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With the increasing strategic importance of the ocean, underwater intelligent
systems have become essential for signal processing, target recognition,
and autonomous navigation. The widespread application of deep learning
has significantly advanced underwater acoustic missions, but its “black box”
nature has led to critical concerns about decision explainability, limiting its
trustworthy application in high-risk scenarios. This paper provides a systematic
review of explainable models for underwater target recognition, elaborating
on the core concepts and main methods of explainability. It also reviews
research progress and representative achievements in sonar imaging, signal
analysis, and autonomous navigation. Finally, future directions, including causal
reasoning, cross-modal collaboration, and physical knowledge integration, are
identified to provide a reference for developing safe and reliable underwater
intelligent systems.

underwater intelligent perception, underwater target recognition, artificial intelligence,
explainable artificial intelligence, explainability in deep learning

1 Introduction

With the accelerating development of marine resources, the demand for underwater
intelligent perception continues to grow. Driven by deep learning, underwater target
recognition has made significant progress in efliciency, accuracy, and automation.
However, its performance relies on large-scale neural networks and suffers from the
“black box” problem, which limits the model applications in real-world scenarios.
Especially in complex underwater environments, unstable propagation paths, strong
noise, and diverse target shapes make the reliability of model outputs directly influence
combat decision-making, autonomous navigation, and anomaly response. Therefore,
the introduction of explainable mechanisms has become a key way to improve
system stability, enhance human-machine collaboration, and cope with environmental
uncertainty. Explainability not only enhances the interpretability of the model but also
provides strong support for performance optimization, algorithm review, and feature
visualization.

To address these challenges, Longo etal. [1] proposed a research roadmap
for XAI (Explainable Artificial Intelligence) through which nine major categories
and 27 questions derive pertinent scientific inquiries under deep reflection for
the current positioning about explainability. This paper begins with the definition
of explainability, reviews mainstream modeling approaches and representative
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application cases, and focuses on recent advances in explainable
modeling for underwater tasks. Finally, this paper summarizes the
current bottlenecks regarding underwater modeling and highlights
the most promising future development paths involving causal
reasoning, cross-modality collaboration, and physical knowledge
integration.

2 Fundamental concepts and
motivations for explainability

The trustworthiness of artificial intelligence results hinges not
only on whether they “can be done correctly,” but also on whether
they can “explain why they are correct” The concept of explainability
is formalized in this context and systematically developed, focusing
primarily on the reasoning behind the decisions or predictions made
by artificial intelligence algorithms.

Doshi-Velez and Kim [2] state that “explainability is a functional
property of a model such that humans can understand its behavior”
Explainability is explaining something in comprehensible terms.
Therefore, in machine learning systems, explainability is defined
as the ability to explain or present in understandable terms to
humans. Explainability can be evaluated in two main ways: one
through contextual assessment within specific applications, and the
other through quantifiable proxy metrics. In supervised learning,
Lipton [3] refines the properties of explainable models into two
categories. The first category is model transparency, the opposing
attribute of “black-box” systems, encompassing model-level
explainability such as simulatability [4], parameter decomposability
at the single-component level [5], and training algorithm
transparency [6]. The second category is post hoc explainability,
which involves analyzing, reconstructing, or visualizing black-
box models through additional methods. Explainability is crucial
for building trust in artificial intelligence, assisting with audits
and diagnostics, enhancing human-machine collaboration, and
addressing regulatory requirements. Existing research still lacks the
ability to generate reliable explanations in real time, achieve two-
way interaction, and establish interpretability assessment standards.
Further research is needed to bridge the gap between theory and
application.

In the practical underwater problems, the explainable demand
is particularly prominent. On the one hand, the operating
environment is complex and changeable, and the channel
interference is serious, so the correctness of the system decision-
making results will have a great impact on combat command,
autonomous navigation and other tasks; On the other hand,
limited by the observation mode and communication bandwidth,
the cost of manual intervention is extremely high, and the
system urgently needs the ability of “self-explanation and self-
diagnosis” to support its stable operation in an uncontrollable
environment. In this context, it has become a key research
topic to develop an explainable model suitable for underwater
perception and decision-making tasks. As shown in Figure I,
it can be seen that AUV (Autonomous Underwater Vehicle)
platforms and control centers rely on sonar and artificial
intelligence in sensing and decision-making. The opacity of
Al models has invoked concern and thus triggered research
into the reasoning of complex AI models to improve their
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transparency, reliability, and controllability in carrying out complex
ocean missions.

3 Categorization of explainable
modeling approaches

To address explainability challenges posed by ensemble learning
and deep neural networks, Arrieta et al. [7] systematically reviewed
core concepts, classifications, and methods of explainable models.
They proposed a user-centered definition of explainability and
outlined both transparent models and post hoc explanation
techniques for black-box systems. Deck et al. [8] highlighted the
limitations of current fairness claims in XAI and argued that
explainability should be seen as one of many socio-technical
tools, not a cure-all. Giannini etal. [9] introduced a unified
mathematical framework from a category theory perspective
to formalize diverse explanation paradigms and strengthen the
theoretical foundations of XAL

Building upon that, explainable models can generally be split
into two broad subgroups based on the criterion of architecture
integration: intrinsically interpretable models and post hoc
explainability methods. Intrinsically interpretable models are those
in which design intent goes toward achieving their explainability
feature through their simplicity, transparent inference path, and
clarity of feature attribution. Classic examples are logistic regression,
decision trees, rule-based learning, and naive bayes classifiers.

Nevertheless, intrinsically interpretable models struggle with
high-dimensional nonlinear data, such as underwater acoustic
signals, which suffer interference from reverberation and multipath.
To address the above challenges, a recent trend incorporates a white-
box-black-box approach in one cohesive framework. This relies on
the input-output behavior of the already trained black-box models
to trace the feature contribution responsible for a prediction or
explain the region of interest. When machine learning models lack
transparency, additional methods are employed to explain their
decision processes, constituting the essence of post hoc explainability
techniques [7]. Examples of such post hoc explainability methods
include natural language explanations [10], model visualization [11],
local interpretable techniques [12], and instance-based explanations
[13]. Specific examples of these methods are gradient-weighted
class activation mapping (Grad-CAM) [14], shapley additive
explanations (SHAP) [15], and local interpretable model-agnostic
explanation (lime) [16].

These methods are presented in the form of image heat maps,
feature rankings or explanation maps. They not only maintain
the accuracy requirements of target detection, but also meet
the auditability requirements of the task through rule extraction,
providing a systematic solution to enhance model explainability and
facilitate practical deployment.

4 Research on explainable models in
underwater target recognition

Underwater target recognition is a critical technology in fields
such as marine exploration, underwater navigation, and military
defense. Due to the highly complex underwater environment,
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Overview of explainability challenges and core tasks in underwater intelligent systems.

diverse target shapes and materials, and the scarcity of effective
training data (with high acquisition costs), many challenges
remain to be addressed. With the development of stealth materials
and advanced manufacturing techniques, underwater targets
are becoming quieter and more varied, posing new difficulties
for traditional recognition models that rely on single features.
Research on explainable models for underwater targets not only
helps improve recognition accuracy but also provides cognitive
support for decision-making in complex scenarios, making it a key
research direction in recent years. This section reviews explainable
techniques for underwater tasks from four representative
perspectives.

4.1 Sonar image classification and
recognition

In the past, the detection and classification of early sonar images
required manual participation, and the detection results were not
real-time. With the advent of deep learning, several technologies,
such as CNN [17] and transfer learning [18], improved the
recognition performance of side-scan sonar systems. However, the
transfer processes mixed abstract features shared among the source
task and the target task, thus complicating the decision-making task.
The “black box” nature of the model limits its credibility in high-
security scenarios such as military defense. Hence, explainability
becomes a crucial demand.

Jin etal. [19] introduced post hoc explainability methods at
the preprocessing stage of Echoscope sonar data, applying visual
attention to target area extraction. Through ImageNet pre-training
and transfer learning strategy, they achieved a recognition accuracy
of 97.3% for 9 categories of underwater targets. Cheng et al. [20]
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integrated global attention mechanisms into the YOLO network to
tackle the problem of small targets being detected in side-scan sonar
images. Walker etal. [21] presented a method to promote sonar
SAS image classification explainability via a systematic analysis
framework that involved both quantitative (divergence metrics)
and qualitative (lime) approaches. Richard etal. [22] compared
the consistency between XAI explanations and sonar operators’
cognition and pointed out the future research direction of XAI that
combines fuzzy logic or semantics. In the case of mine hunting,
post hoc explainability methods were applied to provide explanations
for the decisions made by complex neural networks. Keenan et al.
[23] put forward a low-complexity human-machine collaborative
classification framework using transfer learning, wherein RISE was
proved capable of quantitatively measuring model improvements,
along with the associated SR metric, offering a new tool for the
AI trustworthiness study of sonar image analysis. Xie etal. [24]
proposed a sonar image classification framework based on a
feature-fusion attention network, using dual attention mechanisms
(channel + spatial) to focus on key feature regions. It used Grad-
CAM heatmaps to visualize target contours significantly, improving
accuracy over traditional methods and offering innovative insight
into sonar detection result explainability.

4.2 Explainable analysis of underwater
target signal characteristics

Feature extraction is a critical component of underwater
target detection and recognition. However, the complexity of
underwater acoustic signal propagation often limits the effectiveness
of traditional approaches. In recent years, explainability techniques
have increasingly been integrated into deep learning models,

frontiersin.org


https://doi.org/10.3389/fphy.2025.1682253
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Xu et al.

enhancing the transparency and reliability of tasks such as feature
extraction, target tracking, and classification.

Zhu etal. [25] deeply coupled the physical mechanisms of
ship-radiated noise with sub-band signal features. Using Grad-
CAM heatmaps, they showed that low-frequency networks are
focused on line spectra due to propeller rotation noise, while
high-frequency networks are focused on broadband continuous
spectra due to cavitation noise. This created a new, explainable
paradigm that combines domain knowledge with deep learning.
Wang etal. [26] used SHAP to provide local explanations of
abnormal signals in ship data, then applied lime to identify the
key features of abnormal signals most influential on the model,
supporting user understanding of model decision-making and root
cause analysis. Kubicek [27] integrated physics domain knowledge
with feature engineering while applying Grad-CAM to explain
CNN’s decision-making basis to improve the transparency and
trustworthiness of the classification model. The team associated
features with resonance scattering theories (e.g., specular reflection
and Rayleigh wave) and proposed a method of combining acoustic
models to screen signal features with clear physical meaning,
achieving accurate classification of elastic spherical shells of four
different materials. Du et al. [28] applied Bayesian deep learning
to classify active and passive sonar data. The Bayesian framework
provides prediction confidence (such as entropy value) through
posterior inference and supports decision interpretation, which
helps the model perform more robust detection and improves the
management of noise and uncertainty. Domingos et al. [29] pointed
out that the underwater acoustic data classification model not only
needs high accuracy, but also must have an explainable reasoning
mechanism. Investigating the correlation between acoustic physical
models and deep learning can enhance model explainability in
complex environments. Feng et al. [30] noted that the model in the
field of underwater acoustic target recognition is still in the initial
stage, mainly relying on the post hoc explainability methods. Grad-
CAM, t-SNE, and attention mechanism can reveal the attention area
and feature distribution of the model to a certain extent, but it is
difficult to reflect the acoustic and physical laws behind it. In the
future, a new method combining a graph model with physical priors
is still needed.

4.3 Explainable mechanisms for
autonomous underwater vehicle
decision-making

Autonomous surface and underwater vehicles (ASVs/AUVs)
have become an indispensable tool in ocean missions. Its path
planning and navigation strategies are usually generated by
complex deep reinforcement learning models, but the model lacks
transparency, which makes it difficult to understand its decision-
making process.

Veitch et al. [31] proposed a human-centered XAI framework
for Autonomous Surface Vehicles, emphasizing the distinction
between human-centered and technology-centered XAl approaches
and outlining design directions for human-computer interaction
in autonomous systems. The framework includes three core
cognitive processes: reducing user cognitive load through analogies,
enhancing usability through visualization, and building user trust
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through mental simulation. Qiao et al. [32] identified insufficient
explainability in ASV deep learning models and proposed feature
visualization techniques to enhance understanding of CNN
decision-making processes. They found a direction for model
simplification by replacing parts of the deep network with shallow
networks. Chen etal. [33] summarized the key challenges of the
explainability requirement of unmanned surface vehicle (USV)
motion control model, including how to establish the explainable
relationship between simulation data and decision-making, how to
explain how to reward function drives strategic behavior, and how
to understand the logic of reinforcement learning decision-making.

Yan etal. [34] integrated binocular vision with an improved
deep reinforcement learning algorithm. By analyzing the weights
and design logic of various reward functions, they made clear
the optimization goals of the model, which addressed motion
planning for AUVs in uncertain model parameters and the
complex underwater environment. Liu etal. [35] established an
understandable geometric foundation in the UUV positioning
algorithm, and transformed the forward-looking sonar positioning
problem into an intuitive spatial geometric constraint problem,
which made the behavior of the target positioning algorithm
based on UUV forward-looking sonar clear and explainable.
Aubard etal. [36] pointed out that explainable AI and model
verification are the core of safe Al, and the limited sonar data
aggravates the difficulty of model explainability. In the future, it is
necessary to build a standardized sonar data platform to promote the
autonomy and safety of AUVs in complex underwater environment.

4.4 Explainable fusion mechanisms for
multimodal perception

In underwater target recognition, the system’s recognition
performance is limited under the condition of single-physics field
detection. Multi-source information fusion model makes use of the
complementarity of different modal information, such as multi-
sensor, multi-platform and multi-detector to improve the system’s
ability to distinguish underwater targets. However, there is also a
new black-box problem in the fusion of different modal data.

Sun et al. [37] combed the evolution of multi-modal explainable
AT technology from three dimensions: data explainability, model
explainability and post-processing explainability, and pointed out
the development direction of visual data bottleneck breakthrough
and truth-free environment interpretation, but the application
in underwater scenes lacked systematic analysis. Li etal. [38]
adopted a feature-level information fusion strategy, combined with
multi-channel CNN-Transformer network to complete multi-scale
feature extraction, and realized high-precision underwater target
recognition under the condition of low signal-to-noise ratio. Cai
etal. [39] built a detection system based on underwater acousto-
optic multimodal cooperation, which transformed the camera
results into auxiliary constraints for sonar detection, and adopted
the improved Faster R-CNN framework to realize cooperative
detection. Zheng et al. [40] combined the feature selection method
based on the visualization technology (Grad-CAM) with the local
feature enhancement method based on the sub-regional channel
aggregation net (SRCA-Net). The study provided a visual basis
for acoustic feature selection by fusing the network model. Zhang
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TABLE 1 Overview of explainable underwater target recognition models by explainability methods.

XAl method Category Application Contribution Reference
Attention mechanism Post-hoc analysis Sonar image classification DCNN + transfer learning [19, 20, 31]
ASV human-computer Omni-dimensional dynamic
interaction convolution
Human-centered models with
analogy and visualization
Lime Post-hoc analysis Sediment classification; mine Kullback-leibler divergence [21, 22, 23]
hunting; human-machine CNN; randomized input
collaboration sampling
Grad-CAM Post-hoc analysis + Sonar image classification; Dual attention mechanism + [24, 25, 27, 40]
intrinsically interpretable ship-radiated noise transfer learning; heatmap in
model recognition; different frequency bands;
Underwater target recognition CNN + scattering mechanisms
Feature enhancement +
SRCA-net
SHAP Post-hoc analysis Ship abnormal signal detection LSTM + auto-encoder model [26]
Bayesian deep learning Intrinsically interpretable Underwater target detection Generative models [28]
model
Process explainability methods Intrinsically interpretable USV motion control Markov decision process + [33, 34, 35]
model AUV motion planning reinforcement learning;
UUV target positioning interruption-driven
explainability
Plane intersection + direction
distance constraint
Feature visualization Post-hoc analysis Ship-radiated noise Feature fusion + [38, 39, 41]
recognition; underwater target CNN-transformer network
detection; AUV fault detection Acoustic and optical
information fusion + faster
R-CNN; multi-sensor feature
fusion + KAN

et al. [41] used multi-sensor feature fusion KAN network (MFKAN)
to realize the effective fusion of feature levels and enhance the
expression ability of fault features in the background of marine
noise. Nevertheless, the challenges of real-time and cross-modal
consistency will still be faced in the future. Table I summarizes
an overview of explainable underwater target recognition models
organized by explainability methods.

5 Discussion

This paper reviews the concepts, origins, and methods of
XAIL and explores the progress and challenges of its application
in sonar recognition, signal analysis, AUV navigation, and
multimodal fusion. Underwater explainable models not only
provide explanations but also aim to ensure that systems are usable
in complex missions, trustworthy under uncertain conditions, and
controllable in high-risk scenarios. This is crucial for improving the
safety and effectiveness of underwater missions and preparing for
future operations in harsh environments. To construct a reliable and
intelligent underwater recognition system, not only achieving high
accuracy but also improving aspects of traceability, explainability,
and control is mandatory. Recent studies involving explainable
models for various underwater tasks have been leading toward more
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profound integration and collaboration on several fronts. Future
research directions of interpretation include multimodal fusion
(unification of acoustic, optical and magnetic data), causal drive
(revealing variable mechanisms), human-computer collaboration
(interactive on-demand explanations), and scenario adaptation
(multi-granularity and multi-format presentation). All these efforts
together will form the promising future of explainable and applicable
underwater intelligent systems.
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