax function to transform the output of the 
fully connected layer into a probability distribution across all 
classes. For regression tasks, it may consist of a linear layer or 
utilize alternative activation functions tailored to the regression
objective.

Figure 3 shows the structure of CNN.

3 Proposed method

In this section, we present a classification framework that 
combines an enhanced image conversion method (GAF) with 
convolutional neural network for classifying original underwater 
target radiated noise signals.

The 1D time series is first converted into 2D images using the 
GAF method. Next, multiple convolution operations in the CNN 
can capture local features of the 2D images while preserving spatial 
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FIGURE 1
The conversion process of 1D time series into a 2D image using the GAF method.

FIGURE 2
2D images generated from five different underwater target radiated noise signals using the GAF method.

structure information, and the pooling operations can lower the 
information volume while retaining important features. Features are 
fed into a fully connected network for feature recognition to achieve 
the final identification results.

Through comparing data of identification results, we can get 
the most suitable CNN to classify underwater target radiated 
noise signals.

The proposed framework consists of the following steps: 

Step 1: Raw underwater target radiated noise signals are 
transformed into enhanced image representations 
through GAF, without applying environmental noise
suppression.

Step 2: The VGG-16 network is employed to extract discriminative 
features from the generated images and to perform 
classification. To ensure reliable model selection, a hold-out 
validation strategy is adopted, where 70% of the converted 
images were used to train the model, while the remaining 
30% were used to validate it.

Step 3: During training, regularization techniques such as dropout 
are introduced to mitigate overfitting and enhance the 
generalization ability of the model.

Step 4: The classification outcomes are analyzed based on the 
independent test set to evaluate recognition performance 
and to validate the effectiveness and generalizability of 
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FIGURE 3
The structure of CNN.

the proposed VGG-16-based framework for underwater 
acoustic signal processing.

The overall architecture of the proposed method is 
illustrated in Figure 4. 

4 Experimental results and analysis

4.1 Experiments

In this study, the computing environment is a computer with 
a Windows 10 operating system and a single GPU. The GPU is an 
NVIDIA GeForce RTX 4070 SUPER.

To evaluate the effectiveness of proposed method, various CNN 
architectures are incorporated into the proposed framework, and 
their classification accuracies are compared. To further examine 
whether matching the proposed method with the most suitable CNN 
yields superior performance compared to traditional approaches, 
additional baseline models including LSTM and 1DCNN are also 
evaluated. The CNN architectures considered in this study include 
DarkNet-53, GoogLeNet, Inception-ResNet-v2, ResNet-18, ResNet-
50, ResNet-101, ShuffleNet, SqueezeNet, VGG-19, and Xception. 
This comparative analysis aims to assess the effectiveness of different 
models in recognizing underwater acoustic signals. Experimental 
results demonstrate that the VGG-16 model outperforms all other 

tested architectures, thereby confirming its suitability as the optimal 
backbone for the proposed framework. 

4.2 Data introduction

The particularity of ship signal makes it difficult to obtain actual 
data, and the actual data has many interferences. The research goal 
is to verify the superiority of the algorithm rather than deal with 
complex interference noise, so we adopt analog signals. In this paper, 
the sampling time of the radiated noise signal from the underwater 
target adopted is 1 s, with a sampling frequency of 50 kHz.

In this study, different operating conditions were considered 
with variations in propeller blade number and displacement: Jiang4 
represents a 4-blade propeller at 15 knots with a blade speed of 25 r/s 
and a displacement of 4,000 t; Jiang5 represents a 5-blade propeller at 
15 knots with a blade speed of 25 r/s and a displacement of 2,000 t; 
and Jiang6 represents a 6-blade propeller at 15 knots with a blade 
speed of 25 r/s and a displacement of 2,000 t. In addition, to analyze 
the effect of ship speed under identical conditions, two cases were 
defined as speed10 and speed20, both with a 4-blade propeller, a 
blade speed of 25 r/s, and a displacement of 2,000 t, corresponding 
to ship speeds of 10 knots and 20 knots, respectively. The data 
parameters are shown in Table 1 and an example of the underwater 
target radiated noise signal is shown in Figure 5.
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FIGURE 4
Overall architecture of underwater target radiated noise recognition based on enhanced images and different convolutional neural networks.

TABLE 1  The parameters of underwater target radiated noise signal simulation.

Types Number of paddles Speed (kn) Paddle speed(r/s) Sampling time(s)

jiang4 4 15 25 1

Jiang5 5 15 25 1

Jiang6 6 15 25 1

speed10 4 10 25 1

speed20 4 20 25 1

FIGURE 5
The simulated underwater target radiated noise signal.

4.3 Determination of network parameters

This section outlines the determination of network parameters 
for the convolutional neural network (CNN). 

Step 1: The input 2D images were resized and standardized to 
conform to the dimensional requirements of the employed 
CNN architectures, thereby ensuring consistency across all 
models during training and evaluation. The image size 
generated by the enhanced image conversion method is 
[224, 224, 3]. To maintain compatibility with different 
network architectures, the input size is adjusted accordingly 

without reducing the original resolution. This strategy helps 
retain the complete information of the input image, avoiding 
key feature loss caused by image cropping or resizing, and 
thereby facilitating more effective feature extraction and 
classification.

Step 2: Define the structural components of the network, 
including the type and number of convolutional layers, 
activation functions, pooling layers, fully connected 
layers, and the output layer. Alternatively, pre-trained 
CNN architectures can be adopted and adapted to the
specific task.
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TABLE 2  Convolutional neural network structure parameters.

Optimiser MaxEpochs LearnRate Mini batch size Validation frequency

sgdm 50 0.0001 15 10

Step 3: Configure and fine-tune the key network parameters, such 
as the number of filters, kernel size, stride, padding, 
activation function type, dropout rate, learning rate, and 
batch size.

In the training of convolutional neural networks, the selection 
of hyperparameters plays a crucial role in determining both the 
convergence behavior and the generalization performance of the 
model. Factors such as the optimizer, learning rate, maximum 
number of epochs, mini-batch size, and validation frequency 
not only influence training efficiency but also directly affect the 
model’s accuracy on unseen data. In this study, the stochastic 
gradient descent with momentum (SGDM) optimizer is employed, 
as it has been widely demonstrated in image recognition tasks 
to strike a favorable balance between convergence speed and 
generalization capability. Compared with adaptive optimization 
methods (e.g., Adam), SGDM often yields superior test accuracy. 
The maximum number of epochs (MaxEpochs = 50) is set to 
ensure that the model undergoes sufficient training to capture 
discriminative features, while avoiding excessive computational cost 
and the risk of overfitting. To maintain stable parameter updates, a 
relatively small learning rate (LearnRate = 0.0001) is adopted, which 
enables the network to gradually approach the optimal solution 
in a complex loss landscape without oscillation or divergence. 
Furthermore, a mini-batch size of 15 is chosen to achieve a balance 
between gradient variance and computational efficiency; smaller 
batches introduce beneficial stochasticity in gradient estimation, 
which facilitates escaping local minima and enhances generalization. 
Finally, the validation frequency (Validation Frequency = 10) 
is set to monitor model performance at appropriate intervals 
during training, allowing timely adjustments to suppress potential 
overfitting. Based on these considerations, the hyperparameter 
configuration summarized below is adopted in the subsequent 
experiments.

The detailed configuration used in this study is 
presented in Table 2.

4.4 Result

In this study, 70% of the converted images were used to train 
the model, while the remaining 30% were used to validate it. The 
computing environment is a computer with a Windows 10 operating 
system and a single GPU. The GPU is an NVIDIA GeForce RTX 
4070 SUPER.

The results of the experiments demonstrate that the VGG-
16 model achieves the best performance of all the models tested, 
indicating its suitability as the optimal model structure for the 
proposed framework and better than sequential models. Figure 6 
shows the classification results. Table 3 showcase the data directly.

4.5 Analysis of different convolutional 
neural networks

As demonstrated in Figure 6 and Table 3, the classification 
accuracy of VGG-16 is markedly higher than that of other 
convolutional neural network architectures. The rationale for 
selecting VGG-16 as the baseline model lies in its architectural 
simplicity and effectiveness. Its design strategy of stacking multiple 
3 × 3 convolutional layers allows the network to achieve substantial 
depth, thereby enhancing its capacity to learn complex and 
hierarchical feature representations while maintaining a manageable 
number of parameters. Moreover, the modular and uniform nature 
of the VGG-16 design makes it highly adaptable and transferable 
across a broad range of image classification tasks, which further 
justifies its selection for this study.

Several architectural features contribute directly to the superior 
performance of VGG-16. First, the convolutional layers are 
each followed by ReLU activation functions, which introduce 
nonlinearity and enable the network to model complex patterns. 
In the absence of such activation functions, stacking multiple 
convolutional layers would reduce to a linear transformation, 
severely limiting the representational capacity of the model. Second, 
the inclusion of three fully connected layers provides multiple levels 
of abstraction, with deeper layers capturing increasingly complex 
and higher-order features. This design enables the integration 
of information from multiple dimensions, thereby improving 
classification performance. Third, the consistent use of 3 × 3 
convolution kernels increases the effective receptive field while 
preserving fine-grained details and contextual information, which 
enriches feature representations and enhances the expressive power 
of the model. Finally, the application of 2 × 2 max pooling layers with 
a stride of 2 ensures that the most salient local features are retained, 
strengthening the discriminative ability of the extracted features.

When compared to alternative architectures, the superiority 
of VGG-16 becomes more evident. DarkNet-53, while powerful 
for large-scale object detection, is considerably deeper and prone 
to overfitting when trained on relatively small datasets such 
as underwater acoustic signals. GoogLeNet adopts an Inception 
module structure, which increases architectural complexity but may 
dilute local feature extraction, thereby reducing its effectiveness in 
scenarios requiring fine-grained classification. Inception-ResNet-
v2 integrates residual connections with Inception modules, but 
its depth and parameter complexity can hinder convergence and 
generalization under limited data conditions. ResNet-18/50/101 
benefit from residual learning, yet their skip connections may lead 
to an overemphasis on global features at the expense of local detail, 
which is critical in underwater target noise classification. ShuffleNet 
and SqueezeNet prioritize computational efficiency and lightweight 
design, but their reduced parameterization limits representational 
capacity, resulting in lower accuracy. VGG-19, though structurally 
similar to VGG-16, introduces additional convolutional layers, 
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FIGURE 6
Experimental accuracy results of different convolutional neural networks.

TABLE 3  Image classification results transformed by multiple convolutional neural networks.

Xception VGG-19 VGG-16 Inception-ResNet-v2 GoogLeNet

0.62 0.7267 0.8067 0.5733 0.6267

SqueezeNet ShuffleNet ResNet-50 ResNet-101 LSTM

0.6933 0.6667 0.62 0.65 0.78

1DCNN ResNet-18 DarkNet-53

0.71 0.61 0.6267

which increase computational cost without yielding significant 
performance gains in this task. Finally, Xception employs depthwise 
separable convolutions, which are effective in large-scale image 
recognition but tend to underperform on domain-specific datasets 
where local and low-level features dominate.

Beyond CNN variants, VGG-16 also demonstrates clear 
advantages over sequential models such as LSTM and shallow 
architectures such as 1D-CNN. LSTM networks, while effective 
for capturing long-term temporal dependencies, are less adept 
at extracting local spatial correlations when one-dimensional 
signals are transformed into 2D representations. This limits 
their ability to fully exploit fine-grained structural patterns 
inherent in acoustic spectrograms. Similarly, 1D-CNN models, 
although computationally efficient, operate on raw one-dimensional 
sequences and thus fail to capture the rich 2D feature hierarchies 
available in time–frequency representations. In contrast, VGG-16 
leverages its hierarchical convolutional structure to capture both 

local and global feature dependencies within spectrograms, enabling 
superior discrimination of subtle acoustic variations.

In summary, VGG-16 achieves an optimal balance between 
architectural depth, feature representation capacity, and training 
stability. By virtue of its simple yet powerful design, it demonstrates 
superior capability in local feature extraction, stronger nonlinear 
modeling capacity, and more stable convergence. Experimental 
results further confirm the robustness and adaptability of VGG-
16 in classifying underwater target radiated noise signals, clearly 
outperforming more complex or lightweight alternatives, as well as 
sequential architectures such as LSTM and 1D-CNN.

As shown in Table 4, although models such as ResNet 
and Inception-ResNet-v2 are powerful for large-scale datasets, 
their excessive depth and architectural complexity often lead 
to overfitting and unstable convergence when applied to 
relatively small and domain-specific datasets such as underwater 
acoustic signals. Conversely, lightweight networks such as 
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TABLE 4  Advantages and disadvantages of different CNNs.

CNN architecture Key characteristics Advantages Limitations in this 
study

VGG-16 16 layers; stacked 3 × 3 conv 
kernels; 3 FC layers

Strong local feature extraction; 
balanced depth; stable 

convergence

Slightly higher computational 
cost than lightweight models, 

but acceptable

VGG-19 Deeper variant of VGG-16 (19 
layers)

Similar feature representation 
as VGG-16

Higher computational burden 
without notable accuracy gain

ResNet-18/50/101 Residual skip connections Alleviates vanishing gradient; 
effective for very deep networks

May overemphasize global 
features, weaker local detail 

extraction for acoustic signals

GoogLeNet Inception modules with 
multi-scale filters

Efficient parameter usage; 
multi-scale representation

Complexity may dilute 
fine-grained local features; less 

effective for small datasets

Inception-ResNet-v2 Inception modules + residuals; 
very deep

Strong representation power in 
large-scale tasks

Overly complex; prone to 
overfitting on limited acoustic 

data

DarkNet-53 Deep network (53 layers); 
backbone for YOLOv3

High performance in object 
detection

Excessive depth; requires 
large-scale data, less stable on 

small datasets

Xception Depthwise separable 
convolutions

Computational efficiency; good 
for large-scale images

Less effective in capturing 
domain-specific local features

ShuffleNet Channel shuffle for lightweight 
design

Very fast; low resource 
consumption

Limited representational 
capacity; accuracy loss on 

complex tasks

SqueezeNet Fire modules; very small 
parameter count

Extremely lightweight Sacrifices accuracy for 
compactness; weak 

performance in feature-rich 
tasks

ShuffleNet and SqueezeNet are computationally efficient 
but lack sufficient representational power to capture subtle 
acoustic features. In contrast, VGG-16 achieves an optimal 
trade-off between depth, feature extraction capacity, and 
training stability, making it particularly well-suited for this
classification task. 

5 Experimental results and analysis

This study introduces a novel approach for time-series data 
representation by employing the Gramian Angular Field (GAF) 
method to transform 1D underwater acoustic signals into 2D 
images. Building upon this representation, the proposed framework 
leverages convolutional neural networks (CNNs) for feature 
extraction and classification of underwater target radiated noise 
signals. Among the tested architectures, the integration of VGG-
16 into the proposed model yields the highest classification 
accuracy, reaching 80.67%, thereby demonstrating its superiority 
over alternative CNNs, as well as traditional sequence modeling 
approaches such as LSTM and 1D-CNN. The strong performance of 
VGG-16 highlights its effectiveness in capturing local, fine-grained 
features that are critical for distinguishing subtle acoustic patterns 
in underwater environments.

Although the method proposed in this paper achieves good 
results in the classification of underwater target radiated noise 
signals, it inevitably has certain limitations. First, the proposed 
method involves numerous hyperparameters, including the number 
of hidden layer nodes, the L2 regularization coefficient, and the 
initial learning rate. During model training, it is necessary to 
precisely determine the optimal values of these hyperparameters 
simultaneously. Additionally, the proposed model has significant 
complexity, which inevitably increases the computational cost 
during model training. This not only imposes higher demands on 
hardware infrastructure but may also limit the model’s scalability 
and deployment in practical applications. Therefore, reducing model 
complexity while maintaining accuracy has become an important 
research direction. To address these limitations, we offer several 
suggestions. For hyperparameter tuning, we can utilize effective 
global optimization techniques to simultaneously optimize all 
model hyperparameters with fewer experimental trials, thereby 
improving training efficiency and overall model performance. In 
addressing model complexity, pruning and lightweight techniques 
can be explored to reduce model parameter size and optimize 
model structure. By implementing these methods, we can more 
effectively address challenges related to hyperparameter tuning and 
model complexity, thereby promoting the continued advancement 
of this research.
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From a holistic perspective, another limitation lies in the 
fact that the particularity of ship signals makes it difficult to 
obtain actual data. Therefore, in the experimental part of this 
paper, simulated data was used. However, in the real marine 
environment, more complex interferences and environmental noises 
are often encountered, such as multipath propagation, non-Gaussian 
background noise, and multi-target interference, etc. These factors 
may affect the performance of the proposed method. Thus, in 
subsequent research, we will conduct experiments and validations 
in real marine scenarios to comprehensively evaluate the practicality 
and robustness of the method.
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