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Image detection plays a critical role in quality control across manufacturing
and healthcare sectors, yet existing methods struggle to meet real-world
requirements due to their heavy reliance on large labeled datasets, poor
generalization across different domains, and limited adaptability to diverse
application scenarios. These limitations significantly hinder the deployment of
Al solutions in practical industrial settings where data scarcity and domain
variations are common. To address these issues, we propose MMAL-CL, a unified
deep learning framework that integrates an Edge Feature Module (EFM) with
multi-subspace mapping attention and an Adaptive Deep Learning Module
(ADLM) for cross-domain feature decoupling. The EFM extracts translation-
invariant features through residual convolution blocks and a novel multi-
subspace attention mechanism, enhancing the model's ability to capture
interdependencies between features. The ADLM enables few-shot learning by
mixing task-irrelevant auxiliary data with target domain samples and optimizing
feature separation via a dual-classifier strategy. Finally, we evaluated the model's
performance on five datasets (two industrial and three medical) demonstrate
that MMAL-CL achieves 99.7% precision on the NEU-CLS dataset with full data
and maintains 71.3% precision with only 20 samples per class, outperforming
other methods in few-shot settings. The framework shows remarkable cross-
domain generalization capability, with an average 12.8% improvement in F1-
score over existing methods. These results highlight MMAL-CL's potential as
a practical solution for image detection that can operate effectively with
limited training data while maintaining high accuracy across diverse application
scenarios.

deep learning, image identification, multi-subspace attention, cross-domain learning,
few-shot learning, extended cross entry loss

1 Introduction

Image identification and classification have emerged as fundamental technologies
supporting modern industrial systems and quality control processes [1, 2]. These
techniques enable automated identification and analysis of critical features in manufacturing
inspection, medical diagnosis, and other application domains [3]. The integration of
machine learning with neural networks has significantly advanced this field, driving
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progress in diverse areas ranging from precision surface defect
identification to complex medical image analysis [4-6]. However,
as industrial applications diversify, current deep learning-based
solutions reveal some challenges that demand urgent attention.
Although these methods have achieved good performance under
certain conditions, traditional image identification methods rely
on manually designed feature extraction methods, so that image
identification is limited by the quality of feature selection and design,
resulting in limited identification performance of the model [7-10].
Compared with the time-consuming and labor-intensive traditional
methods, deep learning-based methods have gradually become a
research hotspot in the field of image identification due to its robust
feature recognition capabilities and high accuracy [11-15].

With the outstanding performance of AlexNet in the 2012
ImageNet competition, it successfully opened a new chapter in
deep learning in the field of image identification [16-20, 27].
Many studies have demonstrated that AI technology has broad
application prospects in medical diagnosis, industrial identification
and other fields. In terms of image identification, Yu et al. proposed
a RegNet that can identify sewer pipe defects. The model uses
dropout to improve the overfitting problem of the model and uses
LeakyReLU to further optimize the performance of the model [21].
Joon-Hyung et al. summarized the characteristics of industrial PCB
images, analyzed the factors that may cause image data changes in
the industrial field, and proposed a convolution-based PCB defect
identification method on this basis [22]. Said etal. proposed a
ResNet model based on transfer learning, which can use pathological
images to diagnose whether a patient has breast cancer [23]. Sasank
etal. built a model based on a deep residual network that can
analyze the patient’s brain health based on CT images [24]. Gabriele
et al. proposed a weakly supervised deep learning framework based
on convolutional networks, which can analyze cancer based on
whole slide pathological images [25]. In additional, deep learning
technology has received widespread attention due to its ability to
achieve performance similar to human experts in a short period
of time [26, 27]. Jun etal. also proposed a data augmentation
and weight allocation method to solve the problem of insufficient
samples and uneven sample distribution [28]. Xiao et al. proposed a
model for assisting in the diagnosis of COVID-19 using CT images.
The model uses contrastive learning to train the encoder to capture
the necessary features on large-scale datasets, to reduce the model’s
demand for the quantity of raw data [29]. Tae Keun et al. proposed
a feasibility study method, which improves the performance of
the model in small-scale samples through data amplification [30].
Ling etal. proposed a DLA-MatchNet, which integrates channel
attention, spatial attention and feature networks to enable it to
handle small amounts of data samples [55].

Despite their demonstrated potential, current deep learning-
based identification methods still have limitations. A primary
challenge stems from the substantial data dependence of these
models. Variations in imaging devices and acquisition protocols
across different facilities often lead to significant domain shifts,
resulting in poor generalization performance when applying models

Abbreviations: DL, Deep Learning; CNN, Convolutional Neural Networks;
BN, Batch Normalization; CM, Classification Module; ADLM, Adaptive Deep
Learning Module; EFM, Edge Feature Module.
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to new clinical or industrial settings. While data augmentation
strategies can partially mitigate this issue, collecting large-scale
annotated datasets remains prohibitively expensive in many
real-world scenarios. This is particularly evident in medical
imaging, where patient privacy concerns restrict data availability,
and in industrial inspection systems, where rare defects are
inherently difficult to capture. Furthermore, existing approaches
are typically designed for specific application domains, with limited
transferability across different identification tasks. This domain
specificity necessitates the development of specialized models for
each application scenario, significantly increasing deployment costs
and complexity. Although transfer learning techniques have shown
promise in reducing data requirements, they still rely heavily on
the availability of relevant source domain data. In practice, the
requirement for semantically similar pre-training data often cannot
be satisfied, particularly for novel or rare defect types. In order
to alleviate the above problems, transfer learning was proposed.
Although these studies have achieved many breakthroughs, they
still need to be further optimized. Transfer learning typically uses
similar data to pre-train the model for a target task. However,
in reality, similar data is often difficult to obtain. More and
more visual tasks are showing a need to reduce the number of
training samples [31-34]. Architectural limitations of conventional
CNNs present additional challenges. The local receptive fields of
convolutional operations constrain the model’s ability to capture
long-range feature dependencies, while simply increasing network
depth leads to prohibitive computational costs. Recent studies have
shown that attention mechanisms can improve feature learning,
but most implementations fail to maintain an optimal balance
between performance and computational efficiency, especially in
resource-constrained industrial environments.

To solve the above problems, this paper proposes a novel
deep learning-based image identification method and with the
following contributions. First, we develop a unified deep learning
architecture that integrates multi-scale feature extraction with
attention mechanisms, enabling high-precision identification
while maintaining computational efficiency. This design effectively
balances model performance and resource requirements. Second,
the proposed model significantly reduces data requirements through
an innovative few-shot learning paradigm. Third, our solution
introduces a scenario-adaptive mechanism that automatically
adjusts feature representation according to different application
domains. This innovation enables seamless deployment across
diverse industrial and medical scenarios without architectural
modifications. Fourth, we introduce a cross-domain learning
mechanism that utilizes task-irrelevant auxiliary data. This
component enhances model generalization while optimizing
storage and computation costs. Finally, we propose a multi-
subspace attention module that overcomes the limitations of
conventional CNNs. The principle of the framework proposed is
illustrated in Figure 1.

2 Methods

This section presents the technical details of MMAL-CL, a
unified framework designed for multi-scenario image identification
in both medical and industrial scenarios. As illustrated in Figure 1.
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Workflow of proposed framework.
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MMAL-CL mainly includes Edge Feature Module (EFM) and
Adaptive Deep Learning Module (ADLM). Firstly, the edge devices
in each scenario will collect the required data, which is then be
feed into the EFM to obtain edge primary features. And then the
edge features will be sent to the ADLM for scenario allocation
and feature identification. The aforementioned scenario allocation
means that the ADLM will send information to the corresponding
neural network based on the data source. After obtaining the
feature identification results, the ADLM will return the results to
the doctor or engineer and update the network parameters of the
EFM according to the needs. Next, we will describe the model
construction method in detail.

2.1 Edge feature module

Edge Feature Module is responsible for automatically extracting
primary features of scenario data at each edge devices, including
pathological images collected from hospitals and steel surface
images collected from factories. In order to make the model easier to
converge, we will use an auxiliary dataset to initialize its parameters,
as shown in Figure 2.

We use Mini-ImageNet as initialization auxiliary samples. It
is worth noting that the samples used in pre-training are target-
independent data, which is consistent with the original intention
mentioned above. In the initial parameter initialization stage, task-
independent auxiliary data will be sent to the EFM to obtain
potential features, and then the above features will be used by the
classification module (CM) to obtain the classification results. When
the expected classification performance is obtained in the auxiliary
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FIGURE 2
Workflow of proposed framework. EFM parameter initialization

schematic diagram (Conv-2D means 2D convolution layer, BN means
batch normalization, MMB means multi-subspace mapping block, NL
means normalization, FC means fully connection layer. The same
color represents the same layer).

dataset, the pre-training phase is completed, and the EFM will be
taken out and embedded into the edge server and the cloud.
Specifically, EFM mainly consists of convolution block and
multi-subspace mapping block (MMB). The convolution block is
designed as a residual structure, which consists of convolution
layers and batch normalization. The residual structure helps improve
the ability of model to learn different scales features and improve
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FIGURE 3
Multi-subspace mapping block schematic Workflow of proposed
framework.

the fluidity of gradients. After being processed by the residual
convolution block, the information will be fed into the convolution
layer to further refine the required features. Afterwards, the feature
map will be sent to MMB, and the principle is shown in Figure 3.

To make the model can learn feature dependencies, this paper
designs a data analysis structure based on self-attention, inspired
by the transformer. After obtaining the feature maps from the
above convolution layer, the model will linearly map these feature
maps. This step allows the model to adjust input information more
flexibly according to target requirements, allowing the model to
converge more robustly. In addition, to a certain extent, this step
can also be regarded as a process of appropriately mixing noise,
which can improve the robustness of the model. After the feature
mapping process, the feature maps will be converted into feature
vectors. At this point, we embed the feature channel encoding into
the corresponding feature vector. Feature encoding represents the
identity information of different feature channels, which helps the
model learn the interdependence between different features. The
embedded feature vector will be sent to the LN layer. LN refers to
layer normalization. The principle is shown in Equation 1.

o(efv—$)+ﬁ2> (1)

LN(efv) = GeLu( A

Vo> +0

Among them, efv represents the above-mentioned embedded
feature vector, GeLu (") represents the activation function GeLu,
B, and f3, are learnable parameters, o is the variance, 0 is the
minimum value to ensure that the fraction is meaningful, and %
is the average of efv. As shown in Equation 1, layer normalization
is not affected by the data batch size. Compared to the classical
batch normalization whose performance is limited by the batch size,
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LN can provide more stable statistics for the model, thus making
its convergence process more robust. After this, the corresponding
vector will be fed into multi-subspace mapping layer. Q,K,V are
three input channels respectively, each with independent mapping
parameters, as shown in Equation 2.

Q' =60,Q K =6K V=0,V )

Here, 0+, is the mapping parameter of the respective channel,
and Q',K',V' are the mapped channel vectors respectively.
Independent mapping parameters can not only improve the
flexibility of the model, but can also be regarded as the mapping of
the same input in different feature spaces to a certain extent, which
helps to improve the robustness of the model. After mapping, Q' and
K’ will be dot producted, as shown in Equation 3.

Mul(Q',K') = Q'K'T (3)
In order to suppress the variance and avoid the difficulty
of model learning caused by the vanishing gradient, we

further perform a scaling operation based on Equation 3,

which corresponds to S (*) in Figure3. The principle
is shown in Equation 4.
Mul(Q',K'
s(vu(@' ) = ALK @
Vo,

Here, OQ is the dimension of the input vector Q. Combining
Equations 3, 4, the role of the dot product operation is to learn the
interdependence between features. After processed by S (*), we can
use the softmax function to obtain the weights assigned to different
features by the model. Based on the above weights, the output of a
single subspace can be obtained by weighting the feature expression,
as shown in Equation 5.

space(Q',K', V') = so ftmax(S(Mul(Q',K"))) V' (5)

Where, space (*) represents the output of a single subspace.
By splicing the outputs of multiple subspaces and assigning
corresponding weights, the final output of the multi-subspace
mapping layer can be obtained, as shown in Equation 6.

MML(Q',K', V") = f(space,,space,, ..., space, )0 (6)

mml

In the equation, MML(*) is the output of multi-subspace
mapping layer, f (*) represents the splicing operation, spacen
represents the output of the nth subspace, 0,,,,,,; is the corresponding
parameter. Because it combines the output of multiple feature spaces,
it is called a multi-subspace mapping layer.

As mentioned above, in order to improve the model’s ability to
grasp features of different scales, this paper also designs residual
links. As shown in Figure 3, after passing through the multi-
subspace mapping layer, the data will also be processed by the
residual normalization layer, as shown in Equation 7.

R_LN(x) = LN(x + MML(x)) (7)
Here, R_LN(*) represents the R-LN layer output,
and x represents the channel-embedded feature vector.

As shown in Figure 3, after being processed by the dense layer and
dropout layer, the final output of MMB can be obtained.
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FIGURE 4
Adaptive deep learning module principal diagram.

After two consecutive MMB processes, the feature vector will
be normalized and then sent to the CM. As shown in Figure 2,
CM is a classic classification network. In the pre-training stage,
the role of CM is to classify the auxiliary data. By training a
classification model, it determines a good initial weight for EFM.
The loss function of CM is cross-entropy. Compared with the
mean square error, cross-entropy is not affected by the gradient
of the activation function, which can avoid the problem of
vanishing gradient to a certain extent and make the model easier
to converge.

2.2 Adaptive deep learning module

Adaptive Deep Learning Module is responsible for using task-
independent data to assist the model in learning the target task. This
can reduce the data scale for achieving the expected performance
of the model in this paper, save storage space and deployment
costs, and improve the model’s generalization ability for multi-center
or multi-scenario data, thereby accelerating the further extension
of Al-based image identification applications. It is worth noting
that ADLM uses task-independent data to assist model learning
instead of similar data, which reduces the model’s dependence
on original data to a certain extent. The principle of ADLM is
shown in Figure 4.

We hope that the model can use task-independent data to assist
itself in learning target data, but there are huge domain differences
between data in different fields, which will make model learning
difficult. To alleviate this problem, we mixed task independence data
and task data to form transition data to alleviate the problem of
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difficulty in understanding domain differences. The mixing principle
is shown in Equation 8.

TRD(TD(m), TIDW) =¢-TD,y+(1-¢)-TID, (8)

Where, TRD is transition data, TD(m) represents the random
mth type sample in task data, TID(n) represents the nth type
of sample in task independent data, ¢ is the mixing parameter.
¢ ~ beta(e,€), here, € € (0,00). The transition samples only involve
mutual mixing between single-class samples, and do not involve
cross-mixing of multi-class samples.

As shown in Figure 4, the three types of samples are sent to three
branches respectively. Among them, the structures of transition
data analysis branch and task data analysis branch are the same
as task independent data analysis branch. After obtaining relevant
information, the sample features are sent to the sample classifier. The
function of this classifier is to identify the type of target data, that is,
to output the disease type or part surface defect type. The sample
features and source features are fed into the source classifier. The
function of the classifier is to identify the source of the data, that
is, whether the data comes from the target data or auxiliary data.
The purpose of designing two classifiers is to enable the model to
automatically decouple sample features and source features. In other
words, this design approach allows the model to separate features
that are similar to the target task (sample features) and features that
are not highly correlated to the target task (source features) from the
task independent data. This is because sample features can determine
the sample type, so it can be considered relevant to the target task. On
the contrary, source features can determine the source of the sample,
so it contains huge domain bias and is quite different from the

frontiersin.org
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TABLE 1 The performance of each model in the factory scenario for different sample sizes in tasks a and b, where task a and task b represent NEU-CLS

and SEVERSTAL respectively, OURS represents MMAL-CL.

Performance parameters

Task a

‘ IEN 4 )

5-shot 10-shot 20-shot 5-shot 10-shot 20-shot

Fl-score

ALEXNET 0.675 0.752 0.843 0.381 0.460 0.599
VGG19 0.721 0.813 0.880 0.326 0.433 0.520
RESNET50 0.661 0.829 0.891 0.256 0.316 0.560
INCEPTION 0.718 0.802 0.892 0.314 0.34 0.540
DPN92 0.675 0.772 0.869 0.247 0.339 0.476
Transformer 0.308 0.468 0.680 0.265 0.327 0.452
OURS 0.965 0.991 0.995 0.518 0.641 0.697
recall

ALEXNET 0.675 0.842 0.842 0.388 0.465 0.604
VGG19 0.738 0.882 0.882 0.321 0.429 0.531
RESNET50 0.705 0.894 0.894 0.299 0.331 0.556
INCEPTION 0.732 0.893 0.893 0.347 0.401 0.538
DPN92 0.706 0.869 0.869 0.33 0.381 0.501
Transformer 0.372 0.482 0.689 0.357 0.374 0.464
OURS 0.965 0.995 0.995 0.504 0.630 0.687
precision

ALEXNET 0.723 0.812 0.876 0.436 0.523 0.610
VGG19 0.764 0.859 0.896 0.383 0.454 0.565
RESNET50 0.785 0.878 0.909 0.314 0.325 0.601
INCEPTION 0.767 0.837 0.893 0.330 0.408 0.555
DPN92 0.803 0.814 0.883 0.304 0.431 0.574
Transformer 0.361 0.528 0.709 0.320 0.338 0.499
OURS 0.965 0.991 0.995 0.552 0.662 0.723

target task. When processing transition data and task data, the model
classifies them separately based on the categories of their respective
datasets, obtaining classification losses Ly, and Ly, Because it is a
classic classification model, the above two losses are cross-entropy.
As stated in Equation 8, the transition data is a mixture of the above
two types of data, so the loss function of the sample classifier can
be expressed as Equation 9. Where, Lg- is the loss function of the
sample classifier.

Lic=¢-Lyp+(1-9)-Lyp

Frontiers in Physics 06

Source classifier is responsible for identifying the source of
the data. Based on the above, we hope that the sample classifier
can separate potential features that are closely related to the
target task in task-irrelevant data, while the source classifier is
intended to distinguish domain-specific differences. To achieve
the above functions, we designed a special loss function for
the source classifier. We want the sample feature to be domain-
independent, so the goal of the sample feature is to confuse
the source classifier. When the classifier uses sample feature, the
labels of all corresponding samples are 0.5, and the loss function
is shown in Equation 10.
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Lsouc,, = 3%] 3 [KL(SOUC(9yyp). label) + KL(SOUC(p ) label)
X

+KL(SOUC(§ ), label)]
(10)

Here, KL (*) is KL divergence, N is sample size, SOUC(") is the
output of the source classifier, and label refers to the aforementioned
label, $1yp>Yrrp>Jrp are the outputs of task independent data
analysis branch, transition data analysis branch, and task data
analysis branch respectively. When the classifier processes source
features, it is expected to be able to distinguish data sources, and the
loss function is shown in Equation 11.

1 . .
Lsovc,, = g[CE(SOUC(yTID)’lTID) +CE(SOUC(yyp ), Ip) + ¢

CE(SOUC(yrrp):lrp) + (1= ¢) - CE(SOUC(Ppgp )s Irip)
(11

Here, CE (*) is cross-entropy, Iy, and I, are data source labels,
corresponding to task independent data and task data respectively.
Finally, the overall loss function of the model can be written as
follows in Equation 12.

L =Lsc+ Lsouc_tp *+ Lsovc_tip (12)

Finally, ADLM will return recognition results to terminal
devices located in different scenarios and return model parameters
to EFM. Through the above method, the model proposed can
adapt to different data analysis needs in various scenarios, including
hospitals and factories, by using the same auxiliary data. At the same
time, this method also reduces the amount of data required for the
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model, saves deployment costs, improves the model’s generalization
ability for multi-center or multi-scenario data, and accelerates the
further extension of Al-based image identification applications.

3 Experiment and discussion

In this section, we primarily describe the experimental data and
evaluate the performance of our proposed model using precision,
recall, and Fl-score as the evaluation metrics. Additionally,
we analyze and discuss the experimental results. The proposed
approach is implemented by Pytorch on a workstation with NVIDIA
GeForce GTX2080Ti.

3.1 Data description

In this paper, we use five datasets from different scenarios,
including two factory datasets (NEU-CLS and SEVERSTAL) [35,
36] and three hospital datasets [37-39]. In addition, in order
to explore the identification ability of our model on small-scale
samples, we extracted 5, 10, and 20 samples per class from all
datasets for training. These correspond to 5-data, 10-data and 20-
data respectively. Specifically, 5-data refers to randomly selecting five
samples from each type of data, and the remaining data is used as
the test set. The corresponding extraction methods for 10 and 20 are
the same. Mini-ImageNet [40] is a universal pre-training data. The
experimental result is the average of five repeated experiments.

frontiersin.org
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TABLE 2 The performance of each model in the hospital scenario for different numbers of sample size in tasks a, b, ¢, d and e, where ours
represents MMAL-CL.

PROTO

5-shot 0.703 0.824 0.771 0.748 0.959 0.980

Fl-score 10-shot 0.885 0.876 0.780 0.857 0.981 0.981

20-shot 0.941 0.952 0.801 0.878 0.998 0.998

5-shot 0.704 0.824 0.772 0.748 0.959 0.980

Task a recall 10-shot 0.885 0.876 0.781 0.857 0.981 0.981
20-shot 0.941 0.952 0.801 0.878 0.998 0.998

5-shot 0.706 0.824 0.778 0.748 0.959 0.980

precision 10-shot 0.885 0.876 0.781 0.857 0.981 0.981

20-shot 0.941 0.952 0.801 0.878 0.998 0.998

5-shot 0.755 0.837 0.826 0.815 0.837 0.869

Fl-score 10-shot 0.841 0.866 0.862 0.849 0.908 0.922

20-shot 0.837 0.929 0.895 0.879 0.921 0.938

5-shot 0.756 0.838 0.828 0.817 0.837 0.869

Task b recall 10-shot 0.841 0.866 0.863 0.850 0.908 0.922
20-shot 0.836 0.929 0.895 0.879 0.921 0.938

5-shot 0.754 0.844 0.826 0.817 0.838 0.870

precision 10-shot 0.842 0.868 0.865 0.852 0.908 0.922

20-shot 0.842 0.929 0.896 0.882 0.921 0.938

5-shot 0.664 0.706 0.736 0.689 0.692 0.764

Fl-score 10-shot 0.687 0.745 0.732 0.754 0.748 0.771

20-shot 0.773 0.841 0.792 0.812 0.892 0.905

5-shot 0.669 0.707 0.736 0.689 0.692 0.764

Task ¢ recall 10-shot 0.688 0.745 0.731 0.754 0.748 0.771
20-shot 0.775 0.842 0.792 0.812 0.892 0.905

5-shot 0.672 0.707 0.738 0.691 0.693 0.764

precision 10-shot 0.690 0.745 0.745 0.755 0.749 0.771

20-shot 0.772 0.843 0.793 0.812 0.892 0.905

(Continued on the following page)

3.2 Results and analysis NEU-CLS and task b is SEVERSTAL. The methods of comparison
include AlexNet [41], VGG19 [42], RESNET50 [43], INCEPTION

We demonstrate the performance of our model and conduct [44], DPN92 [45], Transformer [46].
many comparative experiments. For the factory scenario, the model From the experimental results, the framework of this paper
performance is shown in Table 1 and Figure 5. The confusion matrix ~ achieves better performance. Even though all comparison methods
is shown in Supplementary Appendix Figures A1-A6. Here, taskais  also use relevant data for pre-training, they still do not exceed
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TABLE 2 (Continued) The performance of each model in the hospital scenario for different numbers of sample size in tasks a, b, ¢, d and e, where ours

represents MMAL-CL.

ANIL DN4 MAML PROTO w.0.MMB Ours

5-shot 0.524 0.554 0.537 0.546 0.525 0.557

Fl-score 10-shot 0.641 0.638 0.567 0.569 0.743 0.746

20-shot 0.729 0.768 0.674 0.766 0.877 0.902

5-shot 0.539 0.554 0.54 0.546 0.525 0.557

Task d recall 10-shot 0.641 0.638 0.567 0.567 0.743 0.746
20-shot 0.729 0.768 0.673 0.766 0.877 0.902

5-shot 0.529 0.557 0.541 0.549 0.526 0.557

precision 10-shot 0.644 0.652 0.567 0.576 0.744 0.746

20-shot 0.730 0.77 0.677 0.766 0.877 0.902

5-shot 0.382 0.45 0.444 0.452 0.473 0.563

Fl-score 10-shot 0.424 0.568 0.613 0.554 0.676 0.697

20-shot 0.628 0.702 0.692 0.680 0.73 0.744

5-shot 0.387 0.449 0.455 0.455 0.473 0.563

Task e recall 10-shot 0.433 0.570 0.614 0.557 0.676 0.697
20-shot 0.628 0.703 0.692 0.680 0.730 0.744

5-shot 0.383 0.455 0.452 0.453 0.472 0.566

precision 10-shot 0.437 0.569 0.615 0.557 0.677 0.698

20-shot 0.629 0.704 0.693 0.683 0.732 0.744

the proposed framework. We speculate that the reason for this
phenomenon is that the feature decoupling structure designed in
this paper allows the model to mine potentially valuable information
in task-irrelevant data to assist its own learning. The performance of
the model based on ResNet is higher than the classic convolutional
network VGG. This situation illustrates the necessity of designing
the residual structure in this paper. The residual structure helps
improve the model’s ability to learn features of different scales. The
performance of Transformer is also lower than ResNet, which also
proves the necessity of the feature extraction module designed in
this paper. It can effectively alleviate the difficulty of Transformer
in learning translation invariance. In addition, the performance of
ResNet does not exceed the proposed model. The reason for this
may be that the MMB can effectively alleviate the difficulty of CNN
in learning feature dependencies. The existence of a single structure
can be further enhanced [47-49].

For the hospital scenario, we used data from three centers,
including five tasks, namely, task a (assessing benign or colon
cancer with colon tissue), task b (assessing the lung squamous
cell carcinoma, lung adenocarcinoma or benign with lung
tissue), task c (assessing the tumor, inflammation or benign with
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colon tissue), task d (assessing lobular carcinoma, mucinous
carcinoma and papillary carcinoma) and task e (assessing adenosis,
fibroadenoma, phyllodes tumor, tubular adenoma). The model
performance is shown in Table 2 and Figure 6. The confusion
matrices are shown in Supplementary Appendix Figures A7-A24.
The methods of comparison include PROTO [50], ANIL [51],
MAML [52], DN4 [53].

It can be seen from the experimental results that compared with
other methods, the proposed method has advantages in various
evaluation indicators. We speculate that this is because models
based only on convolution are difficult to mine useful information
from task-unrelated data to assist their own learning. Therefore,
when faced with lightweight data, the models have difficulty in
demonstrating good generalization ability. At the same time, the
performance of w. o. MMB does not exceed the proposed model.
Here, w. 0. MMB refers to replacing MMB with convolutional
layers, using only the feature decoupling strategy proposed in this
paper. This experimental phenomenon once again proves that the
MMB designed can effectively alleviate the problem that classic
convolutional networks are difficult to learn feature dependencies.
In addition, compared with other models, this method does not
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FIGURE 6
Model's performance of task a, b, ¢, d and e in the hospital scenario.

suffer from task differences in performance. This also confirms the Representation, thereby enhancing the robustness of the model.

above viewpoint that the multi-subspace mapping method designed =~ Meanwhile, it can be noted that the performance of the model in
in this paper enables the model to master different expression forms  tasks d and e is limited. We speculate that there may be the following

of feature. reasons. First, Task e involves four pathological categories and Task
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TABLE 3 Cross scenario performance validation, where F-Task a and F-Task b represent Task a and b in industrial scenarios,H-Task a and H-Task b
represent Task a and b in hospital scenarios.

F-Task a F-Task b
5-shot 10-shot 20-shot 5-shot 10-shot 20-shot
DLA-MatchNet 0.850 + 0.032 0.892 +0.021 0.921+0.013 0.420 + 0.041 0.510 +0.033 0.585 + 0.024
LFT 0.780 + 0.038 0.835 + 0.029 0.872 4 0.019 0.395 + 0.040 0.478 + 0.034 0.568 + 0.025
OUR 0.965 + 0.015 0.991 + 0.008 0.995 + 0.005 0.518 +0.028 0.641 +0.019 0.697 +0.012
H-Task a
10-shot
DLA-MatchNet 0.802 + 0.036 0.851 +0.028 0.890 + 0.018 0.790 + 0.034 0.832 +0.024 0.875 4 0.017
LFT 0.862 % 0.029 0.901 +0.019 0.935+0.012 0.780 + 0.033 0.850 + 0.021 0.890 + 0.014
OUR 0.980 + 0.012 0.981 + 0.007 0.998 + 0.002 0.869 + 0.020 0.922 +0.013 0.938 + 0.009

d includes three carcinoma subtypes, whereas Task a (2 categories)
and Task b (3 less overlapping categories) have fewer or more
distinguishable classes. More categories increase inter-class feature
overlap, making it harder for the model to learn discriminative
representations. Second, potential subtle class imbalance and
finer-grained pathological differences further challenge feature
decoupling. Thirdly, The difficulty of obtaining high-quality medical
samples is usually high, so image quality is also one of the reasons
for this phenomenon. How to further improve the performance of
the model is our main research work in the future.

The performance of different models in cross scenario scenarios
is also compared. In order to express the results concisely, the
F1 score had been chosen for comparison, which can objectively
represent the comprehensive performance of the model. Meanwhile,
we conducted a comparison of model stability by randomly selecting
samples and repeating the experiment five times, the results as
shown in Table 3. The methods of comparison include DLA-
MatchNet [54], LFT [55].

The core challenge of cross-domain few-shot detection is to
maintain stable performance when scenarios switch. MMAL-CL
achieves this goal through the unified framework of “EFM +
ADLM”. As shown in the experimental results, the LFT model
outperforms traditional models but lags behind DLA-MatchNet
and MMAL-CL. This confirms that feature transformation can
alleviate domain shift; however, the multi-subspace attention (EFM)
and adaptive feature disentanglement (ADLM) proposed in this
paper can achieve more accurate cross-domain feature alignment.
Meanwhile, this experimental phenomenon covers both industrial
and medical scenarios. Such consistency verifies that the multi-
subspace attention (EFM) (which captures cross-scale feature
dependencies) and adaptive feature disentanglement (ADLM)
(which separates domain-invariant features) of MMAL-CL can
effectively address scenario-specific challenges without modifying
the model architecture. Second, even under the 5-shot setting
where data is most scarce, the method proposed in this paper still
achieves acceptable performance. This indicates that the method
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can mine task-related information from task-irrelevant auxiliary
data via ADLM, reduce reliance on target domain samples, and
thus exhibits low sensitivity to the number of samples. Additionally,
MMAL-CL maintains a low standard deviation in both industrial
and medical scenarios, which proves that the proposed method
possesses a certain degree of robust adaptability to different data
distributions.

Combined with the experimental results of the above two
scenarios, our framework shows better performance in multiple
application scenarios and multiple data centers. This model is
applicable to multiple scenarios, including hospitals and factories.
With only a small amount of data, the model can achieve
acceptable performance. The model achieves different performances
in different tasks, we speculate that this is due to variations in
data quality collected by different edge devices. At the same time,
the model proposed uses the same auxiliary data for different
application scenarios, without having to re-find different auxiliary
data according to task requirements, which further increases the
potential of the framework to be applied.

4 Conclusion

This paper proposes MMAL-CL, a novel unified deep learning
model for cross-domain image identification that addresses
challenges in current systems. First, our cross-domain learning
mechanism establishes a principled approach for decoupling
domain-invariant and domain-specific features through a dual-
pathway design. This enables effective knowledge transfer from
task-irrelevant auxiliary data while preventing negative transfer,
as demonstrated by consistent performance across medical and
industrial testbeds.

Second, the unified feature representation framework achieves
significant improvements in both data efficiency and deployment
flexibility. The system maintains robust performance with limited
training samples through its hybrid attention-convolution feature
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extractor and adaptive scenario allocation module. In addition,
when faced with multiple data centers, the model can still provide
auxiliary analysis results stably and efficiently without the need
to retrain after collecting a large amount of data. Meanwhile, the
proposed method can use the same task-independent dataset to
assist the model in learning target tasks in different scenarios,
further paving the way for the development of the AI-based devices.
From the experimental results, in multiple datasets and application
scenarios (including hospitals and factories), our method has
achieved better performance. This proves that the method proposed
in this paper has better robustness to a certain extent. The next step
is to further improve the model’s ability to mine data features and
explore its auxiliary capabilities for more application scenarios.
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