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Peridynamics (PD) is an effective numerical analysis theory applicable to
problems involving strong discontinuities such as fractures. The convergence of
numerical results from PD models depends on multiple basic parameters such as
the spatial discretization scale, horizon size, and time step size. However, there
is a lack of a comprehensive research approach for verifying the independence
of computational results from the discretization parameters, which may reduce
the confidence of the numerical results. In the present work, a novel parameter
independent verification method was proposed for the bond-based PD model.
Based on the method, convergence studies on the Kalthoff-Winkler experiment
was carried out to obtain the basic discretization parameters for the problem.
The results indicate that the parameter independence verification method is
effective. The study provides theoretical and technical supports for determining
discrete parameters in numerical simulations.

convergence study, discretization parameters, PD, Orthogonal experimental design,
crack propagation

1 Introduction

The independence of computational results from the discrete parameters is a
prerequisite for the application of most numerical methods [1-5]. Theoretical analysis,
experimental research, and numerical simulation are the three major methods in scientific
researches. For problems with strong nonlinearities and extreme working conditions,
numerical simulations have significant advantages over the other two methods. However,
the correctness of computational methods needs to be fully verified. The verification mainly
includes two aspects: the first aspect locates at the convergence studies of the numerical
results and the second one is the comparison of the consistency between the convergent
numerical solution and the physical solution. However, there is a lack of reliable methods
for investigating the independence of the computational results, which may further leads
to a lack of confidence in the application of the numerical results. In this work, we took the
bond-based PD model [6] as an example and proposed a method for systematically studying
the independence of computational results from the discretization parameters.
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PD, as an advanced numerical analysis theory, has gained
significant attention in engineering applications due to its natural
advantages in simulating crack propagations and addressing
multiscale failure problems. However, its nonlocal nature [7-9]
and discretization of solids using spatial differential equations [6]
impose higher demands on computational accuracy and efficiency
[10, 11], making grid independence verification particularly critical.
In traditional finite element analysis, grid independence verification
ensures that numerical solutions do not significantly vary with
mesh refinement [12], serving as a key step to guarantee result
reliability and computational efficiency. Although the nonlocality
of PD reduces sensitivity to local mesh variations [13], verifying
discretization parameter independence of numerical results remains
essential for balancing computational efficiency and numerical
precision.

In recent years, many scholars have payed attention to
the convergence investigations on the numerical results of PD
[1, 14-18]. The purpose of analyzing the independence of
numerical results is to obtain reliable combinations of discretization
parameters. In bond-based PD models, the basic discretization
parameters include the spatial discretization size A, parameter m
that determines the horizon § combined with size A, and time step
size which is used for the discretization in temporal dimension [6,
19]. Bobaru [15, 20] discussed three types of numerical convergence
for PD. The three types of convergence are the dm-convergence, the
m-convergence, and the §-convergence. However, there is currently
a lack of systematic analysis methods, especially when addressing
problems without experiences or references. Specifically, in these
types of convergence analysis, researchers are easily troubled by
the specific values of the fixed m and the fixed §. Therefore, it
is urgent to propose a reliable research method to investigate the
results convergence and determine proper discretization parameters
for problems with multiple discretization parameters.

For systems with multiple independent variables, it is difficult to
clarify the influences of a single variable on the system performance
due to the interactions between the variables. In this situation,
statistical theory has significant advantages [21, 22]. Orthogonal
experimental design is an efficient research method based on
statistical theory to analyze the effects of multiple factors and
obtain the influences of a single factor [23, 24]. The reliability of
the single factor influence obtained through the comprehensive
statistical analysis is determined by the orthogonality (balanced
combination of the factor-levels) and comprehensive comparability
of orthogonal experimental arrays. In addition, correctness can also
be verified through investigating standard benchmark problems
[25], for instance the Kalthoft-Winkler experiment [14, 26-28], and
comparing the consistency between the numerical results and results
from experiments or theoretical analysis.

In this work, based on orthogonal experimental design, we
proposed a novel method to investigate the result convergence
and determine proper discretization parameters for the calculation
of bond-based PD models. The work is organized as following:
Theoretical contents including bond-based PD models, orthogonal
experimental design method, numerical scheme and the procedure
for the proposed convergence study method are presented in
Section 2. Based on the convergence investigation method, the
Kalthoft-Winkler experiment is studied and discussed in Section 3.1
and Section 3.2. Finally, the work is concluded in Section 4.
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2 Methods
2.1 Bond-based PD model

A brief mathematical description of bond-based PD model
is shown in Equation 1. Detailed explanations can be found in
reference [6].

fx" —xu(x',t) —u(x,1),6)dV,, + b(x,1)

x,0)

picx) = | ()

where p is the mass density, x'

is a material point in the
neighborhood H(x,d) of material point x with a horizon of J, u
and i1 are respectively the displacement vector and the acceleration
vector, dV,, is the volume represented by material point x' and b
is the external body force vector, f is the pairwise force density, the

norm of the pairwise force density is defined in Equation 2.

f=c&)-s ()

where ¢(£) is the micro modulus that is a function of the length of
bond £ in the referenced configuration, s is the stretch of the bond,
the specific expression of the bond stretch is given in Equation 3.

L&l -
o [l + &1 - 1€l 3)
€1
where 7 is the relative displacement between the two material points

linked by bond &.
For a two dimensional plane stress problem, the expression of a
constant micro modulus ¢ is given in Equation 4.

6E

T ah(1-0) @)

0
where E is the elastic modulus of the material, & is the thickness of
the 2D problem, and v is the Poisson’s ratio.

In actual numerical calculations, the integration in Equation 1
is achieved through the accumulation of discrete material points.
For a material point x’ of which the represented volume is
partly not within the neighborhood H(x,d), the volume involved
in the integral calculation is corrected [29] though the formula
¢y shown in Equation 5.

1 (IEl<o-7)

S+l 5 r<yel <o) ®
2r

({0

where 7 is an equivalent radius of the material point, which indicates
the space represented by this material point. In the case of a uniform
spacing of A, r = A/2.

2.2 Orthogonal experimental design

The experimental combinations in an orthogonal array
exhibit the characteristics of uniform dispersion and balanced
comparability, which ensure statistically balanced distribution of
all factors and their levels while significantly reducing the number
of experimental trials. For a three factor and three-level problem,
if a comprehensive experiment is conducted, 27 (3* = 27) different
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experimental trials are required. If a standard orthogonal test array
Ly (3*) is used, only 9 experimental trials need to be conducted.
Introducing the orthogonal experimental design method into the
study of result convergence is the most effective and persuasive
method for determining proper discretizing parameters, especially
for the application of PD models in practical engineering problems.

2.3 Numerical scheme

The updating of the physical field in the work is implemented by
using the explicit Velocity-Verlet scheme shown in Equations 6-8.

At.,

W2 =gy S (6)
un+1 —u'+ un+1/2At (7)
un+1 _ un+1/2 + A_tﬁnﬂ (8)

where # represents the velocity; # is the current time step for which
the physical field has been updated; and n+1 represents the next
time step for which the physical field is about to be updated; and
At is the time step size, which is estimated according to Equation 9.
In the present work, time discretization is also considered as an
independent dimension in the convergence studies.

fmin

At=o,—
‘w

©)

where «, is a coeflicient less than 1.0 for guaranteeing the stability
of the numerical simulation, &

min 1S the minimum length of the
bonds in the reference configuration, and ¢y, is the sound speed
in the material. Numerical stability is ensured by restricting the
disturbance propagation distance within each time step through
this definition. In this work, the sound speed for one-dimensional
problem is defined in Equation 10. Considering the difference
in wave speeds between two-dimensional and three-dimensional
problems, to ensure numerical stability, the value of &, should not

exceed 0.8 for such cases.

(10)

2.4 Procedure for the convergence study

The core of this work is to obtain discrete parameters that
can achieve convergent solutions based on orthogonal experimental
design method for bond-based PD models. The specific procedure
of the method for the convergence investigation is given in Figure 1.
In problem analysis, the mechanical essence of the problem and
the basic characteristics of the utilized numerical calculating model
are mainly considered. Based on the problem analysis, independent
parameters involved in the discretization of the computational
domain should be determined, which are the factors in the
orthogonal experimental table selected later. In addition, one or
more parameters used to effectively describe the characteristics of
mechanical processes should be provided. Parameters describing
the mechanical processes are the performance indexes for the
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FIGURE 1
Procedure of the convergence study.

result analyzing of orthogonal experimental design methods. After
determining the discrete parameters, it is necessary to analyze the
possible range of values for the discrete parameters and determine
the number of levels of the parameters based on the study objectives.
Subsequently, select a suitable standard orthogonal array according
to the quantity of discrete variables and their corresponding levels.
Then conduct numerical experiments and obtain the corresponding
performance index.

Based on the computational results, a critical step is to find
the convergent solution of the problem. The convergent solution or
optimal solution possesses distinct features. For instance, in many
cases, the larger or the smaller the performance index, the better.
For mechanical problems with discrete computational domains,
in general, the performance index will gradually converge as the
grid size decreases. In this work, this characteristic is utilized
for determining the convergent solution. Based on the convergent
solution, the performance index corresponding to the other discrete
parameters can be further processed, and the optimal factor-level
combination of the discrete parameters can be finally determined.

3 Results and discussions

3.1 Convergence study for the
Kalthoff-Winkler experiment

The Kalthoff-Winkler experiment shown in Figure 2, which is
a benchmark problem, has been investigated by many researchers.
According to the references, the projectile is regard as a rigid body
and the detailed parameters for the Kalthoff-Winkler experiment
are given in Table 1. The thickness of the steel plate is 9 mm and
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FIGURE 2
Setup of the Kalthoff-Winkler experiment.

all the boundaries are free. In addition, it should be noted that the
initial velocity of the projectile and the fracture energy in Table 1
are slightly different from that in the actual experiment, and the
difference is mainly to consider the influences of ignoring the
projectile elasticity. The subsequent section provides a detailed
discussion on how the fracture energy and the projectile initial
velocity affect the crack propagation path.

The discretization of the computational domain of this problem
mainly includes spatial discretization and temporal discretization.
The spatial discretization is carried out in the form of a uniform
discretization, which is characterized by A, and the temporal
discretization is characterized by a, in Equation 10. The horizon
d=mA is a core parameter for PD models, which determines
the material points that participate in the integrations. Therefore,
for this problem, we mainly conduct convergence investigations
based on A, m and «,. And the three factors are respectively
referred to as A, B, and C in this work. At the initial moment,
there is no strain distribution in the steel plate. Consequently,
a parameter kpg defined in Equation 11 is a ratio between the
elastic potential and the energy loss due to material damage,
which can serve as the performance index in the convergence
investigation.

Ep

= (11)

kos
where Ej, is the energy loss due to material damage, and Eg is the
elastic potential energy, i.e., the strain energy in the plate.
According to the procedure in Figure 1, factor levels should
be determined before the orthogonal experiment design. The
spatial discretization size is governed by the number of material
points in the characteristic dimension orientation. For a problem
with the characteristic length of 0.1 m, the length is uniformly
discretized with 100 material points, and the corresponding
spatial discretization size A is 1.0 mm. Generally, as the spatial
discretization size decreases, the numerical calculation results will
gradually converge. However, a small spatial discretization size can
lead to excessive computational costs. Consequently, it is necessary
to achieve a large spatial discretization size under the premise of
result convergence. According to the existing literatures [27, 28], a
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spatial discretization size of 1.0 mm were utilized in there numerical
predictions, and some researchers believe the spatial discretization
size should reach 0.5 mm for achieving a convergent solution.
In this work, we limit the spatial discretization size to between
0.4 and 0.7 mm.

As for factor B, which is parameter m, its values mainly range
from 3.0 to 8.0 in PD models. The larger the parameter m, the more
material points there are in the PD horizon of a material point,
which will further lead to a sharp increase in the computational
costs. Considering the computational cost and the parameter used
in the existing literatures, parameter m in this work takes values
between 3.0-6.0. As for parameter C, which defines the relationship
between actual time step size used in the numerical predictions and
the critical time step size. According to the requirements on the time
step size, parameter &, should be less than 1.0. And the specific value
of factor C is limited to 0.2-0.8 in this work.

In order to obtain a convergent trend of the performance index,
four levels were selected for each factor. The specific values of the
three factors at different levels are given in Table 2. Based on the
number of the factors and levels, the standard orthogonal test array
L,s (4°) was selected in the present work. It should be noted that
the selected orthogonal array may vary depending on the problem
at hand and the chosen number of levels. This significantly impacts
the computational effort required to finalize the discrete parameters.
For researchers with extensive experience, fewer levels may suffice
to accurately pinpoint the optimal values. Based on this array, as
illustrated in Table. 3, orthogonal experiments with up to 5 factors
can be studied simultaneously, and a total of 16 sets of numerical
cases should be investigated. In this work, bond-based PD model
with the constant modulus was utilized, and the ratios between the
elastic potential and the energy loss for the 16 sets of cases were
obtained and presented in the column of Table 3.

Based on the results in Table 3, detailed analyses of the
performance index kpg are presented in Table 4. In the Table 4, B/
and C' represent the performance results of factor B and factor
C after processing based on the convergence solution, respectively.
The processing was carried out based on Equation 12. Kj; is the
summation of the performance index and Kj is the averaged
performance index under level i of factor j. R; and R; are the range
and the normalized range of the averaged performance index of
factor j, respectively. The two ranges are defined in Equation 13
and Equation 14, respectively. The normalized range effectively
neutralizes unit-induced comparability issue among the factors.

k' = |kps — kel (12)

R; = max (?Ifﬁzpﬁy’ﬁzlj) —min (ﬁlj’§2j’R3j>§4j) (13)
r_ _

R = (14)

where k., is the convergent numerical solution, which is
obtained according the theoretical analysis of results following
the convergence investigation procedure shown in Figure 1; AF;
is the normalized interval of factor j, which is a ratio between
the level interval and the total range of the values of factor j, the
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TABLE 1 Basic parameters for the Kalthoff-Winkler experiment.

Young's Densitg Poisson'’s ratio Fracture Initial Mass of the
modulus/GPa /kgm” energy/kJ velocity/mes™ projectile/kg
191 8,000 0.3 22.17 16.5 1.57
TABLE 2 Factor-levels. TABLE 4 Result analysis of the performance index.
Level ’ A (A)/mm B(m) C (o) Index A B Cc B’ c
1 04 3.015 0.2 K, 3.13287 2.93435 3.67791 0.18924 0.55432
2 0.5 4.015 0.4 Ky 3.11432 3.21316 3.18764 0.08957 0.06405
3 0.6 5.015 0.6 K 321784 3.23355 3.17154 0.10996 0.04795
4 0.7 6.015 0.8 Ky 3.72289 3.80685 3.15082 0.68326 0.02723
Ky 0.78322 0.73359 0.91948 0.04731 0.13858
5 K, 0.77858 0.80329 0.79691 0.02239 0.01601
TABLE 3 L, (4°) orthogonal test array.
No. A B C ‘ kps(Constant) Ky 0.80446 0.80839 0.79289 0.02749 0.01199
1 1 1 1 L 074148 K, 0.93072 0.95171 0.78770 0.17081 0.00681
) 1 ) 2 |2l 2 0.78860 R, 0.15214 0.21812 0.13177 — —
!
3 1 3 3 |33 0.79294 R/ 045643 0.65437 0.39532 — —
Bold values indicate either calculated values or values that require attention during analysis.
4 1 4 4 4| 4 0.80985
5 2 1 2 3| 4 0.72126
6 2 2 1 43 0.78483 where, F]’.nax and F]'.nin are the maximum level and the minimum level
; 5 5 4 Ll 0.79167 of factor j, respectively; n; is the number of levels of factor j. It should
be noted that this formula is practically meaningful only when the
8 2 4 3 21 0.81656 factors have different numbers of levels.
In the field of computational mechanics, it is well known
? ? ! R 0.73777 that the numerical solutions gradually converge as the spatial
10 3 ) 4 - 0.81546 discretization size decreases. We utilized this characteristic to search
for the convergent solution for the problem, and the results are
11 3 3 12 4 0.81789 presented in Figure 3. As shown in Figure 3a, the numerical results
conform to the aforementioned laws of computational mechanics,
12 3 4 2 103 0.84672 . .
and numerical results of the studied problem convergent when the
13 4 1 4 2 | 3 0.73384 spatial discretization size decreased to 0.5 mm, which is the second
level of factor A. In this work, the convergent numerical solution
14 4 2 3 14 0.82428 k., in Equation 12 is calculated by averaging the performance index
of factor A at levels 1 and 2. Based on the convergent solution, the
15 4 3 2 41 0.83106 ) .
absolute residuals of the performance index for factor B and factor
16 4 4 Y 133371 C can be achieved based on Equation 12. The absolute residuals are

presented in Figures 3b,c. For the two parameters, obviously, the
Bold values indicate either calculated values or values that require attention during analysis. smaller the absolute resi dual, the better. Accor ding to Figure 3b, the
optimal solution for parameter m is 4.015, which is the second level
of factor B. According to Figure 3¢, within the range of factor C, a
corresponding expression is given in Equation 15. value of «, within 0.4-0.8 can obtain relatively accurate calculation
results. Therefore, for the studied problem, the optimal discrete

Fj{nax _ Fjr,nin . parameter combination is obtained. It should be noted that the

AF; = m = (15)  results in Figure 3c are primarily related to the treatment of bond
A J / breaking processes. When the time step is very small, corrections
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Convergence results. (a) Performance index vs. factor A. (b) The absolute residual k' of factor B. (c) The absolute residual k' of factor C.

must be made to bond fractures from the perspectives of momentum
and energy conservation.

The main purpose of the range analysis in Table 4 is to obtain the
order of sensitivity of calculation results to the parameter changes.
Obviously, the greater the range, the stronger the sensitivity. For the
studied problem and within the selected ranges of the parameters,
we found that the specific sensitivity order is: m> A >a,.

Based on the optimal discrete parameter combination, a case
of the Kalthoff-Winkler experiment was calculated. Detailed results
are illustrated in Figure 4. The total energy in the plate comes from
the kinematic energy of the projectile. Therefore, the consistency
between the projectile energy loss and total energy within the
steel plate shown in Figure 4a indicates the correctness of the
energy balance in the system. According to Figure 4b, the projectile
kinematic energy is converted into the elastic potential energy in the
plate firstly. With the accumulation of the elastic potential energy,
bond breakages occur and part of the potential energy is converted
into the damage energy, which forms new surfaces of the cracks.
Under the chain effect within the system, the elastic potential energy
gradually decreases after the material damage starts. As illustrated in
Figure 4c, the velocity of the projectile decreased from 16.5 m/s to
7.64 m/s during the interaction between the projectile and the steel
plate. The damage and displacement distributions at 90 are given in
Figures 4e,f. It should be noted that, the X-direction is consistent
with the direction of the projectile impact, and the Y-direction is
perpendicular to the direction of the projectile initial velocity. The

Frontiers in Physics

cracks propagate at an angle of about 68° with respect to the direction
of pre-notches, which agree with the numerical results in those
works and experiments [27, 28].

3.2 Discussions

An issue that worth further investigation is ensuring the
consistency of basic conditions in numerical calculations and
experiments of the benchmark problem. The plate is made of X2
NiCoMo 1895, which is a material similar to the standard grade
18Ni(300) [26]. The fracture toughness of the material is about 90
MPa - m'/? [30], and the elastic modulus and the Poisson’s ratio are
given in Table 1. Based on the material properties, the real fracture
energy G_ can be calculated according to Equation 16 [31]. The result
of the fracture energy is 42.408 kJ/m?, which is different from the
fracture energy in Table 1.

plane stress
(16)

K? plane strain

where v is Poisson’s ratio, E is the elastic modulus and K is the
fracture toughness.

Another topic worth discussing is the initial velocity of the
projectile. In many works [14, 27, 28], the interaction between
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Numerical results of the Kalthoff-Winkler experiment. (a) Energy balance in the system. (b) Elastic potential and damage energy. (c) Projectile velocity
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FIGURE 6
Simulated vs. experimental [32] crack propagation path

the projectile and the steel plate is achieved through a fixed
velocity boundary condition given at the contact boundary,
and the given velocity is 16.5 m/s. However, a constant velocity
boundary condition will affect the energy conversion in the actual
process and cannot truly depict the projectile-plate interaction.
In addition, the specific speed is mainly considered to maintain
consistency between the required time of complete fracture of

Frontiers in Physics

the steel plate in numerical calculations and the corresponding
time in experiments. In the present work, we directly considered
the impact between the projectile and the steel plate, but the
projectile was treated as a rigid body. Similar to the considerations
in the cases that maintain the temporal synchronization observed
in numerical-experimental correlations, by trial and error, we
have calculated that when the initial velocity of the projectile is
22.5m/s, the time for the crack to completely penetrate the plate
is about 90 microseconds, which is equal to the corresponding
time recorded in the experiments [28, 32]. Based on parameters
and basic conditions closer to the experimental situation, the
Kalthoft-Winkler experiment was investigated by using the
bond-based PD model and the discrete parameters obtained in
Section 3.1.

Detailed results were illustrated in Figure 5. The numerical
results are similar to those under initial impact velocity of 16.5 m/s,
but the specific values vary significantly. For example, the total
energy in the steel plate in Figure 5a reaches about 313.2 ], while
the total energy in Figure 4a is about 170.0 J. And the total energy
loss due to damage shown in Figure 5b is about 69.5 J, while the
corresponding value in Figure 4b is about 35.8 J. This is mainly
due to the increase in the fracture energy. As shown in Figure 5c,
during the impact process between the projectile and the steel plate,
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the velocity of the projectile decreased from 22.5 m/s to 10.36 m/s.
And the displacement of the projectile at 90 microseconds is about
1.16 mm. The damage distribution in the deformed configuration
is given in Figure 5d, and the crack paths is similar to the crack
propagation path in Figure 4d.

In Figure 6, the simulated crack path is compared with the path
obtained from experiments. Different from the result in Figure 5d,
the numerical result in Figure 6 is displayed in the referenced
configuration. The experimental results and numerical calculations
have a high degree of consistency, especially the crack initiation
and the final fracture morphology. It should be acknowledged that
the propagation path of the crack is slightly different. We believe
that the main reason is the inherent fixed Poisson’s ratio defect in
bond-based PD models.

4 Conclusion

In the present work, we proposed a novel method for
verifying the discrete parameter independence of numerical
results from bond-based PD models. The core of the method
is to treat the discrete parameters as factors and utilize the
advantages of orthogonal experimental design in comprehensive
analysis, then the variation of numerical results with individual
factors can be obtained. Furthermore, using the consensus in
computational mechanics, that is, the numerical results will
gradually converge with the discretization of spatial discretization
size, and a convergent solution will be obtained. Based on the
convergent solution, the optimal level of the other parameters
can be obtained. Based on the method, the Kalthoff-Winkler
experiment was studied and discussed in detail. Based on
the
can be drawn.

result analysis and discussions, following conclusions

1. The proposed discrete parameter independence verification
methodology demonstrates robust effectiveness, which
provides theoretical and technical support for determining
discrete parameters in numerical simulations.

For the Kalthoff-Winkler experiment, the discrete parameter
values that can ensure the convergence of the numerical results
are: A =0.5 mm, m=4.015 and «, € [0.4,0.8]. For this issue,
the bond-based PD simulations exhibit highest sensitivity to
the variation of parameter 7 among the studied discretization
parameters, and the sensitivity order is: m>A>a,.

the Kalthoff-Winkler
considering the interaction between the projectile and the

In experiment, when directly
steel plate and the projectile is simplified as a rigid body,
it is found that an initial velocity of 22.5 m/s exactly meets
the requirement of the temporal synchronization observed
in numerical-experimental correlations, and the calculated
crack paths is highly consistent with the experimental
results.
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