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Multi-subspace mapping and 
adaptive learning: MMAL-CL for 
cross-domain few-shot image 
identification across scenarios

Qian Du, Xingyou Xia, Qilin Liu, Yanfei Lv, Lu Li and 
Zhuang Miao*

Information Research Center of Military Science, Academy of Military Science of the People’s 
Liberation Army, Beijing, China

Image detection plays a critical role in quality control across manufacturing 
and healthcare sectors, yet existing methods struggle to meet real-world 
requirements due to their heavy reliance on large labeled datasets, poor 
generalization across different domains, and limited adaptability to diverse 
application scenarios. These limitations significantly hinder the deployment of 
AI solutions in practical industrial settings where data scarcity and domain 
variations are common. To address these issues, we propose MMAL-CL, a unified 
deep learning framework that integrates an Edge Feature Module (EFM) with 
multi-subspace mapping attention and an Adaptive Deep Learning Module 
(ADLM) for cross-domain feature decoupling. The EFM extracts translation-
invariant features through residual convolution blocks and a novel multi-
subspace attention mechanism, enhancing the model’s ability to capture 
interdependencies between features. The ADLM enables few-shot learning by 
mixing task-irrelevant auxiliary data with target domain samples and optimizing 
feature separation via a dual-classifier strategy. Finally, we evaluated the model’s 
performance on five datasets (two industrial and three medical) demonstrate 
that MMAL-CL achieves 99.7% precision on the NEU-CLS dataset with full data 
and maintains 71.3% precision with only 20 samples per class, outperforming 
other methods in few-shot settings. The framework shows remarkable cross-
domain generalization capability, with an average 12.8% improvement in F1-
score over existing methods. These results highlight MMAL-CL’s potential as 
a practical solution for image detection that can operate effectively with 
limited training data while maintaining high accuracy across diverse application 
scenarios.
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deep learning, image identification, multi-subspace attention, cross-domain learning, 
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 1 Introduction

Image identification and classification have emerged as fundamental technologies 
supporting modern industrial systems and quality control processes [1, 2]. These 
techniques enable automated identification and analysis of critical features in manufacturing 
inspection, medical diagnosis, and other application domains [3]. The integration of 
machine learning with neural networks has significantly advanced this field, driving
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progress in diverse areas ranging from precision surface defect 
identification to complex medical image analysis [4–6]. However, 
as industrial applications diversify, current deep learning-based 
solutions reveal some challenges that demand urgent attention. 
Although these methods have achieved good performance under 
certain conditions, traditional image identification methods rely 
on manually designed feature extraction methods, so that image 
identification is limited by the quality of feature selection and design, 
resulting in limited identification performance of the model [7–10]. 
Compared with the time-consuming and labor-intensive traditional 
methods, deep learning-based methods have gradually become a 
research hotspot in the field of image identification due to its robust 
feature recognition capabilities and high accuracy [11–15].

With the outstanding performance of AlexNet in the 2012 
ImageNet competition, it successfully opened a new chapter in 
deep learning in the field of image identification [16–20, 27]. 
Many studies have demonstrated that AI technology has broad 
application prospects in medical diagnosis, industrial identification 
and other fields. In terms of image identification, Yu et al. proposed 
a RegNet that can identify sewer pipe defects. The model uses 
dropout to improve the overfitting problem of the model and uses 
LeakyReLU to further optimize the performance of the model [21]. 
Joon-Hyung et al. summarized the characteristics of industrial PCB 
images, analyzed the factors that may cause image data changes in 
the industrial field, and proposed a convolution-based PCB defect 
identification method on this basis [22]. Said et al. proposed a 
ResNet model based on transfer learning, which can use pathological 
images to diagnose whether a patient has breast cancer [23]. Sasank 
et al. built a model based on a deep residual network that can 
analyze the patient’s brain health based on CT images [24]. Gabriele 
et al. proposed a weakly supervised deep learning framework based 
on convolutional networks, which can analyze cancer based on 
whole slide pathological images [25]. In additional, deep learning 
technology has received widespread attention due to its ability to 
achieve performance similar to human experts in a short period 
of time [26, 27]. Jun et al. also proposed a data augmentation 
and weight allocation method to solve the problem of insufficient 
samples and uneven sample distribution [28]. Xiao et al. proposed a 
model for assisting in the diagnosis of COVID-19 using CT images. 
The model uses contrastive learning to train the encoder to capture 
the necessary features on large-scale datasets, to reduce the model’s 
demand for the quantity of raw data [29]. Tae Keun et al. proposed 
a feasibility study method, which improves the performance of 
the model in small-scale samples through data amplification [30]. 
Ling et al. proposed a DLA-MatchNet, which integrates channel 
attention, spatial attention and feature networks to enable it to 
handle small amounts of data samples [55].

Despite their demonstrated potential, current deep learning-
based identification methods still have limitations. A primary 
challenge stems from the substantial data dependence of these 
models. Variations in imaging devices and acquisition protocols 
across different facilities often lead to significant domain shifts, 
resulting in poor generalization performance when applying models 

Abbreviations: DL, Deep Learning; CNN, Convolutional Neural Networks; 
BN, Batch Normalization; CM, Classification Module; ADLM, Adaptive Deep 
Learning Module; EFM, Edge Feature Module.

to new clinical or industrial settings. While data augmentation 
strategies can partially mitigate this issue, collecting large-scale 
annotated datasets remains prohibitively expensive in many 
real-world scenarios. This is particularly evident in medical 
imaging, where patient privacy concerns restrict data availability, 
and in industrial inspection systems, where rare defects are 
inherently difficult to capture. Furthermore, existing approaches 
are typically designed for specific application domains, with limited 
transferability across different identification tasks. This domain 
specificity necessitates the development of specialized models for 
each application scenario, significantly increasing deployment costs 
and complexity. Although transfer learning techniques have shown 
promise in reducing data requirements, they still rely heavily on 
the availability of relevant source domain data. In practice, the 
requirement for semantically similar pre-training data often cannot 
be satisfied, particularly for novel or rare defect types. In order 
to alleviate the above problems, transfer learning was proposed. 
Although these studies have achieved many breakthroughs, they 
still need to be further optimized. Transfer learning typically uses 
similar data to pre-train the model for a target task. However, 
in reality, similar data is often difficult to obtain. More and 
more visual tasks are showing a need to reduce the number of 
training samples [31–34]. Architectural limitations of conventional 
CNNs present additional challenges. The local receptive fields of 
convolutional operations constrain the model’s ability to capture 
long-range feature dependencies, while simply increasing network 
depth leads to prohibitive computational costs. Recent studies have 
shown that attention mechanisms can improve feature learning, 
but most implementations fail to maintain an optimal balance 
between performance and computational efficiency, especially in 
resource-constrained industrial environments.

To solve the above problems, this paper proposes a novel 
deep learning-based image identification method and with the 
following contributions. First, we develop a unified deep learning 
architecture that integrates multi-scale feature extraction with 
attention mechanisms, enabling high-precision identification 
while maintaining computational efficiency. This design effectively 
balances model performance and resource requirements. Second, 
the proposed model significantly reduces data requirements through 
an innovative few-shot learning paradigm. Third, our solution 
introduces a scenario-adaptive mechanism that automatically 
adjusts feature representation according to different application 
domains. This innovation enables seamless deployment across 
diverse industrial and medical scenarios without architectural 
modifications. Fourth, we introduce a cross-domain learning 
mechanism that utilizes task-irrelevant auxiliary data. This 
component enhances model generalization while optimizing 
storage and computation costs. Finally, we propose a multi-
subspace attention module that overcomes the limitations of 
conventional CNNs. The principle of the framework proposed is 
illustrated in Figure 1.

2 Methods

This section presents the technical details of MMAL-CL, a 
unified framework designed for multi-scenario image identification 
in both medical and industrial scenarios. As illustrated in Figure 1. 
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FIGURE 1
Workflow of proposed framework.

MMAL-CL mainly includes Edge Feature Module (EFM) and 
Adaptive Deep Learning Module (ADLM). Firstly, the edge devices 
in each scenario will collect the required data, which is then be 
feed into the EFM to obtain edge primary features. And then the 
edge features will be sent to the ADLM for scenario allocation 
and feature identification. The aforementioned scenario allocation 
means that the ADLM will send information to the corresponding 
neural network based on the data source. After obtaining the 
feature identification results, the ADLM will return the results to 
the doctor or engineer and update the network parameters of the 
EFM according to the needs. Next, we will describe the model 
construction method in detail. 

2.1 Edge feature module

Edge Feature Module is responsible for automatically extracting 
primary features of scenario data at each edge devices, including 
pathological images collected from hospitals and steel surface 
images collected from factories. In order to make the model easier to 
converge, we will use an auxiliary dataset to initialize its parameters, 
as shown in Figure 2.

We use Mini-ImageNet as initialization auxiliary samples. It 
is worth noting that the samples used in pre-training are target-
independent data, which is consistent with the original intention 
mentioned above. In the initial parameter initialization stage, task-
independent auxiliary data will be sent to the EFM to obtain 
potential features, and then the above features will be used by the 
classification module (CM) to obtain the classification results. When 
the expected classification performance is obtained in the auxiliary 

FIGURE 2
Workflow of proposed framework. EFM parameter initialization 
schematic diagram (Conv-2D means 2D convolution layer, BN means 
batch normalization, MMB means multi-subspace mapping block, NL 
means normalization, FC means fully connection layer. The same 
color represents the same layer).

dataset, the pre-training phase is completed, and the EFM will be 
taken out and embedded into the edge server and the cloud.

Specifically, EFM mainly consists of convolution block and 
multi-subspace mapping block (MMB). The convolution block is 
designed as a residual structure, which consists of convolution 
layers and batch normalization. The residual structure helps improve 
the ability of model to learn different scales features and improve 
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FIGURE 3
Multi-subspace mapping block schematic Workflow of proposed 
framework.

the fluidity of gradients. After being processed by the residual 
convolution block, the information will be fed into the convolution 
layer to further refine the required features. Afterwards, the feature 
map will be sent to MMB, and the principle is shown in Figure 3.

To make the model can learn feature dependencies, this paper 
designs a data analysis structure based on self-attention, inspired 
by the transformer. After obtaining the feature maps from the 
above convolution layer, the model will linearly map these feature 
maps. This step allows the model to adjust input information more 
flexibly according to target requirements, allowing the model to 
converge more robustly. In addition, to a certain extent, this step 
can also be regarded as a process of appropriately mixing noise, 
which can improve the robustness of the model. After the feature 
mapping process, the feature maps will be converted into feature 
vectors. At this point, we embed the feature channel encoding into 
the corresponding feature vector. Feature encoding represents the 
identity information of different feature channels, which helps the 
model learn the interdependence between different features. The 
embedded feature vector will be sent to the LN layer. LN refers to 
layer normalization. The principle is shown in Equation 1.

LN(e fv) = GeLu(
β1

√σ2 + θ
⊙ (e fv− e fv) + β2) (1)

Among them, efv represents the above-mentioned embedded 
feature vector, GeLu (∗) represents the activation function GeLu, 
β1 and β2 are learnable parameters, σ is the variance, θ is the 
minimum value to ensure that the fraction is meaningful, and e fv
is the average of efv. As shown in Equation 1, layer normalization 
is not affected by the data batch size. Compared to the classical 
batch normalization whose performance is limited by the batch size, 

LN can provide more stable statistics for the model, thus making 
its convergence process more robust. After this, the corresponding 
vector will be fed into multi-subspace mapping layer. Q,K,V are 
three input channels respectively, each with independent mapping 
parameters, as shown in Equation 2.

Q′ = θQQ K′ = θKK V′ = θVV (2)

Here, θ(∗) is the mapping parameter of the respective channel, 
and Q′,K′,V′ are the mapped channel vectors respectively. 
Independent mapping parameters can not only improve the 
flexibility of the model, but can also be regarded as the mapping of 
the same input in different feature spaces to a certain extent, which 
helps to improve the robustness of the model. After mapping, Q′ and 
K′ will be dot producted, as shown in Equation 3.

Mul(Q′,K′) = Q′K′T (3)

In order to suppress the variance and avoid the difficulty 
of model learning caused by the vanishing gradient, we 
further perform a scaling operation based on Equation 3, 
which corresponds to S (∗) in Figure 3. The principle 
is shown in Equation 4.

S(Mul(Q′,K′)) =
Mul(Q′,K′)
√OQ

(4)

Here, OQ is the dimension of the input vector Q. Combining 
Equations 3, 4, the role of the dot product operation is to learn the 
interdependence between features. After processed by S (∗), we can 
use the softmax function to obtain the weights assigned to different 
features by the model. Based on the above weights, the output of a 
single subspace can be obtained by weighting the feature expression, 
as shown in Equation 5.

space(Q′,K′,V′) = so ftmax(S(Mul(Q′,K′)))V′ (5)

Where, space (∗) represents the output of a single subspace. 
By splicing the outputs of multiple subspaces and assigning 
corresponding weights, the final output of the multi-subspace 
mapping layer can be obtained, as shown in Equation 6.

MML(Q′,K′,V′) = f(space1, space2,…, spacen)θmml (6)

In the equation, MML(∗) is the output of multi-subspace 
mapping layer, f (∗) represents the splicing operation, spacen 
represents the output of the nth subspace, θmml is the corresponding 
parameter. Because it combines the output of multiple feature spaces, 
it is called a multi-subspace mapping layer.

As mentioned above, in order to improve the model’s ability to 
grasp features of different scales, this paper also designs residual 
links. As shown in Figure 3, after passing through the multi-
subspace mapping layer, the data will also be processed by the 
residual normalization layer, as shown in Equation 7.

R_LN(x) = LN(x+MML(x)) (7)

Here, R_LN(∗) represents the R-LN layer output, 
and x represents the channel-embedded feature vector. 
As shown in Figure 3, after being processed by the dense layer and 
dropout layer, the final output of MMB can be obtained.
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FIGURE 4
Adaptive deep learning module principal diagram.

After two consecutive MMB processes, the feature vector will 
be normalized and then sent to the CM. As shown in Figure 2, 
CM is a classic classification network. In the pre-training stage, 
the role of CM is to classify the auxiliary data. By training a 
classification model, it determines a good initial weight for EFM. 
The loss function of CM is cross-entropy. Compared with the 
mean square error, cross-entropy is not affected by the gradient 
of the activation function, which can avoid the problem of 
vanishing gradient to a certain extent and make the model easier
to converge. 

2.2 Adaptive deep learning module

Adaptive Deep Learning Module is responsible for using task-
independent data to assist the model in learning the target task. This 
can reduce the data scale for achieving the expected performance 
of the model in this paper, save storage space and deployment 
costs, and improve the model’s generalization ability for multi-center 
or multi-scenario data, thereby accelerating the further extension 
of AI-based image identification applications. It is worth noting 
that ADLM uses task-independent data to assist model learning 
instead of similar data, which reduces the model’s dependence 
on original data to a certain extent. The principle of ADLM is
shown in Figure 4.

We hope that the model can use task-independent data to assist 
itself in learning target data, but there are huge domain differences 
between data in different fields, which will make model learning 
difficult. To alleviate this problem, we mixed task independence data 
and task data to form transition data to alleviate the problem of 

difficulty in understanding domain differences. The mixing principle 
is shown in Equation 8.

TRD(TD(m),TID(n)) = φ ·TD(m) + (1−φ) ·TID(n) (8)

Where, TRD is transition data, TD(m) represents the random 
mth type sample in task data, TID(n) represents the nth type 
of sample in task independent data, φ is the mixing parameter. 
φ ∼ beta(ε,ε), here, ε ⊆ (0,∞). The transition samples only involve 
mutual mixing between single-class samples, and do not involve 
cross-mixing of multi-class samples.

As shown in Figure 4, the three types of samples are sent to three 
branches respectively. Among them, the structures of transition 
data analysis branch and task data analysis branch are the same 
as task independent data analysis branch. After obtaining relevant 
information, the sample features are sent to the sample classifier. The 
function of this classifier is to identify the type of target data, that is, 
to output the disease type or part surface defect type. The sample 
features and source features are fed into the source classifier. The 
function of the classifier is to identify the source of the data, that 
is, whether the data comes from the target data or auxiliary data. 
The purpose of designing two classifiers is to enable the model to 
automatically decouple sample features and source features. In other 
words, this design approach allows the model to separate features 
that are similar to the target task (sample features) and features that 
are not highly correlated to the target task (source features) from the 
task independent data. This is because sample features can determine 
the sample type, so it can be considered relevant to the target task. On 
the contrary, source features can determine the source of the sample, 
so it contains huge domain bias and is quite different from the 
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TABLE 1  The performance of each model in the factory scenario for different sample sizes in tasks a and b, where task a and task b represent NEU-CLS 
and SEVERSTAL respectively, OURS represents MMAL-CL.

Performance parameters Task a Task b

5-shot 10-shot 20-shot 5-shot 10-shot 20-shot

F1-score

ALEXNET 0.675 0.752 0.843 0.381 0.460 0.599

VGG19 0.721 0.813 0.880 0.326 0.433 0.520

RESNET50 0.661 0.829 0.891 0.256 0.316 0.560

INCEPTION 0.718 0.802 0.892 0.314 0.34 0.540

DPN92 0.675 0.772 0.869 0.247 0.339 0.476

Transformer 0.308 0.468 0.680 0.265 0.327 0.452

OURS 0.965 0.991 0.995 0.518 0.641 0.697

recall

ALEXNET 0.675 0.842 0.842 0.388 0.465 0.604

VGG19 0.738 0.882 0.882 0.321 0.429 0.531

RESNET50 0.705 0.894 0.894 0.299 0.331 0.556

INCEPTION 0.732 0.893 0.893 0.347 0.401 0.538

DPN92 0.706 0.869 0.869 0.33 0.381 0.501

Transformer 0.372 0.482 0.689 0.357 0.374 0.464

OURS 0.965 0.995 0.995 0.504 0.630 0.687

precision

ALEXNET 0.723 0.812 0.876 0.436 0.523 0.610

VGG19 0.764 0.859 0.896 0.383 0.454 0.565

RESNET50 0.785 0.878 0.909 0.314 0.325 0.601

INCEPTION 0.767 0.837 0.893 0.330 0.408 0.555

DPN92 0.803 0.814 0.883 0.304 0.431 0.574

Transformer 0.361 0.528 0.709 0.320 0.338 0.499

OURS 0.965 0.991 0.995 0.552 0.662 0.723

target task. When processing transition data and task data, the model 
classifies them separately based on the categories of their respective 
datasets, obtaining classification losses LTD and LTID. Because it is a 
classic classification model, the above two losses are cross-entropy. 
As stated in Equation 8, the transition data is a mixture of the above 
two types of data, so the loss function of the sample classifier can 
be expressed as Equation 9. Where, LSC is the loss function of the 
sample classifier.

LSC = φ · LTD + (1−φ) · LTID (9)

Source classifier is responsible for identifying the source of 
the data. Based on the above, we hope that the sample classifier 
can separate potential features that are closely related to the 
target task in task-irrelevant data, while the source classifier is 
intended to distinguish domain-specific differences. To achieve 
the above functions, we designed a special loss function for 
the source classifier. We want the sample feature to be domain-
independent, so the goal of the sample feature is to confuse 
the source classifier. When the classifier uses sample feature, the 
labels of all corresponding samples are 0.5, and the loss function 
is shown in Equation 10.
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FIGURE 5
Model’s performance in the factory scenario.

LSOUCTD
= 1

3N
∑

x
[KL(SOUC( ̂yTID), label) +KL(SOUC( ̂yTRD), label)

+KL(SOUC( ̂yTD), label)]
(10)

Here, KL (∗) is KL divergence, N is sample size, SOUC(∗) is the 
output of the source classifier, and label refers to the aforementioned 
label, ̂yTID, ̂yTRD, ̂yTD are the outputs of task independent data 
analysis branch, transition data analysis branch, and task data 
analysis branch respectively. When the classifier processes source 
features, it is expected to be able to distinguish data sources, and the 
loss function is shown in Equation 11.

LSOUCTID
= 1

3
[CE(SOUC( ̂yTID), lTID) +CE(SOUC( ̂yTD), lTD) +φ·

CE(SOUC( ̂yTRD), lTD) + (1−φ) ·CE(SOUC( ̂yTRD), lTID)
(11)

Here, CE (∗) is cross-entropy, lTID and lTD are data source labels, 
corresponding to task independent data and task data respectively. 
Finally, the overall loss function of the model can be written as 
follows in Equation 12.

L = LSC + LSOUC_TD + LSOUC_TID (12)

Finally, ADLM will return recognition results to terminal 
devices located in different scenarios and return model parameters 
to EFM. Through the above method, the model proposed can 
adapt to different data analysis needs in various scenarios, including 
hospitals and factories, by using the same auxiliary data. At the same 
time, this method also reduces the amount of data required for the 

model, saves deployment costs, improves the model’s generalization 
ability for multi-center or multi-scenario data, and accelerates the 
further extension of AI-based image identification applications. 

3 Experiment and discussion

In this section, we primarily describe the experimental data and 
evaluate the performance of our proposed model using precision, 
recall, and F1-score as the evaluation metrics. Additionally, 
we analyze and discuss the experimental results. The proposed 
approach is implemented by Pytorch on a workstation with NVIDIA 
GeForce GTX2080Ti. 

3.1 Data description

In this paper, we use five datasets from different scenarios, 
including two factory datasets (NEU-CLS and SEVERSTAL) [35, 
36] and three hospital datasets [37–39]. In addition, in order 
to explore the identification ability of our model on small-scale 
samples, we extracted 5, 10, and 20 samples per class from all 
datasets for training. These correspond to 5-data, 10-data and 20-
data respectively. Specifically, 5-data refers to randomly selecting five 
samples from each type of data, and the remaining data is used as 
the test set. The corresponding extraction methods for 10 and 20 are 
the same. Mini-ImageNet [40] is a universal pre-training data. The 
experimental result is the average of five repeated experiments. 
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TABLE 2  The performance of each model in the hospital scenario for different numbers of sample size in tasks a, b, c, d and e, where ours 
represents MMAL-CL.

Model ANIL DN4 MAML PROTO w.o.MMB Ours

Task a

F1-score

5-shot 0.703 0.824 0.771 0.748 0.959 0.980

10-shot 0.885 0.876 0.780 0.857 0.981 0.981

20-shot 0.941 0.952 0.801 0.878 0.998 0.998

recall

5-shot 0.704 0.824 0.772 0.748 0.959 0.980

10-shot 0.885 0.876 0.781 0.857 0.981 0.981

20-shot 0.941 0.952 0.801 0.878 0.998 0.998

precision

5-shot 0.706 0.824 0.778 0.748 0.959 0.980

10-shot 0.885 0.876 0.781 0.857 0.981 0.981

20-shot 0.941 0.952 0.801 0.878 0.998 0.998

Task b

F1-score

5-shot 0.755 0.837 0.826 0.815 0.837 0.869

10-shot 0.841 0.866 0.862 0.849 0.908 0.922

20-shot 0.837 0.929 0.895 0.879 0.921 0.938

recall

5-shot 0.756 0.838 0.828 0.817 0.837 0.869

10-shot 0.841 0.866 0.863 0.850 0.908 0.922

20-shot 0.836 0.929 0.895 0.879 0.921 0.938

precision

5-shot 0.754 0.844 0.826 0.817 0.838 0.870

10-shot 0.842 0.868 0.865 0.852 0.908 0.922

20-shot 0.842 0.929 0.896 0.882 0.921 0.938

Task c

F1-score

5-shot 0.664 0.706 0.736 0.689 0.692 0.764

10-shot 0.687 0.745 0.732 0.754 0.748 0.771

20-shot 0.773 0.841 0.792 0.812 0.892 0.905

recall

5-shot 0.669 0.707 0.736 0.689 0.692 0.764

10-shot 0.688 0.745 0.731 0.754 0.748 0.771

20-shot 0.775 0.842 0.792 0.812 0.892 0.905

precision

5-shot 0.672 0.707 0.738 0.691 0.693 0.764

10-shot 0.690 0.745 0.745 0.755 0.749 0.771

20-shot 0.772 0.843 0.793 0.812 0.892 0.905

(Continued on the following page)

3.2 Results and analysis

We demonstrate the performance of our model and conduct 
many comparative experiments. For the factory scenario, the model 
performance is shown in Table 1 and Figure 5. The confusion matrix 
is shown in Supplementary Appendix Figures A1–A6. Here, task a is 

NEU-CLS and task b is SEVERSTAL. The methods of comparison 
include AlexNet [41], VGG19 [42], RESNET50 [43], INCEPTION 
[44], DPN92 [45], Transformer [46].

From the experimental results, the framework of this paper 
achieves better performance. Even though all comparison methods 
also use relevant data for pre-training, they still do not exceed 
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TABLE 2  (Continued) The performance of each model in the hospital scenario for different numbers of sample size in tasks a, b, c, d and e, where ours 
represents MMAL-CL.

Model ANIL DN4 MAML PROTO w.o.MMB Ours

Task d

F1-score

5-shot 0.524 0.554 0.537 0.546 0.525 0.557

10-shot 0.641 0.638 0.567 0.569 0.743 0.746

20-shot 0.729 0.768 0.674 0.766 0.877 0.902

recall

5-shot 0.539 0.554 0.54 0.546 0.525 0.557

10-shot 0.641 0.638 0.567 0.567 0.743 0.746

20-shot 0.729 0.768 0.673 0.766 0.877 0.902

precision

5-shot 0.529 0.557 0.541 0.549 0.526 0.557

10-shot 0.644 0.652 0.567 0.576 0.744 0.746

20-shot 0.730 0.77 0.677 0.766 0.877 0.902

Task e

F1-score

5-shot 0.382 0.45 0.444 0.452 0.473 0.563

10-shot 0.424 0.568 0.613 0.554 0.676 0.697

20-shot 0.628 0.702 0.692 0.680 0.73 0.744

recall

5-shot 0.387 0.449 0.455 0.455 0.473 0.563

10-shot 0.433 0.570 0.614 0.557 0.676 0.697

20-shot 0.628 0.703 0.692 0.680 0.730 0.744

precision

5-shot 0.383 0.455 0.452 0.453 0.472 0.566

10-shot 0.437 0.569 0.615 0.557 0.677 0.698

20-shot 0.629 0.704 0.693 0.683 0.732 0.744

the proposed framework. We speculate that the reason for this 
phenomenon is that the feature decoupling structure designed in 
this paper allows the model to mine potentially valuable information 
in task-irrelevant data to assist its own learning. The performance of 
the model based on ResNet is higher than the classic convolutional 
network VGG. This situation illustrates the necessity of designing 
the residual structure in this paper. The residual structure helps 
improve the model’s ability to learn features of different scales. The 
performance of Transformer is also lower than ResNet, which also 
proves the necessity of the feature extraction module designed in 
this paper. It can effectively alleviate the difficulty of Transformer 
in learning translation invariance. In addition, the performance of 
ResNet does not exceed the proposed model. The reason for this 
may be that the MMB can effectively alleviate the difficulty of CNN 
in learning feature dependencies. The existence of a single structure 
can be further enhanced [47–49].

For the hospital scenario, we used data from three centers, 
including five tasks, namely, task a (assessing benign or colon 
cancer with colon tissue), task b (assessing the lung squamous 
cell carcinoma, lung adenocarcinoma or benign with lung 
tissue), task c (assessing the tumor, inflammation or benign with 

colon tissue), task d (assessing lobular carcinoma, mucinous 
carcinoma and papillary carcinoma) and task e (assessing adenosis, 
fibroadenoma, phyllodes tumor, tubular adenoma). The model 
performance is shown in Table 2 and Figure 6. The confusion 
matrices are shown in Supplementary Appendix Figures A7–A24. 
The methods of comparison include PROTO [50], ANIL [51], 
MAML [52], DN4 [53].

It can be seen from the experimental results that compared with 
other methods, the proposed method has advantages in various 
evaluation indicators. We speculate that this is because models 
based only on convolution are difficult to mine useful information 
from task-unrelated data to assist their own learning. Therefore, 
when faced with lightweight data, the models have difficulty in 
demonstrating good generalization ability. At the same time, the 
performance of w. o. MMB does not exceed the proposed model. 
Here, w. o. MMB refers to replacing MMB with convolutional 
layers, using only the feature decoupling strategy proposed in this 
paper. This experimental phenomenon once again proves that the 
MMB designed can effectively alleviate the problem that classic 
convolutional networks are difficult to learn feature dependencies. 
In addition, compared with other models, this method does not 
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FIGURE 6
Model’s performance of task a, b, c, d and e in the hospital scenario.

suffer from task differences in performance. This also confirms the 
above viewpoint that the multi-subspace mapping method designed 
in this paper enables the model to master different expression forms 
of feature.

Representation, thereby enhancing the robustness of the model. 
Meanwhile, it can be noted that the performance of the model in 
tasks d and e is limited. We speculate that there may be the following 
reasons. First, Task e involves four pathological categories and Task 
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TABLE 3  Cross scenario performance validation, where F-Task a and F-Task b represent Task a and b in industrial scenarios,H-Task a and H-Task b 
represent Task a and b in hospital scenarios.

Model F-Task a F-Task b

5-shot 10-shot 20-shot 5-shot 10-shot 20-shot

DLA-MatchNet 0.850 ± 0.032 0.892 ± 0.021 0.921 ± 0.013 0.420 ± 0.041 0.510 ± 0.033 0.585 ± 0.024

LFT 0.780 ± 0.038 0.835 ± 0.029 0.872 ± 0.019 0.395 ± 0.040 0.478 ± 0.034 0.568 ± 0.025

OUR 0.965 ± 0.015 0.991 ± 0.008 0.995 ± 0.005 0.518 ± 0.028 0.641 ± 0.019 0.697 ± 0.012

H-Task a H-Task b

5-shot 10-shot 20-shot 5-shot 10-shot 20-shot

DLA-MatchNet 0.802 ± 0.036 0.851 ± 0.028 0.890 ± 0.018 0.790 ± 0.034 0.832 ± 0.024 0.875 ± 0.017

LFT 0.862 ± 0.029 0.901 ± 0.019 0.935 ± 0.012 0.780 ± 0.033 0.850 ± 0.021 0.890 ± 0.014

OUR 0.980 ± 0.012 0.981 ± 0.007 0.998 ± 0.002 0.869 ± 0.020 0.922 ± 0.013 0.938 ± 0.009

d includes three carcinoma subtypes, whereas Task a (2 categories) 
and Task b (3 less overlapping categories) have fewer or more 
distinguishable classes. More categories increase inter-class feature 
overlap, making it harder for the model to learn discriminative 
representations. Second, potential subtle class imbalance and 
finer-grained pathological differences further challenge feature 
decoupling. Thirdly, The difficulty of obtaining high-quality medical 
samples is usually high, so image quality is also one of the reasons 
for this phenomenon. How to further improve the performance of 
the model is our main research work in the future.

The performance of different models in cross scenario scenarios 
is also compared. In order to express the results concisely, the 
F1 score had been chosen for comparison, which can objectively 
represent the comprehensive performance of the model. Meanwhile, 
we conducted a comparison of model stability by randomly selecting 
samples and repeating the experiment five times, the results as 
shown in Table 3. The methods of comparison include DLA-
MatchNet [54], LFT [55].

The core challenge of cross-domain few-shot detection is to 
maintain stable performance when scenarios switch. MMAL-CL 
achieves this goal through the unified framework of “EFM + 
ADLM”. As shown in the experimental results, the LFT model 
outperforms traditional models but lags behind DLA-MatchNet 
and MMAL-CL. This confirms that feature transformation can 
alleviate domain shift; however, the multi-subspace attention (EFM) 
and adaptive feature disentanglement (ADLM) proposed in this 
paper can achieve more accurate cross-domain feature alignment. 
Meanwhile, this experimental phenomenon covers both industrial 
and medical scenarios. Such consistency verifies that the multi-
subspace attention (EFM) (which captures cross-scale feature 
dependencies) and adaptive feature disentanglement (ADLM) 
(which separates domain-invariant features) of MMAL-CL can 
effectively address scenario-specific challenges without modifying 
the model architecture. Second, even under the 5-shot setting 
where data is most scarce, the method proposed in this paper still 
achieves acceptable performance. This indicates that the method 

can mine task-related information from task-irrelevant auxiliary 
data via ADLM, reduce reliance on target domain samples, and 
thus exhibits low sensitivity to the number of samples. Additionally, 
MMAL-CL maintains a low standard deviation in both industrial 
and medical scenarios, which proves that the proposed method 
possesses a certain degree of robust adaptability to different data 
distributions.

Combined with the experimental results of the above two 
scenarios, our framework shows better performance in multiple 
application scenarios and multiple data centers. This model is 
applicable to multiple scenarios, including hospitals and factories. 
With only a small amount of data, the model can achieve 
acceptable performance. The model achieves different performances 
in different tasks, we speculate that this is due to variations in 
data quality collected by different edge devices. At the same time, 
the model proposed uses the same auxiliary data for different 
application scenarios, without having to re-find different auxiliary 
data according to task requirements, which further increases the 
potential of the framework to be applied. 

4 Conclusion

This paper proposes MMAL-CL, a novel unified deep learning 
model for cross-domain image identification that addresses 
challenges in current systems. First, our cross-domain learning 
mechanism establishes a principled approach for decoupling 
domain-invariant and domain-specific features through a dual-
pathway design. This enables effective knowledge transfer from 
task-irrelevant auxiliary data while preventing negative transfer, 
as demonstrated by consistent performance across medical and 
industrial testbeds.

Second, the unified feature representation framework achieves 
significant improvements in both data efficiency and deployment 
flexibility. The system maintains robust performance with limited 
training samples through its hybrid attention-convolution feature
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extractor and adaptive scenario allocation module. In addition, 
when faced with multiple data centers, the model can still provide 
auxiliary analysis results stably and efficiently without the need 
to retrain after collecting a large amount of data. Meanwhile, the 
proposed method can use the same task-independent dataset to 
assist the model in learning target tasks in different scenarios, 
further paving the way for the development of the AI-based devices. 
From the experimental results, in multiple datasets and application 
scenarios (including hospitals and factories), our method has 
achieved better performance. This proves that the method proposed 
in this paper has better robustness to a certain extent. The next step 
is to further improve the model’s ability to mine data features and 
explore its auxiliary capabilities for more application scenarios.
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