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In this article, we reveal the novel types of exact solitons to the fourth-order 
nonlinear (1 + 1)-dimensional Boussinesq water wave equation. This model 
is obtained under the consideration of the smaller water depth and larger 
wavelength of the waves. The Boussinesq water wave equation is useful in 
understanding water wave behavior, harbor design, coastal dynamics, wave 
propagation in shallow seas, ocean wave models, marine environments, etc. 
For our aim, we used the Sardar sub-equation technique. As a result, new 
types of exact wave solitons involving trigonometry, hyperbolic trigonometry, 
and rational functions are gained. Some gained solutions are represented 
through 2D, 3D, contour, and density plots. In bifurcation analysis, a new planar 
dynamical system of the governing model is obtained by applying the Galilean 
transformation, and all possible phase portraits are discussed. Modulation 
instability is used to obtain the steady-state solutions of the concerned model. 
Furthermore, the chaotic behavior of the governing model is analyzed. Sensitivity 
analysis is utilized to determine the sensitivity behavior of the model. The 
achieved solutions are fruitful in distinct areas of mathematical physics and 
engineering fields. At the end, the technique is a useful and reliable approach to 
solving other important nonlinear partial differential equations. This study applies 
the Sardar sub-equation method to derive new analytical solutions of the fourth-
order nonlinear (1 + 1)-dimensional Boussinesq water wave equation. The 
method demonstrates greater flexibility than traditional approaches in handling 
nonlinear terms. However, the results depend on specific parameter conditions, 
and experimental or numerical validation is left for future investigation.
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1 Introduction

Nonlinear partial differential equations (PDEs) are the mathematical form of naturally occurring phenomena. In different fields of 
science and engineering, there are various PDEs, including the Akbota–Gudekli–Kairat–Zhaidary equation [1], the Kodama equation [2], 
the extended Kairat-II equation [3], the complex-coupled Kuralay system [4], and the Chaffee–Infante equation [5]. Different techniques 
have been developed to obtain the various kinds of exact soliton solutions of the nonlinear PDEs, such as the Kumar–Malik technique [6], 
the modified sub-equation technique [7], and the multivariate generalized exponential rational integral function technique [8]. Water wave 
equations are utilized to explain the various types of water waves, including sinusoidal waves, nonlinear wave interaction, and shallow water 
waves. Water wave equations have many applications in different fields, including fluid dynamics, oceanography, and engineering.

The water wave interpolated Boussinesq equation was introduced in 1871 [9] and is given as

gtt − a(g2)xx − bgxxxx − gxx = 0. (1)

Equation 1 is a standard Boussinesq equation that explains the shallow water wave interaction process solution. This equation includes 
the various waves and shallow water effects in fluid dynamics, like shoaling, refraction, and weak nonlinearity.

Consider the fourth-order nonlinear Boussinesq water wave equation given in [10]

gtt − a(g2)xx − bgxxxx + cgxt − gxx = 0, (2)

where g = g(x, t) is a wave function, and a, b, and c are the constants. Constant a controls the nonlinearity strength, b is a dispersion coefficient 
(the term provides high-order dispersion that stabilizes wave steepening), and c represents the damping or mixed effects. The balance 
between nonlinearity a and dispersion b gives rise to periodic waves. These constants have physical meanings related to buoyancy, pressure, 

FIGURE 1
(Bright soliton) Graphical representation of |g(x, t)| appearance in Equation 13 for a = 1, b = 1, c = 1, μ = 1, r = 1, s = 1, and κ = 0.1. (a) 2D plot. (b) 3D 
surface plot. (c) Contour plot. (d) Density plot.
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FIGURE 2
(Singular soliton) Graphical representation of |g(x, t)| appearance in Equation 14 for a = − 1, b = 1, c = 1, μ = 1, r = 1, s = 1, and κ = 0.3. (a) 2D plot. (b) 3D 
surface plot. (c) Contour plot. (d) Density plot.

or roughness. Their values can be assumed to obtain specific solutions, such as solitons or other wave solutions. If b = 0, Equation 1 becomes 
nonlinear and possibly unstable. If a = 0, Equation 1 becomes linear, supporting only dispersive linear waves. If c = 0, Equation 1 reduces to 
a classical fourth-order Boussinesq equation.

The fourth-order nonlinear Boussinesq water wave equation is of great importance. This equation models the behavior of water waves in 
shallow water, making it relevant for coastal engineering, oceanography, and tsunami research. The equation’s nonlinearity captures complex 
wave interactions, leading to fascinating phenomena like wave breaking, soliton formation, and chaotic behavior. It has applications in various 
fields, including fluid dynamics, coastal engineering, and plasma physics. The equation’s fourth-order nature and nonlinearity make it a rich 
source of mathematical challenges and opportunities for developing new analytical and numerical methods. Understanding the behavior of 
water waves is crucial for predicting coastal erosion, flooding, and damage to offshore structures.

This model is obtained under the consideration of the smaller water depth and larger wavelength of the waves. The Boussinesq water 
wave equation is useful in wave behavior, harbor design, wave propagation in shallow seas, etc. Equation 2 was developed by Wazwaz and 
Kaur in [18]. In the literature, different solutions of Equation 2 are obtained by using the distinct schemes, including the F-expansion scheme 
[10], the auxiliary equation scheme [11], the exp (−ϕ(η))-expansion scheme [12], the Jacobi elliptic function expansion scheme [13], the 
(G′/G)-expansion scheme [14], the exponential expansion scheme [15], the generalized Arnous method [16], and the physics-informed 
neural networks technique [17].

We used a simple and useful technique, the Sardar sub-equation (SSE) technique. This technique is applied to achieve various types of 
exact wave results using the Sawada–Kotera equation [19]; exact solitons of the Fokas–Lenells equation are achieved [20]; some exact wave 
solitons, including dark, bright, periodic-singular, singular, and dark-bright soliton solutions, are gained for the Zakharov equation [21]; 
different kinds of optical wave solitons, having periodic wave, dark, bright, and singular solitons, are achieved for the stochastic Schrödinger 
wave model [22]; singular, kink, and periodic solitons are obtained for the Boiti–Leon–Manna–Pempinelli model [23]; optical solitons, 
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FIGURE 3
(Periodic wave solution) Graphical representation of |g(x, t)| appearance in Equation 15 for a = − 1, b = 1, c = 1, μ = 1, r = 1, s = 1, and κ = −0.1. (a) 2D plot.
(b) 3D surface plot. (c) Contour plot. (d) Density plot.

having dark, bright, periodic, and kink, are obtained for the Biswas–Milovic model [24]; and kink, bright, dark, and periodic solitons for the 
coupled Drinfel’d–Sokolov–Wilson equation are achieved [25].

The fundamental purpose of our work is to explore the distinct exact wave solutions of a (1 + 1)-dimensional Boussinesq water wave 
equation by utilizing the Sardar sub-equation method. Different analyses, including the modulation instability, bifurcation analysis, chaotic 
behavior, sensitivity nature, and the Lyapunov exponent of the concerned equation, are performed.

The motivation of this work is to investigate the novel kinds of exact solitons for the fourth-order nonlinear Boussinesq water wave 
equation by using the Sardar sub-equation technique. For the fourth-order Boussinesq water wave equation, the Sardar sub-equation 
technique is used for the first time. The obtained solutions do not currently exist in the literature. Some of the dynamical analyses, including 
modulation instability, bifurcation analysis, chaotic behavior, sensitivity analysis, and Lyapunov exponent analysis, are discussed for the 
fourth-order nonlinear Boussinesq water wave equation for the first time in the literature.

The article consists of the following sections: The technique is explained in Section 2; the mathematical analysis and exact wave results 
are mentioned in Section 3; a graphical interpretation is given in Section 4; bifurcation analysis is done in Section 5; chaotic behavior is 
demonstrated in Section 6; Lyapunov exponent analysis is performed in Section 7; sensitivity nature is discussed in Section 8; modulation 
instability analysis is performed in Section 9; results and discussion are given in Section 10; and conclusion is provided in Section 11. 

2 Methodology

Now, we will represent the Sardar sub-equation method [26] by assuming the nonlinear PDE:

J(g,gx,gt,gxx,gxt,ggxt,gxxt,…) = 0. (3)
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FIGURE 4
(Cuspon soliton) Graphical representation of |g(x, t)| appearance in Equation 16 for a = 1, b = 1, c = 1, μ = 1, r = 1, s = 1, and κ = − 1. (a) 2-D plot. (b) 3-D 
surface plot. (c) Contour plot. (d) Density plot.

Here, g = g(x, t) represents the function. Putting the given transformations, we get

g = G (Ω) , Ω = λx+ μt. (4)

The results are given in the form of a nonlinear ordinary differential equation (NLODE):

Y(G,λG′,μG′,λ2G″,λμG″,…) = 0. (5)

Assuming the result of Equation 5 is given as

G (Ω) =
m

∑
i=0

biψ
i (Ω) . (6)

Here, ψ(Ω) fulfills the following equation:

ψ′ (Ω) = √σ+ κψ2 (Ω) +ψ4 (Ω). (7)

Here, σ and κ are parameters.
Putting Equations 6, 7 into Equation 5 and summing up the coefficients of every ψi term, taking each equal to zero, to gain a set. 

Simplifying a set, we gain values of undetermined. The solutions of Equation 7 for the different conditions of σ and κ are given in [27].
Motivation of the method:
This method can effectively handle the nonlinearity of equations, providing solutions in terms of generalized trigonometric and 

hyperbolic functions. This method can generate different kinds of solutions, including dark, bright, singular, periodic-singular, combined 
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FIGURE 5
(Dark soliton) Graphical representation of |g(x, t)| appearance in Equation 17 for a = 1, b = 1, c = 1, μ = 1, r = 1, s = 1, and κ = −0.08. (a) 2D plot. (b) 3D 
surface plot. (c) Contour plot. (d) Density plot.

dark-bright, and dark-singular. This technique is considered simple and reliable for solving nonlinear evaluation equations. This method 
can be applied to various physical systems, including optical fibers, fluid dynamics, and plasma physics, making it a valuable tool for 
understanding complex phenomena. 

2.1 Limitations

The Sardar sub-equation method relies on specific parameter conditions to obtain exact solutions, which might not apply to all cases. 
The method’s effectiveness is often demonstrated through mathematical derivations and numerical simulations, but experimental validation 
is necessary to confirm the accuracy of the results. The method might not be applicable to all types of nonlinear partial differential 
equations (NLPDEs) or systems with complex nonlinearities. The Sardar sub-equation method can become computationally intensive or 
even intractable for high-dimensional problems. The method might not guarantee finding all possible solutions to the NLPDE, and other 
methods might be needed to find additional solutions. 

3 Mathematical analysis

Consider the given wave transformation:

g (x, t) = G (Ω) , Ω = (μx−ωt) . (8)
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By using Equation 8 in Equation 2, we obtain

bμ4G(4) +G″ (cμω+ μ2 −ω2) + 2aμ2GG″ + 2μ2(G′)2 = 0. (9)

By integrating twice and assuming integration constants equal to zero, we get

aμ2G2 + bμ4G″ + (cμω+ μ2 −ω2)G = 0. (10)

By using the homogenous balance technique and balancing the terms G″ and G2, we achieve m = 2. Now, we will find the exact wave solutions 
using the Sardar sub-equation method. 

3.1 Exact solitons

In our case, Equation 6 changes into

G (Ω) = b0 + b1ψ (Ω) + b2ψ2 (Ω) . (11)

By using Equation 11 in Equation 10 along with Equation 7, we gain solution sets:
Solution set 1:

{{
{{
{

b0 = −
2bμ2 (√κ2 − 3σ+ κ)

a
,b1 = 0,b2 = −

6bμ2

a
,ω =

μ
2
(c±√c2 + 4− 16bμ2√κ2 − 3σ)

}}
}}
}

. (12)

By using Equations 8, 11, 12, and solutions mentioned in [27], we get the following solutions:

g (x, t) = −
2bμ2

a
(2κ+ 3(√κrs sechrs(√κ (μx−

μ
2
(c±√c2 + 4− 16bμ2κ) t)))

2
), (13)

g (x, t) = −
2bμ2

a
(2κ+ 3(√κrscschrs(√κ (μx−

μ
2
(c±√c2 + 4− 16bμ2κ) t)))

2
), (14)

g (x, t) = −
2bμ2

a
(2κ+ 3(√−κrs secrs(√−κ (μx−

μ
2
(c±√c2 + 4− 16bμ2κ) t)))

2
), (15)

g (x, t) = −
2bμ2

a
(2κ+ 3(√−κrs cscrs(√−κ (μx−

μ
2
(c±√c2 + 4− 16bμ2κ) t)))

2
), (16)

g (x, t) = −
3bμ2

a
(κ+ 2(√−κ

2
tanhrs(√−

κ
2
(μx−

μ
2
(c±√c2 + 4− 8bμ2κ) t)))

2
), (17)

g (x, t) = −
3bμ2

a
(κ+ 2(√−κ

2
cothrs(√−

κ
2
(μx−

μ
2
(c±√c2 + 4− 8bμ2κ) t)))

2
). (18)

g (x, t) = −
3bμ2

a
(κ+ 2(√−κ

2
(tanhrs(√−2κ (μx−

μ
2
(c±√c2 + 4− 8bμ2κ) t))

±ι√rs sechrs(√−2κ (μx−
μ
2
(c±√c2 + 4− 8bμ2κ) t))))

2
), (19)

g (x, t) = −
3bμ2

a
(κ+ 2(√−κ

2
(cothrs(√−2κ (μx−

μ
2
(c±√c2 + 4− 8bμ2κ) t))

±√rs cschrs(√−2κ (μx−
μ
2
(c±√c2 + 4− 8bμ2κ) t))))

2
), (20)

g (x, t) = −
3bμ2

a
(κ+ 2(√−κ

8
(tanhrs(√−

κ
8
(μx−

μ
2
(c±√c2 + 4− 8bμ2κ) t))

+cothrs(√−
κ
8
(μx−

μ
2
(c±√c2 + 4− 8bμ2κ) t))))

2
), (21)

g (x, t) = −
3bμ2

a
(κ+ 2(√κ

2
tanrs(√

κ
2
(μx−

μ
2
(c±√c2 + 4− 8bμ2κ) t)))

2
), (22)

g (x, t) = −
3bμ2

a
(κ+ 2(√κ

2
cotrs(√

κ
2
(μx−

μ
2
(c±√c2 + 4− 8bμ2κ) t)))

2
), (23)
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g (x, t) = −
3bμ2

a
(κ+ 2(√κ

2
(tanrs(√2κ (μx−

μ
2
(c±√c2 + 4− 8bμ2κ) t))

±√rs secrs(√2κ (μx−
μ
2
(c±√c2 + 4− 8bμ2κ) t))))

2
), (24)

g (x, t) = −
3bμ2

a
(κ+ 2(√κ

2
(cotrs(√2κ (μx−

μ
2
(c±√c2 + 4− 8bμ2κ) t))

±√rs cscrs(√2κ (μx−
μ
2
(c±√c2 + 4− 8bμ2κ) t))))

2
), (25)

g (x, t) = −
3bμ2

a
(κ+ 2(√κ

8
(tanrs(√

κ
8
(μx−

μ
2
(c±√c2 + 4− 8bμ2κ) t))

+cotrs(√
κ
8
(μx−

μ
2
(c±√c2 + 4− 8bμ2κ) t))))

2
). (26)

Solution set 2:

{{
{{
{

b0 = −
2bμ2 (κ−√κ2 − 3σ)

a
,b1 = 0,b2 = −

6bμ2

a
,ω =

μ
2
(c±√16bμ2√κ2 − 3σ+ c2 + 4)

}}
}}
}

. (27)

By using Equations 8, 11, 27 and the solutions mentioned in [27], we get the following solutions:

g (x, t) = −
6bμ2

a
(√κrs sechrs(√κ (μx−

μ
2
(c±√16bμ2κ+ c2 + 4) t)))

2
, (28)

g (x, t) = −
6bμ2

a
(√κrscschrs(√κ (μx−

μ
2
(c±√16bμ2κ+ c2 + 4) t)))

2
, (29)

g (x, t) = −
6bμ2

a
(√−κrs secrs(√−κ (μx−

μ
2
(c±√16bμ2κ+ c2 + 4) t)))

2
, (30)

g (x, t) = −
6bμ2

a
(√−κrs cscrs(√−κ (μx−

μ
2
(c±√16bμ2κ+ c2 + 4) t)))

2
, (31)

g (x, t) = −
bμ2κ

a
(1+ 6(√−κ

2
tanhrs(√−

κ
2
(μx−

μ
2
(c±√8bμ2κ+ c2 + 4) t)))

2
), (32)

g (x, t) = −
bμ2κ

a
(1+ 6(√−κ

2
cothrs(√−

κ
2
(μx−

μ
2
(c±√8bμ2κ+ c2 + 4) t)))

2
), (33)

g (x, t) = −
bμ2κ

a
(1+ 6(√−κ

2
(tanhrs(√−2κ (μx−

μ
2
(c±√8bμ2κ+ c2 + 4) t))

±ι√rs sechrs(√−2κ (μx−
μ
2
(c±√8bμ2κ+ c2 + 4) t))))

2
), (34)

g (x, t) = −
bμ2κ

a
(1+ 6(√−κ

2
(cothrs(√−2κ (μx−

μ
2
(c±√8bμ2κ+ c2 + 4) t))

±√rs cschrs(√−2κ (μx−
μ
2
(c±√8bμ2κ+ c2 + 4) t))))

2
), (35)

g (x, t) = −
bμ2κ

a
(1+ 6(√−κ

8
(tanhrs(√−

κ
8
(μx−

μ
2
(c±√8bμ2κ+ c2 + 4) t))

+cothrs(√−
κ
8
(μx−

μ
2
(c±√8bμ2κ+ c2 + 4) t))))

2
), (36)

g (x, t) = −
bμ2κ

a
(1+ 6(√κ

2
tanrs(√

κ
2
(μx−

μ
2
(c±√8bμ2κ+ c2 + 4) t)))

2
), (37)

g (x, t) = −
bμ2κ

a
(1+ 6(√κ

2
cotrs(√

κ
2
(μx−

μ
2
(c±√8bμ2κ+ c2 + 4) t)))

2
), (38)

g (x, t) = −
bμ2κ

a
(1+ 6(√κ

2
(tanrs(√2κ (μx−

μ
2
(c±√8bμ2κ+ c2 + 4) t))

±√rs secrs(√2κ (μx−
μ
2
(c±√8bμ2κ+ c2 + 4) t))))

2
), (39)
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g (x, t) = −
bμ2κ

a
(1+ 6(√κ

2
(cotrs(√2κ (μx−

μ
2
(c±√8bμ2κ+ c2 + 4) t))

±√rs cscrs(√2κ (μx−
μ
2
(c±√8bμ2κ+ c2 + 4) t))))

2
), (40)

g (x, t) = −
bμ2κ

a
(1+ 6(√κ

8
(tanrs(√

κ
8
(μx−

μ
2
(c±√8bμ2κ+ c2 + 4) t))

+cotrs(√
κ
8
(μx−

μ
2
(c±√8bμ2κ+ c2 + 4) t))))

2
). (41)

 

4 Graphical interpretation

In this section, the results gained are demonstrated through 2- and 3-dimensional, contour, and density figures with the use of 
Mathematica software.

Figure 1a demonstrates the 2D graph of a bright soliton when −10 < x < 10 at different values of t. The purple color 
represents the graph at t = 0, the yellow color represents the graph at t = 1, and the pink color represents the graph at 
t = 2. We can observe that the wave solution is time-dependent because the phase of the wave solution has shifted with 
time. Figure 1b demonstrates the 3D plot when −10 < x < 10 and 0 < t < 10. This shows that the wave solution has a 
symmetric property because the wave solution has a sharp transition in both the x direction and the t direction. Figure 1c 
indicates a contour graph when −10 < x < 10 and 0 < t < 10. Figure 1d indicates a density graph when −10 < x < 10 and 
0 < t < 10.

Figure 2a demonstrates the 2-D graph of a singular soliton when −5 < x < 5 at different values of t. The purple color represents the graph 
at t = 0, the yellow color represents the graph at t = 1, and the pink color represents the graph at t = 2. We can observe that the wave solution 
is time-dependent because the phase of the wave solution has shifted with time. Figure 2b demonstrates the 3D plot when −5 < x < 5 and 0 <
t < 10. This shows that the wave solution has a symmetric property because the wave solution has a sharp transition in both the x direction 
and the t direction. Figure 2c indicates a contour graph when −5 < x < 5 and 0 < t < 10. Figure 2d indicates a density graph when −5 < x < 5
and 0 < t < 10.

Figure 3a demonstrates the 2-D graph of a periodic soliton when −12 < x < 12 at different values of t. The purple color represents the 
graph at t = 0, the yellow color represents the graph at t = 1, and the pink color represents the graph at t = 2. We can observe that the wave 
solution is time-dependent because the phase of the wave solution has shifted with time. Figure 3b demonstrates the 3D plot when −12 <
x < 12 and 0 < t < 10. This shows that the wave solution has a symmetric property because the wave solution has pole-like waves in both the 
x direction and the t direction. Figure 3c indicates a contour graph when −10 < x < 10 and 0 < t < 10. Figure 3d indicates a density graph 
when −10 < x < 10 and 0 < t < 10.

Figure 4a demonstrates the 2D graph of a dark soliton when −12 < x < 12 at different values of t. The purple color represents the graph 
at t = 0, the yellow color represents the graph at t = 1, and the pink color represents the graph at t = 2. We can observe that the wave solution 
is time-dependent because the phase of the wave solution has shifted with time. Figure 4b demonstrates the 3D plot when −10 < x < 10 and 
0 < t < 10. This shows that the wave solution has a symmetric property because the wave solution has pole-like waves in both the x direction 
and the t direction. Figure 4c indicates a contour graph when −10 < x < 10 and 0 < t < 10. Figure 4d indicates a density graph when −10 <
x < 10 and 0 < t < 10.

Figure 5a demonstrates the 2-D graph of a kink-like soliton when −12 < x < 12 at different values of t. The purple color represents the 
graph at t = 0, the yellow color represents the graph at t = 1, and the pink color represents the graph at t = 2. We can observe that the wave 
solution is time-dependent because the phase of the wave solution has shifted with time. Figure 5b demonstrates the 3D plot when −10 <
x < 10 and 0 < t < 10. This shows that the wave solution has a symmetric property because the wave solution has a sharp transition in both 
the x direction and the t direction. Figure 5c indicates a contour graph when −10 < x < 10 and 0 < t < 10. Figure 5d indicates a density graph 
when −10 < x < 10 and 0 < t < 10.

Figure 6a demonstrates the 2D graph of a complex soliton when −12 < x < 12 at different values of t. The purple color represents the 
graph at t = 0, the yellow color represents the graph at t = 1, and the pink color represents the graph at t = 2. We can observe that the wave 
solution is time-dependent because the phase of the wave solution has shifted with time. Figure 6b demonstrates the 3D plot when −10 <
x < 10 and 0 < t < 10. This shows that the wave solution has a symmetric property because the wave solution has a sharp transition in both 
the x direction and the t direction. Figure 6c indicates a contour graph when −10 < x < 10 and 0 < t < 10. Figure 6d indicates a density graph 
when −10 < x < 10 and 0 < t < 10.

Figure 7a demonstrates the 2-D graph of a bright soliton when −12 < x < 12 at different values of t. The purple color represents the graph 
at t = 0, the yellow color represents the graph at t = 1, and the pink color represents the graph at t = 2. We can observe that the wave solution is 
time-dependent because the phase of the wave solution has shifted with time. Figure 7b demonstrates the 3D plot when −10 < x < 10 and 0 <
t < 10. This shows that the wave solution has a symmetric property because the wave solution has a sharp transition in both the x direction 
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FIGURE 6
(Dark-bright soliton) Graphical representation of g(x, t) appearance in Equation 19 for a = 1, b = 1, c = 1, μ = 1, r = 1, s = 1, and κ = −0.08. (a) 2D plot. (b)
3D surface plot. (c) Contour plot. (d) Density plot.

and the t direction. Figure 7c indicates a contour graph when −10 < x < 10 and 0 < t < 10. Figure 7d indicates a density graph when −10 <
x < 10 and 0 < t < 10.

5 Bifurcation analysis

The idea of bifurcation denotes the mathematical changes in a system, as well as the quality of the results gained by a system of 
differential equations. This analysis is common in research into mathematical models of dynamical systems. Bifurcation phenomena 
take place when a small change in parametric values leads to a sudden change in behavior. This concept may be used for a problem 
containing a split quality. This analysis delves into standard models like stability and into the composition of dividing solutions
briefly.

Here, we will give a new planar dynamical system obtained by Equation 10 by using a Galilean transformation. By utilizing a Galilean 
transformation in Equation 10, we get

dG (Ω)
dΩ
= F (Ω) ,

dF (Ω)
dΩ
= −A1G2 (Ω) +A2G (Ω) . (42)

 Here, A1 =
a

bμ2  and A2 = −
cμω+μ2−ω2

bμ4 .
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FIGURE 7
(Bright soliton) Graphical representation of g(x, t) appearance in Equation 28 for a = −2, b = 1, c = 1, μ = 1, r = 1, s = 1, and κ = 0.1. (a) 2D plot. (b) 3D 
surface plot. (c) Contour plot. (d) Density plot.

Bifurcation analysis includes the phase portraits of the governing system shown in Equation 42. First, one obtains a Hamiltonian function 
for the governing system in Equation 42, which is given as follows:

H (G,F) = F2

2
+

A1G3

3
−

A2G2

2
= h. (43)

Here, h represents the Hamiltonian constant.
For the purpose of obtaining the equilibrium points, we assume a new system given as

0 = F (Ω) ,

0 = −A1G2 (Ω) +A2G (Ω) . (44)

By solving the above system, we get the equilibrium points given as
E1 = (0,0) and E2 = (

A2
A1
,0).

The determinant of the Jacobian matrix of the system given by Equation 44 is

D(G,Y) = |
0 1

−A1G2 +A2G 0
| = A1G2 −A2G.

According to [30], we get the following classification conditions for the equilibrium points:
1-When D(G,0) < 0, the (G, 0) point is called a saddle.
2-When D(G,0) > 0, the (G, 0) point is called a center.
3-When D(G,0) = 0, the (G, 0) point is called cuspidal.
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FIGURE 8
Gain spectrum of modulation instability for ρ = 2,4,6,8 and b = 0.1, c = 0.02 in Equation 53. (a) 2D plot. (b) 3D surface plot. (c) Contour plot. (d)
Density plot.

4-When D(G,0) > 0 and (τ(D(G,Y)))2 − 4D(G,Y) > 0, the point (G, Y) is called a node, where τ denotes the trace of the system 
as shown by Equation 44.

Case 1: if A1 > 0 and A2 > 0.
By using the parametric values a = 1, b = 1,c = − 1,  μ = 1, and ω = 1, we achieved the two equilibrium points: (0,0) and (1.007,0.027), 

as represented in Figure 7a In this figure, point (0,0) represents the saddle point, while the point (1.007,0.027) represents the center point.
Case 2: A1 > 0 and A2 < 0.
By using the parametric values a = 0.6, b = 1,c = 3,μ = 1, and ω = 1, we gained the only non-complex equilibrium point as (0,0), as 

shown in Figure 6b. In Figure 6b, (0,0) shows the center point.
Case 3: A1 < 0 and A2 > 0.
By using the parametric values a = − 0.6, b = 1,c = 1,μ = 1, and ω = 1, we gained the two equilibrium points: (0,0) and (1.667,0.463), 

as shown in Figure 6c. In Figure 6c, (0,0) shows the center point, while the point (1.667,0.463) represents the saddle point.
Case 4: A1 < 0 and A2 < 0.
By using the parametric values a = − 0.3, b = 1,c = 3,μ = 1, and ω = 1, we gained the only one equilibrium point: (0,0), as shown in 

Figure 6d. In Figure 6d, point (0,0) shows the saddle point.
In bifurcation analysis and phase portraits, different parameter choices can significantly impact the phase portrait topology. 

1. Varying parameters can create or destroy equilibrium points or change their stability properties (e.g., from stable to unstable or 
vice versa).

2. Parameters can be tuned to critical values, leading to bifurcations, which are sudden changes in the qualitative behavior of the system.
3. Parameters can influence the topology of the phase portrait, such as: 

3.1. Creating or destroying limit cycles (closed orbits).
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FIGURE 9
Graph of sensitivity demonstration of the concerned model, considering the values of constants along with ICs: (a) (0.1,0), (b) (0.01,0.1), (c)
(0.02,0.01), (d) (1.0,0.1), (e) (1.03,0.5), and (f) (0.01,0.001).

3.2. Changing the stability of limit cycles.
3.3. Creating or destroying homoclinic or heteroclinic orbits.

4. Different parameter regimes can lead to distinct qualitative behaviors, such as: 
4.1. Oscillatory vs. non-oscillatory behavior.
4.2. Stable vs. unstable behavior.

6 Chaotic behaviors

Here, we will discuss the chaotic behaviors of the governing model. Chaotic behavior describes the complex, seemingly random, and 
unpredictable patterns found in systems that follow deterministic rules. We can observe that small changes in the ICs can lead to vastly 
different outcomes, making long-term predictions difficult.
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FIGURE 10
Phase portraits of the system shown by Equation 42. (a) 2D streamline plot. (b) Contour plot.

FIGURE 11
Phase portraits of the system shown by Equation 42. (a) 2D streamline plot. (b) Contour plot.

By introducing the perturbation term ν cos (ϕt) in the dynamical system defined by Equation 42, we get the following perturbed 
dynamical system according to [31]:

dG (Ω)
dΩ
= F (Ω) ,

dF (Ω)
dΩ
= −A1G2 (Ω) +A2G (Ω) + ν cos (ϕt) . (45)

Here, ν and ϕ are the intensity and frequency of the external perturbation term.
The perturbation term represents an external forcing or disturbance that affects the system’s behavior. This term can be interpreted 

in the context of water wave dynamics. The perturbation term can model the effect of wind on the water surface, where ν represents the 
wind stress, and ϕ is the frequency of the wind forcing. The term can also represent the effect of surface tension on the water surface, 
where ν is related to the surface tension coefficient. The perturbation term can also model external disturbances, such as waves generated 
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FIGURE 12
Phase portraits of the system shown by Equation 42. (a) 2D streamline plot. (b) Contour plot.

FIGURE 13
Phase portraits of the system shown by Equation 42. (a) 2D streamline plot. (b) Contour plot.

by a paddle or a ship. The perturbation term reflects realistic applications in water wave dynamics. The system can model the behavior of 
ocean waves under the influence of wind, currents, or other external factors. Understanding the effects of external forcing on water waves 
is crucial for designing coastal structures, such as seawalls or breakwaters. The system can be used to study the behavior of waves in wave 
energy harvesting systems, where the perturbation term represents the external forcing that drives the energy conversion. The perturbation 
term can significantly impact the system’s behavior. The system can exhibit nonlinear resonance, where the external forcing amplifies the 
system’s response. The perturbation term can lead to chaotic behavior, where the system’s response becomes unpredictable and sensitive 
to initial conditions. The system can exhibit pattern formation, where the external forcing leads to the emergence of complex spatial or 
temporal patterns.

We use 2D phase portrait, 3D phase portrait, time series, and Poincaré section to obtain the chaotic and quasi-periodic 
structures. A perturbation term is taken in the dynamical model defined by Equation 45, which is not taken in the dynamical system 
defined by Equation 42. This analysis will explain how the frequency term affects the concerned equation. We will investigate the effects 
of force and frequency of the perturbations while taking the other physical attributes of the overall evaluation as constants. 
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FIGURE 14
Graph of chaotic behavior of concerned dynamical system given in Equation 45 upon assuming values of parameters a = −0.6,  b = 1,c = 1,  μ = 1,  ω =
1,  ν = 0.1, and ϕ = 0.5 along with the initial condition, (0.01,0.1). (a) 2D Phase portrait. (b) 3D Phase portrait. (c) Time series. (d) Poincaré section.

7 Lyapunov exponent

Here, we aim to explore the Lyapunov exponent of the concerned model. The Lyapunov characteristic exponent (LCE), or Lyapunov 
exponent, is a tool through which we can determine whether the nearby trajectories in a model converge or diverge. The Russian 
mathematician Aleksandr Lyapunov, who created the theory of stability of dynamical systems in the late 19th century, is credited with naming 
the Lyapunov exponent.

In the phase space of the dynamical system, the average distance rate of neighboring trajectories is represented by a real number called 
the Lyapunov exponent. Numerous applications of the Lyapunov exponent exist in various fields, including biology, engineering, physics, 
fluid flow, weather patterns, and financial markets. This analysis is used for many models of different fields, including a Konno–Onno model 
[32], a Schrödinger equation with cubic nonlinearity [29], and a Wazwaz Kaur Boussinesq model [33].

We observed the link between the Lyapunov exponent results and the observed phase portraits. Positive Lyapunov exponents correspond 
to chaotic regions in phase portraits, characterized by complex, aperiodic trajectories. Negative Lyapunov exponents correspond to stable 
regions, featuring periodic or quasi-periodic trajectories. Changes in Lyapunov exponents can signal bifurcations, where the system’s behavior 
changes qualitatively. Lyapunov exponents can help understand the topology of phase portraits, including the existence of attractors, repellers, 
or saddle points. 

8 Sensitivity nature

Here, we discuss the sensitivity of the dynamical model described by Equation 42. The specific values of parameters a = − 2, b =
0.6, d = 1,p = 1, q = 1,e = 1, and λ = 1 are selected for this purpose. Moreover, we suppose the following different initial conditions (ICs) 
of the dynamical system.
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FIGURE 15
Graph of chaotic behavior of the concerned dynamical system given in Equation 45 upon assuming values of parameters a = −0.6,  b = 1,  c = 1,  μ =
1,ω = 1,  ν = 0.01, and ϕ = 0.2 along with the initial condition, (0.01,0). (a) 2D phase portrait. (b) 3D phase portrait. (c) Time series. (d) Poincaré section.

(i) (0.1,0); (ii) (0.01,0.1); (iii)(0.02,0.01); (iv) (1.0,0.1); (v) (1.03,0.5); (vi) (0.01,0.001).
The results are explained in Figure 7 according to the abovementioned ICs. In the figure, the red graph denotes G, and the blue graph 

represents F. It is observed in Figure 7 that small changes in ICs result in a large effect on the concerned model. 

9 Modulation instability

Assuming a solution of a (1 + 1)-dimensional Boussinesq water wave model is represented in [28, 29].

g (x, t) = (√τ+G (x, t))eιτt. (46)

Here, τ denotes an arbitrary real constant and G(x,t) is a complex-valued function of x and t. Putting Equation 46 into Equation 2, we 
obtain an equation for G by linearity, given as

−bGxxxx + cιτGx + cGxt −Gτ2 + 2ιτGt +Gtt −Gxx − τ5/2 = 0. (47)

Now consider a new transformation given as

G (x, t) = G1eι(ρx−tλ) +G2e−ι(ρx−tλ). (48)

Here, ρ is a real disturbance wave number, λ represents a frequency, while G1 and G2 are the coefficients of linear combination. By using 
Equation 48 in Equation 47, we get homogeneous equations given as

G1 (−bρ4 + cλρ− cρτ− λ2 + 2λτ+ ρ2 − τ2) = 0,

G2 (−bρ4 + cλρ+ cρτ− λ2 − 2λτ+ ρ2 − τ2) = 0. (49)
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FIGURE 16
Graph of the chaotic behavior of the concerned dynamical system given in Equation 45 upon assuming values of parameters a = −0.6,  b = 1,  c = 1,  μ =
1,  ω = 1,  ν = 0.2, and ϕ = 2 along with the initial condition, (0.01,  0). (a) 2D phase portrait. (b) 3D phase portrait. (c) Time series. (d) Poincaré section.

When the determinant of the system of Equation 49 is set equal to 0, we get the following relation:

(−bρ4 + cλρ− cρτ− λ2 + 2λτ+ ρ2 − τ2)(−bρ4 + cλρ+ cρτ− λ2 − 2λτ+ ρ2 − τ2) = 0. (50)

Assuming Equation 50, we can discuss types of modulation instability (MI) of Equation 2 given as

λ = 1
2
(cρ± 2τ±√−4bρ4 + c2ρ2 + 4ρ2). (51)

A steady-state stable solution is found by Equation 51.
If λ has an imaginary part, then the steady-state solution is not stable because the perturbation increases exponentially.
If λ is not an imaginary part, then the steady-state solution is stable because the perturbation is small.
Hence, MI of Equation 51 can occur if

−4bρ4 + c2ρ2 + 4ρ2 < 0. (52)

Therefore, we obtain the MI gain spectrum given as

G (ρ) = 2Im (λ) = 2Im(1
2
(cρ± 2τ±√−4bρ4 + c2ρ2 + 4ρ2)). (53)

Physically, MI in shallow water waves can be interpreted as follows: 
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FIGURE 17
Graph of the chaotic behavior of the concerned dynamical system given in Equation 45 upon assuming values of parameters a = −0.6,  b = 1,  c = 1,  μ =
1,  ω = 1,  ν = 0.2, and ϕ = 2.5 along with the initial condition, (0.01,  0.03). (a) 2D phase portrait. (b) 3D phase portrait. (c) Time series. (d) Poincaré section.

1. When a wave train propagates in shallow water, it can become unstable due to the interplay between nonlinearity and dispersion. MI 
can cause the wave train to break down into smaller-scale structures.

2. MI can contribute to the formation of freak waves or rogue waves, which are unusually high and short-lived waves that can pose a 
significant threat to coastal structures and marine vessels.

3. MI can lead to a redistribution of energy within the wave spectrum, potentially influencing coastal erosion, sediment transport, and 
wave-induced forces on structures.

4. MI is a manifestation of nonlinear wave interactions, which play a crucial role in shaping the evolution of wave fields in shallow water.

10 Results and discussion

Here, we will represent the obtained results and discussion by comparing them with the existing results. In [10], dark, bright, dark-
periodic, and singular-periodic soliton solutions are obtained by using the modified (G′/G2)-expansion and F-expansion techniques. In [11], 
symmetrical, non-symmetrical kink solutions, solitary wave solutions, and Jacobi and Weierstrass elliptic function solutions are gained by 
applying the extended auxiliary equation scheme. In [12], solitary wave solutions are achieved by utilizing the exp (−ϕ(η))-expansion scheme. 
In [13], periodic shock wave solutions are obtained with the use of the Jacobi elliptic function expansion scheme. In [16], kink, bright, and 
dark soliton solutions are achieved by using the generalized Arnous method. In our research, we investigate the dark-bright, dark, bright, 
periodic, periodic-kink, singular, dark-singular, and other exact soliton solutions by using the Sardar sub-equation technique as shown in 
Figures 1–7. We performed the modulation instability to obtain the steady-state solutions as shown in Figure 8. We assess sensitivity using the 
sensitivity analysis as shown in Figure 9. By using bifurcation analysis as shown in Figures 10–13, chaotic analysis as shown in Figures 14–18, 
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FIGURE 18
Graph of the chaotic behavior of the concerned dynamical system given in Equation 45 upon assuming values of parameters a = −0.6,  b = 1,  c = 1,  μ =
1,  ω = 1,  ν = 0.04, and ϕ = 1.5 along with the initial condition, (0.03,0.01). (a) 2D phase portrait. (b) 3D phase portrait. (c) Time series. (d) Poincaré section.

and Lyapunov exponent analysis as shown in Figure 19, we discussed the different behaviors of the governing model. These various analyses 
have not been performed on the fourth-order Boussinesq water wave equation in the literature. The results obtained have applications in 
different fields of science and engineering. 

11 Conclusion

It is concluded that the Sardar sub-equation scheme was utilized for the concerning model in obtaining distinct kinds of exact solitons 
to the Boussinesq water wave equation. The results gained are demonstrated with the use of 2D, 3D, contour, and density plots. The results 
gained have not been studied earlier.

Modulation instability is used to obtain the steady-state solutions for the concerned equation. By using bifurcation analysis, all the phase 
portraits are discussed. Chaotic behavior is discussed. Sensitivity analysis is used to discuss the sensitivity behavior of the model. The solutions 
obtained are useful in different fields, including coastal engineering, harbor design, and waves in shallow waters. The Boussinesq water wave 
equation is useful in the study of water wave behavior, harbor design, coastal dynamics, wave propagation in shallow seas, ocean wave models, 
and marine environments.

In the future, we can compare the obtained exact solutions with the numerical solutions. We can also obtain the results experimentally 
in the laboratory. We can study the Sardar sub-equation method by conducting experiments to validate the results obtained. We can perform 
numerical simulations to verify the accuracy and stability of the solutions, develop modifications or extensions to the Sardar sub-equation 
method to handle high-dimensional problems, and compare the results obtained using the Sardar sub-equation method with other analytical 
or numerical methods.
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FIGURE 19
Graph of the Lyapunov exponent of the concerned dynamical system given in Equation 45 upon assuming values of parameters a = −0.6,  17b = 1,  c =
1,  μ = 1,  ω = 1,  ν = 0.1, and ϕ = 0.5. In this figure, the orange graph is for the initial condition (1,0), and the blue graph is for the initial condition (0,1).
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Nomenclature

2D Two-dimensional

3D Three-dimensional

g(x,t) Wave function

ICs Initial conditions

LCE Lyapunov characteristic exponent

MI Modulation instability

NLODE Nonlinear ordinary differential equation

ν Intensity of the external perturbation term

ω Velocity of the wave.

PDE Partial differential equation

ϕ Frequency of the external perturbation term

SSE Sardar sub-equation

t Temporal coordinate

x Spatial coordinate
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