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With the increasing strategic importance of the ocean, underwater intelligent 
systems have become essential for signal processing, target recognition, 
and autonomous navigation. The widespread application of deep learning 
has significantly advanced underwater acoustic missions, but its “black box” 
nature has led to critical concerns about decision explainability, limiting its 
trustworthy application in high-risk scenarios. This paper provides a systematic 
review of explainable models for underwater target recognition, elaborating 
on the core concepts and main methods of explainability. It also reviews 
research progress and representative achievements in sonar imaging, signal 
analysis, and autonomous navigation. Finally, future directions, including causal 
reasoning, cross-modal collaboration, and physical knowledge integration, are 
identified to provide a reference for developing safe and reliable underwater 
intelligent systems.
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 1 Introduction

With the accelerating development of marine resources, the demand for underwater 
intelligent perception continues to grow. Driven by deep learning, underwater target 
recognition has made significant progress in efficiency, accuracy, and automation. 
However, its performance relies on large-scale neural networks and suffers from the 
“black box” problem, which limits the model applications in real-world scenarios. 
Especially in complex underwater environments, unstable propagation paths, strong 
noise, and diverse target shapes make the reliability of model outputs directly influence 
combat decision-making, autonomous navigation, and anomaly response. Therefore, 
the introduction of explainable mechanisms has become a key way to improve 
system stability, enhance human-machine collaboration, and cope with environmental 
uncertainty. Explainability not only enhances the interpretability of the model but also 
provides strong support for performance optimization, algorithm review, and feature
visualization.

To address these challenges, Longo et al. [1] proposed a research roadmap 
for XAI (Explainable Artificial Intelligence) through which nine major categories 
and 27 questions derive pertinent scientific inquiries under deep reflection for 
the current positioning about explainability. This paper begins with the definition 
of explainability, reviews mainstream modeling approaches and representative
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application cases, and focuses on recent advances in explainable 
modeling for underwater tasks. Finally, this paper summarizes the 
current bottlenecks regarding underwater modeling and highlights 
the most promising future development paths involving causal 
reasoning, cross-modality collaboration, and physical knowledge 
integration. 

2 Fundamental concepts and 
motivations for explainability

The trustworthiness of artificial intelligence results hinges not 
only on whether they “can be done correctly,” but also on whether 
they can “explain why they are correct.” The concept of explainability 
is formalized in this context and systematically developed, focusing 
primarily on the reasoning behind the decisions or predictions made 
by artificial intelligence algorithms.

Doshi-Velez and Kim [2] state that “explainability is a functional 
property of a model such that humans can understand its behavior.” 
Explainability is explaining something in comprehensible terms. 
Therefore, in machine learning systems, explainability is defined 
as the ability to explain or present in understandable terms to 
humans. Explainability can be evaluated in two main ways: one 
through contextual assessment within specific applications, and the 
other through quantifiable proxy metrics. In supervised learning, 
Lipton [3] refines the properties of explainable models into two 
categories. The first category is model transparency, the opposing 
attribute of “black-box” systems, encompassing model-level 
explainability such as simulatability [4], parameter decomposability 
at the single-component level [5], and training algorithm 
transparency [6]. The second category is post hoc explainability, 
which involves analyzing, reconstructing, or visualizing black-
box models through additional methods. Explainability is crucial 
for building trust in artificial intelligence, assisting with audits 
and diagnostics, enhancing human-machine collaboration, and 
addressing regulatory requirements. Existing research still lacks the 
ability to generate reliable explanations in real time, achieve two-
way interaction, and establish interpretability assessment standards. 
Further research is needed to bridge the gap between theory and 
application.

In the practical underwater problems, the explainable demand 
is particularly prominent. On the one hand, the operating 
environment is complex and changeable, and the channel 
interference is serious, so the correctness of the system decision-
making results will have a great impact on combat command, 
autonomous navigation and other tasks; On the other hand, 
limited by the observation mode and communication bandwidth, 
the cost of manual intervention is extremely high, and the 
system urgently needs the ability of “self-explanation and self-
diagnosis” to support its stable operation in an uncontrollable 
environment. In this context, it has become a key research 
topic to develop an explainable model suitable for underwater 
perception and decision-making tasks. As shown in Figure 1, 
it can be seen that AUV (Autonomous Underwater Vehicle) 
platforms and control centers rely on sonar and artificial 
intelligence in sensing and decision-making. The opacity of 
AI models has invoked concern and thus triggered research 
into the reasoning of complex AI models to improve their 

transparency, reliability, and controllability in carrying out complex 
ocean missions.

3 Categorization of explainable 
modeling approaches

To address explainability challenges posed by ensemble learning 
and deep neural networks, Arrieta et al. [7] systematically reviewed 
core concepts, classifications, and methods of explainable models. 
They proposed a user-centered definition of explainability and 
outlined both transparent models and post hoc explanation 
techniques for black-box systems. Deck et al. [8] highlighted the 
limitations of current fairness claims in XAI and argued that 
explainability should be seen as one of many socio-technical 
tools, not a cure-all. Giannini et al. [9] introduced a unified 
mathematical framework from a category theory perspective 
to formalize diverse explanation paradigms and strengthen the 
theoretical foundations of XAI.

Building upon that, explainable models can generally be split 
into two broad subgroups based on the criterion of architecture 
integration: intrinsically interpretable models and post hoc
explainability methods. Intrinsically interpretable models are those 
in which design intent goes toward achieving their explainability 
feature through their simplicity, transparent inference path, and 
clarity of feature attribution. Classic examples are logistic regression, 
decision trees, rule-based learning, and naive bayes classifiers.

Nevertheless, intrinsically interpretable models struggle with 
high-dimensional nonlinear data, such as underwater acoustic 
signals, which suffer interference from reverberation and multipath. 
To address the above challenges, a recent trend incorporates a white-
box-black-box approach in one cohesive framework. This relies on 
the input-output behavior of the already trained black-box models 
to trace the feature contribution responsible for a prediction or 
explain the region of interest. When machine learning models lack 
transparency, additional methods are employed to explain their 
decision processes, constituting the essence of post hoc explainability 
techniques [7]. Examples of such post hoc explainability methods 
include natural language explanations [10], model visualization [11], 
local interpretable techniques [12], and instance-based explanations 
[13]. Specific examples of these methods are gradient-weighted 
class activation mapping (Grad-CAM) [14], shapley additive 
explanations (SHAP) [15], and local interpretable model-agnostic 
explanation (lime) [16].

These methods are presented in the form of image heat maps, 
feature rankings or explanation maps. They not only maintain 
the accuracy requirements of target detection, but also meet 
the auditability requirements of the task through rule extraction, 
providing a systematic solution to enhance model explainability and 
facilitate practical deployment. 

4 Research on explainable models in 
underwater target recognition

Underwater target recognition is a critical technology in fields 
such as marine exploration, underwater navigation, and military 
defense. Due to the highly complex underwater environment, 
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FIGURE 1
Overview of explainability challenges and core tasks in underwater intelligent systems.

diverse target shapes and materials, and the scarcity of effective 
training data (with high acquisition costs), many challenges 
remain to be addressed. With the development of stealth materials 
and advanced manufacturing techniques, underwater targets 
are becoming quieter and more varied, posing new difficulties 
for traditional recognition models that rely on single features. 
Research on explainable models for underwater targets not only 
helps improve recognition accuracy but also provides cognitive 
support for decision-making in complex scenarios, making it a key 
research direction in recent years. This section reviews explainable 
techniques for underwater tasks from four representative
perspectives. 

4.1 Sonar image classification and 
recognition

In the past, the detection and classification of early sonar images 
required manual participation, and the detection results were not 
real-time. With the advent of deep learning, several technologies, 
such as CNN [17] and transfer learning [18], improved the 
recognition performance of side-scan sonar systems. However, the 
transfer processes mixed abstract features shared among the source 
task and the target task, thus complicating the decision-making task. 
The “black box” nature of the model limits its credibility in high-
security scenarios such as military defense. Hence, explainability 
becomes a crucial demand.

Jin et al. [19] introduced post hoc explainability methods at 
the preprocessing stage of Echoscope sonar data, applying visual 
attention to target area extraction. Through ImageNet pre-training 
and transfer learning strategy, they achieved a recognition accuracy 
of 97.3% for 9 categories of underwater targets. Cheng et al. [20] 

integrated global attention mechanisms into the YOLO network to 
tackle the problem of small targets being detected in side-scan sonar 
images. Walker et al. [21] presented a method to promote sonar 
SAS image classification explainability via a systematic analysis 
framework that involved both quantitative (divergence metrics) 
and qualitative (lime) approaches. Richard et al. [22] compared 
the consistency between XAI explanations and sonar operators’ 
cognition and pointed out the future research direction of XAI that 
combines fuzzy logic or semantics. In the case of mine hunting, 
post hoc explainability methods were applied to provide explanations 
for the decisions made by complex neural networks. Keenan et al. 
[23] put forward a low-complexity human-machine collaborative 
classification framework using transfer learning, wherein RISE was 
proved capable of quantitatively measuring model improvements, 
along with the associated SR metric, offering a new tool for the 
AI trustworthiness study of sonar image analysis. Xie et al. [24] 
proposed a sonar image classification framework based on a 
feature-fusion attention network, using dual attention mechanisms 
(channel + spatial) to focus on key feature regions. It used Grad-
CAM heatmaps to visualize target contours significantly, improving 
accuracy over traditional methods and offering innovative insight 
into sonar detection result explainability. 

4.2 Explainable analysis of underwater 
target signal characteristics

Feature extraction is a critical component of underwater 
target detection and recognition. However, the complexity of 
underwater acoustic signal propagation often limits the effectiveness 
of traditional approaches. In recent years, explainability techniques 
have increasingly been integrated into deep learning models, 
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enhancing the transparency and reliability of tasks such as feature 
extraction, target tracking, and classification.

Zhu et al. [25] deeply coupled the physical mechanisms of 
ship-radiated noise with sub-band signal features. Using Grad-
CAM heatmaps, they showed that low-frequency networks are 
focused on line spectra due to propeller rotation noise, while 
high-frequency networks are focused on broadband continuous 
spectra due to cavitation noise. This created a new, explainable 
paradigm that combines domain knowledge with deep learning. 
Wang et al. [26] used SHAP to provide local explanations of 
abnormal signals in ship data, then applied lime to identify the 
key features of abnormal signals most influential on the model, 
supporting user understanding of model decision-making and root 
cause analysis. Kubicek [27] integrated physics domain knowledge 
with feature engineering while applying Grad-CAM to explain 
CNN’s decision-making basis to improve the transparency and 
trustworthiness of the classification model. The team associated 
features with resonance scattering theories (e.g., specular reflection 
and Rayleigh wave) and proposed a method of combining acoustic 
models to screen signal features with clear physical meaning, 
achieving accurate classification of elastic spherical shells of four 
different materials. Du et al. [28] applied Bayesian deep learning 
to classify active and passive sonar data. The Bayesian framework 
provides prediction confidence (such as entropy value) through 
posterior inference and supports decision interpretation, which 
helps the model perform more robust detection and improves the 
management of noise and uncertainty. Domingos et al. [29] pointed 
out that the underwater acoustic data classification model not only 
needs high accuracy, but also must have an explainable reasoning 
mechanism. Investigating the correlation between acoustic physical 
models and deep learning can enhance model explainability in 
complex environments. Feng et al. [30] noted that the model in the 
field of underwater acoustic target recognition is still in the initial 
stage, mainly relying on the post hoc explainability methods. Grad-
CAM, t-SNE, and attention mechanism can reveal the attention area 
and feature distribution of the model to a certain extent, but it is 
difficult to reflect the acoustic and physical laws behind it. In the 
future, a new method combining a graph model with physical priors 
is still needed. 

4.3 Explainable mechanisms for 
autonomous underwater vehicle 
decision-making

Autonomous surface and underwater vehicles (ASVs/AUVs) 
have become an indispensable tool in ocean missions. Its path 
planning and navigation strategies are usually generated by 
complex deep reinforcement learning models, but the model lacks 
transparency, which makes it difficult to understand its decision-
making process.

Veitch et al. [31] proposed a human-centered XAI framework 
for Autonomous Surface Vehicles, emphasizing the distinction 
between human-centered and technology-centered XAI approaches 
and outlining design directions for human-computer interaction 
in autonomous systems. The framework includes three core 
cognitive processes: reducing user cognitive load through analogies, 
enhancing usability through visualization, and building user trust 

through mental simulation. Qiao et al. [32] identified insufficient 
explainability in ASV deep learning models and proposed feature 
visualization techniques to enhance understanding of CNN 
decision-making processes. They found a direction for model 
simplification by replacing parts of the deep network with shallow 
networks. Chen et al. [33] summarized the key challenges of the 
explainability requirement of unmanned surface vehicle (USV) 
motion control model, including how to establish the explainable 
relationship between simulation data and decision-making, how to 
explain how to reward function drives strategic behavior, and how 
to understand the logic of reinforcement learning decision-making.

Yan et al. [34] integrated binocular vision with an improved 
deep reinforcement learning algorithm. By analyzing the weights 
and design logic of various reward functions, they made clear 
the optimization goals of the model, which addressed motion 
planning for AUVs in uncertain model parameters and the 
complex underwater environment. Liu et al. [35] established an 
understandable geometric foundation in the UUV positioning 
algorithm, and transformed the forward-looking sonar positioning 
problem into an intuitive spatial geometric constraint problem, 
which made the behavior of the target positioning algorithm 
based on UUV forward-looking sonar clear and explainable. 
Aubard et al. [36] pointed out that explainable AI and model 
verification are the core of safe AI, and the limited sonar data 
aggravates the difficulty of model explainability. In the future, it is 
necessary to build a standardized sonar data platform to promote the 
autonomy and safety of AUVs in complex underwater environment. 

4.4 Explainable fusion mechanisms for 
multimodal perception

In underwater target recognition, the system’s recognition 
performance is limited under the condition of single-physics field 
detection. Multi-source information fusion model makes use of the 
complementarity of different modal information, such as multi-
sensor, multi-platform and multi-detector to improve the system’s 
ability to distinguish underwater targets. However, there is also a 
new black-box problem in the fusion of different modal data.

Sun et al. [37] combed the evolution of multi-modal explainable 
AI technology from three dimensions: data explainability, model 
explainability and post-processing explainability, and pointed out 
the development direction of visual data bottleneck breakthrough 
and truth-free environment interpretation, but the application 
in underwater scenes lacked systematic analysis. Li et al. [38] 
adopted a feature-level information fusion strategy, combined with 
multi-channel CNN-Transformer network to complete multi-scale 
feature extraction, and realized high-precision underwater target 
recognition under the condition of low signal-to-noise ratio. Cai 
et al. [39] built a detection system based on underwater acousto-
optic multimodal cooperation, which transformed the camera 
results into auxiliary constraints for sonar detection, and adopted 
the improved Faster R-CNN framework to realize cooperative 
detection. Zheng et al. [40] combined the feature selection method 
based on the visualization technology (Grad-CAM) with the local 
feature enhancement method based on the sub-regional channel 
aggregation net (SRCA-Net). The study provided a visual basis 
for acoustic feature selection by fusing the network model. Zhang 
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TABLE 1  Overview of explainable underwater target recognition models by explainability methods.

XAI method Category Application Contribution Reference

Attention mechanism Post-hoc analysis Sonar image classification
ASV human-computer 

interaction

DCNN + transfer learning
Omni-dimensional dynamic 

convolution
Human-centered models with 

analogy and visualization

[19, 20, 31]

Lime Post-hoc analysis Sediment classification; mine 
hunting; human-machine 

collaboration

Kullback-leibler divergence
CNN; randomized input 

sampling

[21, 22, 23]

Grad-CAM Post-hoc analysis + 
intrinsically interpretable 

model

Sonar image classification; 
ship-radiated noise 

recognition; 
Underwater target recognition

Dual attention mechanism + 
transfer learning; heatmap in 

different frequency bands; 
CNN + scattering mechanisms

Feature enhancement + 
SRCA-net

[24, 25, 27, 40]

SHAP Post-hoc analysis Ship abnormal signal detection LSTM + auto-encoder model [26]

Bayesian deep learning Intrinsically interpretable 
model

Underwater target detection Generative models [28]

Process explainability methods Intrinsically interpretable 
model

USV motion control
AUV motion planning
UUV target positioning

Markov decision process + 
reinforcement learning; 

interruption-driven 
explainability

Plane intersection + direction 
distance constraint

[33, 34, 35]

Feature visualization Post-hoc analysis Ship-radiated noise 
recognition; underwater target 
detection; AUV fault detection

Feature fusion + 
CNN-transformer network

Acoustic and optical 
information fusion + faster 

R-CNN; multi-sensor feature 
fusion + KAN

[38, 39, 41]

et al. [41] used multi-sensor feature fusion KAN network (MFKAN) 
to realize the effective fusion of feature levels and enhance the 
expression ability of fault features in the background of marine 
noise. Nevertheless, the challenges of real-time and cross-modal 
consistency will still be faced in the future. Table 1 summarizes 
an overview of explainable underwater target recognition models 
organized by explainability methods.

5 Discussion

This paper reviews the concepts, origins, and methods of 
XAI, and explores the progress and challenges of its application 
in sonar recognition, signal analysis, AUV navigation, and 
multimodal fusion. Underwater explainable models not only 
provide explanations but also aim to ensure that systems are usable 
in complex missions, trustworthy under uncertain conditions, and 
controllable in high-risk scenarios. This is crucial for improving the 
safety and effectiveness of underwater missions and preparing for 
future operations in harsh environments. To construct a reliable and 
intelligent underwater recognition system, not only achieving high 
accuracy but also improving aspects of traceability, explainability, 
and control is mandatory. Recent studies involving explainable 
models for various underwater tasks have been leading toward more 

profound integration and collaboration on several fronts. Future 
research directions of interpretation include multimodal fusion 
(unification of acoustic, optical and magnetic data), causal drive 
(revealing variable mechanisms), human-computer collaboration 
(interactive on-demand explanations), and scenario adaptation 
(multi-granularity and multi-format presentation). All these efforts 
together will form the promising future of explainable and applicable 
underwater intelligent systems.
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