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Peridynamics (PD) is an effective numerical analysis theory applicable to 
problems involving strong discontinuities such as fractures. The convergence of 
numerical results from PD models depends on multiple basic parameters such as 
the spatial discretization scale, horizon size, and time step size. However, there 
is a lack of a comprehensive research approach for verifying the independence 
of computational results from the discretization parameters, which may reduce 
the confidence of the numerical results. In the present work, a novel parameter 
independent verification method was proposed for the bond-based PD model. 
Based on the method, convergence studies on the Kalthoff-Winkler experiment 
was carried out to obtain the basic discretization parameters for the problem. 
The results indicate that the parameter independence verification method is 
effective. The study provides theoretical and technical supports for determining 
discrete parameters in numerical simulations.
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 1 Introduction

The independence of computational results from the discrete parameters is a 
prerequisite for the application of most numerical methods [1–5]. Theoretical analysis, 
experimental research, and numerical simulation are the three major methods in scientific 
researches. For problems with strong nonlinearities and extreme working conditions, 
numerical simulations have significant advantages over the other two methods. However, 
the correctness of computational methods needs to be fully verified. The verification mainly 
includes two aspects: the first aspect locates at the convergence studies of the numerical 
results and the second one is the comparison of the consistency between the convergent 
numerical solution and the physical solution. However, there is a lack of reliable methods 
for investigating the independence of the computational results, which may further leads 
to a lack of confidence in the application of the numerical results. In this work, we took the 
bond-based PD model [6] as an example and proposed a method for systematically studying 
the independence of computational results from the discretization parameters.
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PD, as an advanced numerical analysis theory, has gained 
significant attention in engineering applications due to its natural 
advantages in simulating crack propagations and addressing 
multiscale failure problems. However, its nonlocal nature [7–9] 
and discretization of solids using spatial differential equations [6] 
impose higher demands on computational accuracy and efficiency 
[10, 11], making grid independence verification particularly critical. 
In traditional finite element analysis, grid independence verification 
ensures that numerical solutions do not significantly vary with 
mesh refinement [12], serving as a key step to guarantee result 
reliability and computational efficiency. Although the nonlocality 
of PD reduces sensitivity to local mesh variations [13], verifying 
discretization parameter independence of numerical results remains 
essential for balancing computational efficiency and numerical 
precision.

In recent years, many scholars have payed attention to 
the convergence investigations on the numerical results of PD 
[1, 14–18]. The purpose of analyzing the independence of 
numerical results is to obtain reliable combinations of discretization 
parameters. In bond-based PD models, the basic discretization 
parameters include the spatial discretization size Δ, parameter m
that determines the horizon δ combined with size Δ, and time step 
size which is used for the discretization in temporal dimension [6, 
19]. Bobaru [15, 20] discussed three types of numerical convergence 
for PD. The three types of convergence are the δm-convergence, the 
m-convergence, and the δ-convergence. However, there is currently 
a lack of systematic analysis methods, especially when addressing 
problems without experiences or references. Specifically, in these 
types of convergence analysis, researchers are easily troubled by 
the specific values of the fixed m and the fixed δ. Therefore, it 
is urgent to propose a reliable research method to investigate the 
results convergence and determine proper discretization parameters 
for problems with multiple discretization parameters.

For systems with multiple independent variables, it is difficult to 
clarify the influences of a single variable on the system performance 
due to the interactions between the variables. In this situation, 
statistical theory has significant advantages [21, 22]. Orthogonal 
experimental design is an efficient research method based on 
statistical theory to analyze the effects of multiple factors and 
obtain the influences of a single factor [23, 24]. The reliability of 
the single factor influence obtained through the comprehensive 
statistical analysis is determined by the orthogonality (balanced 
combination of the factor-levels) and comprehensive comparability 
of orthogonal experimental arrays. In addition, correctness can also 
be verified through investigating standard benchmark problems 
[25], for instance the Kalthoff-Winkler experiment [14, 26–28], and 
comparing the consistency between the numerical results and results 
from experiments or theoretical analysis.

In this work, based on orthogonal experimental design, we 
proposed a novel method to investigate the result convergence 
and determine proper discretization parameters for the calculation 
of bond-based PD models. The work is organized as following: 
Theoretical contents including bond-based PD models, orthogonal 
experimental design method, numerical scheme and the procedure 
for the proposed convergence study method are presented in 
Section 2. Based on the convergence investigation method, the 
Kalthoff-Winkler experiment is studied and discussed in Section 3.1 
and Section 3.2. Finally, the work is concluded in Section 4. 

2 Methods

2.1 Bond-based PD model

A brief mathematical description of bond-based PD model 
is shown in Equation 1. Detailed explanations can be found in 
reference [6].

ρü(x, t) = ∫
Η(x,δ)

f (x′ − x,u(x′, t) − u(x, t), t)dVx′ + b(x, t) (1)

where ρ is the mass density, x′ is a material point in the 
neighborhood H(x,δ) of material point x with a horizon of δ, u
and ü are respectively the displacement vector and the acceleration 
vector, dVx′  is the volume represented by material point x′, and b
is the external body force vector, f  is the pairwise force density, the 
norm of the pairwise force density is defined in Equation 2.

f = c(ξ) · s (2)

where c(ξ) is the micro modulus that is a function of the length of 
bond ξ in the referenced configuration, s is the stretch of the bond, 
the specific expression of the bond stretch is given in Equation 3.

s =
‖η+ ξ‖ − ‖ξ‖
‖ξ‖

(3)

where η is the relative displacement between the two material points 
linked by bond ξ.

For a two dimensional plane stress problem, the expression of a 
constant micro modulus c0 is given in Equation 4.

c0 =
6E

πhδ3(1− υ)
(4)

where E is the elastic modulus of the material, h is the thickness of 
the 2D problem, and υ is the Poisson’s ratio.

In actual numerical calculations, the integration in Equation 1 
is achieved through the accumulation of discrete material points. 
For a material point x′ of which the represented volume is 
partly not within the neighborhood H(x,δ), the volume involved 
in the integral calculation is corrected [29] though the formula 
cV shown in Equation 5.

cV =

{{{{{
{{{{{
{

1 (‖ξ‖ < δ− r)
δ+ r− ‖ξ‖

2r
(δ− r ≤ ‖ξ‖ ≤ δ)

0 (‖ξ‖ > δ)

(5)

where r is an equivalent radius of the material point, which indicates 
the space represented by this material point. In the case of a uniform 
spacing of Δ, r = Δ/2. 

2.2 Orthogonal experimental design

The experimental combinations in an orthogonal array 
exhibit the characteristics of uniform dispersion and balanced 
comparability, which ensure statistically balanced distribution of 
all factors and their levels while significantly reducing the number 
of experimental trials. For a three factor and three-level problem, 
if a comprehensive experiment is conducted, 27 (33 = 27) different 
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experimental trials are required. If a standard orthogonal test array 
L9 (34) is used, only 9 experimental trials need to be conducted. 
Introducing the orthogonal experimental design method into the 
study of result convergence is the most effective and persuasive 
method for determining proper discretizing parameters, especially 
for the application of PD models in practical engineering problems. 

2.3 Numerical scheme

The updating of the physical field in the work is implemented by 
using the explicit Velocity-Verlet scheme shown in Equations 6–8.

u̇n+1/2 = u̇n + Δt
2
ün (6)

un+1 = un + u̇n+1/2Δt (7)

u̇n+1 = u̇n+1/2 + Δt
2
ün+1 (8)

where u̇ represents the velocity; n is the current time step for which 
the physical field has been updated; and n+1 represents the next 
time step for which the physical field is about to be updated; and 
Δt is the time step size, which is estimated according to Equation 9. 
In the present work, time discretization is also considered as an 
independent dimension in the convergence studies.

Δt = αt
ξmin

cW
(9)

where αt is a coefficient less than 1.0 for guaranteeing the stability 
of the numerical simulation, ξmin is the minimum length of the 
bonds in the reference configuration, and cW is the sound speed 
in the material. Numerical stability is ensured by restricting the 
disturbance propagation distance within each time step through 
this definition. In this work, the sound speed for one-dimensional 
problem is defined in Equation 10. Considering the difference 
in wave speeds between two-dimensional and three-dimensional 
problems, to ensure numerical stability, the value of αt should not 
exceed 0.8 for such cases.

cW = √
E
ρ

(10)
 

2.4 Procedure for the convergence study

The core of this work is to obtain discrete parameters that 
can achieve convergent solutions based on orthogonal experimental 
design method for bond-based PD models. The specific procedure 
of the method for the convergence investigation is given in Figure 1. 
In problem analysis, the mechanical essence of the problem and 
the basic characteristics of the utilized numerical calculating model 
are mainly considered. Based on the problem analysis, independent 
parameters involved in the discretization of the computational 
domain should be determined, which are the factors in the 
orthogonal experimental table selected later. In addition, one or 
more parameters used to effectively describe the characteristics of 
mechanical processes should be provided. Parameters describing 
the mechanical processes are the performance indexes for the 

FIGURE 1
Procedure of the convergence study.

result analyzing of orthogonal experimental design methods. After 
determining the discrete parameters, it is necessary to analyze the 
possible range of values for the discrete parameters and determine 
the number of levels of the parameters based on the study objectives. 
Subsequently, select a suitable standard orthogonal array according 
to the quantity of discrete variables and their corresponding levels. 
Then conduct numerical experiments and obtain the corresponding 
performance index.

Based on the computational results, a critical step is to find 
the convergent solution of the problem. The convergent solution or 
optimal solution possesses distinct features. For instance, in many 
cases, the larger or the smaller the performance index, the better. 
For mechanical problems with discrete computational domains, 
in general, the performance index will gradually converge as the 
grid size decreases. In this work, this characteristic is utilized 
for determining the convergent solution. Based on the convergent 
solution, the performance index corresponding to the other discrete 
parameters can be further processed, and the optimal factor-level 
combination of the discrete parameters can be finally determined. 

3 Results and discussions

3.1 Convergence study for the 
Kalthoff-Winkler experiment

The Kalthoff-Winkler experiment shown in Figure 2, which is 
a benchmark problem, has been investigated by many researchers. 
According to the references, the projectile is regard as a rigid body 
and the detailed parameters for the Kalthoff-Winkler experiment 
are given in Table 1. The thickness of the steel plate is 9 mm and 

Frontiers in Physics 03 frontiersin.org

https://doi.org/10.3389/fphy.2025.1668291
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Hu and Chen 10.3389/fphy.2025.1668291

FIGURE 2
Setup of the Kalthoff-Winkler experiment.

all the boundaries are free. In addition, it should be noted that the 
initial velocity of the projectile and the fracture energy in Table 1 
are slightly different from that in the actual experiment, and the 
difference is mainly to consider the influences of ignoring the 
projectile elasticity. The subsequent section provides a detailed 
discussion on how the fracture energy and the projectile initial 
velocity affect the crack propagation path.

The discretization of the computational domain of this problem 
mainly includes spatial discretization and temporal discretization. 
The spatial discretization is carried out in the form of a uniform 
discretization, which is characterized by Δ, and the temporal 
discretization is characterized by αt in Equation 10. The horizon 
δ =mΔ is a core parameter for PD models, which determines 
the material points that participate in the integrations. Therefore, 
for this problem, we mainly conduct convergence investigations 
based on Δ, m and αt. And the three factors are respectively 
referred to as A, B, and C in this work. At the initial moment, 
there is no strain distribution in the steel plate. Consequently, 
a parameter kDS defined in Equation 11 is a ratio between the 
elastic potential and the energy loss due to material damage, 
which can serve as the performance index in the convergence
investigation.

kDS =
ED

ES
(11)

where ED is the energy loss due to material damage, and ES is the 
elastic potential energy, i.e., the strain energy in the plate.

According to the procedure in Figure 1, factor levels should 
be determined before the orthogonal experiment design. The 
spatial discretization size is governed by the number of material 
points in the characteristic dimension orientation. For a problem 
with the characteristic length of 0.1 m, the length is uniformly 
discretized with 100 material points, and the corresponding 
spatial discretization size Δ is 1.0 mm. Generally, as the spatial 
discretization size decreases, the numerical calculation results will 
gradually converge. However, a small spatial discretization size can 
lead to excessive computational costs. Consequently, it is necessary 
to achieve a large spatial discretization size under the premise of 
result convergence. According to the existing literatures [27, 28], a 

spatial discretization size of 1.0 mm were utilized in there numerical 
predictions, and some researchers believe the spatial discretization 
size should reach 0.5 mm for achieving a convergent solution. 
In this work, we limit the spatial discretization size to between 
0.4 and 0.7 mm.

As for factor B, which is parameter m, its values mainly range 
from 3.0 to 8.0 in PD models. The larger the parameter m, the more 
material points there are in the PD horizon of a material point, 
which will further lead to a sharp increase in the computational 
costs. Considering the computational cost and the parameter used 
in the existing literatures, parameter m in this work takes values 
between 3.0–6.0. As for parameter C, which defines the relationship 
between actual time step size used in the numerical predictions and 
the critical time step size. According to the requirements on the time 
step size, parameter αt should be less than 1.0. And the specific value 
of factor C is limited to 0.2–0.8 in this work.

In order to obtain a convergent trend of the performance index, 
four levels were selected for each factor. The specific values of the 
three factors at different levels are given in Table 2. Based on the 
number of the factors and levels, the standard orthogonal test array 
L16 (45) was selected in the present work. It should be noted that 
the selected orthogonal array may vary depending on the problem 
at hand and the chosen number of levels. This significantly impacts 
the computational effort required to finalize the discrete parameters. 
For researchers with extensive experience, fewer levels may suffice 
to accurately pinpoint the optimal values. Based on this array, as 
illustrated in Table. 3, orthogonal experiments with up to 5 factors 
can be studied simultaneously, and a total of 16 sets of numerical 
cases should be investigated. In this work, bond-based PD model 
with the constant modulus was utilized, and the ratios between the 
elastic potential and the energy loss for the 16 sets of cases were 
obtained and presented in the column of Table 3.

Based on the results in Table 3, detailed analyses of the 
performance index kDS are presented in Table 4. In the Table 4, B′

and C′ represent the performance results of factor B and factor 
C after processing based on the convergence solution, respectively. 
The processing was carried out based on Equation 12. K ij is the 
summation of the performance index and Kij is the averaged 
performance index under level i of factor j. Rj and R′j  are the range 
and the normalized range of the averaged performance index of 
factor j, respectively. The two ranges are defined in Equation 13 
and Equation 14, respectively. The normalized range effectively 
neutralizes unit-induced comparability issue among the factors.

k′ = |kDS − kcv| (12)

Rj =max(K1j,K2j,K3j,K4j) −min(K1j,K2j,K3j,K4j) (13)

R′j =
Rj

ΔFj
(14)

where kcv is the convergent numerical solution, which is 
obtained according the theoretical analysis of results following 
the convergence investigation procedure shown in Figure 1; ΔFj
is the normalized interval of factor j, which is a ratio between 
the level interval and the total range of the values of factor j, the 
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TABLE 1  Basic parameters for the Kalthoff-Winkler experiment.

Young’s 
modulus/GPa

Density
/kg m-3

Poisson’s ratio Fracture 
energy/kJ

Initial 
velocity/m∙s-1

Mass of the 
projectile/kg

191 8,000 0.3 22.17 16.5 1.57

TABLE 2  Factor-levels.

Level A (Δ)/mm B(m) C (αt)

1 0.4 3.015 0.2

2 0.5 4.015 0.4

3 0.6 5.015 0.6

4 0.7 6.015 0.8

TABLE 3  L16 (45) orthogonal test array.

No. A B C kDS(Constant)

1 1 1 1 1 1 0.74148

2 1 2 2 2 2 0.78860

3 1 3 3 3 3 0.79294

4 1 4 4 4 4 0.80985

5 2 1 2 3 4 0.72126

6 2 2 1 4 3 0.78483

7 2 3 4 1 2 0.79167

8 2 4 3 2 1 0.81656

9 3 1 3 4 2 0.73777

10 3 2 4 3 1 0.81546

11 3 3 1 2 4 0.81789

12 3 4 2 1 3 0.84672

13 4 1 4 2 3 0.73384

14 4 2 3 1 4 0.82428

15 4 3 2 4 1 0.83106

16 4 4 1 3 2 1.33371

Bold values indicate either calculated values or values that require attention during analysis.

corresponding expression is given in Equation 15.

ΔFj =
Fmax

j − Fmin
j

nj(F
max
j − Fmin

j )
= 1

nj
(15)

TABLE 4  Result analysis of the performance index.

Index A B C B’ C’

K1j 3.13287 2.93435 3.67791 0.18924 0.55432

K2j 3.11432 3.21316 3.18764 0.08957 0.06405

K3j 3.21784 3.23355 3.17154 0.10996 0.04795

K4j 3.72289 3.80685 3.15082 0.68326 0.02723

K1j 0.78322 0.73359 0.91948 0.04731 0.13858

K2j 0.77858 0.80329 0.79691 0.02239 0.01601

K3j 0.80446 0.80839 0.79289 0.02749 0.01199

K4j 0.93072 0.95171 0.78770 0.17081 0.00681

Rj 0.15214 0.21812 0.13177 — —

R′j 0.45643 0.65437 0.39532 — —

Bold values indicate either calculated values or values that require attention during analysis.

where, Fmax
j  and Fmin

j  are the maximum level and the minimum level 
of factor j, respectively; nj is the number of levels of factor j. It should 
be noted that this formula is practically meaningful only when the 
factors have different numbers of levels.

In the field of computational mechanics, it is well known 
that the numerical solutions gradually converge as the spatial 
discretization size decreases. We utilized this characteristic to search 
for the convergent solution for the problem, and the results are 
presented in Figure 3. As shown in Figure 3a, the numerical results 
conform to the aforementioned laws of computational mechanics, 
and numerical results of the studied problem convergent when the 
spatial discretization size decreased to 0.5 mm, which is the second 
level of factor A. In this work, the convergent numerical solution 
kcv in Equation 12 is calculated by averaging the performance index 
of factor A at levels 1 and 2. Based on the convergent solution, the 
absolute residuals of the performance index for factor B and factor 
C can be achieved based on Equation 12. The absolute residuals are 
presented in Figures 3b,c. For the two parameters, obviously, the 
smaller the absolute residual, the better. According to Figure 3b, the 
optimal solution for parameter m is 4.015, which is the second level 
of factor B. According to Figure 3c, within the range of factor C, a 
value of αt within 0.4–0.8 can obtain relatively accurate calculation 
results. Therefore, for the studied problem, the optimal discrete 
parameter combination is obtained. It should be noted that the 
results in Figure 3c are primarily related to the treatment of bond 
breaking processes. When the time step is very small, corrections 
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FIGURE 3
Convergence results. (a) Performance index vs. factor A. (b) The absolute residual k’ of factor B. (c) The absolute residual k’ of factor C.

must be made to bond fractures from the perspectives of momentum 
and energy conservation.

The main purpose of the range analysis in Table 4 is to obtain the 
order of sensitivity of calculation results to the parameter changes. 
Obviously, the greater the range, the stronger the sensitivity. For the 
studied problem and within the selected ranges of the parameters, 
we found that the specific sensitivity order is: m> Δ >αt.

Based on the optimal discrete parameter combination, a case 
of the Kalthoff-Winkler experiment was calculated. Detailed results 
are illustrated in Figure 4. The total energy in the plate comes from 
the kinematic energy of the projectile. Therefore, the consistency 
between the projectile energy loss and total energy within the 
steel plate shown in Figure 4a indicates the correctness of the 
energy balance in the system. According to Figure 4b, the projectile 
kinematic energy is converted into the elastic potential energy in the 
plate firstly. With the accumulation of the elastic potential energy, 
bond breakages occur and part of the potential energy is converted 
into the damage energy, which forms new surfaces of the cracks. 
Under the chain effect within the system, the elastic potential energy 
gradually decreases after the material damage starts. As illustrated in 
Figure 4c, the velocity of the projectile decreased from 16.5 m/s to 
7.64 m/s during the interaction between the projectile and the steel 
plate. The damage and displacement distributions at 90 are given in 
Figures 4e,f. It should be noted that, the X-direction is consistent 
with the direction of the projectile impact, and the Y-direction is 
perpendicular to the direction of the projectile initial velocity. The 

cracks propagate at an angle of about 68° with respect to the direction 
of pre-notches, which agree with the numerical results in those 
works and experiments [27, 28]. 

3.2 Discussions

An issue that worth further investigation is ensuring the 
consistency of basic conditions in numerical calculations and 
experiments of the benchmark problem. The plate is made of X2 
NiCoMo 1895, which is a material similar to the standard grade 
18Ni(300) [26]. The fracture toughness of the material is about 90 
MPa ·m1/2 [30], and the elastic modulus and the Poisson’s ratio are 
given in Table 1. Based on the material properties, the real fracture 
energy Gc can be calculated according to Equation 16 [31]. The result 
of the fracture energy is 42.408 kJ/m2, which is different from the 
fracture energy in Table 1.

Gc =
{{
{{
{

1
E

K2 plane stress

1− υ2

E
K2 plane strain

(16)

where υ is Poisson’s ratio, E is the elastic modulus and K is the 
fracture toughness.

Another topic worth discussing is the initial velocity of the 
projectile. In many works [14, 27, 28], the interaction between 
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FIGURE 4
Numerical results of the Kalthoff-Winkler experiment. (a) Energy balance in the system. (b) Elastic potential and damage energy. (c) Projectile velocity 
vs. travel. (d) Damage at 90 μs. (e) X-displacement at 90 μs. (f) Y-displacement at 90 μs.
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FIGURE 5
Improved numerical results of the Kalthoff-Winkler experiment. (a) Energy balance. (b) Elastic potential and damage energy. (c) Projectile velocity vs. its 
travel. (d) Damage distribution at 90 μs.

FIGURE 6
Simulated vs. experimental [32] crack propagation path.

the projectile and the steel plate is achieved through a fixed 
velocity boundary condition given at the contact boundary, 
and the given velocity is 16.5 m/s. However, a constant velocity 
boundary condition will affect the energy conversion in the actual 
process and cannot truly depict the projectile-plate interaction. 
In addition, the specific speed is mainly considered to maintain 
consistency between the required time of complete fracture of 

the steel plate in numerical calculations and the corresponding 
time in experiments. In the present work, we directly considered 
the impact between the projectile and the steel plate, but the 
projectile was treated as a rigid body. Similar to the considerations 
in the cases that maintain the temporal synchronization observed 
in numerical-experimental correlations, by trial and error, we 
have calculated that when the initial velocity of the projectile is 
22.5 m/s, the time for the crack to completely penetrate the plate 
is about 90 microseconds, which is equal to the corresponding 
time recorded in the experiments [28, 32]. Based on parameters 
and basic conditions closer to the experimental situation, the 
Kalthoff-Winkler experiment was investigated by using the 
bond-based PD model and the discrete parameters obtained in
Section 3.1.

Detailed results were illustrated in Figure 5. The numerical 
results are similar to those under initial impact velocity of 16.5 m/s, 
but the specific values vary significantly. For example, the total 
energy in the steel plate in Figure 5a reaches about 313.2 J, while 
the total energy in Figure 4a is about 170.0 J. And the total energy 
loss due to damage shown in Figure 5b is about 69.5 J, while the 
corresponding value in Figure 4b is about 35.8 J. This is mainly 
due to the increase in the fracture energy. As shown in Figure 5c, 
during the impact process between the projectile and the steel plate,
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the velocity of the projectile decreased from 22.5 m/s to 10.36 m/s. 
And the displacement of the projectile at 90 microseconds is about 
1.16 mm. The damage distribution in the deformed configuration 
is given in Figure 5d, and the crack paths is similar to the crack 
propagation path in Figure 4d.

In Figure 6, the simulated crack path is compared with the path 
obtained from experiments. Different from the result in Figure 5d, 
the numerical result in Figure 6 is displayed in the referenced 
configuration. The experimental results and numerical calculations 
have a high degree of consistency, especially the crack initiation 
and the final fracture morphology. It should be acknowledged that 
the propagation path of the crack is slightly different. We believe 
that the main reason is the inherent fixed Poisson’s ratio defect in 
bond-based PD models. 

4 Conclusion

In the present work, we proposed a novel method for 
verifying the discrete parameter independence of numerical 
results from bond-based PD models. The core of the method 
is to treat the discrete parameters as factors and utilize the 
advantages of orthogonal experimental design in comprehensive 
analysis, then the variation of numerical results with individual 
factors can be obtained. Furthermore, using the consensus in 
computational mechanics, that is, the numerical results will 
gradually converge with the discretization of spatial discretization 
size, and a convergent solution will be obtained. Based on the 
convergent solution, the optimal level of the other parameters 
can be obtained. Based on the method, the Kalthoff-Winkler 
experiment was studied and discussed in detail. Based on 
the result analysis and discussions, following conclusions 
can be drawn. 

1. The proposed discrete parameter independence verification 
methodology demonstrates robust effectiveness, which 
provides theoretical and technical support for determining 
discrete parameters in numerical simulations.

2. For the Kalthoff-Winkler experiment, the discrete parameter 
values that can ensure the convergence of the numerical results 
are: Δ =0.5 mm, m=4.015 and αt ∈ [0.4,0.8]. For this issue, 
the bond-based PD simulations exhibit highest sensitivity to 
the variation of parameter m among the studied discretization 
parameters, and the sensitivity order is: m>Δ>αt.

3. In the Kalthoff-Winkler experiment, when directly 
considering the interaction between the projectile and the 
steel plate and the projectile is simplified as a rigid body, 
it is found that an initial velocity of 22.5 m/s exactly meets 
the requirement of the temporal synchronization observed 
in numerical-experimental correlations, and the calculated 
crack paths is highly consistent with the experimental
results.
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