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Simulating gravitational 
dynamics via scalar field 
propagation

Brendan Toupin*

DIRECTV LLC, El Segundo, CA, United States

Introduction: We study whether gravity-like kinematics (bending, time-
delay, redshift-like shifts, capture/orbits) can arise as media analogs from 
a deterministic scalar-field propagation model without invoking mass or 
spacetime curvature.
Methods: We evolve a real scalar field under a spatially varying symmetric 
positive-definite transport tensor R(x) and non-negative damping field Λ(x); 
with source off (S≡0). Thirteen simulations quantify deflection, transit delay 
with escape thresholds, collapse/trapping and orbital containment, anisotropy-
induced drift, repulsion under curvature inversion, and interference. We monitor 
energy budgets (Rayleigh loss + boundary flux) and check spectral safety and 
robustness.
Results: Observables are reproducible on 256 × 256 grids with 512 × 512 
confirmations for key cases. Bending scales with ∥∇R∥ and flips sign under 
gradient reversal; transit delay increases monotonically with ∫Λdx and can 
prevent exit; bounded orbits satisfy a/p≤1.15 over a finite capture band; radial 
drift in 1/r2 profiles follows |r ̇|∝r^(-α) with a≈2; transverse drift sign matches 
sign(Rxy); interference visibility follows a cosine in relative phase.
Discussion: Results constitute operational gravitational analogs—transport and 
loss in structured media—rather than statements about spacetime curvature. 
We release code/configs/outputs for full reproducibility and outline laboratory 
test paths.
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 1 Introduction

Gravitational phenomena—trajectory bending, path-dependent time-delay, redshift-
like frequency shifts, capture, and rebound—are traditionally explained via spacetime 
curvature and mass [1–3]. Here we ask a narrower, operational question: to what extent 
can the kinematics of such effects be reproduced as gravitational analogs by a deterministic 
scalar-field propagation model moving through a structured medium? 

 1.1 Model ingredients at a glance

We evolve a real scalar field Φ(x,y, t) in two dimensions (and Φ(x,y,z, t) for a single 
3D scalability demonstration in the Supplement). A spatially varying, symmetric positive-
definite transport (resistance) tensor R(x,y) [R(x,y,z, t)] sets local propagation speed and
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GRAPHICAL ABSTRACT

directionality; its gradients and anisotropy bend paths and steer 
energy flux. A non-negative damping field Λ(x,y) [Λ(x,y,z)]
regulates loss and enables controlled sinks or absorbing layers. In 
homogeneous regions the directional effective speed along unit 
vector u is

ce f f = √u⊤Ru,

so spatial variation in R alone can generate curved characteristics, 
while Λ controls attenuation. The full evolution law, energy analysis, 
stability (CFL/Courant) bounds, and boundary conditions appear 
in Methods. This damped, anisotropic wave form is a generic 
effective model for transport in structured media (e.g., acoustics 
in inhomogeneous or lossy materials, metamaterial waveguides, or 
diffusion-wave hybrids). Here R(x) encodes direction-dependent 
conductance (or stiffness), while Λ(x) encodes local dissipation, 
providing a compact way to design and test kinematic analogs 
without invoking mass, force, or curvature. 

1.2 Operational use of “analog”

We call an outcome a gravitational analog when the model 
reproduces the dimensionless kinematic observables of a target 
phenomenon (e.g., deflection angle, path-delay ratio, frequency-
ratio shift) within stated tolerances—without asserting equivalence 
to Einstein’s equations or invoking spacetime curvature. For context, 
our benchmark observables refer to classic tests such as solar-limb 
deflection, radar-echo delay, and gravitational redshift [13–15]. 

1.3 Scope (what this paper is—and is not)

This study investigates kinematic analogs in a linear scalar-
transport model. It does not solve Einstein’s field equations, include 
back-reaction of energy on geometry, or model gravitomagnetic 
effects arising from spacetime curvature. Conservation statements 
apply in uniform-R, Λ = 0 subdomains; with Λ > 0, energy decays 
according to a derived law. We use idealized boundary conditions 
(reflective, absorbing, periodic) and disclose them in every figure. 
Unless stated otherwise, results are 2D. 

1.4 Inverse design

While this work solves the forward problem (given R, Λ→
observed kinematics), the framework also invites the inverse 
question: given a target behavior—e.g., a bound trajectory 
with specified aphelion/perihelion ratio or a prescribed transit 
delay—what R, Λ fields realize it subject to smoothness and 
physicality constraints? Because observables are differentiable 
functionals of R,Λ, gradient-based or bilevel schemes (forward 
solver + regularized optimizer) are natural next steps, 
enabling ‘transformation-acoustics-style’ design of analog 
gravitational media. 

1.5 Relation to prior work

Methodologically, our approach is adjacent to analogue gravity 
in acoustics and optics—where structured media reproduce aspects 
of gravitational kinematics [4–9]—yet remains distinct from 
numerical relativity, which directly solves Einstein’s equations under 
gauge and constraint handling [10–12]. We use this literature to 
situate scope, not to claim equivalence. 

1.6 Contributions

1. Unified formulation and mathematical spine. We make explicit 
the governing evolution law, the associated energy functional 
and decay law, stability/Courant bounds under symmetric 
positive-definite R, and boundary-condition treatments 
(Methods).

2. Thirteen simulations under one rule. We demonstrate 
bending (geodesic analog), Shapiro-like delay, redshift-like 
shifts, inverse-square-like radial drift, collapse-like trapping, 
rebound, interference, and related variants—each tied to a 
specific structure in (R,Λ) (Section 5).

3. Predictions and falsification. We define testable, dimensionless 
observables (deflection ̂a, delay ratio Δt/L, frequency ratio 
fnear/ f far), provide simple scaling relations, and state clear 
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falsifiers (e.g., chromatic bending in a static R; rotation-
induced effects in symmetric R) (Section 6).

4. Reproducibility and robustness. We release code, 
configurations, and figure-regeneration scripts via public DOIs 
(Data and Code Availability). Robustness studies—larger 
grids, alternate sources and boundary conditions.

1.7 Paper organization

Section 2 surveys related work. Section 3 overviews the modeling 
ingredients and maps phenomena to transport/damping structures. 
Section 4 presents the governing equation, energy law, stability bounds, 
and boundary conditions. Section 5 reports thirteen simulations with 
standardized, dimensionless metrics. Section 6 gives benchmarks and 
falsification tests. Section 7 discusses scope and limitations. All data 
and code are archived on Zenodo; DOIs are listed in the Data 
Availability statement. Robustness checks and additional figures are 
provided in the Supplement. 

2 Related work

Before presenting our model, we situate it among classical 
general relativity, analogue-gravity programs, and numerical relativity. 
Classical GR attributes gravitational phenomena to spacetime 
curvature sourced by stress–energy [1–3]; analogue gravity shows 
that structured media can reproduce many kinematic signatures (e.g., 
bending, delay) [4–9, 16–18]; numerical relativity solves Einstein’s 
equations directly in strong-field regimes [10–12]. Our contribution 
is a single-law, scalar-transport formulation that yields acceleration-
like kinematics as analogs—curved trajectories and path-dependent 
delays—through spatially varying transport and damping fields, 
without solving Einstein’s equations. We quantify outcomes using 
dimensionless observables (deflection angle, delay ratio, frequency 
ratio) and state falsifiers, developed in Sections 5, 6. 

2.1 General relativity and classic tests

General relativity (GR) explains gravitational phenomena as 
spacetime curvature sourced by stress–energy, with predictions 
verified from weak-to strong-field regimes [1–3, 20, 40]. The 
benchmark observables we reference—solar-limb light deflection, 
radar-echo time-delay, and gravitational redshift—are canonical GR 
tests [12–15, 49]. Our aim here is operational: reproduce these 
dimensionless kinematic observables as gravitational analogs using 
a linear scalar-transport model, without solving Einstein’s equations. 

2.2 Analogue gravity: acoustics and optics

Analogue-gravity programs show how structured media can 
mimic geodesic-like transport. In acoustics, effective-metric ideas 
(Unruh; Visser) emulate horizons and geodesic behavior in flowing 
or inhomogeneous media [4, 5], with broad reviews by Barceló, 
Liberati and Visser [6, 7]. In optics, transformation-optics frameworks 
(Leonhardt; Pendry–Schurig–Smith) use spatially varying constitutive 

parameters to bend rays and shape phase fronts in ways formally 
analogous to geodesic transport [7, 15, 39]. Laboratory demonstrations 
include fiber-optic analogue horizons and related effects [8, 26]. Closely 
related graded-index (GRIN) constructs (e.g., the Luneburg lens; 
standard treatments in Born and Wolf) realize achromatic bending 
via smooth index profiles [16, 17, 27, 48]. 

Terminology crosswalk (reader note). Transformation-optics 
“effective metrics” and GRIN “index profiles” play roles analogous 
to our transport (resistance) tensor R(x): all shape local propagation 
speed and directionality. We remain agnostic about emergent 
metrics and work directly with a symmetric positive-definite R(x)
and a non-negative damping field Λ(x) (Methods). 

2.3 Numerical relativity (contrast in scope)

Numerical relativity (NR) integrates Einstein’s equations with 
gauge/constraint handling to model strong-field spacetimes (e.g., 
binary black holes) [9–12]. By contrast, we evolve a single real 
scalar under spatially varying R and Λ to produce kinematic 
analogs of bending, delay, and frequency shifts. There is no 
methodological overlap: our results are analogs assessed by 
dimensionless observables, not GR parameter inference. 

2.4 Boundary treatments and stability in 
wave simulations

Open-domain wave simulations rely on artificial boundary 
treatments. Classical absorbing layers and non-reflecting boundary 
conditions appear across acoustics, seismics, and electromagnetics 
(e.g., Cerjan et al.; Berenger’s PML) [18, 19, 34–36]. We use 
a tapered-damping (“sponge”) layer—implemented by smoothly 
increasing Λ(x) near boundaries—which suppresses reflections and 
preserves simple energy accounting (Methods §4.5). Stability follows 
a CFL (Courant) bound tied to the largest eigenvalue of R and the 
grid spacings; explicit bounds and the time-stepping scheme are 
given in Methods. 

2.5 Relation to general relativity (scope 
boundary)

We study operational analogs of gravity-like kinematics in 
structured media, not solutions of Einstein’s equations. Our 
evolution law is a damped, anisotropic wave transport model on a 
fixed Euclidean lattice; it does not include curvature, geodesics, or 
mass-energy back-reaction. GR is used as a yardstick for kinematic 
motifs (bending, time delay, precession), not as the theory being 
solved [21–25, 30–33, 43–46, 49]. 

2.6 Relation to analogue gravity

Our scope aligns with analogue gravity: reproducing curved-
spacetime-like kinematics in non-gravitational media to probe 
mechanisms and guide experiments. Classic results (e.g., acoustic 
horizons) motivate the approach of designing media parameters 
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to elicit GR-reminiscent observables without asserting spacetime 
curvature [4, 6, 7, 48]. 

2.7 Relation to numerical relativity

This is not numerical relativity: we do not evolve the Einstein 
field equations, solve constraints, or manage gauge/radiative 
boundaries. We evolve a single scalar field with prescribed R(x) and 
Λ(x) and compare the resulting observables to GR-like kinematics 
for intuition only [11, 45]. 

2.8 Predictive value and benchmarks

The framework yields design-forward mappings from media to 
observables: 

• Bending (Section. 5.1): deflection vs. local gradients of R.
• Containment (Section 5.5): azimuthal drift ω and radial period 

Tr vs. basin shape/smoothness. These predictions are suited 
to metamaterial/GRIN-style testbeds where R, Λ can be 
engineered. For verification, we provide 5122 repeats with 
matching metrics (Supplementary Appendix D-E) and exact 
configs in Section 9 [15].

• Discriminants (analogs vs. generic wave effects). We tag a 
behavior as a gravity-like analog only when it (i) depends 
monotonically on a controlled feature of R, Λ (e.g., bend 
∝ local ∇R magnitude/direction), (ii) survives nuisance 
changes (e.g., modest window/crop, sampling), and (iii) fails 
under ablation (e.g., no bend when R is spatially constant; 
no collapse-like decay when Λ ≡ 0). These controls separate 
designed kinematics from generic diffraction/refraction. 
Cross-referenced ablations, definitions, and scripts are in 
Supplementary Appendix C and Section 9.

2.9 Limitations and differences

• No curvature/no EEP or PPN tests: we do not test GR, PPN 
parameters, or the equivalence principle [46, 47].

• Media analogs only: any frame-drag-like effects in §5.7 are 
media phenomena, not GR gravitomagnetism [48].

• Dissipation by design: Λ(x) models physical loss 
(absorbers/sponge); energy accounting follows Supplementary 
Appendix C [41].

• Forward design, not inverse GR: we design R, Λ to achieve 
target kinematics; we do not infer spacetime metrics 
from data [38].

2.10 Summary positioning and predicted 
observables

• Theory anchors: GR sets the gold standard for gravitational 
dynamics [1–3, 10–12].

• Method lineage: Analogue-gravity shows that structured 
media can reproduce many kinematic signatures without GR 
dynamics [4–9, 16–18].

• Our contribution: a single-law scalar-transport formulation 
that (i) makes those analogs explicit in terms of R
and Λ; (ii) quantifies outcomes via deflection angle ̂a, 
delay ratio Δt/L, and frequency ratio fnear/ f far; and (iii) 
states falsifiers (e.g., chromatic bending with static R; 
rotation-induced signatures in symmetric R), expanded in
Section 6.

3 Gravity-like behavior as emergent 
propagation in structured fields

Traditional theories attribute gravitational acceleration to 
mass—either via long-range forces (Newtonian mechanics) or 
spacetime curvature (general relativity) [6, 7, 48]. In both, 
mass–energy is the source term. Operationally, however, 
what is measured are kinematic outcomes—deflected paths, 
path-dependent time-delays, frequency shifts. This suggests a 
complementary question: can gravity-like kinematics arise as 
analogs from structured propagation alone, without solving 
Einstein’s equations [28, 29, 37]?

We explore this possibility with a constructive, deterministic 
model in which gravitational analogs emerge from scalar-field 
transport modulated by two spatial structures [38, 42]: 

• A resistance field Rij(x,y)[Rij(x,y,z)] (symmetric positive-
definite), which sets local propagation speed and 
directionality; its gradients and anisotropy steer energy flux 
and bend characteristics, and

• A damping field Λ(x,y) [Λ(x,y,z)] ≥ 0, which introduces 
controlled loss, enabling localized sinks and absorbing 
boundary layers.

The real scalar field Φ(x,y, t) [Φ(x,y,z, t)] volves under these 
structures according to a second-order update law (given explicitly 
in Methods, §4). Together, R and Λ form a structured substrate 
that steers, delays, or attenuates propagation. In this substrate we 
observe the following operational analogs of familiar gravitational
effects: 

• Acceleration-like drift toward high-delay regions. Packets 
exhibit net drift toward zones that increase cumulative travel-
time (via Λ > 0 sinks or graded R), producing sustained, 
direction-biased motion without external forcing [35].

• Curved trajectories (geodesic analogs) from ∇R. Smooth 
spatial gradients of R bend characteristics and focus/defocus 
packets, including lensing-like patterns [17, 18].

• Redshift-like frequency changes. Weak gradients in R across 
a cavity or standing-wave region yield measurable frequency-
ratio shifts [6, 7].

• Escape thresholds from integrated delay. Sufficient cumulative 
delay (from R wells or sinks) produces capture-vs-escape 
thresholds analogous to potential-well intuition.

We quantify these outcomes by dimensionless 
observables—deflection angle ̂a, delay ratio Δt/L, and frequency 
ratio fnear/ f far—and report them for every simulation (Section 5). 
In the linear regime we use frequency-independent R(x,y); 
predicted bending and delay are therefore achromatic. 
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Observation of chromatic bending with static R would falsify this 
description (Section 6). 

• Scope note. We seek kinematic analogs, not equivalence 
to curvature dynamics. The model does not include 
spacetime curvature, back-reaction of energy on geometry, 
or gravitomagnetic effects. Conservation statements apply in 
uniform-R, Λ = 0 regions; with Λ > 0, energy decays according 
to a derived law (Methods, §4).

This approach is simulatable, constructive, and testable. It 
models gravity-like behavior from first principles using only scalar 
transport with locally specified Rij(x,y) and Λ(x,y), providing a 
concrete foundation for the evolution law, energy analysis, stability 
bounds, and boundary treatments presented next (Methods, §4). 
Unless stated otherwise, results are 2D. 

4 Methods

This section makes the modeling contract explicit. We specify 
the field, domain, and notation; state the governing equation; 
derive the energy and decay law; interpret the tensor-divergence 
(anisotropy/steering); and give the discrete scheme, stability bound, 
and boundary/initial conditions. The goal is a paper-faithful, 
constructive recipe: every simulation in Section 5 can be regenerated 
from these ingredients without hidden parameters. 

4.1 Transparency and materials

The full simulation engine, discretization details, update 
rule, and example YAMLs/outputs are archived (Section 9). 
Implementation specifics—including stencil choices, stepper policy, 
and figure scripts—are documented in Supplementary Appendix C 
and mirrored in the software record. 

4.2 Fields and assumptions

We model a scalar Φ(x,y, t) obeying ∂ttΦ−∇ · (R(x)∇Φ) +
Λ(x)∂tΦ = 0, where R(x) ∈ Rd×d is symmetric positive-definite 
(SPD) and Λ(x) ≥ 0 is a scalar (or diagonal) loss field. Unless 
noted, R, Λ are time-independent and piecewise-smooth; typical 
forms include (i) radially symmetric wells R(r), (ii) anisotropic 
basins with off-diagonal coupling, and (iii) thin absorbing aprons 
(Λ > 0) at the boundary. Nondimensionalization and units are 
specified in Supplementary Appendix C. 

4.3 Notation and domain

We evolve a real scalar field Φ(x,y, t) on a rectangular domain 
Ω ⊂ R2. For a single scalability demonstration in the Supplement 
we use Φ(x,y,z, t) on Ω ⊂ R3. The transport (resistance) tensor 
is R(x,y) [R(x,y,z)], assumed symmetric positive-definite (SPD) 
everywhere; the damping field is Λ(x,y) ≥ 0 [Λ(x,y,z) ≥ 0]. Bold 
symbols denote vectors; indices i, j ∈ {1, ...,d} with d = 2 in the main 
text and d = 3 in the Supplement [42]. 

4.4 Boundary conditions

We use two BC families: (i) reflective (Neumann-type) for the 
core region in containment tests, and (ii) absorbing aprons (thin 
Λ > 0 sponge) to remove far-field clutter. The energy identity above 
shows how BCs enter via the surface flux term; reflective cores null 
the flux, while absorbing aprons intentionally dissipate outgoing 
energy. Each figure caption and YAML specifies the BC choice 
[18, 19]. 

4.5 Governing equation of motion

The field obeys a linear, second-order evolution law

∂ttΦ−∇ · (R(x)∇Φ) +Λ(x)∂tΦ = 0 (4.1)

with time-independent R(x) (SPD) and Λ(x) ≥ 0. In a 
homogeneous, undamped region (R = R0I,Λ = 0), plane waves 
satisfy ω2 = k⊤R0k; the directional effective speed (Equation 4.2) 
along unit vector u is

ce f f(u) = √u⊤R0u (4.2)

[38]. Thus gradients and anisotropy of R bend characteristics and 
steer energy flux; Λ regulates loss. 

4.6 Energy functional and decay law

Define the energy density e and flux S (Equation 4.3); the global 
identity appears in Equation 4.4:

e = 1
2
(∂tΦ)

2 + 1
2
(∇Φ)⊤R∇Φ,S = −∂tΦR∇Φ (4.3)

Multiplying (4.1) by ∂tΦ, integrating by parts, and using time-
independent coefficients gives

d
dt
∫
Ω

edV = −∫
Ω

Λ(∂tΦ)
2dV−∮

∂Ω

S · ̂ndA (4.4)

Consequences. In undamped, closed subdomains 
(Λ = 0,S · ̂n = 0) the energy is conserved. For Λ > 0 the energy decays 
monotonically aside from boundary flux. We report energy budgets 
per run (and reflection fractions for absorbing boundaries). 

4.6.1 Damping is not potential/curvature
Λ(x) introduces loss, not forces or curvature; collapse-like 

behavior arises from dissipation and resistance shaping, not from 
a gravitational potential. For numerical robustness, Λ is kept non-
negative and typically smoothed across a few grid cells to avoid stair-
step reflections; sharp discontinuities may cause artificial echoes and 
are avoided in the released configs. 

4.6.2 Energy identity (summary
For time-independent R(x) and Λ ≥ 0, define (Equation 4.5)

E(t) = 1
2
∫[(∂tΦ)

2 +∇Φ⊤R∇Φ]dv (4.5)
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Multiplying the evolution law by ∂tΦ, integrating, and using the 
divergence theorem gives

dE
dt
= −∫(∂tΦ)Λ(∂tΦ)dv−∮Φt(R∇Φ) · ndS (4.6)

i.e., monotone decay from damping (Λ ≥ 0) plus any 
boundary flux. With reflective core BCs the surface term 
vanishes; with a thin absorbing apron it captures intended 
outflow. The discrete energy Eh(t) we monitor follows the 
same structure (Supplementary Appendix C.1), matching the 
trends reported in §5 and Supplementary Appendix D, E. (Full 
derivation and the time-dependent Rt ≠ 0 extension are in 
Supplementary Appendix C.5) [41] 

4.7 Tensor divergence and anisotropy 
(interpretation)

The operator expands component-wise as

∇ · (R∇Φ) =
d

∑
i,j=1

∂i(Rij∂jΦ) (4.7)

so diagonal terms Rii set directional speeds and off-diagonals 
Rij(i ≠ j) rotate flux, steering characteristics. SPD R guarantees real, 
bounded ce f f(u) [35]. 

4.8 Discretization and time stepping

4.8.1 Spatial discretization (conservative 
divergence form)

On a uniform Cartesian grid with spacings hx,hy [hz] and cell-
centered Φij [Φi,j,k], we discretize ∇ · (R∇Φ) in flux-conservative 
form (Equations 4.6–4.8). In 2D:

Fx(i+
1
2
, j) = R_xx(i+

1
2
, j)

ϕi+1,j −Φi,j

hx

+R_xy(i+
1
2
, j)

Φi+1,j+1 −Φi+1,j−1 +Φi,j+1−
4hy

Fy(i, j+
1
2
) = R_yy(i, j+

1
2
)

ϕi,j+1 −Φi,j

hy

+R_yx(i, j+
1
2
)

Φi+1,j+1 −Φi−1,j+1 +Φi+1,j−
4hx

(∇ · (R∇Φ))ij =
Fx(i+

1
2
, j) − Fx(i−

1
2
, j)

hx
+

Fy(i, j+
1
2
) − Fy(i, j−

1
2
)

hy
(4.8)

with face-averaged coefficients R_αβ (arithmetic or harmonic) 
to preserve symmetry and discrete conservation [35, 36]. The 3D 
stencil is analogous. 

4.8.2 Time integration (damping-stable, second 
order)

Let V = ∂tΦ. We use a leapfrog-type update with semi-implicit 
damping (Crank–Nicolson split), which is unconditionally stable in 
Λ while keeping transport explicit [36]:

Vn+ 1
2 =

1− 1
2

ΛΔt

1+ 1
2

ΛΔt
Vn− 1

2 + Δt
1+ 1

2
ΛΔt
(∇ · (R∇Φn))

Φn+1 =Φn +ΔtVn+ 1
2 (4.9)

 

4.8.3 Stability (CFL) bound and coefficient 
conditions

Let λmax(R) be the maximum eigenvalue of R(x) on 
Ω. A sufficient CFL bound is

Δt ≤ CFL[λmax(R)(
1

hx
2 +

1
hy

2 +
1

hz
2)]
− 1

2

,CFL ≲ 0.9 (4.10)

[34]. We enforce SPD bounds 0 < rmin ≤ λi(R) ≤ rmax and 
Λ(x) ≥ 0. Discontinuities in Λ are tapered to limit numerical 
reflections (Section 4.6.2). 

4.9 Boundary and initial conditions

4.9.1 Reflective (Neumann, no-flux)

̂n · (R∇Φ) = 0 on Ω (4.11)
 

4.9.2 Absorbing sponge (tapered damping)
To emulate open boundaries we use a smoothly increasing Λ(x)

within a shell of thickness d adjacent to ∂Ω:

Λ(x) = Λmax
1− cos(πs(x)/d)

2
,0 ≤ s(x) ≤ d (4.12)

where s(x) is the distance to the boundary. Outside the sponge 
Λ = 0. We report the reflected-energy fraction (target: < 1%) for 
absorbing runs [35, 36]. 

4.9.3 Periodic
Variables and fluxes wrap across opposing faces identically. 

4.9.4 Initial data
We use localized pulses (Gaussian, Ricker), narrowband wave 

packets, and cavity modes as specified per figure. Each caption 
reports the source definition and parameters. 

4.10 Dimensionless observables 
(measurement procedures)

We evaluate outcomes via dimensionless kinematic observables 
reported in captions and summarized in Section 5.

(a) Deflection angle ̂a (bending/geodesic analog). Let c(t) be the 
packet centroid,

c(t) =
∫

Ω
x|Φ(x, t)|2dV

∫
Ω
|Φ(x, t) |2dV

(4.13)
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and ̂t the unit tangent to its path in the far field (measured over 
a window where R is homogeneous and Λ = 0). If ̂z is the initial 
propagation direction, define [17, 18]

̂a = arccos( ̂t · ̂z) (4.14)

(b) Delay ratio Δt/L (Shapiro-like delay). With and without a 
delay structure in R, record arrival times tstr and t0  at a downstream 
plane; let L be the homogeneous-medium path length. Then

Δt
L
=

tstr − t0

L
(4.15)

(c) Frequency ratio fnear/ f far (redshift-like shift). For a cavity 
or standing-wave region straddling a weak gradient in R, compute 
spectral peaks fnear and f far from local time-series on either side and 
report the ratio.

Achromaticity. In the linear regime we use frequency-
independent R(x); thus predicted bending and delay are achromatic. 
Observation of chromatic bending with static R would falsify this 
description (see Section 6) [6, 7]. 

4.11 Stability and δt policy (CFL)

With explicit second-order time stepping, stability follows a 
CFL-type bound determined by the discrete spatial operator for 
∇ · (R(x)∇Φ). Let Lr  denote that operator on the chosen grid; then 
a sufficient bound is

Δt ≤ α

√ρ(Lr)
(4.16)

where ρ(Lr) is the spectral radius and α ∈ (0,1) is a safety factor 
(recorded per run). Equivalently, on a uniform grid with spacing 
hmin and SPD R with largest eigenvalue λmax(r), a practical estimate is

Δt ≲ C
hmin

√λmax(R)
(4.17)

with C a scheme-dependent constant absorbed into α [34, 36]. 
We constrain the fields to

R(x)SPD with 0 < Rmin ≤ λi(R) ≤ Rmax ≤∞ (4.18)

and use an auto-CFL policy (safety factor α) whose chosen Δt is 
written to each run’s metadata. See Supplementary Appendix C for 
operator definitions and how ρ(Lr) is estimated in practice. 

4.12 Reporting standards (reproducibility 
hygiene)

Every figure/caption states: grid Nx ×Ny [ ×Nz], time step 
Δt, CFL margin (ratio to the bound in (4.5.3)), boundary 
condition (reflective/absorbing/periodic), explicit R(·)/Λ(·) forms, 
run duration, and the measured observable(s) { ̂a,Δt/L, fnear/ f far}. 
Energy budgets and (for sponges) reflection fractions appear in the 
Supplement. 

4.13 Provenance and versioning

All main-text figures were recomputed with an updated 
implementation (EOM-v1) of the governing Equation 4.1. On 
the original configurations from the reviewed submission, EOM-
v1 reproduces the reported dimensionless observables—deflection 
angle ̂a, delay ratio Δt/L, and frequency ratio fnear/ f far—within 
≤ 1%. We archive the original submission’s figure files and their 
exact configuration files for provenance; the executable EOM-v1 
code and “regen-all” scripts are provided via DOI in Data and Code 
Availability. 

5 Simulation results: Gravitational 
behavior from structured fields

This section reports operational analogs of gravitational 
phenomena produced by a scalar field Φ(x, t) evolving under 
anisotropic transport R(x) and Rayleigh-type damping Λ(x). We 
focus on observables, validation, and reproducibility; the full PDE, 
discretization, stability bounds, and energy identities are in §4. For 
every run we report the discrete energy proxy E(t) and attribute 
changes per the identity in §4.3 (derivation App. C.1).

Notation and dimensionality. We write x ∈ Rd with d ∈ {2,3}. 
Unless stated, runs are 2-D with x = (x,y); selected confirmations 
are 3-D with x = (x,y,z) and are labeled “(3-D)” in captions and the 
table. We follow §4: R(x) ∈ SPD with rmin ≤ λi(R) ≤ rmax ; Λ(x) ≥ 0. 
Measures use dV = ddx.

Code and data (reproducibility). All §5 configs (YAML), engine 
source, and outputs (.npz recorders with fields + metrics) are 
archived with commit hashes at < DOI/URL>. Each figure caption 
lists the config slug, grid(s), Δt, and the bundle ID.

Acceptance gates (applied to every §5. x). 

1. Energy budget closure after transients (dri ft ≤ 1− 3%) with 
tallied Rayleigh loss and boundary flux (definitions in §4).

2. The section’s primary metric meets its pre-registered threshold.
3. Robustness across grid size (2562/5122; selected 3-D where 

noted), seed shape, and relevant boundary swaps.
4. Spectral safety: content remains sub-Nyquist (anti-aliasing 

guard).
Predictions and falsifiers. Each §5. x states a concrete 
prediction for its primary metric and a matching falsifier; 
global statements are summarized in §4.

Boundary conditions (policy). Absorbing sponges for open 
domains, reflective for containment basins, periodic for controls; 
flux tallies verify low reflection (see §4). Profiles with interfaces 
are C1-smoothed over 3− 5Δx unless intentionally sharp; measured 
reflection is reported when interfaces are sharp by design.

Grid sizes and robustness. Figures in §5 use 2562 grids unless 
labeled; 5122 repeats for free-fall (§5.1) and containment (§5.5) 
are reported in Supplementary Appendix D,E. Boundary variants 
(reflective core + absorbing apron) are included; additional pulse-
shape sweeps are earmarked for follow-on work.

Scope and limits. Results are media analogs arising from 
structured propagation in (R,Λ)—not claims of mass, forces, or 
spacetime curvature. Comparisons to geometric-optics/eikonal 
predictions for R are treated as observable mappings, not 
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equivalences (see §4). Damping is a loss channel, not a potential: 
collapse-like outcomes here arise from focusing in R plus dissipation 
in Λ, not from forces or curvature.

Falsification routes. Each case in §5 defines a primary observable 
and an acceptance gate. A reproduction fails if (i) the observable 
falls outside the gate under the published YAML and seed, (ii) 
prescribed ablations (e.g., flatten R, set Λ = 0) do not suppress 
the effect, or (iii) grid refinement (Supplementary Appendix D,E) 
reverses qualitative behavior.

How to read §5. Each subsection states the objective and 
minimal setup (domain, R, Λ, BCs, seed), declares the primary 
metric and threshold, and reports results with robustness checks. 
Every run includes energy budgets (kinetic, structural, Rayleigh loss, 
boundary flux). Genesis is off unless explicitly stated.

A summary of all cases appears in Table 1. Figure conventions. 
Panels typically include: (A) timeline montage; (B) geometry/path; 
(C) energy budget; (D) the primary metric with acceptance band; 
(E) a sweep (ICs or profile). Captions include grid(s), Δt, config slug, 
and hashes.

5.1 Free-fall acceleration from structural 
asymmetry

5.1.1 Objective
Demonstrate that a compact packet acquires a systematic lateral 

deflection when traversing a weak spatial gradient in R with Λ = 0. In 
the weak-gradient regime the primary metric—net bend angle θ—is 
expected to be linear in the gradient magnitude and to flip sign when 
the gradient is reversed (see §4 for derivation/limits). 

5.1.2 Minimal setup

• Domain and BCs: 2-D grid (2562), absorbing boundaries with 
graded sponge; boundary flux tallied (§4).

• Profiles: R(x) = diag(rx(x), ry) with a weak, C1 monotone ramp 
in rx; ry  constant. Λ = 0.

• Seed: Compact packet launched straight across the gradient 
(zero initial lateral velocity).

• Genesis: Off.
• Config: grav_5_1_free_fall.yml (commit/hash in caption).

5.1.3 Primary metric and gates

• Metric: Bend angle θ from the centroid path, estimated by a 
straight-line fit of x(y) over the middle segment of the transit 
(method in §4).

• Acceptance gates (this subsection): 
1. Non-zero, sign-correct θ under the applied gradient;
2. Energy budget closure within 1%–3% post-transient, with 

Rayleigh loss = 0 and decline explained by boundary flux;
3. Spectral safety (sub-Nyquist content);
4. Robustness: reproducible under seed-shape 

variant; grid-refinement confirmation at 5122 
provided in Supplementary Appendix D.

5.1.4 Results (2562 main run)
A small, sign-consistent bend accumulates across the graded 

region; from the centroid path we obtain θ ≈ −2.14∘ for this run. 
Energy decreases smoothly due to absorbing boundaries; with Λ =
0, Rayleigh loss is zero and the discrete budget closes within 
tolerance. Optional checks (not shown) confirm sign flip under 
gradient reversal and θ ≈ 0 for the uniform control R = I.

Interpretation. The “free-fall” is an analog arising from spatial 
inhomogeneity of R: rays refract toward slower directions (lower 
effective transport), consistent with the eikonal picture for R (see §4). 
No forces or curvature are invoked. 

5.1.5 Falsification route

• Reverse the gradient: θ must change sign.
• Null profile R = I,Λ = 0:θ must be within the null noise band. 

Failure of either falsifier invalidates the claim for this setup.

Repro bundle. Figure assets and recorder outputs 
(.npz/.csv) for Figure 1 are archived with engine commit < hash> 
and bundle ID < ID>; see Data and Code Availability.

5.2 Collapse/sink (dissipative focusing)

5.2.1 Objective
Show that a compact packet undergoes irreversible 

collapse/trapping when traversing a region that combines focusing 
transport R(r) with positive damping Λ(r). The observable is a 
rapid increase of core energy fraction within an inner mask and a 
monotone energy decay explained by Rayleigh loss + boundary flux 
(no potential energy is invoked). 

5.2.2 Minimal setup

• Domain and BCs: 2-D grid (2562), absorbing boundaries with 
graded sponge; boundary flux tallied (§4).

• Profiles: Radially focusing R(r) (SPD, smooth), plus a central 
Λ(r) well whose depth increases toward r = 0; both profiles are 
C1-smoothed over 3− 5Δx.

• Seed: Compact packet launched toward the well center.
• Genesis: Off.
• Config: grav_5_2_collapse_sink.yml (commit/hash in 

caption).

5.2.3 Primary metric and gates

• Metric (collapse time TcT_cTc). Let Ecore(t) be the fraction of 
total field energy inside an inner disk of radius r∗ (specified in 
caption). Define Tc  as the earliest time such that Ecore(t) ≥ 0.80
for at least N consecutive recorder frames (e.g., N = 5).

• Acceptance gates (this subsection): 
1. Monotone rise of Ecore(t) crossing the threshold and staying 

above it (collapse achieved);
2. Energy budget closure within 1%–3% post-transient, with 

Rayleigh loss > 0 and boundary flux accounting for all 
decay (definitions/identity in §4);

3. Spectral safety (sub-Nyquist content);
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TABLE 1  Simulation suite overview: phenomenon, primary metric, key profiles R,Λ, and configuration slug for Figures 1–13.

Section Phenomenon Primary Metric Key profiles R, Λ Config slug

5.1 Free-fall from structural asymmetry Lateral deflection vs. ∥∇R∥ (linear, 
sign-correct)

Diagonal R with weak monotone 
gradientΛ = 0

grav_5_1_free_fall.yml

5.2 Collapse/sink (dissipative focusing) Time-to-collapse vs. Λ depth and 
focusing strength (decreasing)

Central Λ(r) well with focusing R(r) grav_5_2_collapse_sink.yml

5.3 Geodesic-like convergence Centerline curvature vs. R gradient; 
residuals to eikonal fit

Smoothly graded RΛ = 0 grav_5_3_geodesic_convergence.yml

5.4 Escape threshold and “redshift-like” 
delay

Transit delay vs. ∫Λdx (monotone); 
escape map

Slab with Λ(x) ramp; near-uniform 
R

grav_5_4_escape_redshift.yml

5.5 Orbital containment (limit cycle) Bounded radius a/p ≤ 1.15; flat ρ; 
budget closure

Annular R support + Λ(r) ring 
(radial loss)

grav_5_5_orbital_containment

5.6 Equivalence-/inertial-like response Path overlap of packets under 
amplitude/width scaling (≤
threshold)e

Uniform/weakly graded R; Λ as 
noted

grav_5_6_equivalence_inertial.yml

5.7 Directional drift 
(anisotropy-induced)

Lateral drift rate vs. 
anisotropy/off-diag in R

R with controlled anisotropyΛ = 0 grav_5_7_directional_drift.yml

5.8 Curvature without coordinates Extrinsic curvature k(s) vs. 
designed R(x,y) pattern

Spatially varying RΛ = 0 grav_5_8_curvature_without_
coords.yml

5.9 Local collapse trap Capture probability vs. well 
depth/width

Local Λ well embedded in smooth R grav_5_9_local_collapse_trap.yml

5.10 Reversible rebound (conservative 
basin)

Restitution coefficient; repeatability 
(≥ threshold)

Conservative R basinΛ = 0 grav_5_10_reversible_rebound.yml

5.11 Inverse-square-like drift Capture radius or drift trend vs. 
radial R(r) ∝ 1/r2

Radial R(r) gradient; small Λ for 
noise control

grav_5_11_inverse_square_drift.yml

5.12 Repulsion (curvature-inversion 
analog)

Divergence of trajectories vs. sign of 
∇R

R gradient sign-reversedΛ = 0 grav_5_12_repulsion_inversion.yml

5.13 Interference and stacking Contrast vs. initial phase Δ; budget 
integrity

Two coherent seeds; uniform R; low 
Λ

grav_5_13_interference_stacking.yml

Each §5. x details its primary metric, prediction and falsifier, and gates. Acceptance also requires budget closure, spectral safety, and robustness across grid, seed, and boundary swaps.
Seeds are compact packets (Gaussian/top-hat variants) unless stated. Profiles are C1 − smoothed (3− 5Δx) to minimize artificial reflections; when sharp interfaces are intentional, measured 
reflection coefficients are reported.
Baseline runs are 2562; selected 5122 and (3-D) confirmations are labeled where applicable.

4. Robustness: reproducible under small r∗ changes and 
seed-shape variants; 5122 confirmation in Supplementary 
Appendix D reproduces Tc within error.

5.2.4 Results (2562 main run)
The packet is drawn inward by the focusing R(r); radial 

components are preferentially eliminated by Λ(r), and the 
field locks into a compact core. Ecore(t) crosses the acceptance 
threshold and remains high thereafter, while total energy 
decreases smoothly. The Rayleigh tally is strictly positive and, 
together with boundary flux, explains the full budget drop; 
the discrete energy identity from §4 holds within the stated
tolerance.

Interpretation. Collapse here is a deterministic analog of 
trapping from focusing + dissipation: R(r) steers energy inward; 
Λ(r) irreversibly removes radial motion. This is not a gravitational 

potential well: damping is a loss channel, not a stored energy term 
(limits discussed in §4). 

5.2.5 Falsification route

• Remove Λ (negative control): with R(r) focusing but Λ =
0, the packet must fail to achieve irreversible collapse 
(rebound/breathing expected).

• Flatten R (transport control): with Λ(r) present but R
uniform, the packet must not focus sharply nor meet the 
Ecore gate. Failure of either control invalidates the claim for
this setup.

Repro bundle. Figure assets and recorder outputs (.npz/.csv with 
Ecore(t), energy tallies) for Figure 2 are archived with engine commit 
< hash> and bundle ID < ID>; see Data and Code Availability.

Frontiers in Physics 09 frontiersin.org

https://doi.org/10.3389/fphy.2025.1672745
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Toupin 10.3389/fphy.2025.1672745

FIGURE 1
Free-fall from structural asymmetry. A compact packet traverses a weak C1 ramp in R = diag(rx(x), ry) with Λ = 0 and absorbing boundaries. Timeline of 
|Φ|. Final frame of |Φ|. The packet acquires a small, sign-consistent bend; from the centroid path we measure θ ≈ −2.14∘ (method §4, mid-segment 
linear fit of x(y)). Energy declines monotonically due to boundary absorption; Rayleigh loss = 0, and the discrete budget closes within 1%–3% after 
transients (§4 identity). Falsifier: reversing the rx gradient must flip θ; the null profile R = I,Λ = 0 must yield θ ≈ 0. Config grav_5_1_free_fall.yml; 2-D 2562; 
Δt auto (CFL); sponge parameters as in §4. Grid refinement: a 5122 repeat reproduces θ within error (Supplementary Appendix D)

FIGURE 2
Collapse/sink from dissipative focusing. A compact packet encounters a focusing transport field R(r) and a central damping well Λ(r) (both 
C1-smoothed). Timeline of |Φ| showing inward focusing and core formation. Final frame. Collapse is certified when the core energy fraction Ecore(t)
within radius r∗  exceeds 0.80 for ≥N frames; this run passes the gate with collapse time Tc  (reported in the data bundle). The total energy decays 
monotonically; Rayleigh loss > 0 and boundary flux together account for the decrease, satisfying the discrete identity from §4 (budget drift ≤ 1–3% 
post-transient). Falsifiers: (i) with R focusing but Λ = 0, collapse must not persist (rebound/breathing control); (ii) with Λ present but R flattened, 
focusing must not achieve the gate. Config grav_5_2_collapse_sink.yml; 2-D 2562; Δt auto (CFL); sponge parameters as in §4. Grid refinement: a 5122

repeat reproduces Tc within error (Supplementary Appendix D).

5.3 Ray-like bending in a graded medium 
(geodesic-analog convergence)

5.3.1 Objective
Show that a compact packet follows a ray-like path through a 

smoothly graded R(x), consistent with the geometric-optics/eikonal 
prediction derived from §4. The observable is a centerline trajectory 
whose bending is sign-correct and whose path residual against the 
eikonal ray stays within a small tolerance (operational “geodesic-
analog” behavior). 

5.3.2 Minimal setup

• Domain and BCs: 2-D grid (2562), absorbing boundaries with 
graded sponges; boundary flux tallied (§4).

• Profiles: Smooth, C1-graded transport R(x) (monotone across 
one axis or radially focusing/defocusing, as noted in caption). 
Λ(x) = 0.

• Seed: Compact packet launched to traverse the gradient at a 
shallow incidence (quasi-ray).

• Config: grav_5_3_geodesic_convergence.yml (commit/hash 
in caption).

5.3.3 Primary metric and gates

• Metric (ray agreement). Extract the packet centerline γ
(centroid path) and compare to the eikonal ray γeik  computed 
from the R profile (procedure in §4). Report the RMS path 
residual
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εRMS =

1
L
∥γ− γeik∥2

Normalized by the path length LLL, and verify sign-correct bending 
when the gradient is reversed. 

• Acceptance gates (this subsection): 
1. εRMS within a pre-registered tolerance (small fraction of 

domain width);
2. Energy budget closure within 1%–3% after transients; with 

Λ = 0, loss arises from boundary flux only;
3. Spectral safety (sub-Nyquist content);
4. Robustness: unchanged within error under seed-shape 

variant and modest apron changes; 5122 confirmation 
provided in Supplementary Appendix E reproduces εRMS
within error.

5.3.4 Results (2562 main run)
The packet bends toward decreasing effective transport as it 

crosses the gradient, and the measured centerline closely tracks the 
eikonal prediction from §4. The RMS path residual εRMS  remains 
within the acceptance tolerance; reversing the gradient (control, not 
shown) flips the bending sign. Total energy decays smoothly due 
to absorbing boundaries; Rayleigh loss = 0, and the discrete budget 
closes within tolerance.

Interpretation. The observed path is a media analog 
of a geodesic: bending emerges from spatial variation 
of R via ray refraction in the geometric-optics limit, 
not from forces or curvature (scope/limits in §5 intro;
derivation in §4). 

5.3.5 Falsification route

• Gradient reversal: bending must flip sign.
• Null profile: with R = I, Λ = 0, the path must be straight within 

the null noise band.
• Ray mismatch: εRMS  exceeding tolerance falsifies ray agreement 

for this setup.

Repro bundle. Figure assets and recorder outputs (.npz/.csv 
with centerline and eikonal-ray data) for Figure 3 are archived with 
engine commit < hash> and bundle ID < ID>; see Data and Code 
Availability.

5.4 Transit delay and escape threshold 
(“redshift-like” analog)

5.4.1 Objective
Show that a compact packet experiences a deterministic 

transit delay when crossing a damping slab Λ(x) in an otherwise 
near-uniform transport field R, and characterize an escape 
threshold when the lossy region is thick/deep enough to extinguish 
the packet before exit. This is an analog of “gravitational 
redshift/delay,” arising from propagation in loss (not potential
or curvature). 

5.4.2 Minimal setup

• Domain and BCs: 2-D grid (2562), absorbing 
boundaries with graded sponges; boundary flux tallied
(§4).

• Profiles: Near-uniform R (SPD, constant to within a small 
tolerance). Damping slab Λ(x) with a smooth C1 ramp-
in/ramp-out, finite width w, peak height Λ0.

• Seed: Compact packet launched normal to the slab; reference 
run uses the same setup with Λ = 0.

• Config: grav_5_4_escape_redshift.yml (commit/hash in 
caption).

5.4.3 Primary metric and gates

• Transit delay Δτ. Define entry/exit planes bracketing the 
slab; measure the packet’s arrival times (centroid crossing or 
envelope peak).

Δτ = τΛ>0 − τΛ=0

Gate: Δτ > 0 and monotone in the slab’s path integral ∫Λdx
across small thickness/height variations (when provided). 

• Escape threshold. For larger Λ0  or w, report escape vs. collapse 
(no exit) within a fixed observation window.

• Acceptance (this subsection): 
1. Δτ > 0 vs. reference; monotone trend when a small sweep 

is included;
2. Energy budget closure within 1%–3% post-transient, with 

Rayleigh loss > 0 and boundary flux accounting for the full 
decline (identity in §4);

3. Spectral safety (sub-Nyquist content);
4. Robustness: unchanged within error under seed-shape 

variant and modest apron changes.

5.4.4 Results (2562 main run)
Crossing the lossy slab introduces a measurable positive 

delay Δτ relative to the uniform-medium reference. Total 
energy decays monotonically; the Rayleigh tally is positive, 
and together with boundary flux explains the budget drop 
within tolerance. For thicker/deeper slabs (when run), 
the packet fails to exit within the observation window, 
indicating an escape threshold consistent with increasing
∫Λdx.

Interpretation. The delay arises from propagation in a lossy 
region; it is an operational analog to redshift/time delay but does 
not imply potential energy or spacetime curvature. Here, Λ is a loss 
channel, and R remains nearly uniform (scope/limits in §5 intro; 
energy identity in §4). 

5.4.5 Falsification route

• Remove loss: With Λ = 0, the measured Δτ must be zero within 
the null band.

• Thin the slab: Reducing w or Λ0  must reduce Δτ; a non-
monotone trend falsifies the claim.
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FIGURE 3
Ray-like bending in a graded medium (geodesic-analog convergence). A compact packet traverses a smooth C1 gradient in R(x) with Λ = 0 and 
absorbing boundaries. Timeline of ∣Φ∣. Final frame. The centerline follows the eikonal ray predicted from the R profile (procedure in §4); the RMS path 
residual εRMS remains within tolerance, and bending is sign-correct. Energy declines monotonically due to boundary absorption; Rayleigh loss = 0, and 
the discrete budget closes within 1%–3% post-transient (§4 identity). Falsifiers: reversing the gradient must flip the bending sign; the null profile R = I, 
Λ = 0 must yield a straight path within noise. Config grav_5_3_geodesic_convergence.yml; 2-D 2562; Δt auto (CFL); sponge parameters as in §4. Grid 
refinement: a 5122 repeat reproduces εRMS  within error (Supplementary Appendix E).

FIGURE 4
Transit delay and escape threshold in a damping slab (“redshift-like” analog). A compact packet crosses a smooth C1 Λ(x) slab in an otherwise 
near-uniform R (absorbing BCs). Timeline of ∣Φ∣ through the slab. Final frame. We define the transit delay Δτ = τΛ>0 − τΛ=0 from centroid crossings at 
fixed entry/exit planes (method §4). This run exhibits Δτ; total energy decays monotonically, with Rayleigh loss > 0 and boundary flux accounting for 
the decline; the discrete budget closes within 1%–3% post-transient (§4 identity). For thicker/deeper slabs (when run), the packet fails to exit, marking 
an escape threshold consistent with increasing ∫Λdx. Falsifiers: Λ→ 0 must yield Δτ→ 0; small decreases in w or Λ0  must reduce Δτ. Config 
grav_5_4_escape_redshift.yml; 2-D 2562; Δτ auto (CFL); sponge parameters as in §4.

• Uniform control: With R = i and the same seed, any observed 
delay must track only Λ; if Δτ persists when Λ→ 0, the effect 
is spurious.

Repro bundle. Figure assets and recorder outputs (.npz/.csv with 
entry/exit times and energy tallies) for Figure 4 are archived with 
engine commit < hash> and bundle ID < ID>; see Data and Code 
Availability.

5.5 Orbital containment (limit-cycle)

5.5.1 Objective
Demonstrate sustained, bounded circulation (an orbit-like limit 

cycle) emerging from anisotropic transport R(x) plus a radially 
graded damping ring Λ(r). The observable is a circulating centroid 

with bounded radius and stable period while the energy budget 
closes (loss = Rayleigh + boundary flux; no forces or curvature). 

5.5.2 Minimal setup

• Domain and BCs: 2-D grid (2562), reflective basin for the core 
region with a thin absorbing apron outside to remove far-field 
clutter (§4).

• Profiles: Disk-shaped basin where R supports tangential 
transport (mild radial anisotropy; optional small off-diagonal 
near the rim). A smooth Λ(r) annulus attenuates radial motion 
more than tangential.

• Seed/IC: Compact packet placed off-center with a tangential 
bias (initial speed tuned inside the capture band).
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• Config: grav_5_5_orbital_containment.yml (commit/hash in 
caption).

5.5.3 Primary metric and gates

• Metric (bounded orbit). From the centroid path c(t), compute 
radius r(t) = ∥c(t) − c0∥. After transients, measure pericenter p
and apocenter a over many cycles and require

a/p ≤ 1.15

(boundedness gate). Track the circulation period T (stability 
within a tight band) and the rectification ratio ρ(t) (flat, no 
secular drift) 

• Acceptance (this subsection): 
1. Bounded radius (gate above) over ≥5–10 periods;
2. Energy budget closure within 1%–3% post-transient with 

Rayleigh loss + boundary flux accounting for decay (§4 
identity);

3. Spectral safety (sub-Nyquist);
4. Robustness: capture persists across a finite 

tangential-speed interval (capture band); 5122 
confirmation (Supplementary Appendix E) reproduces 
the metrics within error.

5.5.4 Results (2562 main run)
The packet curves into the annulus, sheds radial energy in the 

Λ(r) ring, and locks into a steady circulation. Over many periods 
the radius remains bounded (a/p ≤ 1.15), the period T is stable 
to small jitter, and ρ(t) is flat within measurement noise. Budgets 
close within tolerance; Rayleigh loss is concentrated where Λ(r)
peaks, and boundary flux is small and steady. Varying the initial 
tangential speed within a narrow window preserves containment 
(capture band); outside it the packet escapes or collapses (mapped 
in the supplement when included).

Interpretation. The containment is a deterministic limit cycle 
of the (Φ,R,Λ) dynamics: R supports tangential transport while Λ
selectively damps radial components, producing an effective annular 
“well” without introducing forces or curvature. 

5.5.5 Falsification route

• Remove Λ (negative control): with the damping ring off, no 
bounded orbit should persist (capture band vanishes).

• Disrupt R support: flattening R or removing its tangential 
preference should eliminate sustained circulation.

• Leakage/closure: large per-period boundary leakage or budget 
non-closure falsifies containment for this setup.

Repro bundle. Figure assets and recorder outputs (.npz/.csv with 
r(t), peri/apo markers, ρ(t), and energy tallies) for Figure 5 are 
archived with engine commit < hash> and bundle ID < ID>; see Data 
and Code Availability.

5.6 Equivalence-/inertial-like response

5.6.1 Objective
Test an equivalence-like property of the medium: packets 

with different internal properties (amplitude/width) but the same 
launch kinematics traverse the same path through a given R(x)
(and near-zero Λ) to within a small tolerance. Operationally, the 
bending/deflection depends on the field structure R and launch 
conditions, not on packet “mass-like” details. 

5.6.2 Minimal setup

• Domain and BCs: 2-D grid (2562), absorbing boundaries with 
graded sponges; boundary flux tallied (§4).

• Profiles: Uniform or weakly graded R(x) (as specified in the 
caption); Λ(x) ≈ 0 (exact value noted; used only for numerical 
hygiene if present).

• Seeds: Two (or more) compact packets, A and B, launched from 
the same point with the same initial velocity; they differ only in 
amplitude α and/or width σ (e.g., A: αA,σA ; B: αB ≠ αA,σB ≠ σA ).

• Config: grav_5_6_equivalence_inertial.yml (commit/hash in 
caption).

5.6.3 Primary metric and gates

• Path congruence. Extract centroid paths γA,γB and report the 
normalized RMS path mismatch

εpath =
1
L
∥γA − γb∥2

with L the path length. Gate: εpath below a pre-registered threshold 
(small fraction of domain width). 

• Arrival congruence. Difference in arrival time at a fixed exit 
plane |Δτ| within tolerance.

• Acceptance (this subsection):
1. εpath and |Δτ| within tolerance; sign-correct bending if a weak 

gradient is present;
2. Energy budget closure within 1%–3% post-transient; with Λ ≈

0, energy decline (if any) is accounted for by boundary flux;
3. Spectral safety (sub-Nyquist content);
4. Robustness: same verdict under a modest change of (α.σ) and 

an alternate seed shape (Gaussian ↔ top-hat).

5.6.4 Results (2562 main run)
Packets A and B co-propagate along the same centerline within 

the measurement band; εpath\varepsilon_{\text{path}}εpath and 
|Δτ| both satisfy the gates. When a weak gradient in R is present, 
both packets deflect with the same sign and magnitude (within 
error). Energy traces are smooth; with Λ ≈ 0, the observed decay is 
explained by boundary absorption, and the discrete budget closes 
within tolerance.

Interpretation. In this regime the update law (linear transport 
+ Rayleigh-type damping) makes the ray geometry depend on R
and the launch kinematics, not on amplitude/width—an inertial-
like or equivalence-like behavior of the analog medium. This is 
not a statement about gravitational mass; it is an operational 
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FIGURE 5
Orbital containment (limit-cycle). A compact packet launched with tangential bias enters a basin where R supports tangential transport and a smooth 
Λ(r) annulus damps radial motion (reflective core; absorbing apron). Timeline of |Φ| showing capture and steady circulation. Final frame. The orbit-like 
state satisfies the boundedness gate a/p ≤ 1.15 over many periods; the period T is stable and the rectification ratio ρ(t) is flat (methods §4). The energy 
budget closes within 1%–3% post-transient, with Rayleigh loss localized to the annulus and small, steady boundary flux. Falsifier: with Λ(r) = 0 the 
capture band disappears and no sustained orbit is observed; flattening R likewise removes containment. Config grav_5_5_orbital_containment.yml; 
2-D 2562; Δ(t) auto (CFL); sponge parameters as in §4. Grid refinement: a 5122 repeat reproduces a/p, T, and budget closure 
within error (Supplementary Appendix E).

analog confined to structured propagation (scope/limits in §5 intro; 
derivation cues in §4). 

5.6.5 Falsification route

• Amplitude/width sensitivity: if changing (α,σ) at fixed launch 
kinematics produces a path mismatch εpath  above the gate or a 
significant |Δτ|, the equivalence-like claim fails.

• Uniform control: with R = I, Λ = 0, both packets must follow a 
straight, coincident path within the null band.

• Strong loss: if modest Λ breaks congruence (beyond gate) 
while boundary accounting still closes, the effect is not 
equivalence-like in this setup.

Repro bundle. Figure assets and recorder outputs (.npz/.csv with 
γA,γB,εpath, |Δτ|, and energy tallies) for Figure 6 are archived with 
engine commit < hash> and bundle ID < ID>; see Data and Code 
Availability.

5.7 Directional drift from anisotropy 
(frame-drag–like analog)

5.7.1 Objective
Show that a compact packet develops a steady lateral drift 

when propagating through a medium with anisotropic transport 
featuring a controlled off-diagonal component Rxy. The observable 
is a non-zero, sign-controlled drift rate transverse to the nominal 
travel direction, produced by the orientation of R (no forces, no 
curvature). 

5.7.2 Minimal setup

• Domain and BCs: 2-D grid (2562), absorbing boundaries with 
graded sponges; boundary flux tallied (§4).

• Profiles: Spatially uniform magnitude of transport but with a 
tilted principal frame:

R(x) = Q⊤diag(r1, r2)Q,Q = Q(φ)

with r1 ≠ r2 and small fixed rotation φ ≠ 0 so that Rxy ≠ 0. 
Unless otherwise noted Λ(x) = 0 (or very small, only for 
numerical hygiene). 

• Seed: Compact packet launched along the nominal ̂y direction 
(zero initial lateral velocity).

• Config: grav_5_7_directional_drift.yml (commit/hash in 
caption).

5.7.3 Primary metric and gates

• Transverse drift rate. From the centroid path (x(t),y(t)), 
estimate the signed lateral drift

v⊥ ≡
dx
dt
|mid−track or s ≡ Δx

Δy

using a mid-segment linear fit to avoid entrance/exit transients 
(method §4). 

• Acceptance (this subsection): 
1. Non-zero v⊥ (or slope sss) with the correct sign set by 

sign(Rxy);
2. Energy budget closure within 1%–3% post-transient; with 

Λ ≈ 0, any energy decline is explained by boundary flux (§4 
identity);

3. Spectral safety (sub-Nyquist);
4. Robustness: same verdict under seed-shape variant 

(Gaussian ↔ top-hat) and modest apron changes; zero 
drift when Rxy = 0 (null control).

Frontiers in Physics 14 frontiersin.org

https://doi.org/10.3389/fphy.2025.1672745
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Toupin 10.3389/fphy.2025.1672745

FIGURE 6
Equivalence-/inertial-like response. Two packets with different amplitude/width but the same launch kinematics traverse the same R(x) (absorbing BCs; 
Λ ≈ 0). Timeline of |Φ| showing co-propagation. Final frame. The normalized RMS path mismatch εpath and arrival-time difference |Δτ| are both within 
pre-registered tolerances; if a weak gradient in R is present, both packets bend with the same sign and magnitude within error. Energy evolves 
smoothly; with Λ ≈ 0, decline is explained by boundary flux, and the discrete budget closes within 1%–3% after transients (§4 identity). Falsifiers: varying 
(α,σ) at fixed launch should not change the path beyond tolerance; with R = I,Λ = 0, paths must be straight and coincident within noise. Config 
grav_5_6_equivalence_inertial.yml; 2-D 2562; Δt auto (CFL); sponge parameters as in §4.

5.7.4 Results (2562 main run)
The centroid accumulates a steady transverse offset while 

advancing along ̂y ; the fitted mid-segment drift rate is non-
zero and sign-correct for the chosen tilt Q(φ). Repeating with 
Rxy = 0 yields drift consistent with zero (null control). Energy 
decreases smoothly due to absorbing boundaries; with Λ =
0, Rayleigh loss = 0, and the discrete budget closes within
tolerance.

Interpretation. Drift arises from principal-axis rotation of the 
anisotropic transport tensor: rays preferentially align to the faster 
direction, producing a lateral bias set by Rxy (geometric-optics view 
in §4). This is a media analog—not a claim of force or spacetime 
curvature. 

5.7.5 Falsification route

• Turn off the tilt: with Rxy = 0, the measured drift must vanish 
within the null band.

• Flip the sign: Rxy→−Rxy  must flip the drift sign.
• Over-damp test: introducing moderate Λ that suppresses the 

signal without changing signs would falsify the “transport-
induced” mechanism for this setup.

Repro bundle. Figure assets and recorder outputs (.npz/.csv with 
centroid path and drift estimate, plus energy tallies) for Figure 7 are 
archived with engine commit < hash> and bundle ID < ID>; see Data 
and Code Availability.

5.8 Curvature without coordinates 
(ray-shaping via R(x))

5.8.1 Objective
Show that we can produce a curved, ray-like trajectory 

purely by shaping the transport tensor R(x) in a Cartesian 
grid—i.e., without using curvilinear coordinates or external 

forcing. The observable is a centerline whose signed curvature 
κ(s) matches the eikonal prediction computed from the
designed R(x) (see §4). 

5.8.2 Minimal setup

• Domain and BCs: 2-D grid (2562), absorbing boundaries with 
graded sponges; boundary flux tallied (§4).

• Profiles: Smooth, C1 patterned R(x) (SPD everywhere) that 
bends rays along a target arc/guide; Λ(x) ≡ 0.

• Seed: Compact packet launched to enter the guide at shallow 
incidence (quasi-ray).

• Config: grav_5_8_curvature_without_coords.yml (commit/
hash in caption).

5.8.3 Primary metric and gates
5.8.3.1 Curvature agreement

Extract the packet centerline γ(s) and compute its signed 
curvature κ(s) (mid-segment, finite-difference estimate). Compute 
the RMS residual to the eikonal prediction κeik(s) derived from the 
designed R(x) (§4):

εκ = (
1
L
∫
s

[κ(s) − κeik(s)]
2ds)

1/2

Gate: εκ below a pre-registered tolerance (small fraction of the 
mean |κ|); sign-correct curvature throughout the guided segment.

Acceptance (this subsection): 

1. εκ within tolerance; sign-correct bending;
2. Energy budget closure within 1%–3% post-transient; with Λ ≡

0, loss is boundary flux only (identity in §4);
3. Spectral safety (sub-Nyquist);
4. Robustness: unchanged within error under seed-shape swap 

(Gaussian ↔ top-hat) and modest apron changes; null control 
with R = I yields κ ≈ 0.
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FIGURE 7
Directional drift from anisotropy (frame-drag–like analog). A compact packet traverses a medium with tilted anisotropic transport R (off-diagonal 
Rxy ≠ 0; Λ ≡ 0; absorbing boundaries. Timeline of |Φ| exhibiting steady lateral offset. Final frame. The mid-segment drift rate v⊥ (or slope s = Δx/Δy) is 
non-zero and sign-correct for the chosen tilt; with Rxy = 0 the drift is within the null band (control). Energy declines monotonically due to boundary 
absorption; Rayleigh loss = 0, and the discrete budget closes within 1%–3% after transients (§4 identity). Falsifiers: zero-tilt Rxy = 0 must yield zero drift; 
flipping sign(Rxy) must flip the measured drift. Config grav_5_7_directional_drift.yml; 2-D 2562; Δt auto (CFL); sponge parameters as in §4.

5.8.4 Results (2562 main run)
The packet follows the designed guide, producing a smooth, 

sign-consistent curvature. The measured κ(s) tracks the eikonal 
prediction with a small εκ  (within the acceptance band). Total 
energy decreases smoothly due to absorbing boundaries; Rayleigh 
loss = 0, and the discrete budget closes within tolerance. 
A null run with uniform R yields a straight path within
the noise band.

Interpretation. The “curvature” here is a media analog arising 
from spatial variation of R(x) that refracts rays—no coordinate 
transformation, forces, or spacetime curvature are invoked 
(scope/limits in §5 intro; derivation in §4). 

5.8.5 Falsification route

• Uniform control: R = I, Λ = 0 must yield κ ≈ 0 along the path.
• Pattern reversal/mirroring: flipping the designed guide’s 

orientation must flip the sign of κ(s).
• Tolerance breach: εκ  exceeding the pre-registered bound 

falsifies ray-shaping for this setup.

Repro bundle. Figure assets and recorder outputs (.npz/.csv with 
centerline and κ(s), plus energy tallies) for Figure 8 are archived with 
engine commit < hash> and bundle ID < ID>; see Data and Code 
Availability.

5.9 Local collapse trap

5.9.1 Objective
Show localized trapping: a compact packet enters a finite 

Λ(x) well embedded in an otherwise smooth R(x), sheds radial 
motion, and remains confined in the well region without re-
emergence. This is a dissipative analog of a potential “trap”: 
the mechanism is focusing in R plus loss in Λ (no forces
or curvature). 

5.9.2 Minimal setup

• Domain and BCs: 2-D grid (2562), absorbing boundaries with 
graded sponges; boundary flux tallied (§4).

• Profiles: Smooth background R(x) (near-uniform or 
mildly focusing), with a localized Λ well centered at 
xc(depthΛ0,widthw); all profiles C1-smoothed over 3–5 Δx.

• Seed: Compact packet launched toward xc (zero initial angular 
momentum unless noted).

• Config: grav_5_9_local_collapse_trap.yml (commit/hash in 
caption).

5.9.3 Primary metric and gates

• Capture decision + time. Define an inner mask B(xc, r∗). Let 
Ecore(t) be the fraction of total energy inside B.

• Capture gate: Ecore(t) ≥ 0.80 for ≥ N consecutive frames (e.g., 
N = 5) and no subsequent exit within the observation window.

• Capture time: Tcap = min {t:Ecore (t)crosses thegate}.
• Acceptance (this subsection): 

1. Gate satisfied (capture) and no re-emergence;
2. Energy budget closure within 1%–3% post-transient; 

Rayleigh loss > 0 (localized in the well) + boundary flux 
account for the decrease (identity in §4);

3. Spectral safety (sub-Nyquist);
4. Robustness: verdict unchanged under small changes of r∗  and 

seed shape; negative control with Λ ≡ 0 does not capture.

5.9.4 Results (2562 main run)
On entering the Λ well the packet focuses and stalls; Ecore(t)

rises above the 0.80 gate at Tcap  and stays high for the remainder 
of the run. The total energy decays monotonically; the Rayleigh 
tally is positive and concentrated within the well, and together with 
boundary flux explains the drop; the discrete budget closes within 
tolerance. A matched negative control with Λ ≡ 0 shows no sustained 
capture (rebound/dispersion).
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FIGURE 8
Curvature without coordinates (ray-shaping via R(z)). A compact packet traverses a smooth patterned R(x) (SPD; Λ ≡ 0; absorbing BCs) that bends rays 
along a target arc. Timeline of |Φ|. Final frame. The centerline curvature κ(s) follows the eikonal prediction from the designed R (procedure §4); the RMS 
curvature residual εκ remains within tolerance and the curvature is sign-correct along the guide. Energy declines monotonically due to boundary 
absorption; Rayleigh loss = 0, and the discrete budget closes within 1%–3% after transients (§4 identity). Falsifiers: with R = I the path must be straight 
within noise; mirroring the guide must flip the curvature sign. Config grav_5_8_curvature_without_coords.yml; 2-D 2562; Δt auto (CFL); sponge 
parameters as in §4.

Interpretation. Trapping here is an operational analog produced 
by directional transport + dissipation. Λ is a loss channel, 
not potential energy; confinement is the limit behavior of the 
(Φ,R,Λ) dynamics (scope/limits in §5 intro; energy identity
in §4). 

5.9.5 Falsification route

• Remove loss (control): with Λ ≡ 0, the capture gate must fail.
• Shift the well: moving xc off the traversed path must remove 

capture.
• Thin the well: reducing w or Λ0 must increase Tcap  and can 

eliminate capture; a non-monotone trend falsifies the claim.

Repro bundle. Figure assets and recorder outputs (.npz/.csv 
with Ecore(t), Tcap, and energy tallies) for Figure 9 are archived with 
engine commit < hash> and bundle ID < ID>; see Data and Code 
Availability.

5.10 Reversible rebound (conservative 
basin)

5.10.1 Objective
Demonstrate reversible, near-elastic rebound when a packet 

encounters a conservative transport basin (structured R(x), 
no damping). The observable is a collision-like interaction 
where the packet exits with the same speed (within 
tolerance) and mirrored angle as it entered—i.e., a high 
restitution and repeatable geometry without energy injection
or loss. 

5.10.2 Minimal setup

• Domain and BCs: 2-D grid (2562); reflective basin walls that 
define the conservative region; thin absorbing apron outside 
to quench far-field clutter (flux tallied; §4).

• Profiles: Conservative R(x) basin shaped to steer rays 
specularly (SPD everywhere; C1-smoothed). Λ(x) ≡ 0.

• Seed: Compact packet aimed to strike the basin at a set 
incidence angle.

• Config: grav_5_10_reversible_rebound.yml (commit/hash in 
caption).

5.10.3 Primary metric and gates

• Restitution (speed/energy). Let uin be centroid speed just 
before impact and uout after exit.

eu ≡
uout

uin
,eE ≡

Epost

Epre

Gate: eu (and/or ee) ≥ pre-registered threshold (near-unity). 

• Specular repeatability. Incidence vs. exit angles obey |θin + θout|
within a small tolerance; successive rebounds (when run) 
reproduce geometry within tolerance.

• Acceptance (this subsection): 
1. Restitution above threshold and specular repeatability 

satisfied;
2. Energy budget closure within 1%–3% post-transient, with 

Rayleigh loss = 0 and boundary flux ≈ 0 during the 
interaction (reflective core; any apron flux is negligible and 
tallied);

3. Spectral safety (sub-Nyquist);
4. Robustness: verdict unchanged under small incidence-

angle and seed-shape variations.

5.10.4 Results (2562 main run)
The packet strikes the conservative R-basin, undergoes 

a clean specular-like turn, and exits along the mirrored 
direction. Measured speed restitution eu  is near unity; the angle 
condition holds within the gate. Energy traces are flat over the 
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FIGURE 9
Local collapse trap. A compact packet encounters a localized damping well Λ(x) embedded in a smooth R(x) (absorbing BCs). Timeline of |Φ| showing 
inward focusing and stall. Final frame. Capture is certified when the core energy fraction Ecore(t) within radius r∗  exceeds 0.80 for ≥N frames without 
re-emergence; this run passes the gate with capture time Tcap  (reported in the data bundle). Total energy decays monotonically; Rayleigh loss > 0 
(localized in the well) and boundary flux account for the decline; the discrete budget closes within 1%–3% post-transient (§4 identity). Falsifiers: Λ→ 0
must remove capture; shifting/weakening the well must delay or eliminate capture. Config grav_5_9_local_collapse_trap.yml; 2-D 2562; Δt auto (CFL); 
smoothing/apron parameters as in §4.

interaction window; Rayleigh tally = 0, and boundary-band flux 
remains at the noise floor (reflective core). Repeating the shot 
with a slightly different incidence angle or an alternate seed 
(Gaussian ↔ top-hat) preserves restitution and geometry within
tolerance.

Interpretation. With Λ ≡ 0 and specularly shaped R, the 
dynamics are conservative: the update law reduces to anisotropic 
transport where the basin acts as a geometric mirror. The 
result is a reversible rebound—an operational analog of elastic 
reflection—without invoking forces or curvature (scope/limits in §5 
intro; energy identity in §4). 

5.10.5 Falsification route

• Introduce loss: adding Λ > 0 in the basin should lower eu, eE  
below the gate (inelastic rebound).

• Flatten R: removing the specular shaping should eliminate 
controlled rebound (no mirrored exit).

• Leakage/closure: detectable apron leakage during the 
interaction or budget non-closure falsifies conservativity for 
this setup.

Repro bundle. Figure assets and recorder outputs (.npz/.csv with 
uin, uout , angles, and energy tallies) for Figure 10 are archived with 
engine commit < hash> and bundle ID < ID>; see Data and Code 
Availability.

5.11 Inverse-square–like radial bias 
(attraction analog)

5.11.1 Objective
Show a central, inward bias consistent with an inverse-

square–like trend when a packet traverses a domain whose transport 
field R(x) is radially graded so that the gradient magnitude scales 
approximately as ∥∇R∥∝1/r2. The observable is a sign-correct 

inward drift and a mid-track power-law relation between radial drift 
and radius. 

5.11.2 Minimal setup

• Domain and BCs: 2-D grid (2562), absorbing boundaries with 
graded sponges; boundary flux tallied (§4).

• Profiles: Radially symmetric, C1-smoothed transport 
R(x) with a central strengthening such that ∥∇R∥(r) ≈
k/r2 over the measurement annulus; off-diagonals are 
zero (or small) so the effect is purely radial. Λ(x) ≈ 0
(exact value noted; only used for numerical hygiene
if present).

• Seed: Compact packet launched from r = r0  with near-
tangential motion (low initial radial component).

• Config: grav_5_11_inverse_square_drift.yml (commit/hash in 
caption).

5.11.3 Primary metric and gates

• Radial drift exponent. From the centroid path c(t), compute 
r(t) = ∥c(t)∥ and the signed mid-segment radial speed | ̇r|. Fit 
a power law | ̇r|∝ r−α  over the mid-track window (excluding 
entrance/exit).

• Gate: inward drift (correct sign) and α within a pre-registered 
band around two (e.g., 1.6 ≤ α ≤ 2.4).

• Acceptance (this subsection): 
1. Sign-correct inward drift and α\alphaα within band;
2. Energy budget closure within 1%–3% post-transient; with 

Λ ≈ 0, any decline is explained by boundary flux only 
(identity in §4);

3. Spectral safety (sub-Nyquist);
4. Robustness: unchanged within error under modest seed-

shape change (Gaussian ↔ top-hat) and gradient-strength 
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FIGURE 10
Reversible rebound in a conservative transport basin. A compact packet impinges on a specularly shaped, lossless R(x) basin (reflective core; absorbing 
apron; Λ ≡ 0). Timeline of |Φ| through approach and rebound. Final frame. Restitution eu = uout/uin (and eE) is near-unity; the exit angle mirrors 
incidence within tolerance (methods §4). The energy budget closes within 1%–3% post-transient: Rayleigh loss = 0; boundary-band flux ≈0 during the 
interaction. Falsifiers: introducing Λ > 0 should reduce restitution; flattening R should remove the specular exit; measurable leakage violates 
conservativity. Config grav_5_10_reversible_rebound.yml; 2-D 2562; Δt auto (CFL); smoothing/apron parameters as in §4.

perturbation; null control with uniform R yields drift 
consistent with zero.

5.11.4 Results (2562 main run)
The centroid acquires a steady inward bias while advancing 

around the center. The mid-track log–log fit of | ̇r| vs. r yields an 
exponent α within the acceptance band (value reported in the data 
bundle), and the drift is sign-correct. Energy decreases smoothly due 
to the absorbing apron; with Λ ≈ 0, Rayleigh loss ≈ 0, and the discrete 
budget closes within tolerance.

Interpretation. The inverse-square–like behavior is a media 
analog: a radial strengthening of R refracts rays toward the center so 
that the radial component of transport grows roughly like 1/r2 over 
the measurement annulus. No forces, mass, or spacetime curvature 
are invoked (scope/limits in §5 intro; geometric-optics view in §4). 

5.11.5 Falsification route

• Reverse the gradient: flipping the sign of ∇R must produce 
outward drift (sign flip).

• Flatten the profile: with R uniform, radial drift must lie within 
the null band.

• Exponent check: a mid-track fit with α\alphaα far outside the 
band falsifies the inverse-square-like claim for this setup.

Repro bundle. Figure assets and recorder outputs (.npz/.csv with 
r(t), | ̇r|, and the log–log fit, plus energy tallies) for Figure 11 are 
archived with engine commit < hash> and bundle ID < ID>; see Data 
and Code Availability.

5.12 Repulsion via curvature inversion 
(defocusing analog)

5.12.1 Objective
Demonstrate defocusing/outward divergence when the 

transport gradient is sign-inverted relative to the focusing cases: 

a compact packet launched across a region with ∇R oriented to 
increase effective transport along the approach should develop a 
sign-correct outward drift and nearby trajectories should separate. 
This is a media analog (ray refraction from R), not a force or 
curvature claim. 

5.12.2 Minimal setup

• Domain and BCs: 2-D grid (2562), absorbing boundaries with 
graded sponges; boundary flux tallied (§4).

• Profiles: Smooth, C1 gradient in R(x) with the opposite sign to 
§5.11/§5.3 so that rays are pushed outward (defocusing). 
Λ(x) ≡ 0.

• Seed(s): (i) A single compact packet for centerline 
measurement; (ii) an optional two-ray probe: two packets 
launched with small transverse offset δ0  to quantify divergence.

• Config: grav_5_12_repulsion_inversion.yml (commit/hash in 
caption).

5.12.3 Primary metric and gates

• Outward bias (single-ray). From the centroid path, compute 
the signed radial slope s = Δr/Δ𝓁 over the mid-track window; 
gate: s > 0 (outward) with the correct sign under gradient 
reversal.

• Divergence (two-ray). Track the transverse separation δ(t)
between the two probes; fit δ(t) ≈ δ0eλt or, for short windows, 
δ(t) = δ0(1+ μt). Gate: λ > 0 (or μ > 0) and monotone growth 
over the window.

• Acceptance (this subsection): 
1. Outward bias (single-ray) and positive divergence rate 

(two-ray) within tolerance;
2. Energy budget closure within 1%–3% post-transient; with 

Λ = 0 the decline (if any) is boundary flux only (identity in 
§4);

3. Spectral safety (sub-Nyquist);
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FIGURE 11
Inverse-square–like radial bias (attraction analog). A compact packet traverses a domain with radially strengthened transport R(x) such that 
∥∇R∥(r) ≈ k/r2 (absorbing BCs; Λ ≈ 0). Timeline of |Φ|. Final frame. From the centroid path we compute r(t) and | ̇r| over the mid-track window and fit 
| ̇r∝ r−α|; the measured α\alphaα lies within the pre-registered band around 2, and drift is inward (sign-correct). Energy declines monotonically due to 
boundary absorption; Rayleigh loss ≈ 0, and the discrete budget closes within 1%–3% after transients (§4 identity). Falsifiers: reversing the radial gradient 
must produce outward drift; with uniform R the radial drift must be within the null band. Config grav_5_11_inverse_square_drift.yml; 2-D 2562; Δt auto 
(CFL); smoothing/apron parameters as in §4.

4. Robustness: verdict unchanged under seed-shape swap 
(Gaussian ↔ top-hat) and modest apron changes; 
null control with R = I yields s ≈ 0 and no measurable 
divergence.

5.12.4 Results (2562 main run)
The centerline exhibits a clear outward drift across the graded 

region (positive mid-track slope s); the two-ray probe shows 
monotone separation with a positive fitted growth parameter 
(reported in the data bundle). Energy decays smoothly due to the 
absorbing sponge; with Λ ≡ 0, Rayleigh loss = 0, and the discrete 
budget closes within tolerance. Reversing the gradient flips the drift 
sign and removes the divergence trend (control), while a uniform-R
null shows straight propagation with (t) ≈ δ0 .

Interpretation. Defocusing here is a transport effect: rays refract 
away from regions of increasing transport (opposite of the focusing 
cases). The observable outward bias and separation follow from the 
geometric-optics limit of R(x) (see §4), not from forces or spacetime 
curvature. 

5.12.5 Falsification route

• Gradient reversal: must flip the sign of outward bias (to 
inward) and suppress divergence.

• Uniform control: with R = I, Λ = 0 both s and the growth rate 
must sit within the null band.

• Over-strong Λ (if added): introducing damping that changes 
the verdict while boundary accounting still closes would falsify 
a pure transport explanation for this setup.

Repro bundle. Figure assets and recorder outputs (.npz/.csv with 
centerline, two-ray separation, and energy tallies) for Figure 12 are 
archived with engine commit < hash> and bundle ID < ID>; see Data 
and Code Availability.

5.13 Interference and stacking

5.13.1 Objective
Demonstrate phase-sensitive superposition in the scalar 

medium: two coherent packets launched to overlap in a 
region of (nearly) uniform R(x) and negligible Λ(x) exhibit 
constructive or destructive outcomes depending on the relative 
phase Δϕ. The observables are the interference visibility in the 
overlap zone and the constructive gain (“stacking”) relative to a
single-packet baseline. 

5.13.2 Minimal setup

• Domain and BCs: 2-D grid (2562), absorbing boundaries with 
graded sponges; boundary flux tallied (§4).

• Profiles: R(x) uniform (or very weakly graded, noted in 
the caption); Λ(x) ≈ 0 (small only for numerical hygiene
if present).

• Seeds: Two equal-envelope compact packets launched from 
opposite sides to overlap in a fixed region; relative phase Δϕ
set at initialization.

• Config: grav_5_13_interference_stacking.yml (commit/hash 
in caption).

5.13.3 Primary metrics and gates

• Visibility (contrast) at overlap. In a small ROI centered on 
the overlap, measure peak and trough of |Φ| (or |Φ |2) at the 
overlap time t∗t_\astt∗  and report

V(Δϕ) =
Imax − Imin

Imax + Imin

with I the ROI statistic. Gate: V(Δϕ) follows a cosine law within 
tolerance (high near Δϕ ≈ π, low near Δϕ ≈ 0). 
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FIGURE 12
Repulsion via curvature inversion (defocusing analog). A compact packet traverses a smooth c1 gradient in R(x) with the opposite sign of the focusing 
cases (absorbing BCs; Λ ≡ 0). Timeline of |Φ|. Final frame. The centerline shows a sign-correct outward bias (positive mid-track radial slope), and (when 
used) a two-ray probe exhibits monotone separation with a positive growth parameter (methods §4). Energy declines monotonically due to boundary 
absorption; Rayleigh loss = 0, and the discrete budget closes within 1%–3% post-transient (§4 identity). Falsifiers: reversing the gradient must flip the 
bias and suppress separation; with uniform R the path must be straight and the two-ray separation flat. Config grav_5_12_repulsion_inversion.yml; 2-D 
2562; Δt auto (CFL); sponge parameters as in §4.

• Constructive gain (“stacking”). Compare the ROI peak at Δϕ =
0 to the single-packet baseline:

G =
Atwo,Δϕ=0

Asingle

Gate: G near the linear superposition prediction (≈2 in 
amplitude; tolerance specified). 

• Acceptance (this subsection): 
1. V(Δϕ) trend (cosine-like) and constructive gain G within 

gates;
2. Energy budget closure within 1%–3% post-transient; with 

Λ ≈ 0, any decline is boundary flux only (identity in §4);
3. Spectral safety (sub-Nyquist content);
4. Robustness: verdict unchanged under small seed-shape 

swaps (Gaussian ↔ top-hat) and modest timing offsets; 
incoherent control (random Δϕ) shows reduced/vanishing 
contrast

5.13.4 Results (2562 main run)
At the programmed overlap, the field exhibits phase-dependent 

contrast: near Δϕ ≈ 0 the ROI amplitude increases (stacking), 
while near Δϕ ≈ π it shows a strong notch (destructive). The 
measured visibility follows the expected cosine trend within 
tolerance, and the constructive gain G is close to the linear-
superposition prediction. Total energy evolves smoothly; with 
Λ ≈ 0, Rayleigh loss ≈ 0, and the discrete budget closes within 
the 1%–3% gate (decline, if any, is boundary absorption). 
Incoherent/phase-scrambled control runs reduce contrast as
expected.

Interpretation. Interference and stacking are wave-
propagation features of the scalar medium under the linear 
transport law; they are not gravitational claims. Here, 
R is (nearly) uniform and Λ is negligible, so outcomes 

track coherence and phase rather than curvature or 
forces (scope/limits in §5 intro; update/energy identities in
§4). 

5.13.5 Falsification route

• Phase scramble: randomizing Δϕ must collapse visibility.
• Single-packet control: with one seed removed, the ROI peak 

must match the baseline (no stacking).
• Loss sensitivity: increasing Λ should lower visibility and G; if 

V(Δϕ) remains high under strong loss while budgets still close, 
the superposition claim fails for this setup.

Repro bundle. Figure assets and recorder outputs (.npz/.csv with 
ROI metrics V(Δϕ), G, and energy tallies) for Figure 13 are archived 
with engine commit < hash> and bundle ID < ID>; see Data and 
Code Availability.

6 Discussion

6.1 What we demonstrated

Structured propagation in (R(x), Λ(x)) yields reproducible 
operational analogs of gravitational-like behavior. Across §5 we 
reported deflection and ray bending (§§5.1, 5.3, 5.8), dissipative 
collapse/containment and transit delay (§§5.2, 5.4, 5.5, 5.9), 
anisotropy-driven drift (§5.7), repulsion via curvature inversion 
(§5.12), and phase-sensitive interference (§5.13). Each subsection 
declares a primary metric with a paired falsifier, and accepted runs 
meet the acceptance gates: (i) primary metric passes; (ii) energy 
budget closure within 1%–3% post-transient; (iii) spectral safety; 
and (iv) robustness checks as specified. As noted in §5, the source 
term is off for all experiments (S ≡ 0); dynamics arise from the initial 
condition under R, Λ. 
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FIGURE 13
Interference and stacking. Two coherent packets meet in a region of uniform R(x) with Λ ≈ 0 (absorbing BCs). Timeline of |Φ| through the overlap. Final 
frame. The interference visibility V(Δϕ) measured in a small ROI follows the expected cosine-like trend (high near Δϕ ≈ π, low near Δϕ ≈ 0), and the 
constructive gain at Δϕ = 0 approaches the linear-superposition prediction (methods §4). Energy evolves smoothly; Rayleigh loss ≈ 0, and the discrete 
budget closes within 1%–3% after transients (§4 identity). Falsifiers: phase scramble must reduce V; removing one seed must eliminate stacking; 
stronger Λ should suppress contrast. Config grav_5_13_interference_stacking.yml; 2-D 2562; Δt auto (CFL); sponge parameters as in §4.

6.2 Transport-only vs. transport + loss

Transport-only (Λ ≡ 0). Smooth gradients in R refract rays, 
producing sign-correct bending consistent with the eikonal 
construction in §4; rotated principal axes (non-zero Rxy) induce 
directional drift with sign set by the tilt (§5.7).

Transport + loss (Λ > 0) Focusing R combined with positive 
Λ yields collapse/trapping (§§5.2, 5.9) and orbital containment 
(§5.5); a lossy slab produces transit delay and escape thresholds 
(§5.4). Throughout, Λ acts as a loss channel (Rayleigh dissipation), 
not a potential; containment emerges from focusing + selective 
dissipation, not forces or curvature. 

6.3 Predictions and falsifiers (operational, 
testable)

• Linear deflection: Θ∝∥∇R∥ in the weak-gradient regime; 
sign flips when the gradient is reversed (§§5.1, 5.3).

• Delay monotonicity and escape: Δτ increases with the path 
integral ∫Λdx; sufficiently large thickness/height prevents exit 
within the window (§5.4).

• Bounded orbit: with tangentially supportive R and an annular 
Λ(r), the orbit gate a/p ≤ 1.15 holds over a finite capture band 
in initial tangential speed (§5.5).

• Anisotropy drift: the transverse drift sign matches sign(Rxy); 
setting Rxy = 0 removes the drift (§5.7).

• Inverse-square–like trend: in a radial profile with ∥∇R∥∼1/r2, 
mid-track | ̇r|∝ r−α  with α ≈ 2; flipping the radial gradient 
reverses the bias (§5.11).

• Interference control: visibility follows a cosine law in 
relative phase; constructive gain at Δϕ = 2 approaches 
linear superposition (§5.13). Each prediction carries 
a falsifier (null R = I, remove Λ, sign reversal, or 
control geometry) and is reported alongside budget
accounting.

6.4 Numerical integrity and robustness

Main figures use 2562 grids; representative 5122 confirmations 
for deflection (§5.1) and containment (§5.5) reproduce primary 
metrics within error (Supplementary Appendix D,E). Profiles are 
C1-smoothed over 3–5 Δx, unless an interface is intentionally 
sharp—in which case measured reflections are reported. Recorder 
spectra remain sub-Nyquist [36]; CFL and stability bounds are 
enforced per §4. The discrete energy identity closes by construction: 
declines are explained by Rayleigh loss (when Λ > 0) and/or 
boundary flux (absorbing aprons), with post-transient drift within 
the stated tolerance. 

6.5 Positioning relative to prior work (cf. §2)

Our results align with graded-index and anisotropic transport 
intuition and intersect the analog-gravity literature at the level of 
observables: we recover ray-like paths, delays, and capture behaviors 
via structured propagation in (R,Λ). We do not model mass, 
forces, or spacetime curvature; agreement with eikonal predictions is 
treated as an observable mapping to R, not a geometric equivalence. 
This stance clarifies scope while preserving predictive content and 
reproducibility. 

7 Limitations and scope

Operational analogs, not GR. The claims in §5 are about 
observables produced by structured propagation in (R(x),Λ(x)). 
We do not model mass, forces, or spacetime curvature, and we 
make no attempt to solve Poisson/Einstein equations. Agreement 
with eikonal rays is treated as a mapping to R, not a geometric 
equivalence.

Model class. Results use a linear scalar evolution with static fields 
R ∈ SPD and Λ ≥ 0; no back-reaction (R,Λ do not depend on Φ). 
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Unless noted, the source term is off (S(x, t) ≡ 0), so dynamics arise 
from the initial condition.

Damping ≠ potential. Λ(x) is a loss channel (Rayleigh 
dissipation). With Λ > 0 the energy functional is not conserved and 
time-reversal symmetry is broken; “collapse/containment” reflect 
focusing + dissipation, not bound potentials.

Regime of validity (eikonal/gradients). Predictions for 
bending/curvature (§§5.1, 5.3, 5.8, 5.12) assume smooth R and 
weak gradients (slowly varying envelope). Strong gradients or sharp 
interfaces can introduce reflections and deviations; we typically 
smooth features over 3–5 Δx and report measured reflections where 
sharp transitions are intentional.

Boundaries. Absorbing sponges approximate open domains 
and are not reflection-free; reflective basins are idealized. Small 
boundary effects can bias long-time energy tallies and late-stage 
trajectories; we mitigate by flux accounting and apron sweeps but 
cannot eliminate them entirely.

Discretization and stability. Results depend on finite Δx, Δt
constrained by CFL; spectra approaching Nyquist may incur 
dispersion/aliasing. Main figures use 2562 grids; representative 5122

confirmations (5.1, 5.5; Appx D/E) reproduce primary metrics 
within error, but we do not claim full continuum extrapolation for 
every case.

Parameter sensitivity. Quantities such as capture bands, 
collapse/escape thresholds, and the inverse-square-like exponent 
depend on R focusing strength, Λ depth/width, and smoothing 
length. Reported slopes/exponents are extracted over mid-track 
windows; outside those windows the scaling may not hold.

Dimensionality. Baseline demonstrations are 2-D; selected 3-D 
confirmations are provided only where noted. We do not assume 
qualitative invariance of every effect under 3-D geometry.

Out of scope. Nonlinear self-interaction, time-dependent R, 
Λ, strongly dispersive/viscoelastic media, stochastic heterogeneity 
at scales comparable to Δx, and hardware imperfections are not 
modeled here.

Mitigations and outlook. We partially address these limits via 
energy-budget closure, null/negative controls, and grid refinement 
on representative cases. Future work targets hardware validation, 
broader parameter sweeps (with uncertainty bands), heterogeneous 
R, Λ, and selective 3-D studies.

3D implications. Our demonstrations are 2D for 
clarity/efficiency; the framework and code generalize to 3D
(Supplementary Appendix C). We expect quantitative shifts in 
stability/containment: e.g., different scaling of drift and radial 
“breathing” with basin curvature, and modified far-field decay 
rates from the 3D Green’s-function structure. The design-forward 
predictions (deflection vs. ∇R; ω, Tr  vs. basin shape) remain valid 
in 3D, but the acceptance gates will need 3D-specific calibration. A 
full 3D convergence/robustness study is slated as follow-on work. 

8 Implications and predictions

8.1 Implications

The §5 suite shows that shaping (R(x),Λ(x)) yields reproducible, 
falsifiable media analogs of gravitational-like observables. 
Practically, this enables: (i) benchmarking of transport solvers 

with pre-registered metrics and budget checks (bend θ, 
eikonal residuals, delay Δτ, capture time Tcap , orbit ratio α/p, 
radial exponent α, interference visibility V); (ii) design of 
graded media by steering with R and stabilizing/quenching 
with Λ; and (iii) inverse-design targets that translate 
desired paths/containment into constraints on R (transport)
and Λ (loss). 

8.2 Predictions (testable, with falsifiers)

1. Linear deflection (weak gradients). θ∝∥∇R∥; sign flips under 
gradient reversal. (Falsifiers: R = I⇒ θ ≈ 0; reversal ⇒ signθ
flip; cf. Figures 1, 3).

2. Transit delay and escape. Δτ increases monotonically with 
∫Δdx; sufficiently large w, Λ0, prevents exit within the window. 
(Falsifier: Λ→ 0⇒Δτ→ 0; Figure 4).

3. Bounded orbit (limit cycle). With tangentially supportive R
and annular Λ(r), a/p ≤ 1.15 over a finite capture band in initial 
tangential speed. (Falsifiers: Λ ≡ 0⇒ no sustained orbit; flatten 
R⇒ no containment; Figures 5, 12 confirm: E).

4. Anisotropy drift. sign(v⊥) = sign(Rxy); Rxy = 0 removes drift. 
(Figure 7).

5. Inverse-square–like trend. For ∥∇R∥∼1/r2, mid-track | ̇r|∝ r−a

with a ≈ 2; flipping the radial gradient reverses bias. 
(Figure 11).

6. Phase control. V(Δϕ) follows a cosine law; constructive 
gain at Δϕ = 0 approaches linear superposition.
(Figure 13).

Each prediction is paired with an explicit falsifier and is reported 
with energy-budget closure (Rayleigh loss and/or boundary flux; 
§4). Representative 5122 confirmations appear for deflection and 
containment (Appx D, E). 

8.2.1 Validation pathways

• Deflection/drift: graded-index or tilted-anisotropy 
plates/waveguides (null R = I, sign reversal controls).

• Delay/escape: programmable lossy slab with C1 ramp-in/out 
(Λ→ 0 control).

• Containment: annular R+Λ ring for limit cycles (Λ = 0
negative control).

• Interference: coherent pair with set ΔΦ (phase scramble 
control).

Experimental pathways. The transport tensor R(x) and loss 
field Λ(x) map naturally to engineered media: anisotropic acoustic 
metamaterials (spatially varying stiffness/density; off-diagonal 
couplings), photonic crystals/GRIN optics (index gradients as an 
optical transport analog), and loss-engineered layers (controlled 
attenuation as Λ). In such platforms, the predictions in §5 translate to 
design-forward tests: (i) deflection vs. local ∇R (free-fall/bending), 
and (ii) drift rate ω and radial period Tr vs. basin shape/smoothness 
(containment). The archived YAMLs (§9) provide exact fields and 
observables for bench replication; Supplementary Appendix D,E 
document grid-refinement checks. 
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8.3 Outlook

Near-term priorities: (i) hardware-in-the-loop confirmations 
for deflection (5.1/D) and containment (5.5/E); (ii) parameter-
swept capture maps with uncertainty bands; (iii) robustness under 
heterogeneous/noisy R, Λ; and (iv) selective 3-D demonstrations 
where geometry matters. 

9 Data, code, and reproducibility

9.1 Dataset (all figures/results)

Record. Simulating Gravitational Dynamics via Scalar 
Field Propagation: Dataset—Zenodo, version DOI 10.5281/
zenodo.17080017; license CC BY 4.0.

Contents. Per-phenomenon bundles (grav_5_1_∗…grav_5_
13_∗) with raw arrays, summary. json, observables. csv, exact YAML 
configs, figures, and SHA-256 checksums.

Direct pointers for grid-refinement checks. 

• §5.1 (Free-fall) 5122 repeat → Supplementary Appendix D. 
Dataset bundle: grav_5_1_free_fall_512.

• §5.5 (Orbital containment) 5122 repeat → Supplementary 
Appendix D. Dataset bundle: grav_5_5_orbital_containment_
512.

Cite this dataset as:
Toupin, B. (2025). Simulating Gravitational Dynamics via 

Scalar Field Propagation: Dataset. Zenodo. https://doi.org/10.5281/
zenodo.17080017. 

9.1.1 Software (URFTSim engine and scripts)
Record. URFTSim (V6-IR) — Zenodo, version DOI 10.5281/

zenodo.17088949; license MIT. Includes the simulator, batch/figure 
scripts, YAML configs, environment files, and CITATION. cff.

Reproducing this paper. 

1. Install from the software record (env files provided).
2. Run the exact YAML in the corresponding dataset bundle 

(configs are mirrored in both records).
3. Generate timelines/exposures with the included scripts and 

compare metrics to those reported in §5 and Supplementary 
Appendix D,E.

Cite this software as:
Toupin, B. (2025). URFTSim (V6-IR) [Computer software]. 

Zenodo. https://doi.org/10.5281/zenodo.17088949. 

9.2 Reproduction checklist (what to verify 
where)

• §5.1 Free-fall: Recompute bend angle and early-time quadratic 
fit a, v0  from observables. csv. Expected values are listed in 
Supplementary Appendix D (table row + paragraph).

• §5.5 Orbital containment: Recompute r, σr, [rmin, rmax], 
ω, Tr  from observables. csv using the definitions in 
Supplementary Appendix C (methods) and compare to
Supplementary Appendix E.

• Acceptance gates: Each §5 case specifies its metric and pass 
criteria; reproduced values should fall within the gates given 
in the figure caption or corresponding appendix.

9.3 Provenance and integrity

• Determinism: All runs specify seeds; results are repeatable 
under the stated precision.

• Integrity checks: Verify downloads using the SHA-256 
checksums shipped alongside each bundle.

• Energy proxy: Definition and caveats are in Supplementary 
Appendix C.1; raw E(t) series are included for every run.

9.4 Licensing and reuse

• Data and figures: CC BY 4.0 (attribute the dataset record).
• Code: MIT (retain copyright notice).

10 Conclusion

We presented a unified scalar-propagation framework in 
which structured (R(x),Λ(x)) produces reproducible media analogs 
of gravitational-like observables. The §5 suite covers deflection 
and ray bending, dissipative collapse/containment and delay, 
anisotropy-driven drift, repulsion via curvature inversion, and 
phase-sensitive interference. Each phenomenon is stated as a 
primary metric with an explicit falsifier, and accepted runs 
satisfy pre-registered acceptance gates (metric pass, energy-
budget closure within 1%–3% post-transient, spectral safety,
robustness).

Our contribution is practical and falsifiable. (i) We make 
the update rules and discrete energy identity operational by 
tallying Rayleigh loss and boundary flux in every experiment. 
(ii) We separate transport effects (from R) from loss (from 
Λ), showing that collapse/containment arise from focusing + 
dissipation, not from bound potentials. (iii) We package end-to-end 
reproducibility: configs, code, outputs, and figure scripts (see §9), 
with representative 5122 grid-refinement checks for deflection (D) 
and orbital containment (E).

Scope is explicit: these are media analogs, not statements 
about mass, forces, or spacetime curvature. Agreement with 
eikonal predictions is treated as an observable mapping to R, 
not a geometric equivalence; damping is a loss channel, not
stored energy.

The framework carries predictive value: linear deflection vs. 
∥∇R∥, monotone transit delay vs. ∫Λdx with escape thresholds, 
bounded orbits with a/p ≤ 1.15 over a capture band, anisotropy-
set drift, an inverse-square–like radial trend, and phase-
controlled interference (see §8). Each prediction has a built-in 
null/negative control.

Looking ahead, we target (i) hardware-in-the-loop 
confirmations for deflection and containment; (ii) parameter-swept 
capture maps with uncertainty bands; (iii) robustness under
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heterogeneous/noisy R, Λ; and (iv) selective 3-D validations where 
geometry matters. We also see immediate use as benchmarks for 
transport solvers and as design cues for graded media via inverse 
constraints on R (steering) and Λ (stabilization).

All materials needed to replicate and extend these results are 
archived (DOI, commit, bundles in §9).
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